
Fast Proxy Re-Encryption for Publish/Subscribe

Systems ∗

Yuriy Polyakov†1,2, Kurt Rohloff‡1, Gyana Sahu§1 and Vinod
Vaikuntanthan¶2

1New Jersey Institute of Technology, Newark NJ, USA
2Massachusetts Institute of Technology, Cambridge MA, USA

May 11, 2017

Abstract

We develop two IND-CPA-secure multi-hop unidirectional Proxy
Re-Encryption (PRE) schemes by applying the Ring-LWE (RLWE)
relinearization approach from the homomorphic encryption literature.
Unidirectional PRE is ideal for secure publish-subscribe operations
where a publisher encrypts information using a public key without
knowing upfront who the subscriber will be and what private key will
be used for decryption. The proposed PRE schemes provide a multi-
hop capability, meaning that when PRE-encrypted information is pub-
lished onto a PRE-enabled server, the server can either delegate access

∗Partially sponsored by the Defense Advanced Research Projects Agency (DARPA)
and the Army Research Laboratory (ARL) under Contract Numbers W911NF-15-C-0226
and W911NF-15-C-0233. The views expressed are those of the authors and do not nec-
essarily reflect the official policy or position of the Department of Defense or the U.S.
Government. Project partially sponsored by the National Security Agency under Grant
H98230-15-1-0274. This research is based upon work supported in part by the Office of the
Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activ-
ity (IARPA). The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies, either express
or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for governmental purposes notwithstanding any
copyright annotation therein.
†polyakov@njit.edu
‡rohloff@njit.edu Corresponding Author
§grs22@njit.edu
¶vinodv@mit.edu

1



to specific clients or enable other servers the right to delegate access.
Our first scheme (which we call NTRU-ABD-PRE) is based on a vari-
ant of the NTRU-RLWE homomorphic encryption scheme. Our second
and main PRE scheme (which we call BV-PRE) is built on top of the
Brakerski-Vaikuntanathan (BV) homomorphic encryption scheme and
relies solely on the RLWE assumption. We present an open-source
C++ implementation of both schemes and discuss several algorithmic
and software optimizations. We examine parameter selection tradeoffs
in the context of security, runtime/latency, throughput, ciphertext ex-
pansion, memory usage, and multi-hop capabilities. Our experimental
analysis demonstrates that BV-PRE outperforms NTRU-ABD-PRE
both in single-hop and multi-hop settings. The BV-PRE scheme has a
lower time and space complexity than existing IND-CPA-secure lattice-
based PRE schemes, and requires small concrete parameters, making
the scheme computationally efficient for use on low-resource embedded
systems while still providing 100 bits of security. We present practical
recommendations for applying the PRE schemes to several use cases
of ad-hoc information sharing for publish-subscribe operations.

1 Introduction

Modern encryption algorithms are powerful tools to achieve confidentiality
in information systems. In modern encryption systems, data is encrypted so
it can be decrypted only by users with a specific decryption key. For private-
key (also called symmetric) encryption systems such as AES, the encryption
and decryption keys are the same, and every effort must be made to prevent
leaking the keys to adversaries. For public-key (also called asymmetric)
encryption systems such as RSA, one uses a paired public key and secret
key so that data, once encrypted with a public key, can only be decrypted
with its corresponding secret key. If an adversary obtains the public key,
she will not be able to decrypt the data.

An unfortunate limitation of most modern private-key and public-key
cryptosystems is that once data is encrypted, it is generally impossible to
transform the encrypted data so that it can be decrypted with a different key
without sharing a common secret or decrypting the data as an intermediate
step. This ability to “switch” the key that data is encrypted under can
be considered as a way to delegate access to a new, previously unintended
recipient. Without this access delegation capability it is difficult to securely
use encryption technologies in publish-subscribe scenarios where publishers
encrypt data that is posted to an information broker server, and subscribers
can later (asynchronously) access and decrypt the data (especially when the

2



publisher does not know the subscriber).
Conventional techniques for publish-subscribe scenarios require trust ei-

ther between publisher and subscriber or between publisher and broker. For
instance, the publisher secret key can be encrypted using a subscriber public
key and can then be transmitted to the subscriber. This approach based on
direct coordination between the publisher and subscriber is an inconvenience
which limits application to where this is feasible and complicates fine-grained
delegation of data which has already been published to the broker.

Proxy Re-Encryption (PRE) provides an approach to circumvent these
limitations. PRE enables subscribers to receive and decrypt encrypted data
that they are intended to receive without ever directly coordinating decryp-
tion keys with the publisher of the data. To do this, PRE securely transforms
the ciphertexts from the public key under which sensitive data is encrypted
to ciphertexts decryptable under the subscriber secret key without full de-
cryption or unallowed access to sensitive data.

Concretely, the mode of PRE operation considered in this paper is as fol-
lows. Publishers use their public keys to encrypt data. A PRE re-encryption
process uses a special re-encryption key that is generated without interaction
between publishers and subscribers to convert publisher encrypted data so
it can be decrypted only by an intended subscriber. The re-encryption key
is generated from the publisher’s secret key and the subscribers public key.
The re-encryption key is generated by the publisher, or by a trusted proxy of
the publisher such as an access control policy authority. The re-encryption
process happens at a PRE server. If properly designed, implemented and
configured, the confidentiality of information brokered by the PRE server is
preserved even if an adversary observes all of the encrypted messages sent
to and from the PRE server, the public keys used by the publisher, and
the re-encryption keys used by the PRE server. Data is never in the clear
during the re-encryption operation. As such, information confidentiality is
maintained even if the PRE server is captured or compromised. Information
confidentiality is also maintained for information not stored in the clear by
the publishers if the publishers are captured or compromised. This holds
even if an adversary were to manipulate the PRE server manufacturing pro-
cess with compromised circuitry. More formally, encrypted ciphertexts are
IND-CPA-secure, which means they do not reveal even a single bit of the
information, even given all the publisher public keys and re-encryption keys.

Proxy Re-Encryption, as we have described it, is also called a unidirec-
tional PRE scheme, and was defined in [19, 3]. Henceforth, when we refer to
proxy re-encryption, we mean a unidirectional scheme. In this paper we de-
scribe two new IND-CPA-secure Proxy Re-Encryption (PRE) schemes and

3



their implementations where the PRE functionality is provided using the
RLWE relinearization procedure. The first scheme (NTRU-ABD-PRE) is
based on the NTRU encryption scheme with RLWE modifications [35] where
the NTRU immunity constraint against subfield lattice attacks is applied to
set the distribution parameter for NTRU key generation [1]. The second
scheme (BV-PRE) is based on the BV homomorphic encryption scheme [9]
and relies only the RLWE assumption.

As opposed to other known approaches to PRE, lattice encryption ap-
proaches, such as ours, are generally considered post-quantum [30, 34], that
is, potentially secure against attacks even from adversaries with practical
quantum computing devices in addition to adversaries with classical com-
puting devices [27]. Our goal is to provide a software PRE capability that
can support high-throughput pub-sub information sharing without direct
interactions between publishers and subscribers. We provide experimental
evaluation of software implementations of our PRE scheme to evaluate its
security, scalability and performance.

BV-PRE outperforms NTRU-ABD-PRE in both single-hop and multi-
hop settings, and is provably secure under the RLWE assumption, in con-
trast to the NTRU variant which is proven secure under a less well-studied
variant of the so-called NTRU assumption. BV-PRE scales well with the
number of hops due to a relatively small additive noise growth provided by
the BV scheme and RLWE relinearization procedure. BV-PRE has small
ciphertext modulus and ring dimension requirements: successful decryption
after re-encryption can be achieved using a 17-bit ciphertext modulus and
ring dimension of 512 (for at least 100 bits of security). This translates to
submillisecond encryption/decryption runtime and re-encryption runtime of
under 5 ms.

When compared to the LWE-based PRE lattice schemes recently pro-
posed in [2, 20, 16, 33], our BV-PRE scheme provides key sizes and ci-
phertext expansion factors as good as or better than the key sizes of any
other lattice-based PRE schemes, and lower time complexity than any other
LWE-based scheme.

Paper Organization. In Section 2 we review related results on encrypted
computing and PRE. In Section 3 we discuss the the high-level concept and
performance and security tradeoffs of PRE. In Sections 4 and 5 we describe
the proposed lattice-based PRE cryptosystems. In Section 6 we discuss
parameter selection for both schemes to provide practical secure computing
on commodity computing hardware. In Section 7 we describe the overall
software architecture of the library to support the end-to-end encrypted

4



application. In Section 8 we discuss experimentation and evaluation of our
design and implementation. In Section 9 we present practical use cases for
the proposed PRE cryptosystem. We conclude the paper with a discussion
of our insights and future work in Section 10.

2 Related Work

The notion of Proxy Re-Encryption (PRE) was introduced in the work of
Blaze, Bleumer and Strauss [5], where they also presented a construction
based on the El-Gamal encryption scheme. Their construction was a bidi-
rectional proxy re-encryption scheme in that a re-encryption key can be
used to translate encrypted data from the publisher encryption to sub-
scriber encryption but also in reverse, from the subscriber encryption to
publisher encryption. In contrast, in this work, we focus on unidirectional
proxy re-encryption that provides tighter control on which ciphertexts can
be re-encrypted and to whom.

Unidirectional PRE schemes were first proposed in [19, 3]. The scheme
in [3] is based on the decisional bilinear Diffie-Hellman (DBDH) assumption.
The schemes in [19, 3] are single-hop proxy re-encryption schemes, meaning
that a re-encrypted ciphertext cannot be re-encrypted further, to a third
party.

