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Abstract

We present a new approach towards constructing round-optimal secure multiparty computation
(MPC) protocols against malicious adversaries without trusted setup assumptions. Our approach
builds on ideas previously developed in the context of covert multiparty computation [Chandran et
al., FOCS’07] even though we do not seek covert security. Using our new approach, we obtain the
following results:

e A five round MPC protocol based on the Decisional Diffie-Hellman (DDH) assumption.

e A four round MPC protocol based on one-way permutations and sub-exponentially secure DDH.
This result is optimal in the number of rounds.

Previously, no four-round MPC protocol for general functions was known and five-round protocols
were only known based on indistinguishability obfuscation (and some additional assumptions) [Garg
et al., EUROCRYPT’16].

1 Introduction

The notion of secure multiparty computation (MPC) [Yao86, GMW87] is fundamental in cryptography.
Informally speaking, an MPC protocol allows mutually distrusting parties to jointly evaluate a function
on their private inputs in such a manner that the protocol execution does not leak anything beyond the
output of the function.

A fundamental measure of efficiency in MPC is round complexity, i.e., the number of rounds of
communication between the parties. Protocols with smaller round complexity are more desirable so as
to minimize the effect of network latency, which in turn decreases the time complexity of the protocol.
Indeed, the round complexity of MPC has been extensively studied over the last three decades.

In this work, we study round-optimal MPC against malicious adversaries who may corrupt an arbitrary
subset of parties, in the plain model without any trusted setup assumptions. We consider the traditional
simultaneous message model for MPC, where in each round of the protocol, each party simultaneously
broadcasts a message to the other parties.

A lower bound for this setting was established last year by Garg et al. [GMPP16] who proved that
three rounds are insufficient for coin-tossing w.r.t. black-box simulation. (Their work builds on [KOO04]
who proved the necessity of five rounds for coin-tossing in the unidirectional message model.) In the
positive direction, several constant-round MPC protocols were constructed in a long sequence of works,
based on a variety of assumptions and techniques (see, e.g., [KOS03, Pas04, PW10, Weel0, Goyl1]). Garg
et al. [GMPP16] established an upper bound on the exact round complexity of MPC by constructing
a five round protocol based on indistinguishability obfuscation [BGIT01, GGH"13] and some additional



assumptions.! Their work constitutes the state of the art on this subject.

Our Goals. Presently, no constructions of indistinguishability obfuscation are known from standard
assumptions. This motivates the following important question:

Does there exist a five round maliciously-secure MPC protocol for general functions based on standard
polynomial-time assumptions?

Furthermore, given the gap between the lower bound (three rounds) and the upper bound (five rounds)
established by [GMPP16], we ask whether their upper bound is tight:

Does there exist a four round maliciously-secure MPC protocol for general functions?

In this work, we resolve both of these questions in the affirmative.

The Main Barrier. We highlight the main conceptual barrier towards achieving our goals. Garg et
al. [GMPP16] follow a natural two-step approach to obtain their positive results: in the first step, they
construct a four round multiparty coin-tossing protocol. In the next step, they use their coin-tossing
protocol to replace the common random string (CRS) in a two-round MPC protocol in the CRS model
[GGHR14, MW16].

We note, however, that this approach, in general, cannot do better than five rounds. Indeed, since
at least one of the rounds of the two-round MPC must depend upon the CRS, we can only hope to
parallelize its first round with the coin-tossing protocol. Since coin-tossing requires four rounds, this only
yields a five round protocol at best.

A New Approach. In this work, we present a new approach towards constructing round-optimal MPC
protocols in the plain model. At a high level, our approach implements the classical GMW methodology
[GMW8T7] for constructing maliciously-secure MPC protocols, with a crucial twist, to minimize the number
of rounds.

Recall that the GMW compiler transforms a semi-honest MPC protocol into a maliciously secure
one by requiring the parties to prove (using zero-knowledge proofs [GMRS85]) that each message in the
semi-honest protocol was computed “honestly.” For our goals, we cannot afford to prove honest behavior
with every round of semi-honest MPC.? Therefore, in our approach, the parties prove honest behavior
only once.

At first, such an approach may sound completely absurd. If each party is only required to give a single
proof to establish honest behavior, then a malicious adversary may choose to cheat in the first few rounds
of the semi-honest MPC protocol. By the time the proof is completed and the honest parties are able to
detect cheating, it may already be “too late.” Indeed, the opportunity to cheat in even a single round
may be sufficient for a malicious adversary to completely break the security of a semi-honest protocol.
Therefore, it is not at all clear why such an approach can be implemented in a secure manner.

In order to tackle this problem, we build on ideas previously developed in the beautiful work of
Chandran et al. [CGOSO07] for constructing covert multiparty computation protocols [vHL05, CGOS07,
GJ10]. At a high level, we first design a “special-purpose” semi-honest MPC protocol that remains
partially immune to malicious behavior before the last round of the protocol. Specifically, in such a
protocol, an adversary can influence the protocol outcome but not learn any private information by
behaving maliciously before the last round. We then “shield” the last round from being revealed to the
adversary until it has proven honest behavior for all of the preceding rounds. A single proof suffices to
accomplish this task. By parallelizing this proof with the semi-honest MPC, we are able to minimize the
round complexity.

!Garg et al. also construct a four-round protocol for the coin-tossing functionality. In this work, we are interested in
MPC for general functions.

2Tt is known that semi-honest MPC requires at least two rounds [HLP11] and zero-knowledge proofs require at least three
rounds [GO94]. Therefore, implementing the standard GMW methodology would require at least six rounds.



1.1 Owur Results

We present a new approach for constructing round-efficient MPC protocols that are secure against mali-
cious adversaries in the plain model. Using this approach, we are able to achieve both of our aforemen-
tioned goals.

I. Robust Semi-honest MPC. As a first step towards obtaining our results for maliciously-secure
MPC, we construct a four round robust semi-honest MPC protocol that remains partially immune to
malicious behavior. In this protocol, at the end of the first three rounds of computation, each party
receives a secret share of the function output. In the last round, the parties simply exchange their shares
to reconstruct the output. The key security property of this protocol is that if the adversary cheats in the
first three rounds, then it can only influence the function output, but not learn any private information.

We construct such an MPC scheme for general functions assuming the existence of low-depth pseu-
dorandom generators (PRGs) and a two-round “covert” oblivious transfer (OT) protocol [vHL05].> Both
of these primitives can be instantiated from the Decisional Diffie-Hellman (DDH) assumption.

Theorem 1. Assuming DDH, there exists a four round robust semi-honest MPC protocol for general
functions.

The above result may be of independent interest.

II. Maliciously-secure MPC. Using theorem 1, we next construct maliciously-secure MPC protocols
in the plain model.

Our first result is a five round MPC protocol based on any four-round robust semi-honest MPC, injective
one-way functions and collision-resistant hash functions (CRHFs). Since injective one-way functions and
CRHF's can be built from Discrete Log, we obtain the following result:

Theorem 2 (Five Rounds). Assuming DDH, there exists a five round maliciously-secure MPC protocol
for computing general functions.

We next modify our five round protocol to obtain a four round protocol, albeit using sub-exponential
hardness. The security of our construction uses complexity leveraging between multiple primitives.

Theorem 3 (Four Rounds). Assuming one-way permutations and sub-exponentially secure DDH, there
exists a four round maliciously-secure MPC' protocol for computing general functions.

1.2 Owur Techniques

As discussed earlier, the approach of Garg et al. [GMPP16] for constructing maliciously-secure MPC
protocols is unsuitable for achieving our goals. Therefore, we develop a new approach for constructing
round-efficient MPC against malicious adversaries.

At a high-level, our approach implements the GMW paradigm for constructing maliciously-secure
MPC protocols, with a crucial twist. Recall that the GMW paradigm transforms a semi-honest MPC
protocol into a maliciously secure one using the following three steps: (1) first, the parties commit to their
inputs and random tapes. (2) Next, the parties perform coin-tossing to establish an unbiased random
tape for each party. (3) Finally, the parties run the semi-honest MPC protocol where along with every
message, each party also gives zero-knowledge proof of “honest” behavior consistent with the committed
input and random tape.

Both steps (2) and (3) above introduce additional rounds of interaction, and constitute the main
bottleneck towards constructing round-optimal MPC.

Main Ideas. Towards this, we develop two key modifications to the GMW compiler:

3We use low-depth PRGs to obtain degree-three randomizing polynomials for general functions [AIK0G].



1. “One-shot” proof: Instead of requiring the parties to give a proof of honest behavior in each
round of the underlying semi-honest protocol, we use a “delayed verification” technique where the
parties prove honest behavior only once, towards the end of the protocol. As we explain below,
this allows us to limit the overhead of additional rounds introduced by zero-knowledge proofs in
the GMW compiler.

The idea of delayed verification was previously developed in the work of Goyal et. al. [CGOSO07].
Interestingly, while they used this technique to achieve security in the setting of covert computation
[VHL05, CGOSO07], we use this technique to minimize the round complexity of our protocol.

2. No coin tossing: Second, we eliminate the coin-tossing step (i.e., step 2). Note that by removing
coin-tossing, we implicitly allow the adversarial parties to potentially use “bad” randomness in
the protocol. To ensure security in this scenario, we will use a special semi-honest MPC protocol
that is secure against bad randomness. This idea has previously been used in many works (see,
e.g.,[AJLT12, MW16]).

We now elaborate on the first step, which constitutes the conceptual core of our work. We consider
semi-honest MPC protocols with a specific structure consisting of two phases: (a) Computation phase:
in the first phase of the protocol, the parties compute the function such that each party obtains a secret-
share of the output. (b) Output phase: In the second phase, the parties exchange their output shares
with each other to compute the final output. This phase consists of only one round and is deterministic.
Note that standard MPC protocols such as [GMWS87] follow this structure.

At a high-level, we implement our delayed verification strategy as follows: the parties first run the
computation phase of the semi-honest protocol “as is” without giving any proofs. At the end of this
phase, each party gives a single proof that it behaved honestly throughout the computation phase (using
the committed input and random tape). If all the proofs verify, then the parties execute the output
phase.

Right away, one may notice a glaring problem in the above approach. If the computation phase
is executed without any proof of honest behavior, the adversary may behave maliciously in this phase
and potentially learn the honest party inputs even before the output phase begins! Indeed, standard
semi-honest MPC protocols do not guarantee security in such a setting.

To combat this problem, we develop a special purpose semi-honest MPC protocol that remains “par-
tially immune” to malicious behavior. Specifically, such a protocol maintains privacy against malicious
adversaries until the end of the computation phase. However, output correctness is not guaranteed if the
adversary behaved maliciously in the computation phase. We refer to such an MPC protocol as robust
semi-honest MPC. Later, we describe a four-round construction of robust semi-honest MPC where the
first three rounds correspond to the computation phase and the last round constitutes the output phase.

Note that the robustness property as described above perfectly suits our requirements because in our
compiled protocol, the output phase is executed only after each party has proven that it behaved honestly
during the computation phase. This ensures full security of our compiled protocol.

A New Template for Malicious MPC. Putting the above ideas together, we obtain the following
new template for maliciously-secure MPC:

e First, each party commits to its input and randomness using a three-round extractable commitment
scheme.* In parallel, the parties also execute the computation phase of a four-round robust semi-
honest MPC.

e Next, each party proves to every other party that it behaved honestly during the first three rounds.

4We use a variant of the extractable commitment scheme in [Ros04] for this purpose. This variant has been used in many
prior works such as [GJO10, GGJS12, Goy12] because it is “rewinding secure” — a property that is used in the security
proofs.



e Finally, the parties execute the output phase of the robust semi-honest MPC and once again prove
that their message is honestly computed.

In order to obtain a five round protocol from this template, we need to parallelize the proofs with the
other protocol messages. For this purpose, we use delayed-input proofs [LS90] where the instance is only
required in the last round.® In particular, we use four-round delayed input zero-knowledge (ZK) proofs
whose first three messages are executed in parallel with the first three rounds of the robust semi-honest
MPC. This yields us a five round protocol.

We remark that during simulation, our simulator is able to extract the adversary’s input only at
the end of the third round. This means that we need to simulate the first three rounds of the robust
semi-honest MPC without knowledge of the adversary’s input (or the function output). Our robust semi-
honest MPC satisfies this property; namely, the simulator for our robust semi-honest MPC needs the
adversary’s input and randomness (and the function output) only to simulate the output phase.

Four Rounds: Main Ideas. We next turn to the problem of constructing four-round MPC. At first,
it is not clear how to obtain a four round protocol using the above template. Indeed, as argued earlier,
we cannot afford to execute the output phase without verifying that the parties behaved honestly during
the computation phase. In the above template, the output phase is executed after this verification is
completed. Since three-round zero-knowledge proofs with polynomial-time simulation are not known
presently, the verification process in the above protocol requires four rounds. Therefore, it may seem that
that we are limited to a five round protocol.

Towards that, we note that our robust semi-honest MPC (described later) satisfies the following
property: in order to simulate the view of the adversary (w.r.t. the correct output), the simulator
only needs to “cheat” in the output phase (i.e., the last round). In particular, the simulation of the
computation phase can be done “honestly” using random inputs for the honest parties. In this case, we
do not need full-fledged ZK proofs to establish honest behavior in the computation phase; instead, we
only need strong witness indistinguishable (WI) proofs. Recall that in a strong WI proof system, for
any two indistinguishable instance distributions Dy and Ds, a proof for x1 < D; using a witness w; is
indistinguishable from a proof for x9 <— D5 using a witness ws. This suffices for us because using strong
WI, we can switch from an honest execution of the computation phase using the real inputs of the honest
parties to another honest execution of the computation phase using random inputs for the honest parties.

Recently, Jain et al. [JKKR17] constructed three-round delayed-input strong WI proofs of knowledge
from the DDH assumption. However, their proof system only guarantees strong WI property if the
entire statement is chosen by the prover in the last round. In our case, this is unfortunately not true,
and hence we cannot use their construction. Therefore, we take a different route, albeit at the cost of
sub-exponential hardness assumptions. Specifically, we observe that by relying upon sub-exponential
hardness, we can easily construct a three-round (delayed-input) strong WI argument by combining any
three-round (delayed-input) WI proof of knowledge with a one or two-message “trapdoor phase” in our
simultaneous message setting. For example, let f be a one-way permutation. The trapdoor phase can
be implemented by having the verifier send y = f(x) for a random x in parallel with the first prover
message. The statement of the WI proof of knowledge is changed to: either the original statement is true
or the prover knows x.

Now, by running in exponential time in the hybrids, we can break the one-way permutation to recover
x and then prove knowledge of x. This allows us to switch from honest execution of the computation
phase using the real inputs of the honest parties to another honest execution using random inputs. After
this switch, we can go back to proving the honest statement which can be done in polynomial time. This
ensures that our final simulator is also polynomial time.

Handling Non-malleability Issues. So far, we ignored non-malleability related issues in our discussion.
However, as noted in many prior works, zero-knowledge proofs with standard soundness guarantee do

5Note that the witness for these proofs corresponds to the adversary’s input and random tape which is already fixed in
the first round.



not suffice in the setting of constant-round MPC. Indeed, since proofs are being executed in parallel, we
need to ensure that an adversary’s proofs remain sound even when the honest party’s proofs are being
simulated [Sah99].

