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Abstract. The design of an efficient code-based signature scheme is by
all means still an open problem. In this paper, we propose a simple and
efficient scheme following the framework detailed by Lyubashevsky in [16]
to construct an identification scheme. The scheme is based on quasi-cyclic
codes and, while security relies on the ring algebra that is associated with
them, the proposal benefits from the quasi-cyclic structure in reducing
key and signature sizes.

1 Introduction

Digital signatures are a very important cryptographic protocol in the
modern world. Among the most popular there are, for instance, schemes
based on the RSA assumptions, discrete logarithm (DSA) and its ellip-
tic curves version (ECDSA), all included in the FIPS standard 186-3
[14]. Many schemes based on coding theory have been proposed over the
years, that either follow a “direct” approach like CFS (Courtois, Fini-
asz and Sendrier [8]) and KKS (Kabatianskii, Krouk and Smeets [13]), or
rely on the Fiat-Shamir transform [12] to convert an identification scheme
into a signature scheme. The latter schemes are usually built via a 3-pass
protocol (Véron [28]) or, more recently, a 5-pass protocol (Cayrel, Véron
and El Yousfi [7]), in turn relying on the work of Stern [26,27]. Unfortu-
nately, all of the above proposals suffer from one or more flaws, be that
a huge public key, a large signature or a slow signing algorithm, all of
which make them highly inefficient in practical situations. This is partic-
ularly evident in the identification schemes, where it is usually necessary
to repeat the protocol many times in order to guarantee correctness or se-
curity. In this paper, we propose a code-based identification scheme that
follows a different approach, inspired by the work of Lyubashevsky [16].
Such a proposal had been attempted before (see [23]) without success,
the main issue being the restrictive choice of the setting (random binary
codes). Choosing quasi-cyclic codes allows to take advantage of the innate
ring metric and makes the scheme viable.



1.1 Identification Schemes and Fiat-Shamir

An Identification (ID) Scheme is a protocol that allows one party, called
the Prover, to prove to another party, the Verifier, that he possesses some
secret information, usually called witness, without revealing to the verifier
what that secret information is. The paradigm works as follows: suppose
that the prover P wants to prove to the verifier V the knowledge of some
witness s; V is equipped with a public key pk and the public data D.
To start, P chooses some random data y and commits to it by sending
Y = f(y) to V, where f is usually a trapdoor one-way function or a
hash function. V then chooses a random challenge c and sends it to P.
After receiving c, P computes a response z as a function of s, c and y and
transmits z. Finally, V checks that z is correctly formed with the help
of pk and D. A typical example is the Feige-Fiat-Shamir identification
scheme [10], based on the Quadratic Residuosity (QR) hard problem.

Security of ID schemes takes into account two different aspects. First
of all, a protocol should be secure against impersonators, that is, (usually
malicious) parties that try to replace the prover and produce a valid re-
sponse without the knowledge of s. Moreover, the protocol should prevent
an attacker from extracting private information from the protocol; in this
sense, even an honest verifier is considered an adversary for the scheme.
The strongest property in this sense is called zero-knowledge (ZK), but
this notion can also be relaxed to satisfy weaker requirements such as wit-
ness indistinguishability (WI) or witness hiding (WH). We refer the reader
to [11] for the general definitions. So-called passive attackers have access
to the public key, the public data, and all the information exchanged dur-
ing any number of interactions between the prover and the verifier. They
can’t, however, interact with the protocol. The active model, instead, fea-
tures a two-stage adversary who is allowed to play the role of the verifier
in order to extract some information (first stage), before attempting to
produce a valid response (second stage).

The paper is organized as follows: in the next section we give some pre-
liminary notions about codes and code-based cryptography. In Section 3
we describe the framework on which our scheme will be based, including
“classical” protocols, the lattice-based scheme of Lyubashevsky and the
previous code-based proposal by Persichetti. Our scheme is presented in
Section 4, together with a detailed security analysis, and its performance
and comparison with other code-base schemes are discussed in Section 5.
We conclude in Section 6.
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2 Preliminaries

Let Fq be the finite field with q elements. An [n, k] Linear Code C is a
subspace of dimension k of the vector space Fn

q . Codewords are usually
measured in the Hamming metric: the Hamming Weight of a codeword is
the number of its non-zero positions, and the Hamming Distance between
two codewords is the number of positions in which they differ, that is, the
weight of their difference.