Also related is the work in [11] which provides a multi-hop bidirectional
scheme based on bilinear maps. Multi-hop re-encryption schemes are impor-
tant in applications where re-encryption needs to be applied multiple times,
for example where information needs to be brokered in multiple steps from
publisher to subscriber. We refer the reader to Sections 9.1 and 9.2 for a
discussion of applications.

Our approach to PRE is based on two common ring variants of lattice-
based homomorphic encryption schemes, with the PRE functionality pro-
vided using the RLWE relinearization procedure of Brakerski and Vaikun-
tanathan [9]. The first scheme (NTRU-ABD-PRE) is built on top of the
NTRU encryption scheme [18] with RLWE modifications [35] where the
NTRU immunity constraint against subfield lattice attacks is applied to set
the distribution parameter for NTRU key generation (c.f. [1]). The second
scheme (BV-PRE) is based on the BV homomorphic encryption scheme [9]
and relies only on the RLWE assumption.

Both variants of ring homomorphic encryption schemes have been used
to build the fully homomorphic encryption (FHE) capability [9, 7, 17, 23,
6, 15]. FHE schemes are encryption schemes that allow anyone to run com-

5



putations over encrypted data without decrypting the data.
It is at times difficult to establish direct comparisons between encryption

schemes, even with similar computational hardness underpinnings. Follow-
ing [12, 21, 30, 36], we use the standard “root Hermite factor” δ as the pri-
mary measure of the concrete security of RLWE-based encryption schemes,
for a given set of parameters, where a smaller δ provides more security. Ex-
perimental evidence [12] suggests that δ = 1.007 would require roughly 240

core-years on recent Intel Xeon processors to break. We set the configura-
tion parameters to attain δ of just less than 1.006 for each of the schemes
for our parameter and key size comparisons, and for our later experimental
analyses. The root Hermite factor parameter setting we use of δ < 1.006
arguably provides at least 100 bits of security [12, 21, 30, 36].

Whereas our BV-PRE scheme provides sub-millisecond runtimes for op-
timal parameter settings for encryption and decryption operations and millisecond-
order runtimes for re-encryption, the experimental results of [3] are in the
ranges of 3 to 9 ms (for 256 bits of security) and 8 to 27 (for 512 bits of
security) for these same operations. However, the experimental results of
the non-lattice-based work in [3] are shown for 256 and 512 bits of security
rather than approximately 100 bits in our case. Our estimates using equa-
tion (7) in [17] show that δ ≈ 1.0034 and δ ≈ 1.002 correspond to 256 and
512 bits of securiy, respectively. These values of δ increase the minimum
ring dimension for 256 bits of security to 1024 and for 512 bits of security
to 2048, while keeping the bit width approximately the same. This implies
that the runtime is roughly doubled when one goes from 100 bits of security
to 256 and then doubles again when going from 256 to 512 bits of security,
which suggests that our runtimes are comparable to those reported in [3].

An independent work of [31] proposes and implements a IND-CPA-secure
proxy re-encryption scheme based on the NTRU encryption scheme with
RLWE modifications [35], which they label as PS-NTRUReEncrypt. This
PRE scheme relies on a variant of NTRU assumption. The PS-NTRUReEncrypt
construction is a bidirectional PRE scheme, whereas ours is unidirectional
(see Section 9 for why unidirectional schemes are critical to our applica-
tions). The runtimes reported in [31] are of the order of one second. The
authors [31] also propose and implement another bidirectional (more efficient
but not IND-CPA-secure) scheme called NTRUReEncrypt with runtimes of
the order of one millisecond. However, NTRUReEncrypt is not directly com-
parable to our schemes in security as its security relies on an ad-hoc new
assumption. It is therefore unclear how to set key-sizes for this scheme, and
hence, we will not discuss this scheme further in this paper. We note, how-
ever, that our RLWE-based BV-PRE scheme achieves a comparable, even

6



better, performance with the added provable security guarantee based on
the relatively well-studied RLWE problem.

Several LWE-based PRE lattice schemes have recently been proposed
in [2, 20, 16, 33]. The schemes presented in [20, 16] are based on a Regev-
style encryption, which can be regarded as an extension of the CCA-secure
public key encryption scheme developed in [28]. The schemes developed
in [2, 33, 16] are based on a public key encryption scheme formulated in [21].
[16] shows an implementation of a IND-CPA-secure multi-hop scheme. The
most efficient implemented variant [33], which we label as IND-CPA-LWE,
is similar to BV-PRE but relies on the LWE assumption (instead of ideal
lattices and RLWE assumption). This scheme is also unidirectional and
supports multiple hops of re-encryptions.

Table 1 shows the comparison of parameter selections, resulting con-
crete secure key sizes and asymptotic key sizes for the following LWE-
based IND-CPA-secure PRE schemes: NTRU-ABD-PRE, BV-PRE, PS-
NTRUReEncrypt [31], and the IND-CPA-secure LWE scheme [33]. We base
these comparisons on roughly equivalent functionality and security config-
urations. For notational simplicity we define k = blog2 q + 1c, the number
of bits required to represent the ciphertext modulus q. For the concrete
parameters in the table, we set the ring dimension n (referred to as the
lattice security parameter n in the case of the LWE scheme) and ciphertext
modulus q for each of the schemes for a single-hop use case for plaintext
modulus p = 2 to ensure that the security parameter δ < 1.006. Note that
for the PS-NTRUReEncrypt and IND-CPA-LWE schemes we use a tighter
bound on the root Hermite factor δ due to the parameter selection decisions
made in the papers we cited for the schemes.

In comparison with prior lattice-based PRE schemes:

• The key sizes and ciphertext expansion factors of BV-PRE and NTRU-
ABD-PRE are as good as or better than the key sizes of the other
lattice-based PRE schemes.

• The ciphertext expansion factor of NTRU-ABD-PRE and PS-NTRUReEncrypt
is k and 2k for BV-PRE and CP-LWE. However, NTRU-ABD-PRE
and PS-NTRUReEncrypt require higher parameter values, which au-
tomatically increases space requirements for the secret and public keys
and encryption/decryption execution time.

• Noise grows multiplicatively with the number of re-encryption hops in
the case of NTRU-ABD-PRE (at most two hops are supported). BV-
PRE, IND-CPA-LWE, and PS-NTRUReEncrypt can support up to

7



Table 1: Parameter configuration and key size comparison of LWE-based
IND-CPA-secure PRE schemes for normalized conditions, i.e., plaintext
modulus p = 2, relinearization window r = 1, message length l = n (in
the LWE scheme) with comparable security (root Hermite factor δ is under
1.006; this bound corresponds to approximately 100 bits of security.)

Scheme
Parameters for

Secure Configuration
Key Sizes for

Secure Operation, KB
Asymptotic
Key Sizes

δ n k sk pk rk sk pk rk

BV-PRE 1.0051 512 17 1.06 2.13 36.1 nk 2nk 2nk2

NTRU-ABD-PRE 1.0054 1024 35 4.38 4.38 153 nk nk nk2

PS-NTRUReEncrypt
[31]

1.0037 2048 47 11.8 11.8 11.8 nk nk nk

IND-CPA-LWE
[33]

1.0042 450 14 346 692 9,690 n2k 2n2k 2n2k2

100 hops without significantly increasing the ring dimension (lattice
security parameter) and ciphertext bit length due to additive noise
growth.

• Although the re-encryption space and time complexity for PS-NTRUReEncrypt
is lower, this scheme is bidirectional and does not support the same
security use cases as BV-PRE and IND-CPA-LWE.

• IND-CPA-LWE has much higher space requirements (an additional
factor of n in the size of all keys) as compared to BV-PRE, which
limits its applicability to embedded systems.

The above analysis implies that BV-PRE is more efficient for Pub/Sub sys-
tems than all existing lattice-based PRE schemes.

We also provide a high-level theoretical evaluation of the performance of
our schemes in comparison with other identified recent lattice-based IND-
CPA-secure PRE schemes. Rather than base this initial comparison on ex-
perimental runtime performance, we compare performance in terms of the
computational operations which are generally the lower-level computational
building blocks provided by math libraries and hardware accelerators which
implementations are built from. In particular, we couch our evaluation of
theoretical performance in terms of the number of slightly higher-level poly-
nomial operations, inclusive of Number Theoretic Transforms (NTT’s), Vec-
tor Products (VP’s), Matrix Vector Products (MVP’s) and Bit-decomposed

8



Table 2: Theoretical complexity comparison of LWE-based IND-CPA-secure
PRE schemes for normalized conditions, i.e., plaintext modulus p = 2, re-
linearization window r = 1, message length l = n (in the LWE scheme).

Scheme
Runtime/Latency

Enc ReEnc Dec

BV-PRE 1 NTT + 2 VP (k+1) NTT + 2k VP 1 NTT + 1 VP

NTRU-ABD-PRE 1 NTT + 1 VP (k+1) NTT + k VP 1 NTT + 1 VP

PS-NTRUReEncrypt
[31]

1 NTT + 1 VP 1 VP 1 NTT + 1 VP

IND-CPA-LWE
[33]

2 MVP 2 BMVP 1 MVP

Matrix Vector Products (BMVP). This allows us to present complexity com-
parisons independent of the specific differences in implementation libraries
that might be used to experimentally compare these schemes. A table with
comparisons for encryption, re-encryption and decryption operations of our
schemes and PS-NTRUReEncrypt [31] and IND-CPA-LWE [33] schemes can
be seen in Table 2. In this table, the short-hand notation of (k+1) NTT +
2k VP for the cell corresponding to the re-encryption complexity for BV-
PRE is used to indicate that the re-encryption operations requires (k+1)
calls to an NTT operation and 2k calls to a VP operation. As a matrix-
vector product of n×n by n generally has a higher complexity than Number
Theoretic Transform (NTT), which is O (n log n), the runtime of BV-PRE
is expected to be smaller for comparable values of ring dimension (lattice
security parameter) and ciphertext modulus bit-width than IND-CPA-LWE.