We handle such malleability issues by using the techniques developed in a large body of prior works. In
our five round MPC protocol, we use the four-round non-malleable zero-knowledge (NMZK) argument of
[COSV16] to ensure that adversary’s proofs remain sound even during simulation.® We make non-black-
box use of their protocol in our security proof. More specifically, following prior works such as [BPS06,
GJO10, GGJS12, Goyl2|, we establish a “soundness lemma” to ensure that the adversary is behaving
honestly across the hybrids. We use the extractability property of the non-malleable commitment used
inside the non-malleable zero-knowledge argument to prove this property.

In our four round protocol, we use the above NMZK to prove honest behavior in the output phase. In
order to prove honest behavior in the computation phase, we use a slightly modified version of the strong
WI argument system described above which additionally uses a two-round non-malleable commitment
[KS17] to achieve the desired non-malleability properties. Unlike the five round construction, here, we
rely upon complexity leveraging in several of the hybrids to argue the “soundness lemma” as well as to
tackle some delicate rewinding-related issues that are commonplace in such proofs.” We refer the reader
to the technical sections for details.

Robust Semi-honest MPC. We now briefly describe the high-level ideas in our four-round construction
of robust semi-honest MPC for general functionalities. Towards this, we note that it suffices to achieve a
simpler goal of constructing robust semi-honest MPC for a restricted class of functionalities, namely, for
computing randomized encodings.® That is, in order to construct a robust MPC for a n-party functionality
F, it suffices to construct a robust MPC for a n-functionality F,,q4 that takes as input (x1,71;- -+ ; 2y, )
and outputs a randomized encoding of F(x1,...,z,) using randomness r; @ --- @ r,. This is because
all the parties can jointly execute the protocol for F,.,4 to obtain the randomized encoding. Each party
can then individually execute the decoding algorithm of the randomized encoding to recover the output
F(x1,...,2,). Note that this transformation preserves round complexity.

To construct a robust semi-honest n-party protocol for F,,q, we consider a specific type of random-
ized encoding defined in [AIK06]. In particular, they construct a degree 3 randomizing polynomials ?
for arbitrary functionalities based on low-depth pseudorandom generators. In their construction, every
output bit of the encoding can be computed by a degree 3 polynomial on the input and the randomness.
Hence, we further break down the goal of constructing a protocol for F,,q into the following steps:

e Step 1: Construct a robust semi-honest MPC 3-party protocol for computing degree 3 terms. In
particular, at the end of the protocol, every party who participated in the protocol get a secret
share xixox3, where x, is the ¢ party’s input for ¢ € {1,2,3}. The randomness for the secret
sharing comes from the parties in the protocol.

e Step 2: Using Step 1, construct a robust semi-honest MPC protocol to compute degree 3 polyno-
mials.

e Step 3: Using Step 2, construct a robust semi-honest MPC protocol for F,., .

Steps 2 and 3 can be achieved using standard transformations and these transformations are round
preserving. Thus, it suffices to achieve Step 1 in four rounds. Suppose P;, P» and Ps participate in the
protocol. Roughly, the protocol proceeds as follows: P} and P, perform a two message covert OT protocol

5We also use the fact that argument system of [COSV16] allows for simulating multiple proofs executed in parallel.

"We believe that some of the use of complexity leveraging in our hybrids can be avoided by modifications to our protocol.
We leave further exploration of this direction for subsequent work (see Remark 1 for a brief discussion).

8 A randomized encoding of function f and input x is such that, the output f(z) can be recovered from this encoding and
at the same time, this encoding should not leak any information about either f or z.

9The terms randomized encodings and randomizing polynomials are interchangeably used.



to receive a share of x1x9. Then, P; and P; perform a two message OT protocol to receive a share of
r1r9x3. We need to do more work to ensure that at the end, all of them have shares of x1xox3. Further,
the robustness guarantee is argued using the covert security of the OT protocol. We refer the reader to
the technical sections for more details.

1.3 Concurrent Work

In a concurrent and independent work, Brakerski, Halevi and Polychroniadou [BHP17] construct a
four round MPC protocol against malicious adversaries using adaptive commitments [PPV08] and sub-
exponentially secure learning with errors assumption. Their approach seems to depart significantly from
ours in that they start from the two-round semi-honest MPC protocol of [MW16] and design a special-
purpose coin-tossing protocol for it, while we construct a robust semi-honest MPC protocol that does
not require coin-tossing. We also do not know whether their approach yields a five round protocol from
standard assumptions.

We were made aware of the result statement of [BHP17] at a Darpa program meeting in March 2017.
At that time, our four round MPC construction required stronger assumptions (in addition to the present
ones). Since then, we have simplified our construction and the underlying assumptions.

1.4 Related Work

The study of constant-round protocols for MPC was initiated by Beaver et al. [BMR90]. Their con-
structed constant-round MPC protocols in the presence of honest majority. Subsequently, a long sequence
of works constructed constant-round MPC protocols against dishonest majority based on a variety of as-
sumptions and techniques (see, e.g., [KOS03, Pas04, PW10, Weel0, Goy11]). Very recently, Garg et al.
[GMPP16] constructed five round MPC using indistinguishability obfuscation and three-round parallel
non-malleable commitments. They also construct a six-round MPC protocol using learning with errors
(LWE) assumption and three-round parallel non-malleable commitments. All of these results are in the
plain model where no trusted setup assumptions are available.

Asharov et. al. [AJLT12] constructed three round MPC protocols in the CRS model. Subsequently,
two-round MPC protocols in the CRS model were constructed by Garg et al. [GGHR14] using indistin-
guishability obfuscation, and by Mukherjee and Wichs [MW16] using LWE assumption.

2 Preliminaries

For the definitions of all the underlying primitives used in our constructions, we refer the reader to Ap-
pendix A. Below, we provide the definition of robust semi-honest MPC.

Robust Semi-Honest MPC. We consider semi-honest secure multi-party computation protocols that
satisfy an additional robustness property. Intuitively the property says that, except the final round, the
messages of honest parties reveal no information about their inputs even if the adversarial parties behave
malictously.

Definition 1. Let F be an n-party functionality. Let A = (A', A?) represent a PPT algorithm controlling
a set of parties S C [n]|. For a t-round protocol computing F, we let RealExecél_l)(a_:’, z) denote the view
of Al during the first t — 1 rounds in the real execution of the protocol on input ¥ = (x1,--- ,z,) and
auziliary input z. We require that at the end of the first t — 1 rounds in the real protocol, A' outputs
state and (inp,rand) on a special tape where either (inp,rand) = (L, 1) (if A' behaved maliciously) or
(inp,rand) = ({Zi}ies, {Ti}ties) which is consistent with the honest behavior for RealExec,_yy (first t —1
rounds).



A protocol is said to be a “robust” secure multiparty computation protocol for F if for every PPT
adversary A = (A', A%) controlling a set of parties S in the real world, where A? is semi-honest, there
exists a PPT simulator Sim = (Sim*, Sim?) such that for every initial input vector Z, every auziliary input
z

— If (inp,rand) # (L, 1), then:

(ReaIExecél_l)(f, z), ReaIExec;42 (Z, state)) =5 (ReaIExecél_l)(f, 2), Sim*({Z;}ies, {7 Yies, v, state))

~ (Sim'(2), Sim* ({Zi}ies, {Fitics, v, state)) .

Here y = F(Z1,...,Z,), where T; = x; fori ¢ S. And ReaIExecg42 (%, state) is the view of adversary
A2 in the t™" round of the real protocol.

— FElse, X
RealExecéﬁl)(f, 2) =, Sim!(2).

Note that, in general, a semi-honest MPC protocol may not satisfy this property. In section 3, we
construct a four-round semi-honest MPC protocol with robustness property.

3 Four Round Robust Semi-Honest MPC

We first describe the tools required for our construction. We require,
e Two message 1-out-of-2 covert oblivious transfer protocol (Theorem 11). Denote this by OT.

e Degree 3 randomizing polynomials for arbitrary polynomial sized circuits (Theorem 12). Denote
this by RP = (CktE, D).

Both the tools mentioned above can be instantiated from DDH.

Construction. Our goal is to construct an n-party MPC protocol Hi secure against semi-honest adver-
saries for an n-party functionality F'. Moreover, we show that Hf; satisfies Robust property (Definition 1).
We employ the following steps:

e Step I: We first construct an 3-party semi-honest MPC protocol HEMULT for the functionality
3BMULT defined below. This protocol is a three round protocol. However, we view this as a four
round protocol (with the last round being empty) — the reason behind doing this is because this
protocol will be used as a sub-protocol in the next steps and in the proof, the programming of the
simulator occurs only in the fourth round.

3MULT ((z1,71); (z2,72); (3)) outputs (r1; ro; zix03 + 11 + 72)

e Step II: We use HSNULT to construct an n-party semi-honest MPC protocol HS,': OLY{P} for the

functionality 3POLY{p} defined below, where p is a degree 3 polynomial in Fa[yi,...,yn]. This
protocol is a four round protocol and it satisfies robust property.

3POLY{p}(X17 T 7XTZ) OutPUtS p(Yh cee 7yN)7

where X1,..., X, are partitions of y1,...,yn.

e Step III: We use Hglf) OLY to construct an n-party semi-honest MPC protocol Hf;. This protocol is
a four round protocol and it satisfies robust property.



We now describe the steps in detail.

Step I: Constructing HSJ:"ULT. Denote the parties by P;, P, and P5. Denote the input of P; to be
(z1,71), the input of P, to be (z2,72) and the input of Ps to be (x3). The protocol works as follows:

e Round 1: P; participates in a 1-out-of-2 oblivious transfer protocol OTi2 with P;. P; plays the
role of receiver. It generates the first message of OT1o as a function of x;.
Simultaneously, P> and Ps participate in a l-out-of-2 protocol OTa3. Ps3 takes the role of the
receiver. It generates the first message of OTog as a function of 3.

e Round 2: P, sends the second message in OTi2 as a function of (xg-0+175; x9 -1+ 1)), where 7
is sampled at random. P sends the second message in OTag as a function of (0-75 +re; 175 +1r9).
Simultaneously, P; and Ps participate in a OT protocol OTy3. Ps takes the role of the receiver. It

sends the first message of OT13 as a function of x3.

e Round 3: Let u be the value recovered by P; from OTys. P; sends the second message to Ps in
OTi3 as a function of (u-04 ri,u-1+ r;). Let of recovered from OT;3 by P and let of be the
output recovered from OTag.

P; outputs oy = 71, Py outputs ay = ro and P outputs as = af + o (operations performed over Fy).

Theorem 4. Assuming the correctness of OT, HSMULT satisfies correctness property.

The proof can be found in B.1.

Theorem 5. Assuming the security of OT, HE,LWULT is a robust semi-honest three-party secure computation
protocol satisfying Definition 1.

The proof can be found in B.2.
Step II: Constructing H::) OWY{P} ' We first introduce some notation. Consider a polynomial ¢ €

Faly1,...,yn] with coefficients over Fy. We define the set MonS{q} as follows: a term ¢ € MonS{q}
if and only if ¢ appears in the expansion of the polynomial q. We define MonS{q}; as follows: a term

t € MonS{q}; if and only if t € MonS{q} and ¢ contains the variable y;.

. 3POLY
‘We now describe 1T, {p} .

ProTOCOL Hjﬁow{p}: Let P, ..., P, be the set of parties in the protocol. Let X; be the input set of P,
for every i € [n]. We have, > | |X;| = N and X; N X; = 0 for i # j. Every x € X; corresponds to a
unique variable y; for some j.

e For every i € [n], party P; generates n additive shares s;1,...,s;, of 0. It sends share sij to P in
the first round.

e In parallel, for every term ¢ in the expansion of p, do the following:

3,

(2

- If t is of the form z2x; then pick k € [n] and k # i,k # j. Let ! and 7’;- be the randomness,
associated with ¢, sampled by P; and P; respectively. The parties Pi(z;,7}), Pj(x;,75) and Py(1)
execute HS,MULT to obtain the corresponding shares o

the third round.

- If ¢ is of the form m?, then P; computes =

,a§- and O‘Z- Note that this finishes in

- If ¢ is of the form wx;xjx), then parties F;, P; and P sample randomness rf,rf and 7"}; re-

spectively. Then, they execute TI3MULT on inputs (;,71), (xj,rﬁ) and (zj) to obtain the

corresponding shares o, a§- and a};. Note that this finishes in the third round.



e After the third round, P; adds all the shares he has so far (including his own shares) and he
broadcasts his final share s; to all the parties. This consumes one round.

e Finally, P; outputs > | s;.

Theorem 6. Assuming HS,E\/'ULT satisfies correctness, H::) OLY{p} satisfies correctness property.
The proof can be found in B.3.
Theorem 7. Assuming the security of HS,':/'ULT, H:EOLY{p} 1s a robust semi-honest MPC protcol satisfying
Definition 1 as long as HSMULT satisfies Definition 1.
The proof can be found in B.4.
Step III: Constructing Hi. We describe Hi below.
ProTocoL II5: Let C be a circuit representing F. That is, F(z1;...,2,) = C(z1]|--||zn). Let

RP.CktE(C) = (p1,...,pm). Note that p;, for every i, is a degree 3 polynomial in Fo[y1,...,yn,r1,...,IN].
Construct polynomial p; € Faly1,...,¥n,,T1,1,...,Tnn| by replacing r;, for every j € [N], in p; by the
polynomial Y, ry ;. Note that p; is still a degree 3 polynomial.

P; samples randomness r; ;, for every j € [N]. For every j € [m], all the parties execute the protocol
H:::OLY{M}. The input of P; is (z4,741,...,7;,n) in this protocol. In the end, every party receives
aj = pj(z1,...,xy), for every j € [m]. Every party then executes D(a,...,ay) to obtain a*. It outputs

o,

Theorem 8. Assuming the security of HSEOLY{p} and security of RP, Hi s a robust semi-honest secure

MPC protocol satisfying Definition 1 as long as Hz:])OLY{p} satisfies Definition 1.

The proof can be found in B.5.

4 Five Round Malicious MPC

Overview. We start by giving an overview of our construction. We want to use the robust semi honest
MPC as the basis for our construction, but its security is only defined in the semi-honest setting. We
enforce the semi-honest setting by having the players prove, in parallel, that they computed the robust
semi honest MPC honestly. Players prove that (1) they computed the first three rounds of the robust
semi honest MPC honestly; and (2) they committed its input and randomness used in the robust semi
honest MPC to every other party using an extractable commitment scheme. To do so, we use a four
round input delayed proof system, where the statement for the proof can be delayed till the final round.
This lets players send the final round of their proof in the fourth round. Before proceeding, we verify
each of the proofs received to ensure everyone is behaving in an honest manner. Next, to prove that the
last round of the robust semi honest MPC is computed correctly, we use another instance of the four
round input delayed proof system. The first three rounds run in parallel with the first three rounds of
the protocol, but the last round of the proof system is delayed till the fifth round, after computing the
last round of the robust semi honest MPC. This gives the total of five rounds.

Construction. For construction of the protocol, we require the following tools:

1. A 3-round “rewinding-secure” extractable commitment scheme eyt = (Chrext, Rrext) (refer to defini-
tion in A.6). We require the commitments to be well formed, where this property is defined in A.6.
Since there will be commitments in both directions for every pair of players, we introduce notation

for individual messages of the protocol. Wﬂextk%i refers to the j-th round of the P;’s commitment to
P.