Linear codes can be efficiently described by matrices. The first way
of doing this is essentially choosing a basis for the vector subspace. A
Generator Matrix a matrix G that generates the code as a linear map:
for each message x ∈ Fk

q we obtain the corresponding codeword xG. Of
course, since the choice of basis is not unique, so is the choice of generator
matrix. It is possible to do this in a particular way, so that G = (Ik|M).
This is called systematic form of the generator matrix. Alternatively a
code can be described by its Parity-Check Matrix : this is nothing but
a generator for the Dual Code of C, i.e. the code comprised of all the
codewords that are “orthogonal” to those of C. The parity-check matrix
describes the code as follows:

∀x ∈ Fn
q , x ∈ C ⇐⇒ HxT = 0.

The product HxT is known as Syndrome of the vector x. Note that,
if G = (Ik|M) is a generator matrix in systematic form for C, then H =
(−MT|In−k) is a systematic parity-check matrix for C.

Code-based cryptography largely relies on the following problem, con-
nected to the parity-check matrix of a code.

Problem 1 (Syndrome Decoding Problem (SDP))

Given: H ∈ F(n−k)×n
q , S ∈ F(n−k)

q and w ∈ N.
Goal : find e ∈ Fn

q with wt(e) ≤ w such that HeT = S.

This problem is well-known and was proved to be NP-complete by
Berlekamp, McEliece and van Tilborg in [4]. Moreover, it is proved that
there exists a unique solution to SDP if the weight w is below the so-called
GV Bound.

Definition 1. Let C be an [n, k] linear code over Fq. The Gilbert-Varshamov
(GV) Distance is the largest integer d such that

d−1∑
i=0

(
n

i

)
(q − 1)i ≤ qn−k.
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If this is not the case, multiple solutions exist (see for example Over-
beck and Sendrier, [22]). It follows that SDP is meaningful only if the
weight w is small.

2.1 Quasi-Cyclic Codes

A special subfamily of linear codes is that of cyclic codes.

Definition 2. Let C be an [n, k] linear code over Fq. We call C Cyclic if

∀a = (a0, a1 . . . , an−1), a ∈ C =⇒ a′ = (an−1, a0 . . . , an−2) ∈ C.

Clearly, if the code is cyclic, then all the right shifts of any codeword have
to belong to C as well.7

An algebraic characterization can be given in terms of polynomial rings.
In fact, it is natural to build a bijection between cyclic codes and ideals of
the polynomial ring Fq[x]/(xn−1). We identify the vector (a0, a1 . . . , an−1)
with the polynomial a0 + a1x + · · ·+ an−1x

n−1, and then the right shift
operation corresponds to the multiplication by x in the ring.

Because of this correspondence, it is possible to see that both genera-
tor matrix and parity-check matrix of a cyclic code have a special form,
namely circulant form, where the i-th row corresponds to the cyclic right
shift by i positions of the first row.

Cyclic codes have been shown to be insecure in the context of cryptog-
raphy, as they introduce too much recognizable structure. A subfamily,
known as Quasi-Cyclic codes, has been then proposed with some success,
mostly in the context of encryption.

Definition 3. Let C be an [n, k] linear code over Fq. We call C Quasi-
Cyclic if there exists n0 such that, for any codeword a all the right shifts
of a by n0 positions are also codewords.

When n = n0p, it is possible to again have both generator matrix
and parity-check matrix in a special form, composed of n0 circulant p× p
blocks. Then, the algebra of quasi-cyclic codes can be connected to that
of the polynomial ring Fq[x]/(xp−1), where each codeword is a length-n0
vector of elements of the ring.