In summary, the relation of our work to the prior work is as follows.

• Constructions of PRE based on bilinear maps are either single-hop
unidirectional [3] or multi-hop bidirectional [11], whereas our scheme
is multi-hop unidirectional. As noted in [11], constructing a multi-hop
unidirectional PRE scheme using bilinear maps is an open problem.
The practical execution times of our BV-PRE scheme (order of one
millisecond), which supports dozens of hops without significant per-
formance degradation, are comparable to those of bilinear map-based
constructions.

9



Figure 1: Proxy Re-Encryption Functional Key Management and Interac-
tion Workflow

• The BV-PRE scheme has a lower time and space complexity than
existing IND-CPA-secure lattice-based PRE schemes.

3 Proxy Re-Encryption

3.1 Workflow

The basic usage of Proxy Re-Encryption is shown in Figure 1. We assume
a slightly more general model for PRE operations where a Policy Authority
operates as a proxy for Alice to generate Alice’s public key and generate re-
encryption keys to control who can decrypt information encrypted by Alice.
It is also possible for Alice to be her own Policy Authority. The high-level
operational flow of this key management infrastructure is as follows:

1. The policy authority generates public and secret key pairs for pub-
lishers such as Alice. These keys are designated as pkA and skA,
respectively. This key generation operation nominally occurs prior to
deployment, or just as publishers need to send information to a PRE
server.

2. Prior to deployment, the policy authority sends the publisher Alice
public key pkA. The publisher (and possibly multiple publishers) uses

10



this public key to encrypt ciphertexts cA = Enc(m, pkA) they send to
the PRE server. The policy authority retains the secret key skA in
case it needs to access information encrypted by the publisher.

3. When a subscriber needs to receive information from the PRE server,
the subscriber Bob sends his public key (pkB) to the policy authority.

4. The policy authority uses the publisher secret key (skA) and the sub-
scriber public key (pkB) to generate a re-encryption key (rkAB). This
re-key generation could occur prior to deployment or just as a sub-
scriber needs to receive information.

5. The policy authority sends the re-encryption key to the PRE server.

6. The PRE server re-encrypts ciphertext so it can be decrypted by Bob.

7. Bob receives ciphertext and decrypts it using its secret key skB.

An important aspect of this key management infrastructure is that PRE
pushes trust from the publisher to the policy authority and computational
effort and bandwidth requirements to the PRE server. The policy authority
determines who can share information and the PRE server uses information
access policies to determine what subset of information from the publisher
should be sent to the subscriber. The publisher and subscriber, who gener-
ally have the lowest computational capability in mobile applications, require
the lowest computational effort and only need to maintain single keys, thus
simplifying mobile deployments.

3.2 Syntax of Non-Interactive PRE

The workflow depicted in Figure 1 can only be supported by non-interactive
PRE schemes, which require that re-encryption keys are generated using
Bob’s public key and Alice’s private key. In this case, direct interaction
between Bob and Alice can be avoided.

A non-interactive scheme includes algorithms (ParamsGen, KeyGen, ReKeyGen,
Enc, ReEnc, Dec), described as follows:

• ParamsGen(λ): returns public parameters pp corresponding to security
parameter λ;

• KeyGen(pp, λ): returns public-secret key pairs (pk, sk);

• ReKeyGen(pp, ski, pkj): returns the re-encryption key rki→j ;

11



• Enc(pp, pk,m): encrypts message m using pk and returns the cipher-
text;

• ReEnc(pp, rki→j , ci): transforms a ciphertext ci of party i into a ci-
phertext cj that party j can decrypt;

• Dec(pp, sk, c): recovers message m.

3.3 IND-CPA Security of PRE Schemes

Our security definition is a variant of the one postulated by Ateniese, Fu,
Green and Hohenberger [3]. While Ateniese et al. [3] considered the notion of
single-hop PRE schemes, both us and [33] consider multi-hop PRE schemes.
We remark that the distinction between single-hop and multi-hop PRE is
one of correctness, not security. We state the definition below.

Definition 1 (IND-CPA Security). We consider the following game between
an adversary A and a challenger C which proceeds in two phases.

Phase 1:

• C generates public parameters pp ← ParamsGen(λ) and gives them to
A.

• Uncorrupted key generation: C generates (pk, sk) ← KeyGen(pp, λ)
and gives pk to A upon request. A can request polynomially many
such pk. Let ΓH be the set of honest public keys (also called honest
entities).

• Corrupted key generation: C generates (pk, sk) ← KeyGen(pp, λ) and
gives (pk, sk) to A upon request. A can request polynomially many
such (pk, sk). Let ΓC be the set of corrupted public keys (also called
corrupted entities).

The adversary can issue a polynomial number of these queries, in arbitrary
order.

Phase 2:

• Re-encryption key generation: The adversary submits a directed acyclic
re-encryption graph G = (V,E) where the vertex set V is the set of all
uncorrupted keys the adversary requested in Phase 1. A is given all the
re-encryption keys rki→j ← ReKeyGen(pp, ski, pkj) where (i, j) ∈ E.

12



We remark that the adversary can generate by herself all re-encryption
keys rki→j where i ∈ ΓC , since she knows the secret keys ski. On the
other hand, she is not allowed to obtain rki→j where i ∈ ΓH and j ∈ ΓC
as that could allow her to decrypt the challenge ciphertext simply by
performing a sequence of re-encryptions.

We also note that this mechanism already allows the adversary to ob-
tain re-encryptions of any ciphertext that she wishes. To obtain the
re-encryption of an adversarially chosen string ci from the public key
pki to pkj, she simply uses the re-encryption key rki→j that she ob-
tained and runs the honest re-encryption procedure. Thus, there is no
need to handle a separate re-encryption query.

• Challenge: A submits (i∗,m0,m1). C chooses a random bit b ∈ {0, 1},
and then returns ci∗ ← Enc(pp, pki∗ ,mb). This is done only once, and
it is required that i∗ ∈ ΓH .

A finally outputs b′ ∈ {0, 1} as a guess of b. Define A’s advantage as

AdvcpaA (λ) =

∣∣∣∣Pr
[
b′ = b

]
− 1

2

∣∣∣∣.
The PRE scheme is IND-CPA-secure if this advantage is negligible for

all poly-time adversaries A.

A few remarks about this definition are in order.
First, assume that the proxy obtains a (unidirectional) re-encryption key

from user Alice to user Bob. The security definition above implies that even
if the proxy (who has the re-encryption key) and Alice collude, they cannot
break the security of Bob’s encryption.

Secondly, note that if the proxy and Bob collude, they can decrypt Alice’s
ciphertexts, by definition. This is simply because the proxy can use the re-
encryption key to turn Alice’s ciphertext into Bob’s ciphertext (for the same
message) and then proceed to use Bob’s secret key to decrypt. In essence,
this means that the proxy and Bob together have a decryption circuit for
Alice. (We do not attempt to define the notion of allowing this collusion to
obtain only a “weak secret key” as in [3]).

Third, we note that stronger definitions are possible in that they can
allow for chosen ciphertext decryption queries as considered in the work of
[11]. One way to capture such attacks in the framework of our definition is
to allow the adversary to request for re-encryption keys from uncorrupted

13



public keys to corrupted ones, except that he cannot ask for a path of re-
encryption keys from the challenge public key to a corrupted public key. We
do not pursue this line of definitions in this work.

Fourth, we note that our IND-CPA definition does not explicitly handle
re-encryption queries by the adversary, namely where the adversary queries
with a tuple (i, j, c) and obtains the result of the re-encryption algorithm
applied to rki→j and c. The reason we do not do this explicitly is that
the adversary can simulate by herself the execution of such a query by first
asking our re-encryption key generation oracle for rki→j and using it to
re-encrypt c by herself. Since the pairs of keys for which the adversary is
permitted to make re-encryption queries is the same as the ones between
which she can obtain a re-encryption key, this omission is without loss of
generality.

Finally, we note that the single-hop scheme of [3] is secure in a stronger
IND-CPA sense than the above, since they can handle re-encryption graphs
that contain directed cycles. On the other hand, the security proof of [33]
appears to only handle our acyclic IND-CPA definition.

4 PRE Cryptosystem with NTRU Key Genera-
tion and RLWE Relinearization (NTRU-ABD-
PRE)

The first PRE scheme proposed in this paper is based on the NTRU en-
cryption scheme [18] with RLWE modifications [35]. The NTRU immunity
constraint against subfield lattice attacks is used to set the distribution pa-
rameter for NTRU key generation [1]. The subfield lattice attacks allow the
adversary to reduce the ring dimension of the affected cryptosystems for
certain parameter regimes and solve the Shortest Vector Problem for n =
512 or lower [1, 13].

4.1 NTRU-RLWE Encryption Scheme

The scheme is parameterized using the following quantities:

• security parameter (root Hermite factor) δ [12],

• ciphertext modulus q,

• ring dimension n,

14



• Bk-bounded discrete Gaussian key distribution χk over the polynomial
ring R = Z[n]/ 〈xn + 1〉 with distribution parameter σk (subscript k
refers to key distribution),

• Be-bounded discrete Gaussian error distribution χe with distribution
parameter σe (subscript e refers to error distribution),

• empirically selected assurance measure α to minimize the number of
bits needed to represent q (introduced for better performance).