10



Our protocol will require both 7}

j
rexty i and ™

rext;_,, 00 be sent in round j, Wherg the latter is j-

th round of P’s commitment to P,. Depending on whether round j message is from a

rexty i
committer or receiver, it is sent by either Py or P,.

2. A J-round robust semi honest MPC protocol gpc (refer to definition 1) that has a next-message
function nextMsg"™Pc which, for player P, on input (wi, 73, M, -+ 1)) returns mJ;;H, the message
P; broadcasts to all other players in the (j + 1)-th round as a part of the protocol. Here m =
(mY,---,m}) consists of all the messages sent during round j of the protocol. The robust semi
honest MPC also consists of a function Out™PC that computes the final output y.

3. Two 4-round delayed-input parallel non-malleable zero-knowledge protocols (refer to definition 6).
We use a minor variant of the NMZK protocol in [COSV16] which is described in A.5.1. (Our proof
will make non-black box use of the NMZK.) 19

Mnmzk = (Pamzks Vamzk) for the language

1 2

1 2 3 - 21 22 o
L :{({Tk = (ﬂ-rexti_,kﬁWrexti_,k?Frextiqk)}ke[n]\{ib idi, mmpc = (m y T, 1y )) :

(@i, ri, {deCrext; ,\ }ken) St ((V k : 7 is a well formed commitment
of (zj,71)) AND (m{ = nextMsg!™PC (2 7) AND m? =

nextMsg!'™PC (z; 7, 1) AND m = nextMsg™Pe (2, i, mt, m?) ))}

and 1/_\Inmzk = <ﬁnmzk7 Vnmzk> for the language

1

7 — — (1 2 3 - P
L _{({Tk - (ﬂ-rextiﬁkv Trext; 100 Trrextiﬁk)}ke[n]\{i}v idj, mempc = (m y T, M, M

(i, 71, {deCrext, ,, Jken) St ((V k : 7 is a well formed

commitment of (zi,7;)) AND (m{ = nextMsg™Pc (2, i, mt, m2, m3) )> }

Similar to non-malleable commitment, we represent by 7 and 7

nmzki_,: nmzki_,: the messages sent in

the j-th round of Fy’s proof to P, for an instance of L and L respectively.

Here L consists of instances where the player with identifier id;, P,, correctly computes the first 3
rounds of the robust semi honest MPC with inputs (z;, r;), and commits to this input to ever other
player. Likewise, L consists of instances where the player with identifier id;, P;, correctly computes
the 4-th round of the robust semi honest MPC with inputs (z;,r;), and commits to this input to
ever other player.

Let P = {P,---,P,} be the set of parties and {idy,---,id,} denote their corresponding unique
identifiers (one can think of id; = i). The input and randomness (x;, ;) to the robust semi honest MPC
for player P, is fixed in the beginning of the protocol. '

The protocol instructs each player P, to compute a message M; for round j and broadcasts it over the
simultaneous broadcast channel. Thus in round j, messages (M{, e ,Mf]l) are simultaneously broadcast.

The protocol is detailed below. For ease of notation, we shall assume the that security parameter n
is an implicit argument to each of the functions.

10We can alternatively use the original NMZK protocol in [COSV16], but we use the variant here for simplicity of exposition.
We are able to do this because the witness is known in the first round.
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Round 1. Each player P, computes the message Mi1 to be sent in the first round as follows:
1. Compute independently, with fresh randomness, the first (committer) message of the “rewinding
secure” extractable commitment for every other player. i.e., Vk € [n] \ {i}

(ﬂ-rlexti%w deci—>k) < Crext((Ii, Ti))

1L (1 o 1 A
Set 7Trexti T (Wrextiﬁlv ’ ﬂ-rextiﬁ)ifl ’ J‘7 ﬂ—rextiﬁprl ’ ’ T‘—rextiﬁn)'

2. Compute independently, with fresh randomness, the first (verifier) message of both non-malleable
zero-knowledge protocols for every other player. i.e., Vk € [n] \ {i}

— szk(idk) E)

i  Vamzk(id, £)

nmzky

1
Trnmzkkﬂi

where ¢ and / are the lengths of the input delayed statements for L and L respectively.

Set
1 N 1 1 1 1
Tamzk; — (ﬂnmzkl_,iv ) Tamzki_ 110 J-v anzki_H_m T 77Tnmzkn_)i)
~1 (=1 ~1 ~1 ~1
Tamzk; — (ﬂ-nmzklﬁlv ) Tamzk_ 110 J-v 7Tnmzkprlﬁ\i? T 7Tnmzkmﬁ‘i)

M} is now defined as,

1.1 1 ~1
Mi T (ﬂ-rexti’ﬂ-nmzki? anzki>
1 : 1 1 1 1
Broadcast M; and receive My, -, M{ |, M{, {, -+, M.

Round 2. Each player P, computes the message M12 to be sent in the second round as follows:

1. Compute the second message of the “rewinding secure” extractable commitment in response to the
messages from the other parties. i.e., Yk € [n] \ {i}

2 1
Trexty_,; < Flrext (Wrextk_,i)
1 : 1 : 1
where T . can be obtained from g in M.
2 . 2 2 2 2
Set Trext; “— (ﬂ-rextlﬁiv T Trexti_ 10 1, 7Trexti+1ﬂia T 77Trextnﬁi)'

2. Compute the second message of both non-malleable zero-knowledge protocols in response to the
messages from the other parties. i.e., Vk € [n] \ {i}

Wnmzk; = (xia Ti, {decrextiqk }ke[n])
@nmzki = («Tia T, {decrexti_,k}ke[n})
WEmZki—»k — anzk(idia 67 wnmzkiaﬂ'%mzki_)k)
%ﬁmzka — ﬁnmzk(idia Z Z/‘;nmzkiv5"\$mzka)
where 7\~ and ?r\}]mzkk_)i can be obtained from 7rr11mzkk and ﬂmzkk respectively in ]\Jk1 Set
7Tﬁmzki = (Trr%mzki_,lv T 7rr21mzki_,i_1 L, F%mzki_)i+17 T 7Tﬁmzki_m)
%ﬁmzk = (%Emzkiﬂlv T 7%\r21mzki4i,1 , L, %\%mzkiﬁmrp T 7%§mzkiﬁm)

3. Compute the first message of the robust semi honest MPC,
mi  nextMsg!™Pe (g 7).

Mf is now defined as,

2 ~2 1
ﬂ—nmzki? 7rnmzkiﬂ my )

M? = (n2

1 rext;’

Broadcast M? and receive MZ,- -, M2 |, M12+p e M2
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Round 3. Each player P, computes the message Mi1 to be sent in the third round as follows:

1. Compute the final message of the “rewinding secure” extractable commitment. i.e., Yk € [n] \ {i}

3 1 2
T rext;_ i A CreXt(ﬂ-rextinvﬂ'rextiﬁk)
where Ty is as computed earlier and .  is obtained from 7, in M.
3 (3 3 3 3
Set Trext; “— (ﬂ-rexti%p s Trext i1 J—a 7Trextiﬁprla T >7Trextiﬁn)'

2. Compute the third message of both non-malleable zero-knowledge protocols. i.e., Yk € [n] \ {i}

3 . 1 2
ﬂ-nmzkkﬁi A Vank(ldk7 anzkkﬂi’ 7Tnmzkkﬂi)
~3 i . ~1 ~2
Tamzky_; < Vank(ldk7 T amzky_y; 7Tnmzkkﬁi)

1 . . 2 . . 2 . 2 /\1
where Tmzk,_,; 15 88 computed earlier and Tomzk_,; 15 obtained from Tomzky, 10 M. Tpoae and
/\2 . . .

T omzk,_,; aT€ obtained similarly.
Set
3 o 3 3 3 3
Tamzk; — (ﬂnmzkl_H? ) Tamzki_1440 J-v Tranki+1—>i’ e 77Tnmzkn_)i)
~3 (=3 ~3 ~3 ~3
Thamzk; — (ﬂ-nmzkl_,iv ) Tamzki_ 119 Lv anzki_H_)i? T 77Tnmzkn_>i)

3. Compute the second message of the robust semi honest MPC,
m? < nextMsg!Imrc (xi, 7y, ml)
where ! = (m},---  ml).
M13 is now defined as,

3 3 3 ~3 2
Mi — (Trrexti ’ Trnmzki ’ ﬂ—nmzki? my )

3 : 3 3 3 3
Broadcast M} and receive M7y, -+, M |, M? (-, M.

Round 4. Each player P, computes the message Mi1 to be sent in the fourth round as follows:
1. Compute the third message of the robust semi honest MPC,
m3 < nextMsg!™re (z; 7 m!t m?)

where m! = (m},---  ml) and m? == (m2, .-, m2).

2. Set the statement and witness for the non-malleable zero-knowledge language L.

Vk: 1y = (7r1 2 T )

rexti_,k o rexti i rexti i

mempc = (', Mm%, mY)

Tnmzk; = ({Tk}ke[n]a id;, mrMPC)

where |Zymzk, | = .

3. Compute the final message of the non-malleable zero-knowledge protocol for language L. i.e.,

Vk € [n]\ {i}
Tamzki. PﬂmZk(idi7 l, Lnmzk; s 7rr11mzkiﬁk7 T nmzki_y 0 anzkiﬁk)
where W;mzki_)k is obtained from W%mzkk in M. Similarly, Wr?mzki_,k is be obtained from ﬂgmzkk in
le’ W%mzka is as computed earlier.
Set
7Tﬁmzki = (ﬂ-émzkiﬂlv T Trémzkiﬂi,l , L, Trgmzkiﬁmrp T 77T§mzkiﬁm)

Mi4 is now defined as,

4._ (4 3
Mi T (ﬂ-nmzki? > Ty )
Broadcast M and receive My, .-+, M} |, Mi‘fH, e, M2
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Round 5. Each player P, computes the message Mi1 to be sent in the fifth round as follows:

1. Check if all the proofs in the protocol are accepting. The proof from P to P is accepting if F has
computed the first 3 rounds of the robust semi honest MPC correctly and has committed to the
same inputs, used in the robust semi honest MPC, to every other player.

First, compute the statement znmzk, for each player Px. i.e., Yk € [n] \ {i}

Yt 7= (7r1 2 o )

rexty ¢ rexty ¢ rexty ¢
b (2]l 22 =3
MyMPCy = (m ,m ,mk)

Tnmzky, = ({Tt}te n]; 1dk, mrMPCk)
[n]

Next, check if every proof is valid.

1 2 3 4
nmzky ;> ﬂ—nmzkkﬁj ) ﬂnmzkkﬁj ) Trnmzkkﬁj)

if 3k, j s.t accept # Vimzk (1dk, Tamzk,, T
then output 1. and abort

else continue

This can be done because the proofs are public coin. Moreover this is done to avoid the case that
some honest parties continue on to the next round, but the others abort.

2. Compute the final message of the robust semi honest MPC,

mi — nextMsg!™PC (z . it M2, m3)
where ! == (mi,--- ,ml), m? = (m3,--- ,m2) and m3 == (m3,--- ,m3).

3. Set the statement and witness for the non-malleable zero-knowledge language L.

where |Zphmak, . | = £.

4. Compute the final message of the non-malleable zero-knowledge protocol for language L. ie.,

vk € [n] \ {i} R R
%nmzki_ﬂ( A anzk(idi’ l /‘T\anki ) %r%mzki_,k’ 7/I\-r%mzki_,kv %nmzki_ﬂ()
where ﬂmzka is obtained from ﬂmzkk in M. Similarly, %ﬁmzka is obtained from %r?:mzkk in M.
ﬁgmzkkﬁi is as computed earlier.
Set %ﬁmzki = (%\nmzkiﬂp T %émzki%i,l L %émzkiﬁprl? e 7%§mzkiﬁm)
M? is now defined as, M} = (mf,%ﬁmzki). Broadcast M and receive M7, -+, M? |, Mi5+1, e M.

Output computation. To compute the output, P; performs the following steps:

1. Check if all the proofs in the protocol are accepting. The proof from F to P is accepting if F has
computed the 4-th round of the robust semi honest MPC correctly and has committed to the same
inputs, used in the robust semi honest MPC, to every other party.

14



First, compute the statement Zpmak, for each player F. i.e., Vk € [n] \ {i}

Vi1 = (771 2 o )

rexty o7 rexty ¢ rexty ¢

> (2l 22 23 4
mMPC,, = (m , T, M amk)

Tnmzk, = ({Tt}te[n]a idy, TﬁrMPck>

Next, check if every proof is valid.

1 ~ ~ ~

nmzky ;> ﬂ-nmzkkﬁj ’ anzkkﬁj ) 7-‘-nmzkkﬁn»)

then output 1. and abort

if 3k, j s.t accept # Vamzk(1dk, Zamzk, > T

else continue

2. Compute the output of the protocol as

Y OutH""'PC(aci, i,

9 T?L 9y m ) m
Theorem 9. Assuming security of the “rewinding secure” extractable commitment, robust semi-honest
MPC and NMZK, the above described five round protocol is secure against malicious adversaries.

Modified extractable commitments and NMZK can be instantiated from DL, while the robust semi-
honest MPC can be instantiated from DDH. Thus, all the required primitives can be instantiated from
DDH.

The proof can be found in appendix C.

5 Four Round Malicious MPC

Overview. We give an overview of our four round construction. At a high-level, the four round protocol
is very similar to the five round protocol (from the previous section) but to compress the number of
rounds we cannot have two instances of the four-round NMZK as before. Instead, we use a 3 round
input-delayed strong WI argument of knowledge (with appropriate non-malleability properties), ending
in the third round, to enable parties to prove their honest behavior of the first three rounds. This lets
the players send the fourth message in the clear if the proof at the end of the third round verifies. For
the output round, we use a four-round NMZK as before to prove honest behavior.

The three-round input-delayed proof system that we use to establish honest behavior in the first three
rounds is depicted in figure 1. We do not argue its security separately, but within the hybrids of our
overall security proof.

Proof for a language L using this proof system requires:

— Prover committing to a witness w using a 2-round non-malleable commitment [KS17]. The relevance
of w will become clear shortly.

— The verifier sends the image of the one way permutation applied on a random string r.
— An input delayed witness indistinguishable proof of knowledge (WIPoK) proving knowledge of either

— the decommitment of the non-malleable commitment to w such that (z,w) € Rely; or

— the pre-image r of the one way permutation.

Informally speaking, one can think of the above construction as a strong input delayed WI argument of
knowledge with non-malleability properties.
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1
TWIPoK; _

f(?") ’ T‘-r%mcomiﬂk

7Tr21mcomiﬁ\k (w)

2
TWIPoK; 1

3
Set x for WIPoK TWIPoK;

Figure 1: Components of the proof system

Construction. For construction of the protocol, we require the tools described below. The exact
security levels for each of these primitives are discussed at the end of the construction.

1.

2.

A one-way permutation f.

A 3-round “rewinding secure” extractable commitment scheme Iliext = (Crext, Rrext) (refer to the
definition in A.6).

. An instance of a 2-round (private coin) extractable non-malleable commitment scheme Ilpmeom =

(Crimcoms Rnmcom) (refer to definition 5). These can be constructed from the assumption of sub-
exponentially hard DDH [KS17]. !

We will use the following notation throughout the protocol for the various commitment schemes

_ 1 2 3
Trextix — (Trrexti_)w Trext; i 7Trexti_>k)

_ 1 2
Tnmcomiﬂk - (ﬂ-nmcomi_ﬂ(a 7Tnmcomi_,k)

. A J-round robust semi-honest MPC protocol Il,\mpc as described in the five round protocol.