For the remainder of the paper, we will focus only on the binary case,
thus we set R = F2[x]/(xp − 1). We then have the following ring-based
formulation of a quasi-cyclic version of SDP.
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Problem 2 (Quasi-Cyclic Syndrome Decoding Problem (QC-SDP))

Given: h, S ∈ R and w ∈ N.
Goal : find e0, e1 ∈ R with wt(e0) + wt(e1) ≤ w such that e0 + e1h = S.

This was shown to be NP-complete in [3].

3 A Framework for Signatures

3.1 Number Theory and Lattices

There is a relatively recent approach that provides an easy way to con-
struct efficient signature schemes based on any hard problem. The ap-
proach consists of successive reductions building on the original hard
problem, first deriving a collision-resistant hash function f , then con-
verting it into a one-time signature where the private key is a pair of
integers (x, y), the public key is the pair (f(x), f(y)), and the signature
of a message c is simply cx+y. The one-time signature can then be turned
into an identification scheme by replacing c with a challenge chosen by the
verifier and letting y be the commitment (a distinct y is used in every run
of the protocol). Finally, the identification scheme is transformed into a
full-fledged signature scheme using the Fiat-Shamir transform. Proposals
based on classical number theory problems such as RSA (see Appendix A)
or discrete logarithm (see Okamoto [20]) are easy and intuitive to design.

Lyubashevsky in [16] showed for the first time how to translate the frame-
work to the lattice case. The translation is rather direct, except for an
issue which is inherent to the nature of the lattice schemes: unlike factor-
ing or discrete logarithm, in fact, the hardness of lattice problems comes
from finding elements that live in a specific subset of a ring, namely ele-
ments with small Euclidean norm. Transmitting several elements of this
nature can leak some parts of the private key. To overcome this limitation,
the author makes use of a technique, already introduced in [15], called
aborting. In short, this consists of refusing to answer to the challenge if
in doing so the security of the scheme would be compromised. In prac-
tice, this is realized by limiting the set of possible answers to a smaller
“safe” subset, consisting of elements whose norm satisfies a certain bound.
Details are given also in Appendix A.

3.2 A Coding Theory Scenario

A first, direct translation of the framework to the case of code-based cryp-
tography was proposed by Persichetti in [23]. The idea is for the scheme
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to rely on SDP, hence featuring a public matrix H, a secret s having
weight below the GV bound and the public key S = HsT . Similarly to
the lattice case, the final verification should include not only an algebraic
formula consisting of H, the commitment Y and S, but also a check on
the weight of the response z. Formally, one can see the syndrome com-
putation as a hash function f(x) = HxT , which is is preimage-resistant
provided that the weight of x is small. It follows that the scheme is subject
to the additional constraint that the random element y and the challenge
c should be chosen such that wt(z) ≤ w, where w is the value of the GV
distance. This means that c can only be an element of Fq and that s and
y must satisfy wt(s) = γ1w,wt(y) = γ2w, for certain constants γ1, γ2 ≤ 1
such that γ1+γ2 = 1. We report below the sample instantiation proposed
in [23] (where γ1 = γ2 = 1/2).

Table 1: SDP-based Identification Scheme.

Public Data The parameters q, n, k, w ∈ N and an (n− k)× n parity-check matrix

H over Fq.

Private Key s ∈Wq,n,w/2
.

Public Key S = HsT .

PROVER VERIFIER

Choose y
$←−Wq,n,w/2

and set Y = HyT .
Y−→
c←− c

$←− Fq \ {0}.

Compute z = y + cs.
z−→ Accept if HzT = Y + cS and

wt(z) ≤ w.

Unfortunately, this simple proposal is vulnerable to an attacker who
tries to learn the secret, even in the passive model. In fact, such an at-
tacker could simply run the protocol several times, storing the values of z
and c at every run of the protocol, then computing z′ = c−1y + s: this is
always possible, since c is a field element and is non-zero. Now, the vector
y′ = c−1y is randomly generated and has low weight, so each of its co-
ordinates is biased towards 0. Therefore, a simple statistical analysis will
eventually reveal all the positions of s. The problem seems to come from
the scheme setting itself. In fact, c is constrained to be a field element
(to fit the verification equation) but doesn’t alter the weight of s, and so
the low-weight vector y that is added is not enough to properly hide the
secret support.
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4 The New Scheme