In this work we focus on the case of power-of-2 cyclotomic polynomials
where n is a power of 2 for multiple reasons. For one, the case of power-of-
2 cyclotomics leads to much simpler and more efficient implementations of
number theoretic transforms used to support ring operations. Further, the
computational hardness underlying security assumptions for these cases is
better understood as compared to the case of arbitrary cyclotomics [35].

We support a plaintext space of M = {0, 1, . . . , p− 1}n, where p ≥ 2 is
the plaintext modulus. All operations on ciphertexts are performed in the
ring Rq ≡ R/qR. Each coefficient in the polynomials is represented in the
range

{
−
⌊ q

2

⌋
, ...,

⌊ q
2

⌋}
.

The scheme includes the following operations:

• ParamsGen(λ): Choose positive integers q and n. Return pp = (q, n).

• KeyGen(pp, λ): Sample polynomials f ′, g ← χk and set f := pf ′ + 1
to satisfy f ≡ 1 (modp). If f has no modular multiplicative inverse in
Rq, then re-sample f ′. Set the public key pk and private key sk:

sk := f ∈ R, pk := h = pg f−1 ∈ Rq.

• Enc (pp, pk = h,m ∈M): Sample polynomials s, e ← χe. Compute
the ciphertext:

c := hs+ pe+m ∈ Rq.

• Dec (pp, sk = f, c): Compute the ciphertext error b := f · c ∈ Rq.
Output m′ := b (modp).

The scheme is correct as long as there is no wrap-around modulo q.
Indeed,

b = f · c = f (h s+ pe+m) = pgs+ pfe+ fm

and if the value of b does not wrap around modulo q, then

m′ = pgs+ pfe+ fm = fm = m (modp).

15



To derive the correctness constraint for decryption, we note that the
coefficients in g, s cannot exceed Bk as they are generated by a Bk-bounded
discrete Gaussian distribution χk. Analogously, the coefficients in f cannot
exceed pBk + 1 and coefficients in e cannot exceed Be, yielding

‖b‖∞ = ‖pgs+ pfe+ fm‖∞ < 2np2BkBe.

Here, we assume that Bk, Be � 1, which is true for all practical scenarios of
this scheme. To guarantee correct decryption of the ciphertext, coefficients
in b should not exceed q/2 leading to the following correctness constraint:

q > 4np2BkBe. (1)

When σ > ω (log n), the bound Bi can be expressed as σi
√
n, where

i ∈ {k, e} and 2−n+1 is the probability that a coefficient generated using
discrete Gaussian distribution exceeds the bound Bi [29, 23]. To obtain less
conservative estimated bounds for noise, we introduce an assurance measure
α < n corresponding to the probability of 2−α+1 that a coefficient of a
discrete Gaussian polynomial exceeds the bound Bi (the choice of a specific
practical value of α is validated using an empirical analysis of decryption
correctness for a large sample of plaintexts). In this case, the bounds Bk
and Be can be expressed as σk

√
α and σe

√
α, respectively.

The constraint (1) was derived for the worst-case scenario where both Bi-
bounded polynomials may simultaneously take the upper (or lower) bound
values for all coefficients in the polynomials of dimension n. As the coef-
ficients of polynomials generated by the discrete Gaussian distribution are
taken from a relatively large sample of size n (where n is at least 512), we
can apply the Central Limit Theorem (CLT) to derive a lower (average-case)
bound for q.

If we examine a product of two Bk-bounded polynomials g and s in the
ring Rq, we observe that each coefficient in g is multiplied by the mean
of coefficients in s (followed by modulo reduction). This implies that each
coefficient in g·s is bounded by nσkσknα, where σkn is the standard deviation
of the mean expressed as σkn = σkn

−1/2. After simplification, the bound for
g · s can be expressed as

√
nσ2

kα instead of the original worst-case bound
nσ2

kα. Therefore, this technique allows one to replace each occurrence of
n (corresponding to a polynomial multiplication) with

√
n. Applying this

logic to the worst-case constraint for the encryption scheme, we obtain the
following average-case correctness constraint:

q > 4
√
np2BkBe. (2)

16



It should be noted that the effective probability associated with assur-
ance measure α, i.e., 2−α+1, gets significantly reduced for a product of two
discrete Gaussians. This further justifies the use of an assurance measure
much smaller than n.

4.2 Security of NTRU-RLWE Encryption Scheme

This general NTRU-RLWE encryption scheme can be instantiated for three
different ranges of distribution parameter σk, giving us security from differ-
ent computational assumptions [35, 23, 1]. The scheme can be proven secure
based on the NTRU and RLWE assumptions for these different parameter
regimes. Here, the NTRU problem is to distinguish between the following
two distributions: a polynomial f/g with f and g sampled from distribution
χk (assuming g is invertible over Rq) and a polynomial h sampled uniformly
at random over Rq.

The first variant [35] is based on the RLWE assumption. The pub-
lic key (polynomial f/g) distribution was shown to be statistically indis-
tinguishable from uniform random distribution for Φm (x) = xn + 1 when
σk = ω

(
q1/2

)
[35]. This allowed the authors to rely solely on the RLWE

assumption to prove semantic security of the encryption scheme. This logic
was applied to show that the Stehlé-Steinfeld scheme defined by operations
KeyGen,Enc, and Dec and constraint σk = ω

(
q1/2

)
is IND-CPA secure [35].

Though based solely on the RLWE assumption, the original Stehlé-
Steinfeld scheme is impractical for proxy re-encryption or any homomorphic
encryption scheme requiring at least one multiplication of two polynomials
generated from the distribution χk. In this case, the correctness inequality
for q would never hold as we would have B2

k ∝ σ2
k = ω (q) on the right hand

side of the expression, i.e., q > ω (q).
For practical reasons, the constraint σk = ω

(
q1/2

)
was suggested to be

replaced with a smaller value corresponding to the error distribution χe
by arguing that the resulting Decisional Small Polynomial Ratio (DSPR)
problem is secure against all known practical attacks [23]. This assumption
was recently invalidated for some parameter ranges by two subfield lattice
attacks [1, 13], which are able to reduce the ring dimension of the affected
cryptosystems and solve the Shortest Vector Problem for n = 512 or lower.

Albrecht et al. [1] proposed a new practical constraint for σk based on
the immunity of NTRU to subfield lattice attacks, conjecturing that the
Stehlé-Steinfeld proof may be extended to this case:

σk >

(
2q

nπe

)1/4

. (3)

17



Our proxy re-encryption scheme, referred to as NTRU-ABD-PRE, uses
this constraint. In contrast to the original Stehlé-Steinfeld scheme, this
scheme supports ReKeyGen, ReEnc, and homomorphic indexing and multi-
plication operations.

To meet the RLWE security requirements of the encryption scheme, we
use the inequality derived in [17], namely,

n ≥ log2 (q/σe)

4 log2 (δ)
. (4)

4.3 Single-Hop Re-Encryption Scheme

The PRE scheme introduces a new configurable parameter, relinearization
window r, and two new operations (in addition to ParamsGen, KeyGen, Enc,
and Dec):

• ReKeyGen (pp, sk = f, pk = h∗): For every i = 0, 1, .., blog2 (q) /rc, sam-
ple polynomials si and ei, and compute γi

γi = h∗si + pei + f · (2r)i ∈ Rq, rk := γ =
(
γ0, γ1, ..., γblog2(q)/rc

)
.

• ReEnc (pp, rk = γ, c): Compute the ciphertext

c′ =

blog2(q)/rc∑
i=0

(ci · γi),

where ci := {h · s+ pe+ m }i, c =
blog2(q)/rc∑

i=0
ci · (2r)i.

Here, rk = γ is the re-encryption key. The relinearization window r is
used to decompose the ciphertext coefficients into base-2r components ci,
thus substantially reducing the noise growth. Each ci is represented as a
polynomial in Rq with coefficients in the range between 0 and 2r − 1.

The PRE scheme is devised using a generalized version of the RLWE
relinearization (bit decomposition) technique originally introduced for re-
ducing the ciphertext error in homomorphic encryption [8, 23]. Consider a
new set of keys: private key f∗ and public key h∗ = pg∗ (f∗)−1. The goal
is to re-encrypt the ciphertext c using the public key h∗ without decrypting
the data.

To this end, we introduce a set of elements γi as

γi = h∗si + pei + f · (2r)i ∈ Rq,

18



where i = 0, 1, .., blog2 (q) /rc. This set of elements, referred to as the re-
encryption key, represents an encryption of all powers-of-2r multiples of the
secret key f under the public key h∗. The relinearization window was set to
unity in [8, 23]. In this study, we consider a range of relinearization window
values (powers of 2) to achieve a faster implementation of re-encryption.
The vector γ =

(
γ0, γ1, ..., γblog2(q)/rc

)
is public.

The ciphertext c is computed using the public key h:

c := hs+ pe+m ∈ Rq.

For each window i of length r (in bits), we introduce ci := {h · s+ pe+ m }i,
and the ciphertext c can then be represented as

c =
∑
i

ci · (2r)i.

The polynomial c′ computed as

c′ =
∑
i

ci · γi

can be shown to represent an encryption of m under the new public key h∗.
Indeed,

f∗·c′ = f∗·(
∑
i

ci·γi) =
∑
i

ci·(f∗·γi) = p
∑
i

ci·Ei+
∑
i

ci f
∗f · (2r)i = p

∑
i

ci·Ei+f∗f c,

where Ei = g∗si + f∗ei.
It can be seen that

f∗ · c′ = f∗f c = m (modp) ,

i.e., the decryption is correct, if the ciphertext error f∗ · c′ is not too large
to wrap around q.