. A 3 round input delayed witness indistinguishable proof of knowledge (WIPoK) protocol Iypox =

(RPwipok s Viwipok ) for the language Lyipok. We require the protocols to be public coin and instantiate
them using the Lapidot-Shamir protocol [LS90].

1¥While in all other cases, we have required the use of public coins, we can make do with a private coin protocol here.
This will become apparent in the proof.
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For the sake of readability and clarity, we modularize the language to obtain the final language.

L :{({TreXti—ﬂurrlexti%k}ke[n}\{i}a idy,my = (m', m%,my)) :
(i, 71, {decrext; . fkeln]) S-t- ((V K : Trext,,,. 18 a well formed

commitment of ((zi,7;) ® rrlext.ﬁk) ) AND (m} = nextMsg™PC (g 1) AND

1
m? = nextMsg!™PC (z; i mil) AND m =

nextMsgHrMPC (zi, i, m, ﬁiz) )) }

L is the language which consists of instances where player P, correctly computes the first three

rounds of the robust semi honest MPC with inputs (23, 71) and commits to (i, 7;) @7 ey, ,, to every

other player Py in the “rewinding secure” extractable commitment. Additionally, we require that

the commitments in each of these “rewinding secure” extractable commitment is well formed. We

define 1, = ({Trext, y1cr Texty_, . en]\{i}» 1di, 71 = (1,12, m3)).

Lwipok :{ (:L‘Lia idk, Thmecom;_ > yk—>i) :
J(w, dechmeom,_,,.» P) S-t. (( (xr,,w) € Rel, ) AND

( (w,dechmeom;_,,» 1di) is a valid decommitment of Tnmcom;_,, ))
OR £(p) = yiri }

Lwipok consists of instances where player P; proves to player P that either
— it behaved honestly, i.e. it has a witness w such that (xr,,w) € Rely, and it has committed to
this w in the non-malleable commitment; or

— it possesses the trapdoor mentioned earlier.

We define xwipok, ., = (#L;, 1dk, Tamcom;_, 1 Yk—si)-

. A 4-round delayed-input parallel non-malleable zero-knowledge protocols (refer to definition 6). We
use the NMZK protocol in [COSV16] which is described in A.5.1. Our proof will make non-black
box use of the NMZK.

1_Inmzk = <anzka szk> for the language

1

7T — 1 7
L _{({TreXti—ﬂdTrextiﬁk}ke[n]\{i}a idj, my = (M, M=, m”,m

(i, 71, {deCrext; ., }ken) S-t. (( V K : Trext,,, 1S a well formed
commitment of ((xi, 7“1) S2] r}extHk) ) AND
( mfl = ne)(tl\/lng'MpC (aci, Ti, T?Ll, 777027 77_”23> )) }
L is the language which consists of instances where player P, (a) correctly computed the final round

of the robust MPC with inputs (i, 1); and (b) commits to (zi,7i) @ /ey, , to every other player

Py in the “rewinding secure” extractable commitment such that they are well formed. We define

fU\Li = ({Trexti_,k; rrlextiﬁk}ke[n]\{ib idi,mi = (m17 T?LQ, mgv m?))
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Round 1. Each player P, computes the message Mi1 to be sent in the first round as follows:

1. Compute independently, with fresh randomness, the first (committer) message of the “rewinding
secure” extractable commitment for every other player. i.e., Vk € [n] \ {i}

0 [(3,73)]
rrextiﬁk — {07 1} o
1 0
(ﬂ-rextiﬁkv deci—>k) ¢ Crext (Trextiﬁk)
Set
1 — 1 1 1 1
Trext; — (ﬂ-rexti_>17 s Trexty 10 J-7 ﬂ—rexti_,i_‘_l? T 77Trexti_m)‘

2. Compute the first message of the robust semi honest MPC,

mi « nextMsg!™Pe (g 1)

3. Compute the different components that will make up the proof system for L.

(a) Select a random strings independently that will serve as the basis for the trapdoor, and apply
the function f to send to every other player. i.e., Vk € [n] \ {i}

i+ {0,110
Yiosk = f(pisk)
Set,
Ui = (Yis1s - Yisio1s Ly Yinsit1, -+ 5 Yiom)-

(b) Commit to the first (receiver) message of the non-malleable commitment to every other player.

ie., Vk € [n] \ {i}

1 n
7Tnmcomk_)i — ancom(1 )
Set
1 . 1 1 1 1
Tamcom; “— (ancomlﬁi? s Thmecomi—1 0 J-v ancomprlAi? e 77Tnmcomnﬁi)'

(c) Compute the first message for the input delayed witness indistinguishable proof of knowledge
(WIPoK) for Lwpok to every other player. i.e. Vk € [n] \ {i}

1
TWiPoK,_,, < Pwipok (£)
where ¢ is the size of the statement.
Set
1 1 1 1 1
TWIPoK; “— (WWIPoKHl’ Tt a7Tvv|PoKHi,1aJ—ﬂTvvlpoKHiHa T 77Tvv|PoKHn)-

4. Compute independently, with fresh randomness, the first (verifier) message of the non-malleable
zero-knowledge protocol for every other player. i.e., Vk € [n] \ {i}

7T1 — %mzk(idbg)

nmzky_;

where 0 is the length of the input delayed statement for L.

Set

1 . 1 1 1 1
Tamzk; — (ﬂ-nmzklﬁiv ) Tamzk;_ 110 Lv ﬂ-nmzkprlﬁ\i? T 77Tnmzk,,ﬁi)

M is now defined as,
1. 1 o1 1 1 1
Mi T (ﬂ-rexti ) Yis 71-WIPoKi » Tnmcom; s 7Tnmzki » My )

Broadcast M;' and receive M{,- -, M |, Milﬂ, R VA
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Round 2. Each player P, computes the message M12 to be sent in the second round as follows:

1. Compute the second message of the “rewinding secure” extractable commitment in response to the
messages from the other parties. i.e., Vk € [n] \ {i}

2

1
Trexty_; A RFEXt (Trrextk_“)

where erextk_)i can be obtained from W}extk in M.
Set
2 — 2 2 2 2
Trext; — (ﬂ-rextl_m ) Mrext; 1410 J-v ﬂ-rexti_,_l_)i’ T ’Wrextn_)i)'

2. Compute the second message of the robust semi honest MPC,
m? « nextMsg!™PC (2 7 mit)
where m! = (m},--- ,m}l).
3. Compute the second message for the different components in the proof system for L.

(a) Compute the second message of the non-malleable commitment scheme in response to the
messages from the other parties. Here, we shall commit to the witness i.e. Vk € [n] \ {i}

w = (x;, {decrextﬁk}ke[n])

1 1
(ﬂ-nmcomiﬁka decnmcomiﬁk) < Cnmcom (w7 7Tnmcomiak)

where W%mcomi_ﬂ( can be obtained from ) com, in M.
Set
2 . 2 2 2 2
Tamcom; “— (ancomiﬁlﬁ s Thmecomi_yi—1 9 J-v ancomiﬁHl? e 77Tnmcomiﬁn)'

(b) Compute the second message of the input delayed WIPoK for Lyypok in response to messages
from every other player. i.e. Vk € [n] \ {i}

2 1
TWiPoK,._,; < VWIPoK (£; Twipok,_,;)

1 . 1 : 1
where TWiPoK,_,; a1 be obtained from TWiPok,, 11 M.

1 (] 1 1 1
Set Tyyipok, = (Twipok, ;7" s TWIPOK;_1 ;7 5 TWIPoK 1 i7" " s TWIPoK, ;)

4. Compute the second message of the non-malleable zero-knowledge protocols in response to the
messages from the other parties. i.e., Yk € [n] \ {i}

Wnmzk; = (-7517 Ti, {decrexti%k }ke[n})
72  Pymax(idi, 4w ik )
nmzk;_ nmzk iy £y Wnmzk;s Mnmzk;_,)
1 : 1 : 1
where Tamzk,_,; CALL be obtained from Tomazk, 11 M, . Set
2 — 2 2 2
7Tnmzki T (ﬂ-nmzkiﬂlv ) anzkiﬁi,p J" Trnmzkiﬁprl’ T ?anzkiﬁn)
2 - 2. (.2 2 2 2 2 2 . 2 2 2
M is now defined as, M := (Tiext; » Tamcom;» TWIPoK; s Tamzk;» 1% )- Broadcast M;” and receive M7, - -+, M |, M;
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Round 3. Each player P, computes the message Mi1 to be sent in the third round as follows:

1. Compute the final message of the “rewinding secure” extractable commitment. i.e., Yk € [n] \ {i}

3 1 2
T rext;_x — CFeXt(ﬂ-rextin? 7Trextiﬁk)
1 . .
where T 18 as computed earlier and 7Trext _, is obtained from 7Trextk in M2
. 3 3 3 3
Set 7Trext = (ﬂ-rextiﬂlv ) Mrexty 510 1, 7Trextiﬁprla T 77Trextiﬁ\n)'

2. Compute (zi,r;) masked with the randomness sent in the “rewinding secure” extractable commit-
ment, i.e. Yk € [n] \ {i}

1 .0 .
74rextiﬁk T 7,rextiﬁk D (xlﬂ 7’1)

= (rk cee ol 1 cee ol
rext; T (Trextiﬁl ’ ’ Trextiﬁi,l ’ J—v TrextiHiH ) ’ rrextiﬁn)‘

Set Set rl

3. Compute the third message of the robust semi honest MPC,

3 1 51 52
m; < nextMsg ™PC (x5, i, M, m7)
where m! = (m}l,--- ;m}) and m? == (m2,--- ,m2).

4. Compute the third message for the different components in the proof system for L.

(a) Set the statement and witness for the input delayed WIPoK language Lwipok-

m = ("’1 ﬁlQ,m?)

— 1
TLy = ({Trextl_,k, rextlﬂk}ke [n] ’ id;, m)

wr, = (2,71, {deCrext, . Feem])
Vk : TWIPoK;_;y * (eria idk, Thmecom;_ > yk—>i)
(

Wwr,;, decnmcomiﬂk s J—)

VK @ wwipok;

iak T

where Vk : [zwipok, ,, | = £
Compute the final message of the WIPoK for language Lwipok, i.e. Vk € [n] \ {i}

3 1 2
TWIPoK; —k € PWIPoK(l“WIPoKHw WWIPoK; i > TWIPoK; —k> 7TWlPoKi—>k)

3 (3 3 3 3
Set TWIPoK; = (7TW|PoKHl> T a7TW|PoKHi,17J—v”WlPoKHiHv T 77TW|P0KH,,)-

5. Compute the third message of the non-malleable zero-knowledge protocol. i.e., Vk € [n] \ {i}

3
T mzky_y; A Vank(ldk7 Tamzky_y; anzkk_ﬁ)

1 : 2 : 2
where Tomzk,_,; 1S @S computed earlier and anzkk s obtained from Tomak, 11 M-
Set

3 — 3 3 3
7Tnmzki T (ﬂ-nmzklﬁi’ e ’Trnmzkiflﬁﬁ J" TrankhLl%i’ e 77Tankn*>i)
3 3. (3 1 3 3 3 3 3 3
M is now defined as, My = (Texy; » Trext;» TWIPoK; > Mamzk;s 1T m}). Broadcast M and receive M7, -, M2 |, M2, -+
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Round 4. Each player P, computes the message Mi1 to be sent in the fourth round as follows:

1. Check if all the proofs in the protocol Lwipok are accepting. Compute, as earlier, the statement
TWIPoK_,; for every player P and P;.

Next, check if every proof is valid.

. . 1 2 3
if 3k, j 5.t accept # Vivipok (ZWiPoK,, ;> TWiPoKy_,; s TWIPoKy_,;» TWIPoK;._,;)
then output 1. and abort

else continue

2. Compute the final message of the robust semi honest MPC,

mi — nextMsg!™™ee (¢ it m2 m?)
where ! = (mb,---  ml), m% = (m? - ;m2) and m3 = (m3,--- ,m).

3. Compute the final message of the non-malleable zero-knowledge protocol for language L. ie.,

Vk € [n]\ {i}
S (51 =2 3 4
mi = (m ,m*,m ,mi)
. 1 P
T, = <{7—rextiﬂk’ Trext; }kG[n] , 1di, my, )
4 7 1 2
Tamzk; . < anZk(ldi’ ¢, 'rzi s Tamzki 0 Tnmzk;_ 0 ﬂ-nmzkiﬂk)
where W%mquk is obtained from w%mzkk in Mll Similarly, Fgmzk_%k is be obtained from Wﬁmzkk in
1 1
3 2 . .
M. Tomak,_,, 18 as computed earlier.
Set
4 — 4 4 4
Tamzk; — (ﬂ-nmzkin ) Tamzk;_i—1 9 J-v ﬂ-nmzki%Hl? T 7Tnmzkiﬁn)
4 - 4. (4 4 4 : 4 4 4 4
M is now defined as, M;* := (m; ,anzki). Broadcast M;* and receive My, -+, M-, M, -, M.

Output Computation. To compute the output, P, performs the following steps:

1. Check if all the proofs in the protocol for E\MPOK are accepting. As before, compute the statement
Twipok,_,; for each player Py and P;.

Next, check if every proof is valid.

. . 5 ~ ~1 ~2 ~3
if 3k, j 5.t accept # Vivipok (ZwiPoK, ;> TWiPoK,_,;» TWIPoKy_,;» TWIPoK;._,;)
then output L and abort

else continue

2. Compute the output of the protocol as
Y OutH'MPC(xi,ri,’rﬁ ,me,m>,m

This completes the description of the protocol.

We require the following security levels for the primitives used in our construction, which are achieved
by setting parameters accordingly:

21



— TiMPC(y sy TWiPok >> Trext, Tsign-
— TimpPcy gy >> Thmeom-

— Tamecom >> Tf.

— Trext >> Tf.

where Tpim means that the primitive prim is secure against adversaries running in time Tpim, and 7' << T
means that T - poly(n) < T'. Here nmcom is with respect to the two-round non-malleable commitment.
TrMpc(1 5 means that we require the first three rounds of our robust MPC to be indistinguishable (for
adversaries running in time TrMPC<1 3)) for any two sets of inputs and randomnesses. In fact, in our con-
struction, the simulator Sim! works by setting a random input to generate the first three rounds. Hence,
for our construction, we require TrMpc<1_3)—security for the following two distributions: RealExecél_l) (Z, 2)

and Sim!(z).

Theorem 10. Assuming one-way permutations, Twipok-security of the input delayed WIPoK, Thmcom-
security of the two round non-malleable commitment, Trext-security of the “rewinding secure” extractable
commitment, Timpc,,_s, -security of the first three rounds of the robust semi-honest MPC, and security of
the NMZK, the described four round protocol is secure against malicious adversaries.

All the primitives above with the desired security levels can be instantiated from sub-exponential
DDH.

The proof of the above theorem can be found in appendix D.
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A Definitions

We denote n to be the security parameter. Consider two distributions Dy and D;. We denote Dy ~. D
if Dy and D; are computationally indistinguishable.