The core of our idea is to use quasi-cyclic codes instead of generic codes.
The use of quasi-cyclic codes in cryptography is not a novelty: these
have been proposed before in the context of encryption (e.g. [3]), mainly
with the aim of reducing public-key length. Their originally suggested
use (i.e. with GRS codes) was cryptanalyzed in [9] and it is thus not
recommended, but other variants based on LDPC and MDPC codes are
still considered safe. In both cases, the issue is that introducing the extra
algebraic structure can compromise the secrecy of the private matrix used
for decoding. A big advantage of our proposal is that this issue does not
apply. In fact, since there is no decoding involved, an entirely random code
can be used, and the code itself is public, so there is no private matrix
to hide. Our scheme uses the simplest and most popular instantiation of
quasi-cyclic codes (n0 = 2 so just two blocks), and we present it below.

Table 2: Cyclic Identification Scheme.

Public Data Parameters p, w,w1, w2 ∈ N, a vector h ∈ {0, 1}p and a hash function H.

Private Key s = (s0, s1) ∈ R×R of weight w1.

Public Key S = s0 + s1h.

PROVER VERIFIER

Choose y = (y0, y1)
$←− R×R of weight w2

set Y = y0 + y1h and K = H(Y ).
K−→
c←− c

$←− R of weight δ̂ ≤ δ.

If c is not invertible set z = ⊥ (abort).

Compute z = y + cs.
z−→ Accept if H(z0 + z1h+ cS) = K and

wt(z) ≤ w.

In the verification step we have z0 = y0 + cs0 and z1 = y1 + cs1 thus
z0 + z1h = y0 + cs0 + (y1 + cs1)h = y0 + y1h+ c(s0 + s1h) = Y + cS from
which it is easy to see that an honest prover will always succeed.

The final weight w = w2 + δ̂w1 should be below the GV bound to
ensure that the response z is unique, as usual in SDP instances.
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Note that we introduce a hash function H in the scheme, and in the
commitment phase we commit H(Y ) rather than Y itself. This technique
was already introduced in [16] and it is easy to check that it doesn’t influ-
ence the correctness of the scheme. The function H needs to be preimage-
resistant, but does not need to verify any other particular algebraic prop-
erties, thus its role can be played by any cryptographic hash function
(e.g. SHA-3). The function is modeled as a random oracle in the security
proof (see below). The restriction on c being invertible is connected to
the security proof as well and its role will be clarified in the next section.

4.1 Security

The security of our identification scheme is directly connected to the QC-
SDP problem. In fact, in the following theorem, we show how a successful
forger against the scheme can be used to solve an instance of QC-SDP.

Theorem 1. If the identification scheme described in Table 2 is insecure
against active attacks, then there exists a polynomial-time algorithm that
can solve QC-SDP.

Proof. LetA be a successful forger against the scheme, and let (h∗, S∗, w∗)
be the target instance of QC-SDP that we want to solve. We will use A
to solve QC-SDP as follows. We start by setting up an instance of the
identification scheme.

Key Generation: On input the instance (h∗, S∗, w∗) of QC-SDP, set
h = h∗, w1 = w∗, and S = S∗.

We then play the attack game with A, in which we replace the hash
function H with a random oracle. In the first part of the game, A im-
personates the verifier and we simulate the behavior of an honest prover
(since we don’t know the private key), including a simulation of the ran-
dom oracle (verification queries). We will need to use two tables T1 and
T2 to ensure our simulation is consistent. Table T1 consists of 4 columns
in which are recorded the scheme commitments, their syndromes, the
verification query values and their simulated hash values. Thus, a generic
row of T1 looks like (y, Y, Y ′, r), and we will use the symbol · to indicate
an empty entry. Table T2, instead, has only two columns and keeps track
of the random value associated to each commitment.
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Commitment Phase:

1. Generate a random string y of weight w2.

2. Look up y in the first column of T1. If a record is found (i.e. the
commitment y had been previously used), return the corresponding
value r from the last column.