Considering that ‖ci‖∞ ≤ 2r − 1, ‖Ei‖∞ ≤ nBe (Bk + pBk + 1), and

‖f∗f c‖∞ ≤ n
2 (pBk + 1) {pBe (Bk + pBk + 1) + (pBk + 1) (p− 1)} ,

we have∥∥f∗c′∥∥∞ ≤ pn (blog2 (q) /rc+ 1) (2r − 1) {nBe (Bk + pBk + 1)}
+ n2 (pBk + 1) (pBe (Bk + pBk + 1) + (pBk + 1) (p− 1)}
< 2p2n2BeBk {(2r − 1) (blog2 (q) /rc+ 1) + pBk} .

19



To guarantee correct decryption of the ciphertext, f∗ · c′ should not exceed
q/2 leading to the following worst-case correctness constraint:

q > 4p2n2BkBe {pBk + (2r − 1) (blog2 (q) /rc+ 1)} .

Similar to the case of the encryption scheme, we can apply CLT to obtain
the following average-case correctness constraint for the PRE scheme:

q > 4p2nBkBe {pBk + (2r − 1) (blog2 (q) /rc+ 1)} . (5)

4.4 Extension to Multiple Re-Encryption Hops

The presented re-encryption scheme can be generalized to support multiple
re-encryption hops. Consider a new set of keys: private key f∗∗ and public
key h∗∗ = pg∗∗ (f∗∗)−1. The goal is to re-encrypt the re-encrypted ciphertext
c′ devised in Section 4.3 using the public key h∗∗ without decrypting the
data.

Analogously to the case of single re-encryption, we introduce a set of
elements

γ′i = h∗∗s′i + pe′i + f∗ · (2r)i ∈ Rq,

where i = 0, 1, .., blog2 (q) /rc. The vector γ′ =
(
γ′0, γ

′
1, ..., γ

′
blog2(q)/rc

)
is the

re-encryption key to transform from {f∗, h∗} to {f∗∗, h∗∗}.
The polynomial c′′ computed as

c′′ =
∑
i

c′i · γ′i

can be shown to represent an encryption of m under the new public key h∗∗

as long as there is no wrap-around modulo q.
Indeed,

f∗∗·c′′ =
∑
i

c′i·(f∗∗·γ′i) = p
∑
i

c′i·E′i+
∑
i

c′i f
∗∗f∗· (2r)i = p

∑
i

c′i·E′i+f∗∗f∗ c′,

where E′i = g∗∗s′i + f∗∗e′i.
It can be easily shown that

f∗∗ · c′′ = f∗∗f∗ · c′ = f∗∗f∗f · c = m (modp) ,

i.e., the decryption is correct, if the ciphertext error f∗∗ · c′′ is not too large
to wrap around q.

20



Applying the same procedure as for the first re-encryption, the correct-
ness inequality after two re-encryptions can be expressed as

q > 4p2nBkBe {(2r − 1) (blog2 (q) /rc+ 1)}

+ 4p2nBkBen
0.5 (pBk + 1) {pBk + (2r − 1) (blog2 (q) /rc+ 1)} .

Considering that the first summand is at least by a factor of n0.5 (pBk + 1)
(this value is larger than 210 for all practical parameter ranges) smaller than
the second summand, the correctness constraint can be rewritten as

q > n0.5 (pBk + 1) · 4p2nBkBe {pBk + (2r − 1) (blog2 (q) /rc+ 1)} , (6)

which implies that the second re-encryption increases the lower bound for q
by a factor of n0.5 (pBk + 1).

After two re-encryption hops, the expression on the right hand side of
(6) is Ω(B3

k) and B3
k ∝ σ3

k ∝ q3/4+ε, where ε > 0. This implies that NTRU-
ABD-PRE does not support more than two re-encryption hops because in
the case of three hops the right-hand side expression of (6) will reach q1+ε.

The effective value of assurance measure α corresponding to a given
probability can be decreased for each extra step of re-encryption as long as
the empirical evaluation of decryption correctness is performed.

4.5 IND-CPA Security

We will show that the NTRU-ABD-PRE scheme is IND-CPA secure in the
sense of Definition 1.

As noted in section 4.2, the NTRU-ABD-PRE scheme is based on the
NTRU and RLWE assumptions. Specifically, we use a variant of the NTRU
assumption formulated in [1] to achieve the immunity of NTRU to subfield
lattice attacks. We refer to this variant as NTRU-ABD with the formal
definition as follows:

Definition 2. The NTRU-ABDn,q,χk problem is to distinguish between the
following two distributions over ring Rq = Zq[x]/ 〈xn + 1〉: a polynomial g/f
with g and f sampled from distribution χk with σk > Θ(q1/4) (assuming g
is invertible over Rq) and a polynomial h sampled uniformly at random over
Rq.

For the RLWE assumption, we use the Hermite normal form [23], which
is defined as follows:

21



Definition 3. For all λ ∈ N, let φ(x) = φλ(x) ∈ Z[x] be a cyclotomic
polynomial of degree n = n(λ), let q = q(λ) ∈ Z be a prime number, let
the ring R

.
= Z[x]/ 〈φ(x)〉 and Rq

.
= R/qR, and let χe denote an error

distribution over the ring R.
The decision ring-LWE assumption RLWEφ,q,χe states that for any ` =

poly(λ),

{(ai, ai · s+ ei)}i∈[`]

c
≈ {(ai, ui)}i∈[`] ,

where s and ”error polynomials” ei are sampled from the noise distribution
χe, and ai and ui are uniformly random in Rq.

Albrecht et al. [1] conjectured that the Stehlé-Steinfeld IND-CPA proof [35],
which was provided for σk = ω(q1/2), may be extended to this case assuming
only RLWE. However, as it stands, the security of this scheme is based on
RLWE as well as the NTRU-ABD assumption described above. We will
assume that the NTRU-ABD assumption is stronger than RLWE and set
the key-sizes accordingly.

We showed that the NTRU-ABD PRE scheme maintains correctness for
only two hops, in the sense that once a ciphertext goes through more than
two hops, it cannot be decrypted to the correct message any more. It is
important to note that the “two-hopness” is a limitation on the correctness
of the scheme, not its security. In particular, we will show below that the
scheme is IND-CPA-secure in the sense of Definition 1 which is a notion of
security for general, multi-hop PRE schemes.

Our proof for NTRU-ABD-PRE is similar to that of the IND-CPA-secure
LWE scheme proposed in [33].

Theorem 1 (IND-CPA security of NTRU-ABD-PRE). Under the NTRU-
ABDn,q,χk and RLWEφ,q,χe assumptions, NTRU-ABD-PRE is IND-CPA-
secure. Specifically, for a poly-time adversary A, there exists a poly-time
distinguisher D such that

AdvcpaA (λ) ≤ (ρ · (Qrk +Qre) +N + 1)·max(Adv
NTRU-ABDn,q,χk
D (λ),Adv

RLWEφ,q,χe
D (λ))

where Qrk and Qre are the numbers of re-encryption key queries and re-
encryption queries, respectively; N is the number of honest entities; λ is the
security parameter; ρ := 1 + blog2 q/rc.

Proof. We show that the NTRU-ABD-PRE scheme is IND-CPA-secure through
a sequence of games.

Let Game0 be an initial game between an adversary A and a challenger C
with their interactions governed by Definition 1. For notational convenience,

22



let us consider the case when ΓH = {1, . . . , N} and ΓC = {N+1, . . . ,M} for
some polynomial M . Furthermore, without loss of generality, let 1, 2, . . . , N
be the topological order dictated by the re-encryption graph, starting from
the sinks to the sources, namely there are no edges from i to k if i < k. In
more detail:

• The i-th key pair is defined as ski := fi ∈ R, and pki := hi = pgif
−1
i ∈

Rq, where fi = pf ′i + 1 and f ′i , gi ← χk.

• The re-encryption key from party i to party k is written as

rki→k := (hk · siku + peiku + fk · (2r)u)u∈{0,1,...blog2(q)/rc} ,

where siku, eiku are generated by party i.

• The challenge ciphertext of message mb related to party i∗ is:

c∗ := h∗ · s∗ + pe∗ +mb ∈ Rq,

where b ∈ {0, 1} is the challenge bit, s∗, e∗ ← χe, and h∗ is the chal-
lenge public key.

Let Gamek (1 ≤ k ≤ N) be defined by considering the honest party
k ∈ ΓH . Gamek is identical to Gamek−1 except for the following changes:

• When generating the k-th key pair, hk = p ·r∗k, where r∗k is a randomly
generated ring element rather than an NTRU-ABD sample.

• When answering the re-encryption key query (i, k): First, note that
i > k because of the topological ordering. The re-encryption key is
expressed as

rki→k := (p · γiku)u∈{0,1,...blog2(q)/rc} ,

where γiku is freshly random.

Each Gamek is computationally indistinguishable from Gamek−1 because
of the NTRU-ABD and RLWE assumptions. First, k ∈ ΓH and therefore,
there is no re-encryption “edge” from user k to any user in ΓC . Additionally,
and crucially, all the re-encryption keys (k, i) have already been replaced
with uniformly random ring elements in the prior games. Consequently, the
secret key fk is used only in the form of fresh NTRU-ABD samples in its
public key and in the form of fresh RLWE samples in the re-encryption keys

23



(the latter assumes that the public key is indistinguishable from a random
sample based on the the NTRU-ABD assumption). Thus, all these can be
replaced by uniformly random ring elements by invoking the NTRU-ABD
and RLWE assumptions. The security loss is proportional to the number
of re-encryption key and re-encryption queries that user k was part of (an
additional multiplicative factor 1 + blog2 q/rc is incurred in the security loss
as each re-encryption key contains that many RLWE samples).