A.1 Oblivious Transfer

We recall the notion of oblivious transfer [Rab05, EGL82] below. We require that the oblivious transfer
protocol satisfies covert security [vHL0O5, CGOS07, GJ10]. Intuitively, we require that the receiver’s mes-
sages are computationally indistinguishable from a uniform distribution to a malicious sender. Similarly,
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we require that the sender’s messages are computationally indistinguishable from a uniform distribution
to a malicious receiver.

Definition 2 (Covert Oblivious Transfer). A I-out-of-2 oblivious transfer (OT) protocol OT is a two
party protocol between a sender and a receiver. A sender has two input bits (by,b1) and the receiver has
a choice bit c. At the end of the protocol, the receiver receives an output bit b/. We denote this process

by b’ + (Sen(bg, b1), Rec(c)).
We require that an OT protocol satisfies the following properties:
e Correctness: For every by, by, c € {0,1}, we have:
Prlb. < (Sen(bo, b1),Rec(c))] =1

e Covert security against adversarial senders: For all PPT senders Sen®, we require that the
honest receiver’s messages are computationally indistinguishable from uniform distribution.

e Covert security against adversarial receivers: Suppose the input of the sender (bg,by) is
sampled from a distribution on {0,1}2. For all PPT receivers Rec*, we require that the honest
sender’s messages (computed as a function of (by,b1)) are computationally indistinguishable.

An oblivious transfer protocol satisfying the above definition was constructed in [vHLO5] using [NPO1].

Theorem 11 ([vHLO5]). Assuming decisional Diffie Helman assumption, there exists a two message
1-out-of-2 covert oblivious transfer protocol.

A.2 Randomizing Polynomials

We first recall the definition of randomizing polynomials [IK00, ATK06]. Instead of considering the stan-
dard form of randomizing polynomials consisting of encode and decode algorithms, we instead consider
a decomposable version where the circuit is first encoded as polynomials and decode algorithm gets as
input evaluations of polynomials on input and randomness.

Definition 3 (Randomizing Polynomials). A randomizing polynomials scheme RP = (CktE,D) for a
family of circuits C has the following syntaz:

e Encoding, CktE(C): On input circuit C € C, input x, it outputs polynomials p1, ..., Pm.
e Decoding, D(pi(x;7),...,pm(x;7)): On input evaluations of polynomials pi(x;r),...,pm(x;7), it
outputs the decoded value .
RP is required to satisfy the following properties:

e Correctness: For every security parametern € N, circuit C and input x, C(z) = D(p1(z;7), ..., pm(z;7)),
where (i) (p1,...,pm) < CktE(C), (ii) r is randomness sampled from uniform distribution.

e Efficiency: The typical efficiency we require is that the degree of the polynomials {p;} should be
significantly smaller than the degree of the circuit C, where (p1,...,pm) < CktE(C).

e Security: For every PPT adversary A, for large enough security parameter n € N, circuit C and
input x, there exists a simulator Sim such that:

{@r(@i7); . pm(@sm)} & {Sim(1",119, C(@)) }
where (i) (p1,...,pm) < CktE(C), (ii) r is randomness sampled from uniform distribution.
We define the degree of randomizing polynomials to be maxcec{deg(p;) : (p1,...,pm) < CktE(C € C)}.
We have the following theorem from [AIKO06].

Theorem 12 ([AIK06]). Assuming the existence of pseudorandom generators in ®&L/Poly, there exists
a degree 8 randomizing polynomials for C.
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A.3 Secure Multi-Party Computation

A secure multi-party computation protocol is a protocol executed by n number of parties Py, --- , P, for
a n-party functionality F'. We allow for parties to exchange messages simultaneously. In every round,
every party is allowed to broadcast messages to all parties. A protocol is said to have k rounds if the
number of rounds in the protocol is k. We require that at the end of the protocol, all the parties receive
the output'? F(z1,...,x,), where z; is the ith party’s input. We formalize the security notion below.

Ideal World. We start by describing the ideal world experiment where n parties Py,--- , P, interact
with an ideal functionality for computing a function F. An adversary may corrupt any subset P4 C P
of the parties. We denote the honest parties by H.

Inputs: Each party P, obtains an initial input x;. The adversary Sim is given auxiliary input z. Sim
selects a subset of the parties P C P to corrupt, and is given the inputs zy of each party P, € PA.

Sending inputs to trusted party: Each honest party P, sends its input x; to the trusted party. For
each corrupted party P, € P4, the adversary may select any value x; and send it to the ideal
functionality.

Trusted party computes output: Let z7, ..., 2} be the inputs that were sent to the trusted party. The
trusted party sends F'(z7,...,x}) to the adversary who replies with either continue or abort. If
the adversary’s message is abort, then the trusted party sends L to all honest parties. Otherwise,
it sends the function evaluation F'(z7,...,x}) to all honest parties.

Outputs: Honest parties output all the messages they obtained from the ideal functionality. Malicious
parties may output an arbitrary PPT function of the adversary’s view.

The overall output of the ideal-world experiment consists of the outputs of all parties. For any ideal-
world adversary Sim with auxiliary input z € {0, 1}*, input vector Z, and security parameter n, we denote
the output of the corresponding ideal-world experiment by

|DEALSim,F<1”,f, z).

Real World. The real world execution begins by an adversary A selecting any arbitrary subset of parties
PA C P to corrupt. The parties then engage in an execution of a real n-party protocol II. Throughout
the execution of II, the adversary A sends all messages on behalf of the corrupted parties, and may follow
an arbitrary polynomial-time strategy. In contrast, the honest parties follow the instructions of II.

At the conclusion of all the update phases, each honest party P, outputs all the outputs it obtained
in the computations. Malicious parties may output an arbitrary PPT function of the view of A.

For any adversary A with auxiliary input z € {0,1}*, input vector &, and security parameter n, we
denote the output of the MPC protocol II by

REAL 411 (1", Z, z)

Security Definition. We say that a protocol II is a secure protocol if any adversary, who corrupts a
subset of parties and runs the protocol with honest parties, gains no information about the inputs of the
honest parties beyond the protocol output.

2We can also consider asymmetric functionalities where every party receives a different output. We don’t discuss this in
our work.
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Definition 4. A protocol 11 is a secure n-party protocol computing F' if for every PPT adversary A in
the real world, there exists a PPT adversary Sim corrupting the same parties in the ideal world such that
for every initial input vector ¥, every auxiliary input z, it holds that

IDEALsjm (1", Z, z) ~. REAL 411 (1", Z, z) .

A.4 Non-malleable Commitments

Let I = (C, R) be a statistically binding commitment scheme. Consider MiM adversaries that are
participating in one left and one right sessions in which k£ commitments take place. We compare between
a MiM and a simulated execution. In the MiM execution, the adversary A, with auxiliary information z,
is participating in one left and one right sessions. In the left sessions the MiM adversary interacts with C'
receiving commitments to value m using identities id of its choice. In the right session A interacts with
R, attempting to commit to a related value 7 again using identities id of its choice. If any the right
commitment is invalid, or undefined, its value is set to L. If id = id, set 7 =L (i.e., any commitment
where the adversary uses the same identity as that of honest senders is considered invalid). Let

LA,
mim;" (2)
denote the random variable that describes the values m and the view of A, in the above experiment.
In the simulated execution, an efficient simulator Sim directly interacts with R. Let
- Sim/qn
simg™ (1", 2)
denote the random variable describing the value m committed by Sim, and the output view of Sim;
whenever the view contains the same identity as that identity of the left session, m is set to L.

Definition 5 (non-malleable commitment scheme). A commitment scheme is non-malleable with respect
to commitment if, for every PPT parallel MiM adversary A, there exists a PPT simulator Sim such that
for all m the following ensembles are computationally indistinguishable:
. A, ~ . i
{m'mn m(z)}neN,ze{O,l}* ~ {S'm%m(ln’ Z)}neN,ze{O,l}*

For our construction, we will require that the non-malleable commitments are public coin and ex-
tractable. Four round non-malleable commitments based on CRHFs satisfying both the conditions are
described in [GRRV14]. Similarly, three round non-malleable commitments based on quasi-polynomial
injective OWF's satisfying both conditions are described in [GPR16]. Two round (private coin) non-
malleable commitments are based on sub-exponential hardness of DDH[KS17].

Binding property of the commitments. For convenience, we assume that the first message sent
by the committer in the four round non-malleable commitment scheme is statistically binding. Thus,
the second message in the scheme is statistically binding. The non-malleable commitment scheme in
[COSV16] satisfies this property. But importantly, with minor modifications our proofs go through even
without this assumption.

A.5 Delayed-input Non-malleable Zero Knowledge

Let IIymk = (P, V) be a delayed-input interactive argument system for an NP-language L with witness
relation Rely,. Consider a PPT MiM adversary A that is simultaneously participating in one left session
and one right session. Before the execution starts, both P, V and A receive as a common input the
security parameter n, and A receives as auxiliary input z € {0, 1}*.

In the left session A interacts with P using identity id of his choice. In the right session, A interacts
with V, using identity id of his choice.
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In the left session, before the last round of the protocol, P gets the statement z. Also, in the right
session A, during the last round of the protocol selects the statement Z to be proved and sends it to V.
Let View?(1", z) denote a random variable that describes the view of A in the above experiment.

Definition 6 (Delayed-input NMZK). A delayed-input argument system

Mpmzk = (P, V) for NP-language L with witness relation Rely is Non-Malleable Zero Knowledge (NMZK)
if for any MiM adversary A that participates in one left session and one right session, there exists a PPT
machine Sim(1", z) such that

1. The probability ensembles {Sim! (17, 2) nen,ze{0,1}+ and

{ViewA(I",z)})\eNyze{Dyl}* are computationally indistinguishable over n, where Sim' (1", 2) denotes
the first output of Sim(1", z).

2. Let z € {0,1}* and let (View, W) denote the output of Sim(1", z). Let & be the right-session statement
appearing in View and let id and id be the identities of the left and right sessions appearing in View.
If the right session is accepting and id # id, then Rel (Z,w) = 1.

The above definition, is easily extended to parallel NMZK, where the adversary interacts with a
polynomially bounded sessions on the left and right in parallel. For our construction, we will require that
only the statements are delayed while the witness is fixed in the first message sent by the prover. In the
case of 4 round NMZK presented in [COSV16], this requires only a minor modification presented below.

A.5.1 COSV NMZK
We present the 4 round delayed-input NMZK protocol Icosy [COSV16].

1. a4-round public-coin extractable one-one NM commitment scheme Il mex = (Chmex, Rnmex); [COSV16]
instantiates this using the non-malleable commitment scheme constructed in the same paper.

2. a signature scheme ¥ = (Gen, Sign, Ver);

3. a delayed-input adaptive-input statistical WIAoK protocol sLS = (Pys, Viis) for the language

1 2 3 4 . .
A :{(Tk = (T"nmexﬂ Thmex? Thmex> 7Tnmex>7 id, vk, z, 51) : 3(307 dec, msg;, msgy, 01, 02)

s.t. ((anex on input (7, w, dec, id) accepts w as decommitment of
AND (x,s0 @ s1) € Rel.) OR (Ver(vk, msg;,01) = 1 AND Ver(vk, msgy,02) =1

AND msg, # msg2)>}

that is adaptive-input statistical WI and adaptive-input AoK for the corresponding relation Rely.

Common input: security parameter n, the instance length ¢ of sLS and P,m«’s identity id € {0,1}",
and the instance x is available only at the last round.

Private input of Py« w s.t. (x,w) € Rely available only in the last round.

1. ‘/nmzk — anzk

(a) (sk,vk) + Gen(1™).
(b) 7rleS <— ‘/;Ls(ln,f).
(€) Thmex & Romex(17,id).
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(d) Send (vk,m sLS? Tamex) 10 Pamzk

2. anzk — Vnmzk

(a) 7Ts2Ls + Pys(1™,4, 7))
(b S0 <— {0 1}‘“"

2

(C ﬂ—nmex «— Cnmex( n’ idv 7Tnmex7 80)'

)
)

(d) msg & {0, 1}”
)

(e Send ( TsLs> T nmex? msg) to Vank'

3. Vnmzk — anzk

(a) :sgLS — Vas(ms)-
(b) =

(c) o <« Sign(sk, msg)
(d) Send (mjg,m

4. anzk — Vnmzk

Tomex < Romex(Tamex)-

) to anzk-

nmex7

(a) If Ver(vk, msg, o) # 1 then abort, else continue.
(

b) Set s1 = w & s¢.

)
(C) (dec 7rnmex) «— Cnmex(ﬂ-zmex)'
(d) Set Tels = (Thmex> Temexs Tomexs Tamexs 1d, VK, @, 51) and wg s = (sg,dec, 1, L, L, 1).
(e) w S|_s A PsLS( SLS’ TsLS, WsLS)-

)

(f) Send (72 T ™ s1) t0 Vimzk-

nmex?

1 2 3 4
nmex> Tnmex> Tnmexs Tnmex>

1 2 3 4 _
ViLs (CUSLS7 TeLs) TsLss ToLSs TFSLS) =1

5. Vamzk: Set zgLs = (m id, vk, z, s1) and accept iff

We use a slight modification for our setting in the five round case. In the original protocol, both the
statement and the witness are known only in the last round. Since the witness is known at the start of the
protocol, instead of using sg and s1, we commit to w in the first round of the non-malleable commitment.
The necessary changes are made in the language.

The informal theorem regarding the security of the above protocol is:

Theorem 13 ([COSV16]). Assuming CRHFs, the above protocol is a secure NMZK.

In terms of concrete instantiations, CRHFs can be instantiated from DL, and hence from DDH.
We note that this NMZK scheme is also parallel ZK since we can extract trapdoors of the multiple
executions in parallel.

A.6 Extractable Commitment Scheme

We will also use a simple challenge-response based extractable statistically-binding string commitment
scheme (C, R) that has been used in several prior works, most notably [PRS02, Ros04]. We note that
in contrast to [PRS02] where a multi-slot protocol was used, here (similar to [Ros04]), we only need a
one-slot protocol.
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Protocol (C,R). Let com(-) denote the commitment function of a non-interactive perfectly binding
string commitment scheme which requires the assumption of injective one-way functions for its construc-
tion. Let n denote the security parameter. The commitment scheme (C, R) is described as follows.

CoOMMIT PHASE:

1. To commit to a string str, C' chooses k = w(log(n)) independent random pairs {a?, a}}¥_, of strings
such that Vi € [k], o ® a} = str; and commits to all of them to R using com. Let B < com(str),
and AY < com(a?), Al < com(a}) for every i € [k].

2. R sends k uniformly random bits vy, ..., v,.

3. For every i € [k], if v; = 0, C opens A?, otherwise it opens Ai1 to R by sending the appropriate
decommitment information.

OPEN PHASE: C opens all the commitments by sending the decommitment information for each one of
them.

For our construction, we require a modified extractor for the extractable commitment scheme. The
standard extractor returns the value str that was committed to in the scheme. Instead, we require that
the extractor return ¢, and the openings of A? and All. This extractor can be constructed easily, akin to
the standard extractor for the extractable commitment scheme.

This completes the description of (C, R).

“Rewinding secure” Commitment Scheme. Due to technical reasons, we will also use a minor
variant, denoted (C’, R), of the above commitment scheme which will be rewinding secure. Protocol
(C', R') is the same as (C, R), except that for a given receiver challenge string, the committer does not
“open” the commitments, but instead simply reveals the appropriate committed values (without revealing
the randomness used to create the corresponding commitments). More specifically, in protocol (C', R'),
on receiving a challenge string v1,...,v, from the receiver, the committer uses the following strategy:
for every i € [k], if v; = 0, C' sends ), otherwise it sends o} to R’. Note that C’ does not reveal the
decommitment values associated with the revealed shares.