3. Else compute Y = y0 + y1h, then generate a random “hash” value r
and add (y, Y, · , r) to T1.

4. Return r.

Response Phase: On input a challenge c of weight δ̂ ≤ δ:

1. Look up c in T2. If (c, u) is found, use the corresponding value for u.

2. Else generate a random vector u of weight ≤ δ̂w∗.
3. Set z = y + u and add (c, u) to T2.

4. Return z.

Verification Queries: Upon the query z0 + z1h+ cS:

1. Look up Y ′ = z0 + z1h + cS in the second column of T1. If a record
is found (i.e. Y ′ is the syndrome of another previously used com-
mitment), retrieve the value y′ from the first column, then output
s = c−1(z + y′) and the game ends.

2. Else insert Y ′ in the third entry of the row (y, Y, · , r).
3. Return r.

In fact if Y ′ = z0 + z1h + cS then z0 + z1h = Y ′ + cS, which means
we have found a vector of weight w ≤ w2 + δ̂w1 that solves the QC-SDP
instance (h, Y ′ + cS,w). But y′ + cs is one such vector, and since the
solution of QC-SDP is unique when w is below the GV bound, it must
be that z = y′ + cs. Then s = c−1(z + y′) is the solution to (h∗, S∗, w∗).

If the game is not interrupted as above, we move on to the second part.
Now, A impersonates the prover and aims at being successfully verified.

Random Oracle Queries: Upon the query Y :

1. Look up Y in the third column of T1. If a record is found, return the
corresponding value r from the last column.

2. Else generate a random “hash” value r and add ( · , · , Y, r) in T1.

3. Return r.

9



Challenge Phase: On input a commitment hash value r:

1. Generate a random c of weight ≤ δ̂.
2. Return c.

In the second part of the game, we proceed as follows: after sending
the first challenge c(1), we store this value and the value z(1) that we
receive from A. Now, since A can successfully be verified, either it found
a preimage for the hash function, or it correctly guessed the value of the
response. We can rule out the former since we are correctly simulating the
behavior of the hash function, which is meant to be preimage-resistant;
therefore it must be that z(1) = y + c(1)s. At this point, we rewind the
adversary and we repeat the challenge phase, sending a new, distinct value
c(2) and receiving another response z(2) which, as before, will correspond
to y+ c(2)s. Then, z(1) + z(2) = (c(1) + c(2))s, which will reveal1 s, and we
win the game. ut

4.2 Information Hiding

The author in [16] does not claim zero-knowledge for the scheme, but
rather shows that it satisfies the weaker witness indistinguishability no-
tion. In our case, the protocol is trivially WI since there is only one valid
witness (the low-weight polynomial s), so we will focus instead on the
witness hiding property. While ZK requires that no information whatso-
ever can be extracted from the protocol, this property only asks that the
prover’s witness does not leak. It is easy to see that the “näıve” SDP-based
proposal of Section 3.2 is not WH, since the prover’s response eventually
leaks s. However, our proposal is substantially different, and in fact re-
sembles the lattice setting much more. In fact, as in the lattice case, our
objects are “vectors of vectors”, namely in this case a length-2 vector of
length-p binary vectors. Due to the inherent arithmetic associated to the
ring R, this allows us to choose c in the same realm, and perform an op-
eration (ring multiplication) that is still compatible with the verification
operation, yet provides more security. In fact, polynomial multiplication
simultaneously increases and scrambles the error positions, and in so do-
ing prevents the attack based on statistical analysis that affected the
previous proposal. This is because the inverse of c is not guaranteed to
have low weight (in fact its weight is in general close to average) and so
the vector y′ = c−1y effectively behaves as a random vector, hiding s.

1 Note that the values c(1) and c(2) can be chosen ad hoc such that their sum is surely
invertible.
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5 Performance and Comparison

To evaluate the performance of our scheme, we start by recalling that the
full-fledged signature scheme is obtained via the Fiat-Shamir transform[12].
With this paradigm, the signer simply runs the identification protocol,
where, for the purpose of generating the challenge, the verifier is replaced
by a random oracle F (usually a hash function). The signature is then
accepted according to the validity of the response in the identification
scheme.

Table 3: The Fiat-Shamir Signature Scheme.