Gamefinal is the same as GameN except for the challenge ciphertext that
is expressed as

c∗ := p · r∗ +mb ∈ Rq,

where r∗ is a freshly random ring element in Rq. This is computationally
indistinguishable from GameN by the RLWE assumption (assuming that
the public key is indistinguishable from a random sample based on the the
NTRU-ABD assumption).

The last change guarantees that the challenge bit b is information-theoretically
hidden from A, and therefore, the advantage of the adversary in Game1 is
0.

Putting all this together, we see that

AdvcpaA (λ) ≤ (ρ · (Qrk +Qre) +N + 1)·max(Adv
NTRU-ABDn,q,χk
D (λ),Adv

RLWEφ,q,χe
D (λ))

where ρ := 1 + blog2 q/rc. This finishes our proof.

5 PRE Cryptosystem with RLWE Key Genera-
tion and Relinearization (BV-PRE)

The second PRE scheme proposed in this paper, BV-PRE, is based on the
Brakerski-Vaikuntanathan (BV) homomorphic encryption scheme [9]. The
BV-PRE scheme relies only on the RLWE security assumption.

5.1 The Encryption Scheme

The basic encryption scheme comes from the work of Lyubashevsky, Peikert
and Regev [24, 25] and Micciancio [26]. The scheme is parameterized using
the following quantities:

• security parameter (root Hermite factor) δ [12],

• ciphertext modulus q,

• ring dimension n,

24



• Be-bounded discrete Gaussian error distribution χe with distribution
parameter σe,

• empirically selected assurance measure α to minimize the number of
bits needed to represent q (introduced for better performance).

As in the case of NTRU-ABD-PRE, we work with the polynomial ring
Rq = Zq[n]/ 〈xn + 1〉 and use a plaintext space of M = {0, 1, . . . , p− 1}n,
where p ≥ 2 is the plaintext modulus. Each coefficient in the polynomials is
represented in the range

{
−b q2c, ..., b

q
2c
}

. We also introduce Uq as a discrete
uniform random distribution over Rq.

The scheme includes the following operations:

• ParamsGen(λ): Choose positive integers q and n. Return pp = (q, n).

• KeyGen(pp, λ): Sample polynomials a ← Uq and s, e ← χe. Compute
b := a · s+ pe ∈ Rq. Set the public key pk and private key sk:

sk := s ∈ R, pk := (a, b) ∈ R2
q .

• Enc (pp, pk = (a, b) ,m ∈M): Sample polynomials v, e0, e1 ← χe. Com-
pute the ciphertext c = (c0, c1) ∈ R2

q :

c0 := b · v + pe0 +m ∈ Rq, c1 := a · v + pe1 ∈ Rq.

• Dec (pp, sk = s, c): Compute the ciphertext error t := c0− s · c1 ∈ Rq.
Output m′ := t (modp).

The scheme is correct as long as there is no wrap-around modulo q. Indeed,

t = b · v + pe0 +m− s · (a · v + pe1) = (a · s+ pe) · v + pe0 +m− s · (a · v + pe1)

= m+ p (e · v + e0 − s · e1) .

where all computations are done mod q. If the value of t does not wrap
around modulo q, then

m′ = m+ p (e · v + e0 − s · e1) = m (modp).

To derive the correctness constraint for decryption, we note that the
coefficients in s, v, e, e0, e1 cannot exceed Be as they are generated by a Be-
bounded discrete Gaussian distribution χe. Applying the same procedure
as for the NTRU-RLWE scheme followed by CLT, we obtain

‖t‖∞ < 3
√
npB2

e .

25



Here, we assume that Be > 1. To guarantee correct decryption of the
ciphertext, coefficients in t should not exceed q/2, leading to the following
correctness constraint:

q > 6
√
npB2

e . (7)

5.2 Proxy Re-Encryption Scheme

The PRE scheme introduces three new operations (in addition to ParamsGen,
KeyGen, Enc, and Dec) in contrast to two needed for the PRE functionality in
NTRU-ABD-PRE. In BV-PRE, the evaluation key generation is performed
in two separate stages: Preprocess and ReKeyGen. First, the owner of key
s∗ generates a set of “public” keys (βi, βi · s∗ + pei) and then sends these
keys to the policy authority, as displayed in Figure 1. After that, the proxy
authority computes γi to generate the complete re-encryption key. This
allows one to apply the same non-interactive PRE workflow as discussed in
Section 3.

• Preprocess (pp, λ, sk∗ = s∗): For every i = 0, 1, .., blog2 (q) /rc, where r
is the relinearization window, sample polynomials βi ← Uq and ei ← χe
and compute

θ∗i = βi · s∗ + pei ∈ Rq,
pk := (βi, θ

∗
i )i∈{0,1,...blog2(q)/rc} .

• ReKeyGen
(
pp, sk = s, pk = (βi, θ

∗
i )i∈{0,1,...blog2(q)/rc}

)
:

For every i = 0, 1, .., blog2 (q) /rc, compute γi and store them in re-
encryption key rk

γi = θ∗i − s · (2r)
i ∈ Rq, rk := (βi, γi)i∈{0,1,...blog2(q)/rc} .

• ReEnc
(
pp, rk = (βi, γi)i∈{0,1,...blog2(q)/rc} , c

)
: Compute the ciphertext

c′ = (c′0, c
′
1) using the 2r-base decomposition of ciphertext element c1

of original ciphertext c = (c0, c1)

c′0 = c0 +

blog2(q)/rc∑
i=0

(c
(i)
1 · γi), c

′
1 =

blog2(q)/rc∑
i=0

(c
(i)
1 · βi),

where c
(i)
1 := {a · v + pe}i is the ith “digit” of the base-2r representa-

tion of c1 and

c1 =

blog2(q)/rc∑
i=0

c
(i)
1 · (2

r)i.

26



The ciphertext c′ = (c′0, c
′
1) can be shown to represent an encryption of

m under the new key s∗. Indeed,

c′0 − s∗c′1 = c0 +

blog2(q)/rc∑
i=0

(c
(i)
1 · γi)− s

∗ ·
blog2(q)/rc∑

i=0

(c
(i)
1 · βi)

= c0 +

blog2(q)/rc∑
i=0

(
c

(i)
1 ·

{
βi · s∗ + pei − s · (2r)i

})
− s∗ ·

blog2(q)/rc∑
i=0

(c
(i)
1 · βi)

= c0 − s · c1 + pEi,

where Ei =
blog2(q)/rc∑

i=0

(
c

(i)
1 · ei

)
.

It can be easily seen that

c0 − s · c1 + pEi (modp) = c0 − s · c1 (modp) = m (modp) .

The above analysis implies that the ciphertext noise term grows only
by a small additive factor p ‖Ei‖∞ after each re-encryption. ‖Ei‖∞ can be
expressed as

‖Ei‖∞ <
√
nBe (2r − 1) (blog2 (q) /rc+ 1) .

Therefore, the correctness constraint for d re-encryption hops can be
written as

q > 2
√
npBe {3Be + d · (2r − 1) (blog2 (q) /rc+ 1)} . (8)

5.3 IND-CPA Security

We will show that the BV-PRE scheme is IND-CPA secure in the sense of
Definition 1.

Theorem 2 (IND-CPA security of BV-PRE). Under the RLWEφ,q,χe as-
sumption, BV-PRE is IND-CPA-secure. Specifically, for a poly-time adver-
sary A, there exists a poly-time distinguisher D such that

AdvcpaA (λ) ≤ (ρ · (Qrk +Qre) +N + 1) ·Adv
RLWEφ,q,χe
D (λ)

where Qrk and Qre are the numbers of re-encryption key queries and re-
encryption queries, respectively; N is the number of honest entities; λ is
the security parameter; φ is the cyclotomic polynomial defining the ring
Rq = Zq[x]/ 〈φ〉 and ρ := 1 + blog2 q/rc.

27



Proof. We show that the BV-PRE scheme is IND-CPA-secure through a
sequence of games.

Let Game0 be an initial game between an adversary A and a challenger C
with their interactions governed by Definition 1. For notational convenience,
let us consider the case when ΓH = {1, . . . , N} and ΓC = {N+1, . . . ,M} for
some polynomial M . Furthermore, without loss of generality, let 1, 2, . . . , N
be the topological order dictated by the re-encryption graph, starting from
the sinks to the sources, namely there are no edges from i to k if i < k. In
more detail:

• The i-th key pair is defined as sk := si ∈ R, and pk := (ai, ai · si + pei) ∈
R2
q , where si, ei ← χe.

• The re-encryption key from party i to party k is written as

rki→k := (βiku, βiku · sk + peiku − si · (2r)u)u∈{0,1,...blog2(q)/rc} ,

where βiku, eiku are generated by party k.

• The challenge ciphertext related to party i∗ is c∗ = (c∗0, c
∗
1) ∈ R2

q :

c∗0 := b∗ · v∗ + pe∗0 +mb ∈ Rq, c∗1 := a∗ · v∗ + pe∗1 ∈ Rq,

where b ∈ {0, 1} is the challenge bit, v∗, e∗0, e
∗
1 ← χe, and (a∗, b∗) is the

challenge public key.

Let Gamek, i ∈ {1 ≤ k ≤ N}, be defined by considering the honest party
k ∈ ΓH . Gamek is identical to Gamek−1 except for the following changes:

• When generating the k-th key pair, bk is a randomly generated ring
element rather than a RLWE sample.