The scheme is rewinding secure because we can respond to queries from the adversary (for the com-
mitment scheme) when we need to rewind it, and the commitment scheme is exposed to an external
challenger. This follows from the fact that we can send random messages in the third round when the
adversary makes a different second round query.

When we use (C’, R’) in our main construction, we will require the committer C’ to prove the “cor-
rectness” of the values (i.e., the secret shares) it reveals in the last step of the commitment protocol.
In fact, due to technical reasons, we will also require the the committer to prove that the commitments
that it sent in the first step are “well-formed”. Below we formalize both these properties in the form of
a wvalidity condition for the commit phase.

Proving Validity of the Commit Phase. We say that commit phase between C’ and R’ is well
formed with respect to a value str if there exist values {029, &Zl }le such that:

1. For all i € [k], &Y ® &} = str, and

2. Commitments B, {A%, A1}¥ | can be decommitted to str, {4}, &} }5 | respectively.

3. Let ai',...,ay" denote the secret shares revealed by C' in the commit phase. Then, for all i € [k],
a;t =a;".

(3 (2

We state a simple lemma below, that states that 3 an extractor E that extracts the correct committed
value with overwhelming probability if the commitment is well formed. This lemma is implicit from
[Ros04, PRS02].
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Lemma 1. If the validity condition for the commitment protocol holds, then E fails to extract the com-
mitted value with only negligible probability.

We can define validity condition for the commitment protocol (C, R) in a similar manner.

B Proofs From Section 3

B.1 Proof of Theorem 4

We only need to argue about the output of P3. From the correctness of OTgg, it follows that P recovers
x1x2 + r in Round 2. From the correctness of OTa, it follows that P3 recovers o = xgrh + ro.
Finally, from the correctness of OTis, it follows that Ps recovers o = (x1x2 + r5)xs + r1. Note that
o + o = x12903 + 11 + 19, as desired.

B.2 Proof of Theorem 5

We consider all maximal sets of corruptions and argue security. In each case, we construct a simulator
that sends pseudorandom messages in the first two rounds.

Py and Py are corrupted: In this case, simulator (Siml)essentially runs honest Pj algorithm but with
input 3 = 0. In the final (fourth) round, the simulator (Sim?) upon receiving as input ((3MULT((x1,71);
(x2,72);23) = (a1, 2, 3)), (z1,71), (z2,72)), it outputs as.

The the security requirement of the robust semi honest MPC follows from that of oblivious transfer
protocol and the covert security property of OT. The covertness gives us the desired joint distribution

Py and P5; are corrupted: The simulator runs the honest P, with input x5 = 0. Note that the output
of P, and Ps are ry and 11 4 ro respectively. In the final round, the simulator upon receiving as input
(BMULT( (x1,71); (w2, 72); 23) = (a1, 2, 3)), (x1,71),x3), outputs az+r1 (which is of the form xjzox3+
7“2).

The the security requirement of the robust semi honest MPC follows from that of oblivious transfer
protocol and the covert security property of OT. The covertness gives us the desired joint distribution

P> and Ps are corrupted: This is symmetrical to the previous case. Following a similar argument we
result in the simulator outputting zixex3 + r1, P> outputs 79 and P; outputs r; + ro.

B.3 Proof of Theorem 6

Let the additive shares of 0 distributed by P; be {sé’j }je[n]- Consider a term t in the expansion of p.
Without loss of generality, let y;,y; and y; be the variables in the expansion of ¢. From the correctness
of Hg’}']v'ULT, it follows that at the end of third round, P;, P; and Pj have shares of z;z;x;. Denote these
additive shares by aﬁ, ag. and a}g. At the end of the protocol, the share computed by P; is total sum of

Zw« sg’j and the sum of shares corresponding to every term ¢ in p. Observe that Z” sé’j is 0 and the
sum of shares corresponding to every term ¢ in p is p(x1,...,zp).

B.4 Proof of Theorem 7

Suppose S is the set of corrupted parties controlled by adversary A. We describe a simulator Sim that
simulates the corrupted parties in S.

3MULT
sh

Description of Simulator. Recall that for every polynomial p, an instantiation of II is executed.

Consider a term t in the expansion of p. We look at two cases:
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e (Case 1: t contains one variable associated with party not in S and contains another variable with
party associated with a party in S: In this case, Sim executes the simulator, denoted by SimzmucT,
of HSNULT. Recall that in the fourth round, SimspyLt takes as input the output of the functionality
as well as the inputs and randomness of all the adversaries. In particular, Sim internally computes
the functionality by setting the inputs of all the honest parties to 0 and this is input to SimsmyrT.

e Case 2: t contains only variables associated with parties in S: The protocol associated with ¢ is
executed solely by adversarial parties.

The only remaining case was when ¢ does not contain any variable associated with a party in S. In this
case, the simulator Sim upon receiving the input (p(x1,...,2,), {zi, ri}ics), generates the final round
messages as follows: it computes « = p(z1,...,x,) — 3, where 8 is the summation of all the terms in the
expansion of p such that these terms contain only variables associated with parties in S. The simulator
then computes the final round messages of all the honest parties to be shares of the value a.

The above described simulator satisfies Definition 1 from the fact that HEMULT is a robust semi-honest
MPC, and the fact that the last messages generated by the simulator is distributed identically to the last
messages generated by the honest parties in the real world.

B.5 Proof of Theorem 8

We describe the simulator below.

Description of Simulator Sim. Let C be the circuit implementing the functionality F. Execute CktE(C)
to get (p1,...,pm). Execute the simulator Simspoyyyp,} for every i € [m] for the first three rounds.

In the final round, Sim receives as input (F(x1,...,zn), {xi, 7 }ics). It first executes the simulator of
RP on input F'(x1,...,7,) to obtain (81, ..., 3). It then executes the final round of Simzporyyp,} on input
(B, Bn), {xi,ri Yics) for every i € [m]. Denote the outputs of the simulators to be @ = (ary, ..., an).
Output o.

We now prove that the simulator satisfies definition 1 by hybrid argument.

Hybrid Hyb,: This corresponds to the real world.

Hybrid Hyb;: In this hybrid, execute the simulator Simspoiy(p,1 for every i € [m] for the first three
rounds. In the final round, execute Simsporyyy,} on input (B;, {z,7i}ies), where 3; is computed by
evaluating p; honestly on the inputs of all the parties. The output of Sim is just a concatenation of

outputs of SimspoLy), for every i.

The indistinguishability of Hyb, and Hyb; follows from the security of H:}? oLY{r},

Hybrid Hyb,: This hybrid corresponds to the ideal world.

Observe that in Hyb;, the {;} input to Simspory{p,} is identically distributed to the encoding of the
circuit according to RP. We can now invoke the security of RP to argue the indistinguishability of Hyb,
and Hybs

Thus, from the indistinguishability of the hybrids and the fact that Simzporyyp; satisfies Definition 1,
Hf; is a robust semi honest MPC.

B.6 Special Rewinding property

We highlight a special property of our constructed four round robust semi-honest MPC, which we shall
refer to as the “special rewinding” property. This will be useful for the proof of our five round construction.
Roughly, the property states that the second round of the robust semi honest MPC can be simulated
without knowledge of the input and randomness used in the first round.
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Claim 1. Let h; (resp. a;) denote all the messages sent by the honest (resp. adversarial) parties in the
i-th round. Then the following joint distributions are indistinguishable: (h1,a1,hs) and (hy,ay, hl) where
5 generated without knowledge of random coins and inputs used to compute h;.

This need not be true in general, but we shall argue that it holds in our case.

Proof sketch. Our construction of the robust semi honest MPC relies on the computation of m ran-
domized polynomials. We argue that the property holds for any monomial, and this can be extended to
the case of the polynomials. While there are common inputs across various monomials and polynomials,
each monomial samples independent randomness for its computation and this suffices to let us argue
them separately. The main property of our underlying construction we will use is of the security of the
OT.

From the construction of HS}? oLY{p }, which internally invokes , each player has a specific role
for a given monomial: (i) it is not involved; (ii) involved and has a predefined role of either P;, Py or Ps.
Where P, P» and P> have roles as described in HENULT. The first case is trivial since we don’t need to
send anything. Let us consider the 3 other cases. If the player has the role of P;, then by construction it
is not required to send anything in the first round. If the player has the role of P», then it has to respond
to two OT messages in round 2. But since it has not sent a message in thM ULT{p} prior to round 2, these
messages can be simulated by picking random input values as input for P, and respond “honestly” with
these inputs. This works because the values sent in the OT are masked by 72 and 7, which are generated
independently for each monomial, and not used prior to round 2. Lastly, if the player has the role of Pj,
it sends the first message of an OT in round 2. Specifically, it sends the first (receiver) message of OT
as a function of its input z3. It is important to note that P; has also sent an OT message in round 1
as a function of the same message, but by the receiver security of OT we can pick a random value z% to
simulate the OT message in round 2.

In our proof, we shall need this property to respond to (potentially different) queries sent by the
adversary, in the first round, while rewinding when we argue security via the robust semi-honest MPC.
As will become apparent in the proof, we will not need to complete the entire protocol simulating the
second round as above.

3MULT
1_Ish

C Proof of Theorem 9

We present the proof for our five round construction below. Before we proceed to the simulator, we
discuss a few properties of the underlying primitives that we will need:

— Recall that simulator for the robust semi honest MPC consists of two parts. The first part, Sim}ypc,
simulates the first three rounds of the robust semi honest MPC without requiring inputs or outputs
of the adversary. The second part, Sim?MPC, when given the inputs, random tape and outputs a
simulated transcript of the last round that is consistent with the input and randomness. Addition-
ally, note that this simulation succeeds as long as the adversary behaved honestly in the first three
rounds of the robust semi honest MPC.

— The extractor for the 3 round “rewinding secure” extractable commitment works by rewinding
the second and third round polynomial number of times. From Lemma 1, we know that if the
commitments are well formed, extraction fails with only negligible probability.

— The simulator of the NMZKs works by extracting a trapdoor. Specifically, it rewinds the second
and third round polynomial number of times to get signatures for two distinct messages. Further,
this extraction fails only with negligible probability.
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— Combining the above two properties, we see that the rewindings of NMZK and the “rewinding

secure” extractable commitment are “composable” because they rewind in the same rounds in our
MPC protocol.

— The four round non-malleable commitment inside the NMZK rewinds in the third and fourth round.
This will be useful will arguing the proofs in the hybrids.

We describe the ideal world simulator Sim below. We shall denote the set of honest players by H and
the set of corrupted players by P4,

1. The first three rounds of protocol are simulated as follows:

— For the robust semi honest MPC, since Sim}MpC doesn’t require any input or output to simulate

the first three rounds, we use it directly to obtain {mll, mi2, mf’} Pen Since the robust semi

honest MPC starts from the second round, {m?} Pen is sent in the 4th round with the last

round of the NMZK for L, but we group them here for simplicity.

— For simulating proofs for the NMZKs, we deal with three different cases:

(a) For proofs from the adversary, the honest player acts as a verifier. In this case, fix a
random tape for the verifier and respond honestly to adversary queries.

(b) For proofs within honest players, we fix the random tape for the verifiers and thus can triv-
ially compute the trapdoor in the NMZKs for both languages using the verifier’s random
tape.

(c) For proofs from honest players to the adversary, we run the simulators Simpmzx and Simumzk
to simulate the first three rounds. This internally rewinds polynomial many times to obtain
the trapdoors. If the extractor fails, output L ,mz and abort.

i N

and {71“] }
nmaki }je{1,2,3},1%e% "meki f je(1,2,3) Pen
— For the “rewinding secure” extractable commitment, we deal with two cases:

This gives us {7r and the extracted trapdoors.

(a) For commitments from the honest players to the adversary, we just commit to the all ‘0’
string. We do this for commitments within the honest players as well.

(b) For commitments where the honest players are recipients, run the extractor to send re-
sponses and extract the values inside the commitments. If extractor fails, output L ex:
and abort.

This gives us {Wﬂext} and the extracted commitments.
')je{1,2,3},Pen

As noted earlier, the rewinding performed within the NMZK simulator and the extractor for
“rewinding secure” extractable commitments work in the same rounds and can be done for each
without affecting the other.

2. Simulate the last round of the NMZK for L in two steps.

j

— For proofs from the honest parties to the adversary, use Sim with inputs {7’[’ }
p p y nmzk p anki—>k j6{1,273}7 PkepA,RGH

and the trapdoors obtained earlier to compute
4
{ﬂ-anki—ﬂc}Pk €PA, P €H "
— For proofs within honest parties, the trapdoor is trivially known to the adversary and thus use

{7T‘31mzk_ } to construct
i~k Jje{1,2,3}, P,PeH

{ﬂ-ﬁmZki—ﬂ(}Pk, P oeH’
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4 } '

nmzk; P en

On receiving the proofs from the adversary check if all the received proofs are valid i.e. verify if
{Wimzkkﬁi}je{m’g’ég’ P epA, p ey are valid proofs in L (This is equivalent to checking if all proofs
in the protocol verify). If the check fails, send abort to the ideal functionality.

This gives us the required {7r

3. We perform an additional check before we obtain the final round of the robust semi honest MPC.
Given m!, m2 m3, {(xx, )} pepa, We check if the adversary has followed the computation in the
first three rounds correctly. If the check fails we output J_}MPC and abort. It is implicit that the
proofs for L have verified prior to this step.

4. Send the extracted inputs {z3}p cpa to the ideal functionality to obtain the output y.
Compute the final round (of all players) of the robust semi honest MPC as

{mfl}Piep  Simiupc (mlﬂﬁZ’mBa {z}pepas {rtpepasy) -

Additionally, simulate the last round of the NMZK for L. This is done in two steps

— For proofs from the honest parties to the adversary, use Sim with inputs {%j }
p p y nmzk p anki—>k j€{1,2,3}7 PkePA7REH
and the trapdoors obtained earlier to compute

~4
{ﬂ-ankiﬁk}Pk ePA P eH"

— For proofs within honest parties, the trapdoor is trivially known to the adversary and thus use

~

) to construct
nmzkik }je{1,2,3}, P PEH

{%;1711Zki~>1<}}3k7 P eH’

. . . /\4
This gives us the required {ﬂ-anki}Pi -
5. On receiving the proofs from the adversary check if all the received proofs are valid, i.e. verify if
{ﬂmzkk#}je{m’g,% P, epA, p. ey are valid proofs in L. If the check fails, send abort to the ideal

i

functionality.

Otherwise, on receiving {mff} PLepA from the adversary, we check if it matches the transcript

simulated by Sim3ypc earlier. If not, but the proofs above have verified output L%,5c and abort.
Else send continue to the ideal functionality.

We prove security via a sequence of hybrids Hy to Hg described below, where Hj is the real execution
and Hg is the ideal execution. To do so, we will require the following random variables:

— Let v" be the random variable that represents the output (including the view of the adversary and
the output of the honest players). To prove security of the MPC, we need to show that the the
random variables v and v® are computationally indistinguishable.