Setup Select an identification scheme I.

Sign On input the private key of I and a message µ, commit K, set c = F(K,µ),
compute a response z and return the signature σ = (K, z).

Ver On input the public key of I, a message µ and a signature σ, set c = F(K,µ)
then output 1 if z is accepted in I, else return 0.

Thus the signature is given by a commitment string and the response
string z. In our scheme, this corresponds to a hash value (of length `F , say
128 or 256 bits), and a vector of length 2p. The public data, on the other
hand, consists of the vector h (of length p) and the syndrome S (also
of length p), for a total of 2p bits. Let’s look at some parameters for the
codes in our scheme. These are normally evaluated with respect to general
decoding algorithms such as Information-Set Decoding [24,25,5,17,18]:
this is indicated in the column “Security”.

Table 4: Parameters.

p w1 w2 δ Security (log) Signature Size (bits) Public Data (bits)

4801 90 100 10 80 9602 + `F 9602

9857 150 200 12 128 19714 + `F 19714

3072 85 85 7 80 6144 + `F 6144

6272 125 125 10 128 12544 + `F 12544
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The first two rows recall “well-known” parameters suggested in the
literature for QC-MDPC codes; because our codes do not need to be
decodable, we are able to slightly increase the number of errors. The last
two rows, instead, are parameters chosen in a similar way to those above,
while trying to optimize performance.

5.1 Comparison with other Code-Based Schemes

Due to the highly diverse nature of code-based schemes, it would prove
difficult to reunite them all in just one table. Instead, we are going to
(briefly) discuss individually the three main proposals, related variants
and improvements.

CFS This is a very natural approach for code-based cryptography, and
thus it retains most of its traits, both good and bad. For instance, the
verification consists of a single matrix-vector multiplication and so it is
usually very fast. On the other hand, the scheme features a very large
public key (the whole parity-check matrix). Structured instances as pro-
posed for example in [2] reduce this size drastically and are therefore able
to complete with our proposal, although with a potential few security
concerns. However, the main downfall of CFS is the extremely slow sign-
ing time. This is a consequence of the well-known fact that a random
word is in general not decodable, thus finding a decodable syndrome re-
quires an incredibly high number of attempts (at least 215 in the simplest
instances). The advantage of our scheme is then evident, as the signing
process only requires the computation of two hash values and two poly-
nomial multiplications.

KKS The KKS approach still creates signatures in a “direct” way, but
without decoding. Instead, the scheme relies on certain aspects of the
codes such as a carefully chosen distance between the codewords, and
uses a secret support. Unfortunately, the main drawback of KKS-like
schemes is their security. In fact, it has been shown in [6] that most of the
original proposals can be broken after recovering just a few signatures.
Furthermore, not even a one-time version of the scheme (e.g. [1]) is secure,
as shown by Otmani and Tillich [21], who are able to break all proposals
in the literature without needing to know any message/signature pair.
It is therefore unlikely that the KKS approach could be suitable for a
credible code-based signature scheme.
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Identification Schemes All of the code-based identification schemes
proposed so far are 3-pass (or 5-pass) schemes with multiple challenges.
Thus, the prover sends 2 or 3 entirely different responses depending on
the value of the challenge (usually a bit or {0,1,2}). In this sense, our
proposal represents a big novelty. In fact, multiple challenges allow for a
malicious user to be able to cheat in some instances. For example, in the
original proposal by Stern [26] (see Appendix B), it is possible to choose
any 2 out of 3 possible responses and pass verification for those even
without knowing the private key, thus leading to a cheating probability
of 2/3. This cheating probability is subsequently lowered in most recently
proposals, approaching 1/2. Nevertheless, this causes a huge issue, since
the protocol needs to be repeated several times in order for an honest
prover to be accepted. The 35 repetitions of the original scheme can be
lowered to approximately 16 repetitions in more recent schemes, but even
so, communication costs prove to be very high, leading to a very large
signature size. Below, we report a comparison of parameters for different
variants of the scheme, where the column Véron refers to [28], CVE to [7]
and AGS to [19]. Note that all of these parameters refer to a cheating
probability of 2−16, a weak authentication level.