• When answering the re-encryption key query (i, k): First, note that
i > k because of the topological ordering. The re-encryption key is
expressed as

rki→k := (βiku, γiku)u∈{0,1,...blog2(q)/rc} ,

where γiku is freshly random.

Each Gamek is computationally indistinguishable from Gamek−1 because
of the RLWE assumption. First, k ∈ ΓH and therefore, there is no re-
encryption “edge” from user k to any user in ΓC . Additionally, as before,

28



all the re-encryption keys (k, i) have already been replaced with uniformly
random ring elements in the prior games. Consequently, the secret key
sk is used only in the form of fresh RLWE samples in its public key and
in the re-encryption keys. Thus, all these can be replaced by uniformly
random ring elements by invoking the RLWE assumption. The security loss
is proportional to the number of re-encryption key and re-encryption queries
that user k was part of (an additional multiplicative factor 1 + blog2 q/rc is
incurred in the security loss as each re-encryption key contains that many
RLWE samples).

Gamefinal is same as GameN except for the challenge ciphertext that is
expressed as

c∗0 := r∗1 +mb ∈ Rq, c∗1 := r∗2 ∈ Rq,

where r∗1, r
∗
2 are freshly random ring elements in Rq. This is computationally

indistinguishable from GameN by the RLWE assumption as well.
The last change guarantees that the challenge bit b is information-theoretically

hidden from A, and therefore, the advantage of the adversary in Game1 is
0.

Putting together, we see that

AdvcpaA (λ) ≤ (ρ · (Qrk +Qre) +N + 1) ·Adv
RLWEφ,q,χe
D (λ)

where ρ := 1 + blog2 q/rc. This finishes our proof.

6 Parameter Selection

A general issue with lattice encryption schemes is that they are more compli-
cated to parameterize than other families of encryption schemes. Parameter
selection is governed largely by a correctness condition (which is specific
to the scheme being analyzed) and security conditions for the underlying
security assumptions.

For NTRU-ABD-PRE, parameter selection is governed by the correct-
ness condition (6), the security condition (3) accounting for the NTRU im-
munity against subfield lattice attacks, and RLWE security condition (4).

For BV-PRE, parameter selection is governed by the correctness condi-
tion (8) and RLWE security condition (4).

We identify the parameter tradeoffs associated with the correctness con-
straint and security constraints for both schemes in the experimental results
section of this paper. Of high importance are the ring dimension n and
ciphertext modulues q which have the largest direct impact on the runtimes

29



of the scheme. The value of n should be kept as small as possible as runtime
is at least linear in n for all operations. The value of q determines the sizes
of integers that need to be manipulated computationally. Ideally q should
be kept less than the threshold 232 or the less preferred threshold 264 so that
operations can be supported by native arithmetic operations supported with
the processor word sizes in modern processors.

The value of d, the number of hops that the re-encryption scheme sup-
ports, can be thought of as an application-specific parameter determined by
the number of PRE hops needed.

We begin the process of parameter selection with the security parame-
ter δ, also known as the root Hermite factor. The root Hermite factor is
discussed above in the Related Work section with relevant references. A
heuristic argument is presented in [12] which suggests that a root Hermite
factor of δ = 1.006 could provide adequate security. Therefore, we select to
be as close as possible to the ceiling δ < 1.006.

The bound for discrete Gaussian distribution χi(x), where i ∈ (k, e), is
expressed as Bi = σi

√
α, where σi is the standard deviation of the distribu-

tion and α determines the effective probability that a coefficient generated
using discrete Gaussian distribution (or a product of discrete Gaussians)
exceeds the bound Bi [23].

The value of σe is usually chosen in the range from 3 to 6, and we set
the value of σe to 4 as in [17]. We set α to 9, which for the case of an integer
generated using discrete Gaussian distribution corresponds to the theoretic
probability of at most 2−8 of choosing a value that exceeds the upper bound
Bi.

We validated our selection of σi and α experimentally. Over 35,000 iter-
ations of encryption/decryption (using different keys) for ring dimensions in
the range from 29 to 215 (5,000 iterations for each value of ring dimension),
we observed no decryption errors. Note that when products of two dis-
crete Gaussians (encryption scheme), three discrete Gaussians (single-hop
re-encryption in the case of NTRU-ABD-PRE), and higher number of dis-
crete Gaussians (multi-hop re-encryption in the case of NTRU-ABD-PRE)
are considered, the practical probability drops dramatically. This implies
that smaller practical values of α may be possible.

Subsequent to the selections of d, δ, σe, and α, we can choose n, q, and
σk (only in the case of NTRU-ABD-PRE) experimentally using appropriate
correctness and security constraints to minimize runtime/throughput for
various values of the relinearization window r and plaintext modulus p.

Table 3 shows the minimum number of bits needed to represent the
ciphertext modulus q (which we refer to as k = blog2 q+1c), as a function of

30



Table 3: Dependence of minimum bits required to represent modulus q for
selections of ring dimension n and multiple re-encryption depths d at p = 2
and r = 1.

PRE Scheme d
Ring dimension n

512 1024 2048 4096 8192 16384

NTRU-ABD-PRE
1 – 35 36 37 38 39
2 – – – 93 96 99
3 – – – – – –

BV-PRE
1 17 18 18 19 19 20
2 18 18 19 19 20 20
3 18 19 19 20 20 21

ring dimension n and re-encryption depth d for the relinearization window
of unity assuming the other parameters were selected as above. It can be
seen that NTRU-ABD-PRE requires a ring dimension of at least 4096 and
ciphertext modulus of approximately 100 bits to support two re-encryption
hops in contrast to a ring dimension of 512 and 18-bit ciphertext modulus
for BV-PRE, implying that NTRU-ABD-PRE can be treated as a single-hop
scheme for all practical purposes. It should also be noted that all ciphertext
moduli for BV-PRE require representations with less than 32 bits, thus
enabling efficient implementations based on native integer types (32-bit and
64-bit integers). The growth of the number of ciphertext modulus bits k
with increase in ring dimension n for both schemes can be easily estimated
from expressions (6) and (8): for NTRU-ABD-PRE the dependence of q on
n is n1+d/2 while for BV-PRE, it is

√
n.

Table 4 illustrates the effect of increasing the relinearization window r
and plaintext modulus p on the minimum values of ring dimension n and
the number of bits k required to represent the ciphertext modulus q for
both schemes. Increase in r reduces the dimension of the re-encryption
key (to blog (q) /rc+ 1) and the number of NTT operations (performed
for groups of r bits of each coefficient), which effectively reduces the re-
encryption runtime. Increase in p improves the plaintext throughput of PRE
and reduces the ciphertext expansion factor defined as k/blog2 p+ 1c. More
detailed information on these performance metrics is presented in Section 8.

The results in Table 4 suggest that r can be used to reduce the re-
encryption runtime with negligible effect on the encryption/decryption run-
times. For instance, the ring dimension and the number of bits k required

31



Table 4: Dependence of minimum values of ring dimension n and the num-
ber of bits k required to represent the ciphertext modulus q, on plaintext
modulus p and relinearization window r for re-encryption depth d of unity.

PRE Scheme p
r = 1 r = 2 r = 4 r = 8 r = 16
n k n k n k n k n k

NTRU-ABD-PRE

2 1024 35 1024 35 1024 35 1024 38 2048 48
16 2048 53 2048 53 2048 53 2048 53 2048 57
256 4096 78 4096 78 4096 78 4096 78 4096 78
4096 4096 102 4096 102 4096 102 4096 102 4096 102
65536 4096 126 4096 126 4096 126 4096 126 4096 126

BV-PRE

2 512 17 512 17 512 18 1024 22 1024 29
16 512 20 1024 21 1024 22 1024 25 1024 32
256 1024 25 1024 25 1024 26 1024 29 1024 37
4096 1024 29 1024 29 1024 30 1024 33 2048 41
65536 1024 33 1024 33 1024 35 1024 37 2048 45

Table 5: Dependence of minimum values of ring dimension n and the number
of bits k required to represent the ciphertext modulus q, on re-encryption
depth d and relinearization window r for BV-PRE at p = 2.

d
r = 1 r = 2 r = 4 r = 8 r = 16
n k n k n k n k n k

1 512 17 512 17 512 18 1024 22 1024 29

2 512 18 512 18 512 19 1024 23 1024 30

5 512 19 512 19 512 20 1024 24 1024 31

10 512 19 512 20 1024 22 1024 25 1024 32

20 512 20 1024 21 1024 23 1024 25 1024 33

50 1024 22 1024 23 1024 24 1024 28 1024 35

100 1024 23 1024 24 1024 25 1024 29 1024 36

to represent the ciphertext modulus q are essentially the same for BV-PRE
at p = 2 when r is increased from 1 to 4. At the same time, this reduces the
runtime of re-encryption by roughly a factor of 4. One can also observe for
BV-PRE that increasing the plaintext modulus to 65536 (2 bytes per poly-
nomial coefficient) raises the ring dimension requirement only by a factor of
2 (to 1024), which implies that a much higher plaintext throughput can be
achieved for BV-PRE by using large values of plaintext modulus (in appli-

32



cations where runtime/latency is not critical). It can also be seen that the
ring dimension / ciphertext modulus requirements are substantially lower
for BV-PRE as compared to NTRU-ABD-PRE.