— Let {Wk_)i,Wk_)i}P PA P be random variables representing the values that are committed
KEP I E
in the extractable non-malleable commitment within the NMZK. We need these to ensure that

adversary behaves in a semi-honest way in the computation of the robust semi honest MPC.
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Public-coin property of non-malleable commitment. During our proofs, we reduce our indistin-
guishability argument to a specific cryptographic property that holds in the stand-alone setting. We
might require the non-malleable commitment to interact with an external party R. Note that the sim-
ulator will often rewind the adversary. But since R is a stand-alone receiver, its responses can be used
only in a single thread.

To deal with this, we do the following. On the main thread, any message from the adversary is
forwarded externally to R, and responses from R are forwarded internally to the adversary. But in the
look ahead threads, we use the public coin property of the non-malleable commitment to create responses
on our own and forward them internally to the adversary.

Hy: Execution of the protocol II in the real world with adversary A.

Soundness lemma. We claim an important lemma that is relevant to the real execution. The
lemma says that the adversary A commits to valid witnesses in the extractable non-malleable
commitment inside each non-malleable zero knowledge proofs, where it acts as the prover, if the
proof verify.

Lemma 2. Let {anzkk—»i}PkePA,PieH and {%nmzkk—»i}PkePA,PieH be the NMZK proofs for L and L
respectively that/,\él sends to all the honest players. Let pr_y; and pr_,; correspond to the probabilities
that Wfﬁi and Wfﬁi are not valid witnesses for the statements being proved in the NMZKs above.
For the real execution, if all the proofs are accepting, then

Pk—sis Dk—i < V(1) VP, € PA VP € H
for some negligible function v.

The proof of the above lemma follows from a direct extension of Claim 3 in [COSV16]. The high
level idea for the proof is, if by contradiction the lemma doesn’t hold, then we can forge a signature
for the underlying signature scheme in the NMZK.

Across hybrids, the condition that A commits to valid witnesses in the extractable NMCom within
the NMZK if the proofs verify will be referred to as the soundness condition.

H;: Identical to Hg except that we rewind polynomial number of times in the second and third round to
extract the trapdoors for both the non-malleable zero knowledge proofs, and the committed values
(input and randomness) from the “rewinding secure” extractable commitment scheme.

We abort with output L ,mz for the hybrid if the extractor for NMZKs fail, and abort with output
Lrext if the extractor for the “rewinding secure” non-malleable commitment fails to return a value.

Since the only difference from the previous hybrid Hg (real execution) is the rewinding to perform
the required extractions, the main thread in the experiment remains unchanged. Thus, we claim
the following

VP, e PA YR eP W, =W, (1)
VP e PA YR eP WO~ WL, (2)

Let us assume the claim isn’t true. Without loss of generality assume equation 1 is false, the
other case follows similarly. Then 3P, € PA, P, € P such that ng _,; and VVk1 _,; are distinguishable
by an unbounded adversary D. We can use D to create another unbounded adversary D’ that
distinguishes between the main threads of Hy and Hy. It works by extracting the commitment
in the extractable non-malleable commitment within the NMZK proof mnmzk,_,;, and uses D to
distinguish between the commitments. Since the main thread is unchanged, this is a contradiction.
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We now claim,
0 &y vl (3)

Since the main thread remains the same, all that is left to argue is that the experiment aborts with
negligible probability.

From the NMZK we know that the probability | ,m. is output is negligible in n. Similarly, we
output L ey with probability negligible in n. This implies that the experiment aborts with negligible
probability, proving the claim.

If the proofs are accepting in the main thread, then the extracted values are correct by the soundness
lemma and equations 1 and 2.

Hs: Identical to Hy except that we use the trapdoors obtained earlier to simulate the last message of the
statistical witness indistinguishable argument of knowledge (statistical WIA0K), from the honest
players to the adversarial players, within the NMZK proofs for languages L and L. For proofs
between any two honest players, since the simulator controls both players, it fixes the random tapes
used for the NMZK and knowns the trapdoors. Thus, proofs between honest parties are trivially
simulated. Proofs from the adversary are responded to honestly.

Since only the last message of each statistical WIAoK is changed, the changes in this hybrid, from
the previous hybrid, are only in the fourth and fifth round.

We now claim the following,

vl A 02 (4)
VPk S PA, VP e P Wkl—>i s Wl?—)i (5)
VPk S PA, VP e P Wkl—ﬁ s Wl?—)i (6)

Equation 4 follows from the the statistical witness indistinguishability of the statistical WIAoK.
Equations 5 and 6 hold from the fact that the above change is only a statistical one.

Hj: Identical to Ha except that we set random values inside the non-malleable commitment in each
NMZK sent by the honest players. This is true of proofs between honest players too.

We now claim the following,

02 . 03 (7)
VP e PA VYR eP W2, = WP, (8)
VR ePA VP EP  WE, ~ W, (9)

Equation 7 follows from the fact the hiding property of the non-malleable commitment. This does
not conflict with the rewinding since only a single message of the non-malleable commitment is sent
during the rewinding phase, and this can be repeated in each look ahead thread.

Equations 8 and 9 hold from the non-malleability of the non-malleable commitment.

Hy: Identical to Hg except for the following. With m!, m?, m3, {(zg, %)} p.epAs we check if the adversary
has followed the computation in the first three rounds correctly. If not, and the proofs for L verify,
we output J_}MPC and abort. If the proofs for L do not verify, send abort to the ideal functionality.

Otherwise send the inputs extracted to the ideal functionality to obtain the output. Given the
extracted inputs, randomnesses and output we run Sim?MPC to obtain mf for every honest player
P,. Since it is a semi-honest simulator, it simulates the transcript, and we thus also have {mi } PLepA”

On receiving {m}';‘l} PLepA from the adversary, checks if the simulated transcript matches the on
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received. If it does not match, but the NMZK proofs for L verify, output J-EMPC and abort. If the
proofs for L do not verify, send abort to the ideal functionality.

Conditioned on the fact that we don’t abort, we claim the following

VR, e P VR eP W~ WL (10)
VR EPA YR eP WP, ~, Wi (11)

Equation 10 is trivially true since the last message that was simulated for the robust semi honest
MPC was sent in the fifth round, after the completion of the NMZK for L. Thus the execution
thread till the fifth round is statistically indistinguishable.

Equation 11 follows from the fact that we can rewind the non-malleable commitment to extract from
it, and thus build a distinguisher breaking security of Sim%,pc. There are no issues while rewinding
since we receive only the last message of the robust semi-honest MPC from the challenger. The
rewinding occurs only in the third and fourth messages of the non-malleable commitment. We
re-send the third round message of the robust semi-honest MPC. By the soundness of the proof
certifying honest behavior in the first three round, the adversary cannot deviate in its response in
the third round. Thus, we can just replay the same 4th message in each look-ahead thread.

Lastly, we claim

v3 ~, vt (12)

Before we can reduce this to the security of the underlying simulator for the robust semi honest
MPC, we must ensure that the security holds. This is the case when the adversary behaved semi-
honestly in the first three rounds, i.e. if the proofs for L verify and the hybrid does not output
J_}MPC. From equation 10 and the soundness condition of the previous hybrid, if the proofs for
L verify, the adversary does not behave honestly in the first three rounds with only negligible
probability. Thus J_}MPC is output with only negligible probability.

Then, if the above claim does not hold, we break the security of Sim?,pc (implied by the definition of
the robust semi honest MPC). Additionally, if the proofs for L verify, from the soundness condition
J_fMPC is output with negligible probability. This ensures the that the output distribution of the
honest parties is indistinguishable from the previous hybrid. This proves our claim.

Hjs: Identical to Hy except that we simulate the commitments of honest parties by committing to the all
‘0’ string in the “rewinding secure” extractable commitment scheme. This applies to commitments
within every pair of honest players as well.

We claim the following
IRESPRIE (13)

Equation 13 follows from the hiding property and rewinding security of the “rewinding secure”
extractable commitment scheme.

Note that we’re no longer proving indistinguishability of message distribution committed in the non-
malleable commitment. In the previous hybrids, we used it to establish the soundness condition.
But in this, and the subsequent hybrid, if the adversary is able to send accepting proofs without
behaving honestly, then from the changes implemented in the previous hybrid, we output either
L}MPC or L?MPC' Since the only change in this hybrid is the values inside the “rewinding secure”
extractable commitment, by observing if these special abort symbols are output, we break the
hiding property of the “rewinding secure” extractable commitment scheme.
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Hg: Identical to Hs except that we use Simjypc to simulate the first three round of the honest players

in Iympc.

We claim the following

v~ 0P (14)

Equation 14 follows from the computational indistinguishability of the the view output by Simloc
from the real view implicit from the definition of the robust semi honest MPC. This is where the
“special rewinding” property (see B.6) is used. When we build a distinguisher for the the robust
semi honest MPC, we receive the transcript externally. But in order to complete the protocol,
we need to rewind to be able extract trapdoor and adversarial inputs. The rewinding happens
in the second and third round of the overall protocol, and thus only the first two rounds of the
robust semi honest MPC overlaps with the rewinding phase. In the look ahead threads, if we
send a different message in the second round (overlapping with first round of semi-honest MPC),
the adversary might send a different first message of the robust semi-honest MPC. We need the
adversary to complete its second round of the robust semi honest MPC (and thus the third round
of the overall protocol) to be able to extract, and hence need the “special rewinding” property to
simulate messages for potentially different first round messages in the look ahead threads.

Hybrid Hg is identical to our simulator. From the above discussion, we have

thus proving security of the constructed MPC.

D

Proof of Theorem 10

We present the proof for our four round construction below. As before, we discuss a few properties of
the underlying primitives that we will need:

The simulator for the robust semi honest MPC, as previously discussed, consists of two parts.
The first part, Sim}ypc, simulates the first three rounds of the robust semi honest MPC without
requiring inputs or outputs of the adversary. The second part, SimePC, when given the inputs and
outputs of the adversary simulates the last message of robust semi honest MPC. Additionally, note
that this simulation works only in the semi-honest setting.

The extractor for the 3 round “rewinding secure” extractable commitment works by rewinding the
second and third round polynomial number of times. From the Lemma 1, we know that if the
commitments are well formed, extraction of the correct inputs fail with only negligible probability.

The simulator of the NMZKs works by extracting a trapdoor. Specifically, it rewinds the second
and third round polynomial number of times to get signatures for two distinct messages. Further,
this extraction fails only with negligible probability.

Combining the above two properties, we see that the rewindings of NMZK and the “rewinding
secure” extractable commitment are “composable” because they rewind in the same rounds in our
MPC protocol.

The four round non-malleable commitment inside the NMZK rewinds in the third and fourth round.
This will be useful will arguing the proofs in the hybrids.

We describe the ideal world simulator Sim below.
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1. The first three rounds of protocol are simulated by picking random inputs for the honest parties
and behaving “honestly” with these inputs as follows:

/ /

— For the robust semi honest MPC, pick random {z}, 7} pcy as inputs to the first three rounds.

We shall use the last round of the robust semi honest MPC to correct the output. We obtain
{mi,m?, m?}pen.
— For the “rewinding secure” extractable commitment, we deal with two cases:

(a) For commitments from the honest players to the adversary, we commit honestly to random

strings {r?extHk} prer - We do this for commitments within the honest players as well. In
the third round, we send {rl = (#,7]) & rl_, }ren where z/,7{ are the inputs and

randomness generated in the previous step.

(b) For commitments where the honest players are recipients, run the extractor to send both
the responses, and extract the values inside the commitments. If the extraction fails to
return a value, output L e and abort.

This gives us {W.J,exti} Ao,y Pen and the extracted commitments.

je{1,2,3},PeH
— We generate {y;}pey honestly as defined by the protocol.

— For the non-malleable commitment, as above, we deal with two cases:

(a) For commitments from the honest players to the adversary, we have a valid witness for
the input and randomness we generated, and thus commit to a witness consistent with
the first three rounds. We do this for commitments within the honest players as well. By
the construction of the NMZK protocol in [COSV16], the change for this is made only in
the fourth round where we send a different mask s

(b) For commitments where the honest players are recipients, we behave honestly.

This gives us {ﬂ"ﬂ]mcomi

=~

Thmcom and the masks to be sent in the

}je{1,2,3},PieH’ { }je{1,2,3},PieH

fourth round.

— For the input delayed WIPoK, we behave honestly with our randomly generated inputs and

randomness. This gives us {ﬂ'J } . If any of the proofs received at the end of
& WIPOK; f e 11,23}, Pen Y P
the third round fails, output L and abort.

— For simulating proofs for the NMZKs, we deal with three different cases:

(a) For proofs from the adversary, the honest player acts as a verifier. In this case, fix a
random tape for the verifier and respond honestly to adversary queries.

(b) For proofs within honest players, we fix the random tape for the verifiers and thus can triv-
ially compute the trapdoor in the NMZKs for both languages using the verifier’s random
tape.

(c) For proofs from honest players to the adversary, we run the simulator Simumz. This
internally rewinds polynomial many times to obtain the trapdoors. If the extractor fails,
output L ,mz and abort.

This gives us {Wimzki }je{1,2,3},ReH and the extracted trapdoors.

As noted earlier, the rewinding performed within the NMZK simulator and the extractor for

“rewinding secure” extractable commitments work in the same rounds and can be done for

each without affecting the other.

2. The last round is simulated as below:
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— Send the extracted inputs {z}} p cpa to the ideal functionality to obtain the output y. Obtain
the final round of the robust semi honest MPC as

{m?}RG’P — SIm?MPC (ml? m27 m3? {xk}PkGPA7 {Tk}PkG'PA7 y) *

— Simulate the last round of the NMZK for L in two steps.

— For proofs from the honest parties to the adversary, use Simpmz with inputs:

j }
Ly
{ nmzkiok [ic (12,3}, BePA,PeH

and the trapdoors obtained earlier to compute

4
{Tranka}Pk €PA, P, €H”

— For proofs within honest parties, the trapdoor is trivially known to the adversary and thus

J

nmzk;_ to construct

use {ﬂ'
j€{17273}7 P, PeH

{ngzki_,k }Pk, PoeH’

. . . . 4
This gives us the required {Trnmzki}Pi -
On receiving the proofs from the adversary check if all the received proofs are valid i.e. verify
if {m) Yieq1,2,3.4}, B epA, B, en are valid proofs in L. If the check fails, send abort to the

ideal functionality. if the proofs verify, but {mff} PLepA differs from the simulated transcript,

mzky

output J.?MPC.

As in the five round setting, we prove security via a sequence of hybrids using the following random
variables:

— Let v" be the random variable that represents the output (including the view of the adversary and
the output of the honest players).

— Let {Wi_i} PePA PeH be the random variables representing the values that are committed in the
non-malleable commitments of Il ncom. On the other hand, {ﬁ/\k_ﬁ} are the random

PePAPcH
variables representing the XOR of the values committed in the non-malleable commitment within

the NMZK and the mask sent in the fourth round of the NMZK ( i.e. Wk_ﬁ =Y . @si .. ). We
need these to ensure that adversary behaves in a semi-honest way for the computation of the robust
semi honest MPC.

Hy: Execution of the protocol II in the real world with adversary A.

Soundness lemma.