Table 5: Comparison of the most popular identification schemes. All the sizes are
expressed in bits.

Stern 3 Stern 5 Véron CVE AGS

Rounds 28 16 28 16 18
Public Data2 122500 122500 122500 32768 350
Private Key 700 4900 1050 1024 700
Public Key 350 2450 700 512 700

Total Communication Cost 42019 62272 35486 31888 20080

In the latest proposal (column AGS), the size of the public matrix is
considerably smaller thanks to the use of double-circulant codes. How-
ever, the signature size is still very large (about 93Kb). Moreover, for
signatures, one would expect computational costs to produce a forgery to
be no less than 280; this would require, as claimed by the authors in [19],
to multiply all the above data by 5. In comparison, our scheme achieves
the same security level with just 6Kb.

2 The public matrix H.
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6 Conclusions

In this paper, we have presented a new construction for an identification
scheme based on coding theory assumptions. In particular, our scheme
uses quasi-cyclic codes and relies on the hardness of the quasi-cyclic ver-
sion of the syndrome decoding problem (QC-SDP), while making use
of the inherent ring structure for its arithmetic properties. Quasi-cyclic
codes have traditionally been used in code-based cryptography to bene-
fit from their compact description, and the subsequent reduction in the
public key size. To the best of our knowledge, it is the first time that
these codes are explicitly used for their arithmetic, and that this arith-
metic is employed in a code-based signature scheme other than for the
reduction in key size. The use of this arithmetic allows to create a pro-
tocol that resembles Lyubashevsky’s lattice-based proposal, and succeeds
where previous code-based proposals had failed (e.g. [23]). Thanks to the
simplicity of its design, our protocol ends up being very competitive: it
features a compact public key, fast signing and verification algorithms,
and the signature size is much shorter than other identification-based
schemes. Thus, our scheme is a strong candidate to solve the long-time
open problem of designing an efficient code-based signature scheme.
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A Other Identification Schemes Using the Framework

Table 6: Factoring-based Identification Scheme.

Public Data An RSA modulus N = pq and a group element g.
Private Key s ∈ Ds.
Public Key S = gs (mod N).

PROVER VERIFIER

Choose y
$←− Dy and set Y = gy (mod N).

Y−→
c←− c

$←− Dc.

Compute z = y + cs.
z−→ Accept if gz = Y Sc (mod N).

Table 7: Lattice-based Identification Scheme.

Public Data A hash function f
$←− H(R,D,m).

Private Key s ∈ Dm
s .

Public Key S = f(s).

PROVER VERIFIER

Choose y
$←− Dm

y and set Y = f(y).
Y−→
c←− c

$←− Dc.
Compute z = y + cs. If z /∈ Gm set z = ⊥. z−→ Accept if z ∈ Gm and

f(z) = Y + cS.

The hash functions in this case are sampled from the family H(R,D,m) =
{fa : a ∈ Rm} where R is the ring Zp[x]/(xn + 1), D ⊆ R and, for every
z ∈ Dm, we define fa(z) = a · z. Alternatively, we can see fa(z) as AzT ,
where A is the circulant matrix over Fp whose first row is a. The subset
G is exactly the “safe” subset described in Section 3.1.
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B Stern’s Identification Scheme

Table 8: Stern Identification Scheme.

Public Data The parameters n, k, w ∈ N, an (n− k)× n parity-check matrix H
over F2 and a hash function H.

Private Key s ∈W2,n,w.
Public Key S = HsT .

PROVER
VERIFIER

Choose y
$←− Fn

2 and a permutation

π
$←− Sym(n), then set c1 = H(π,HyT ),

c1,c2,c3−−−−−→
c2 = H(π(y)), c3 = H(π(y + s)).

b←− b
$←− {0, 1, 2}.

If b = 0 set z = (y, π). Accept if c1 and c2 are correct.

If b = 1 set z = (y + s, π).
z−→ Accept if c1 and c3 are correct.

If b = 2 set z = (π(y), π(s)). Accept if c2 and c3 are correct
and wt(π(s)) = w.
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