Lemma 3. Let {mwipok, _,; }PkePA Py and {ﬂ—ankk%i}Pke'PA p.ew e the input delayed WIPoK' proofs

for Lwipok and NMZK proofs for L respectively that A sends to the honest players. Let py_,; cor-
respond to the probability that Wfﬁi s a not a valid witness for the statement in L being proved in

the input delayed WIPoK above. Similarly, px_.; corresponds to the probability that /ng—n s not a
valid witness for L. For the real execution, if the proofs are accepting, then

Pk—si, Pksi < V(1) VP € PA VP €N

for some negligible function v.
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Proof. The high level idea of the proof is the following: Suppose by contradiction the lemma is not
true, then there 4P, € PA,Pk € H such that either py_,; or pr_; is non-negligible. We assume
that px_,; is non-negligible (the other case follows in a similar manner). Then we can construct an
adversary Ay that breaks the one-way property of f. For P, receiving a proof, all messages, other
than g, are sent honestly. We forward the challenge received from the challenger for f. We then
extract the witness from the adversary’s input delayed WIPoK, thus breaking the one-wayness of f.
For the other case, we will be able to construct, in a similar manner, an adversary that breaks the
security of the underlying signature scheme. O

Across hybrids, the condition that A commits to valid witnesses in the non-malleable commitments
if the proofs verify will be referred to as the soundness condition.

H;: Identical to Hg except that we rewind polynomial number of times in the second and third round
to extract the trapdoors for the NMZK proofs, and the committed values (input and randomness)
from the “rewinding secure” extractable commitment scheme.

We abort with output L,mz for the hybrid if the extractor for NMZK fails, and abort with out-
put Liext if the extractor for the “rewinding secure” extractable commitment fails to return any
output. At this point we do not know if the extracted values are indeed the adversary’s input and
randomness.

Since the only difference from the previous hybrid Hg (real execution) is the rewinding to perform
the required extractions, the main thread in the experiment remains unchanged. Thus, we claim
the following

VR ePA VP eP WO, ~ WL, (15)
VR ePA VP eP WY, ~ WL, (16)

The proofs follows exactly the same as in the five round case.

We now claim,
00 g vl (17)

Since the main thread remains the same, all that is left to argue is that the experiment aborts with
negligible probability.

From the property of the NMZK and “rewinding secure” extractable commitments, we know that
the probability | mzk Or Liext is output is negligible in n. This implies that the experiment aborts
with negligible probability, proving the claim.

Hs: Identical to Hy except that we use the trapdoors obtained earlier to simulate the last message of
the sWIAoOK, from the honest players to the adversarial players, within the NMZK for language L.
For proofs between any two honest players, since the simulator controls both players, it fixes the
random tapes used for the NMZK and thus knowns the trapdoors. Thus, proofs between honest
parties are trivially simulated. For proofs from the adversary, we respond honestly.

We now claim the following,

v! Ze v? (18)
VAR e PA YR eP W, =~ W2, (19)
VP, e PA VP eP WL, ~. W2, (20)

Equation 18 follows from the witness indistinguishability of the statistical WIAoK.
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Equation 19 holds because changes made are after the completion of the two round non-malleable
commitment.

Equation 20 holds from the change only being statistical.
Hj: Identical to Ho except that we commit to random values in the non-malleable commitments inside

the NMZKs sent by the honest players. This is done by changing the mask sent in the fourth
message.

We claim the following,

v~ 03 (21)
VR e P VR eP W2, ~. WP, (22)
VR EPA VP eP W2, ~ WP (23)

Equation 21 follows from the hiding property of the non-malleable commitment.

Equation 22 follows from the fact that the change is made after the completion of the 2 round non-
malleable commitment. Equation 23 holds from the non-malleablility of the 4 round non-malleable
commitment.

Hy: Identical to Hg except for the following changes. Send the inputs extracted to the ideal functionality
to obtain the output.

Given the extracted inputs, randomnesses and output, we run SimepC to simulate m? for every
honest player P..

Since it is a semi-honest simulator, it simulates the transcript, and we thus also have {mi} PLepA”
On receiving {m};‘l} PLepA from the adversary, checks if the simulated transcript matches the on
received. If it does not match, but the NMZK proofs for L verify, output LEMPC and abort. If the

proofs for L do not verify, send abort to the ideal functionality.
We claim the following
VP, e P VR eP WP, ~, WL (24)
VR ePA VR eP W3, ~, Wh. .. (25)
Equations 24 holds because changes made in the hybrid are after the completion of the non-malleable

commitment. Equation 25 holds, else we can extract by rewinding to build a distinguisher for
Sim2pc. The proof is identical to the one in the 5 round setting.

Lastly, we claim

03~ vt (26)

The claim follow from the security of Sim?MPC implicit from the definition of the robust semi-
honest MPC. Additionally, if the proofs for L verify, from the soundness condition J—?MPC is output
with negligible probability. This ensures the that the output distribution of the honest parties is
indistinguishable from the previous hybrid. This proves our claim.

Note: Now, with the next few hybrids we shall replace the the first 3 rounds that are computed
honestly with respect to the input delayed WIPoK, robust semi-honest MPC and “rewinding se-
cure” extractable commitment using the honest players inputs (and randomness), with an honest
computation of the mentioned primitives using random inputs (and randomness). For this we shall
use techniques of complexity leveraging.

We assume the following, and set the security parameters for the primitives accordingly.
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— TimPCy sy TWiPok >> Trext, Tsign-
— TimpPcyy s >> Tameom-

— Thmcom >> Tf.

= Trext >> Tf.

where Tpim means that the primitive prim is secure against adversaries running in time 7y, and
T" >> T means that 7" > T - poly(n). Here Timpc,_5 means that we require the first three rounds
of our robust MPC to be indistinguishable (for adversaries running in time TrMpC<173)) for any
two sets of inputs and randomnesses. In fact, in our construction, the simulator Sim! works by
setting a random input to generate the first three rounds. Hence, for our construction, we require
Timpc 5 -security for the following two distributions: ReaIExecéil)(f, z) and Sim'(z). Note that
here nmcom refers to the two round non-malleable commitment.

Hj;: Identical to Hy except that we stop rewinding to extract the input and trapdoor, and instead break
the signature scheme and the “rewinding secure” extractable commitment to obtain the trapdoors
and the adversary’s inputs.

We claim the following

vt &, 0P, (27)
VR e PA VPR eP Wi~ WP, (28)
VR ePA VP eP Wi, ~ WP (29)

Equation 27 follows from the fact that this was only a statistical change. For the same reason,
equations 28 and 29 and hold. Note that we're still verifying the proofs to validate the extracted
values.

Hg: Identical to Hy except that we break the one-way permutation f, to obtain the pre-image p which
is used as a trapdoor to simulate the input delayed WIPoKs.

We claim the following

03 2 0F. (30)
VR ePA VP eP WP, ~ WP, (31)
VB EPA VB eP WD, ~. WO, (32)

Equation 30 follows from the witness indistinguishability of the input delayed WIPoK, and the fact
that Twipok >> T'r, Twipok >> Trext and Twipok >> Tsign. We need the latter two because we're
still breaking the primitives to extract, and the hybrid thus takes time O(maxz{Tf, Trext,Tsign})
which is in turn less than Tiypok.-

Equation 31 trivially holds since the change in the witness is performed only in the third round,
after the 2 round non-malleable commitment has completed.

Assume equations 32 does not hold. Then 3P, € P4, P, € H such that Wlf’ ,; and Wf _,; are distin-
guishable by a PPT distinguisher D. We will use this distinguisher to break the hiding property
of the security of the input delayed WIPoK. Specifically, we rewind to extract the corresponding
non-malleable commitment Wy _.;. We need to rewind only the third and fourth rounds of the
non-malleable commitment. Since only the third round of the WIPoK overlaps with the rewinding,
we send the same message of the WIPoK in each look-ahead thread. We then use D to break the

witness indistinguishability input delayed WIPoK.
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7!} peyn as inputs to the first

Hy7: Identical to Hg except that we use randomly generated inputs {af, ]

three rounds of the robust semi honest MPC.

We claim the following

P (33)
VP, e PA YR eP WS, ~. W, (34)
VR e P VR eP WS ~. W . (35)

Equation 33 follows from the security of the first three rounds of the robust semi honest MPC
and the fact that TrMpc(lﬂﬁ)) >> T, Timpc >> Trext and Tympc >> Tsign. The latter conditions
are required as we’re still breaking f, the signature scheme and the “rewinding secure” extractable
commitment. As before, the hybrid takes time O(max{T¢, Trext, Isign}) which is in turn less than

TwipoK -

Assume equations 34 does not hold. Then 4P, € 79“4,]31 € H such that Wf ,; and WIZ _,; are
distinguishable by a PPT distinguisher D. We shall break the non-malleable commitment to obtain
the committed value, and use D to build a distinguisher for the first three rounds of the robust
semi-honest MPC. For this to hold, we require 7, MPC(_g) >> Thmcom as assumed.

For equation 35, we can extract the value in the 4 round non-malleable commitment by just rewind-
ing. This is because the rewinding in the third and fourth round, which overlaps with the last round
of the robust semi honest MPC, and we just repeat this message in each look ahead thread.

Hg: Identical to Hy except that we stop breaking the signature scheme and the “rewinding secure”
extractable commitment, and start rewinding again to obtain the trapdoor and the adversary’s
inputs.

We claim the following

o7 e 08 (36)
VR ePA VP eP W], ~. WE,. (37)
VR ePA VP eP Wi, ~ W (38)

Equation 36 follows from the fact that this was only a statistical change. For the same reason,
equations 37 and 38 and hold.

Hy: Identical to Hg except that in the third round for every honest party P, we send {rl,, . = (z/,r])
@r?exti_)k }pen. Where r?extHk was the corresponding message sent inside the the “rewinding secure”
extractable commitment in the first round, and {z{, r{} pcy are the input and randomness generated
and used in the first three rounds of the MPC. Thus, alternatively we view the corresponding
“rewinding secure” extractable commitment scheme to contain r}extHk @ (z{,r!) by making changes
only in the third round.

We claim the following

08 2o, 0P (39)
VR e P VR eP WS, ~. W2, . (40)
VR e P VR eP WS, ~. W2, (41)

Equation 39 follows from the hiding property of the “rewinding secure” extractable commitment
scheme and the fact that Tie,x >> T;. The latter is required as we're still breaking f to simulate
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H10:

H11:

the input delayed WIPoK. To see why the hiding property helps, one can think of an intermediate
hybrid where we send random values instead of Trlexti_,k- Since the mask to the input and random-
ness are hidden in the “rewinding secure” extractable commitment, the adversary’s view remain
indistinguishable when we make this change. Note that we’re still rewinding to extract trapdoors
and inputs from the adversary. This is not a problem because of the rewinding security of the

“rewinding secure” extractable scheme.

Equation 40 trivially holds since the changes are made after the two round non-malleable commit-
ment completes.

Assume 41 does not hold. Then 3P, € PA, P, € H such that /Wf _,; and Wf _,; are distinguishable by
a PPT distinguisher D. We shall extract the values inside the non-malleable commitment to break
the hiding property of the “rewinding secure” extractable commitments using D. Here, unlike the
previous hybrids, we can extract from the non-malleable commitment by rewinding. This follows
from of the rewinding security of the “rewinding secure” extractable commitment, and we can thus
respond to potentially different queries to the challenger from the adversary when rewinding to
extract from the non-malleable commitment.

Identical to Hg except that in the non-malleable commitment sent by the honest players, we commit
to {«f, 7/} pey and the randomness used in the “rewinding secure” extractable commitment. Where
{z!, 7!} pey are the input and randomness generated, and used, in the first three rounds of the MPC
(and committed to in the “rewinding secure” extractable commitment). Thus, the values inside
the non-malleable commitments will be valid witnesses of L for the messages sent as “honest”

computation by the honest players.

We claim the following

v? . v1Y, (42)
VP e PA YR eP WD, ~. WO, (43)
VP, e PA YR eP WD, ~. WY, (44)

Equation 42 follows from the hiding property of the non-malleable commitment scheme and the
fact that Thmcom >> T'r. The latter condition is required as we're still breaking f. Note that we're
still rewinding to extract trapdoors and inputs from the adversary. This is not a problem because
we rewind only in the second and third rounds, and with a two round non-malleable commitment,
we send the same second message in every look ahead thread.

Equations 43 follows directly from the non-malleability of the non-malleable commitment scheme.

Assume that 44 doesn’t hold. Then 3P, € PA, P, € H such that Wf _,; and /Wklgi are distinguishable
by a PPT distinguisher D. We extract from the four round non-malleable commitment (inside the
NMZK) to break the hiding property of the two round non-malleable commitment scheme. The
extraction is done by rewinding the third and fourth round, and since none of the two round non-
malleable commitment scheme overlaps with the rewinding rounds, we are fine. Now we use the D
to break the hiding property of the commitment scheme.'3

Identical to Hyg except that we stop rewinding to extract the input, and instead break the signa-
ture scheme and the “rewinding secure” extractable commitment to obtain the trapdoor and the
adversary’s inputs.

We claim the following

13See remark 1 at the end of the proof.
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H12:

H13:

o' &, vt (45)

VP, e PA VR eP WO~ WL (46)
VR e P VR eP WY ~ WL (47)

Equation 45 follows from the fact that this was only a statistical change. For the same reason,
equations 46 and 47 and hold.

Identical to Hy; except that we stop breaking the one-way permutation to obtain the trapdoor,
and instead use the valid witness we committed to in non-malleable commitment in the previous
hybrid to complete the input delayed WIPoK proofs.

We claim the following

o1l o, 012, (48)
VP ePA VPR eP Wl ~. W2, (49)
VR ePA VP eP WL ~ W2 (50)

Equation 48 follows from the witness indistinguishability property of the input delayed WIPoK and
the fact that Tiyipok >> Trext and Twipok >> Tsign. The latter conditions are required as we're still
breaking the signature scheme and the “rewinding secure” extractable commitment.

Equations 49 and 50 follow analogously from the proof in Hg.
Identical to Hyo except that we stop breaking the signature scheme and the “rewinding secure”

extractable commitment, and start rewinding again to obtain the trapdoor and the adversary’s
inputs. Note that in this hybrid we’re running in polynomial time again.

We claim the following

012~ 013, (51)
VA, e P YR eP WA ~ W5 (52)
VR ePA VP eP W2 ~ W (53)

Equation 51 follows from the fact that this was only a statistical change. For the same reason,
equations 52 and 53 and hold.

Hybrid H;3 is identical to our simulator. From the above discussion, we have

0~ 013

thus proving security of the constructed MPC.
This completes the security proof.

Remark 1 (Three-round NMCOM and complexity-leveraging levels.). We note that the two-round NM-
COM used in our construction can be replaced with a three-round public-coin extractable NMCOM where
the non-malleability property holds against man-in-the-middle adversaries running in time >> T}.
Further, one could replace the input-delayed WIPOK used in the first three rounds of the protocol with:
(1) a two-round public-coin WI proof (i.e., Zap) and, (2) a three-round rewinding-secure extractable com-
mitment where the Zap proves that: either the (three-round) NMCOM contains a valid witness (that
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establishes honest behavior in the first three rounds of robust MPC w.r.t. the committed input and
randomness) or the rewinding-secure extractable commitment is a commitment to the pre-image of y.
Each of these primitives are rewinding-secure, and therefore, with these modifications, we would not need
Twipok >> Textcoms Isign, and instead only require that Textcom, Tzap >> 1.

Finally, by relying on full rewinding security of the first three rounds of our robust semi-honest MPC
(that we do mot prove in this manuscript), one can also remove the following levels: TrMPC(173> >>
Tamcoms Textcom, Tsign, and instead only rely upon TrMPC(l_S) >>Ty.
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