Table 5 shows the effect of increasing the re-encryption depth d for dif-
ferent values of relinerization window r on the minimum values of ring di-
mension n and the number of bits k required to represent the ciphertext
modulus q for BV-PRE (results for NTRU-ABD-PRE are not presented be-
cause the values of ring dimension and ciphertext modulus are impractical
for d = 2). It can be seen that BV-PRE supports at least 20 re-encryption
hops at n = 512 (the maximum number is 23 hops). One can also observe
that the number of bits k required to represent the ciphertext modulus q
changes slowly with increase in re-encryption depth because the noise growth
is additive (rather than multiplicative as in the case of NTRU-ABD-PRE),
and 100 re-encryption hops can be supported without exceeding the ring
dimension of 1024.

7 Software Implementation

7.1 Software Library Design

We implemented our PRE scheme in PALISADE, a general-purpose portable
multi-threaded C++ library designed to support and ease the development
of lattice-based encryption prototypes.

The main runtime performance bottleneck is conversion between co-
efficient and evaluation representations. For the power-of-two cyclotomic
rings, the most efficient algorithm to perform this operation is the Fermat-
Theoretic Transform (FTT) [4]. We implemented FTT with NTT as a sub-
routine in PALISADE. For NTT, the iterative Cooley-Tukey algorithm with
optimized butterfly operations was applied. The two slowest sub-operations
needed to support NTT operations are multiplication and modulo reduc-
tion. For multiplication, we used the standard shift-and-add multiplication
algorithm as it performs well for relatively small ciphertext moduli (up to
multiple hundreds of bits, but in our case the running bitwidths required
to represent ciphertext moduli do not exceed 128 bits). For modulo re-
duction, we used the generalized Barrett modulo reduction algorithm [14],
which requires one pre-computation per NTT run and converts one modulo
reduction to roughly two multiplications. For discrete Gaussian sampling,
we used the inversion method from [32].

The conventional relinearization procedure works with the relineariza-
tion window r of unity, implying that every coefficient of the ciphertext

33



polynomial c is decomposed into bits. Although this technique dramatically
reduces the noise growth (from ‖c‖∞ to 1), it significantly increases both
computational and space complexities of re-encryption. As there is no effi-
cient method to extract bits from a polynomial in CRT form, the ciphertext
polynomial c has to be first converted to the coefficient form, then decom-
posed into polynomials over Z2, and finally all of these bit-level polynomials
need to be converted back to CRT form prior to performing the component-
wise multiplication with the elements of the re-encryption key. The total
computational cost of this operation is blog2 (q)c+ 2 FTT operations. The
size of the re-encryption key is approximately n · log2 (q)2 bits (or the double
of that in the case of BV-PRE).

To reduce the number of FTT operations and size of the re-encryption
key, we consider a generalized relinearization window of up to 16 bits. It can
be seen that in the case of r = 8, the number of FTT operations reduces to
blog2 (q) /8c+ 2 and the re-encryption key size reduces by a factor of 8. At
the same time, Table 4 suggests that the number of bits required to represent
q, which is determined by the correctness constraint, increases only by 3 bits
compared to the case of r = 1 with the minimum ring dimension n staying
at the same level (for NTRU-ABD-PRE at p = 2). In view of the above, it
can be expected that the re-encryption time for this case will be significantly
less than for r = 1, which is demonstrated in the next section.

8 Experimental Evaluation

8.1 Methodology

We identify a set of standard metrics, including those used in related work
[3, 31] with which to evaluate the performance of our PRE design and im-
plementation. These metrics include:

1. Runtime / Latency: How long it takes to perform the implemented
Encryption, Re-Encryption and Decryption operations for various pa-
rameter settings.

2. Throughput: How many plaintext bits per unit time can be processed
by the implemented operations for various settings.

3. Ciphertext Expansion: How many bits are required to represent ci-
phertext for every bit in the plaintext.

4. Memory Usage: How much memory is required to run the implemented
operations for various settings.

34



We would normally also use security as a metric to evaluate the performance
of our PRE design and implementation, but we assume a ceiling on the
security parameter such that δ < 1.006, and we would want δ to be as close
as possible to 1.006 to provide as quick runtime performance as possible
while providing adequate security. For our experimental analyses, we varied
the ring dimension n, relinearization window r, plaintext modulus p, and
number of hops supported d to explore tradeoffs in runtime and amortized
throughput.

Because we perform all experiments in the single-threaded mode and our
implementation does not access disk or networking interfaces, we use latency
as a means of determining the temporal overhead of the implementation.
Further, runtime performance is useful, for example, when assessing fitness
for real-time applications when end-to-end latency is critical. We use the
throughput metric to assess how much plaintext data can be processed by
the implementation per unit time.

Related to ciphertext expansion is memory usage. Memory intensive
operations may not be easily supported on resource-constrained devices,
such as embedded systems used for disposable sensor nodes. We therefore
differentiate between the memory requirements of PRE clients (subscribers
and publishers) from those of PRE servers (brokers). Memory usage for PRE
clients is governed primarily by the size of public/private keys and ciphertext
elements. At the same time, the memory requirements for PRE servers
are determined primarily by the size of re-encryption keys and decomposed
ciphertext ring elements.

We conducted experiments for our PRE implementation on a commodity
desktop computing environment. The evaluation environment used an Intel
Core i7-3770 CPU rated at 3.40GHz and 16GB of memory running CentOS
7. All of our implementations were compiled as single-threaded and used
only one core despite our test environment providing multiple cores.

We generated random plaintext samples using discrete uniform distribu-
tion from 0 to p−1. We ran 100 iterations for a subset of parameter datasets
listed in Tables 3-5 and evaluated the mean runtime of encryption, decryp-
tion, and re-encryption operations, with decryption runtime measured be-
fore and after re-encryption, and the runtime of multiple re-encryptions.
The number of correct decryptions was also recorded, and no decryption
errors were observed.

In Tables 7 through 9 we present experimental results for the dependence
of runtime and throughputs of PRE operations on variations in key config-
uration parameters, including the ring dimension, relinearization window,
plaintext modulus, and number of re-encryption hops. We show throughputs

35



in kilobits per second (Kbps) for encryption, re-encryption, and decryption
amortized in terms of the plaintext size.

The ciphertext expansion factor is equal to k = blog2 q + 1c in all tables
except for 8. Although not directly related to the security provided, the key
size in bits is equal to the ring dimension n times the number of bits k in
ciphertext modulus q.

We consider key generation to be an offline process which is run once for
most feasible applications of the PRE capability. For all of our experimental
configurations we observed key generation and proxy key generation runtime
of less than 1 second.

8.2 Single-Hop Re-Encryption

Table 6 shows the effect of changes in ring dimension n on runtime, amortized
throughputs, and ciphertext expansion factors for single-hop re-encryption
using both NTRU-ABD-PRE and BV-PRE schemes with security parameter
δ ≤ 1.006. The highest encryption, re-encryption, and decryption through-
puts and lowest runtime are observed for the smallest ring dimension: 1024
and 512 for NTRU-ABD-PRE and BV-PRE, respectively. The ciphertext
expansion, which is proportional to the number of bits k required to rep-
resent the ciphertext modulus q, and memory usage for both PRE clients
and servers, which is proportional to the product of ring dimension and the
number of bits k required to represent the ciphertext modulus q, are lowest
for the smallest value of ring dimension. This implies that one should always
choose the smallest ring dimension satisfying the desired security level.

Note that the runtimes for BV-PRE scheme operations are always lower
than for NTRU-ABD-PRE due to lower requirements on the ring dimension
and the number of bits required to represent the ciphertext modulus of the
former. For the same ring dimension, the runtime improvement factors ob-
served from Table 6 are approximately 1.2 for encryption, 1.5 for decryption,
and 2.5 for re-encryption operations. Considering that the lowest ring di-
mension with security parameter δ ≤ 1.006 for BV-PRE is 512, the improve-
ment factors for throughputs at smallest ring dimension are 1.3, 1.6, and 2.9
for encryption, decryption, and re-encryption, respectively. The decryption
times after regular encryption and proxy re-encryption are approximately
the same for all datasets, which also applies to all other experimental results
presented in this paper.

Table 7 shows the dependence of runtime and throughputs on variations
in the relinearization window r for single-hop re-encryption with security
parameter δ ≤ 1.006. The plaintext modulus is kept the same (p = 2).

36



Table 6: Experimental runtime performance of encryption, decryption, and
re-encryption operations for ring dimension n at r=1, p=2, and d=1.

Configuration Runtime Throughput

PRE Scheme n k
Enc
(ms)

Dec
before
ReEnc
(ms)

ReEnc
(ms)

Dec
after
ReEnc
(ms)

Enc
(Kbps)

ReEnc
(Kbps)

Dec
after
ReEnc
(Kbps)

NTRU-ABD-PRE

1024 35 2.13 2.45 67.08 2.44 481.06 15.26 418.85
2048 36 4.62 5.27 150.95 5.26 443.27 13.57 389.71
4096 37 9.80 11.07 331.73 11.05 417.94 12.35 370.78
8192 38 20.69 23.35 724.80 23.29 395.95 11.30 351.70
16384 39 44.15 49.73 1597.81 49.41 371.14 10.25 331.58

BV-PRE

512 17 0.85 0.76 11.77 0.76 604.37 43.51 674.62
1024 18 1.81 1.64 27.48 1.63 567.03 37.26 628.04
2048 18 3.84 3.47 59.83 3.44 533.82 34.23 594.85
4096 19 7.99 7.24 131.68 7.22 512.70 31.11 566.95
8192 19 17.00 15.80 296.63 15.33 481.85 27.62 534.30
16384 20 35.77 32.82 634.71 32.70 458.07 25.81 501.10

It can be seen that for both schemes the highest encryption runtime and
throughput are observed for r = 1 (which uses the smallest the number of
bits required to represent the ciphertext modulus.) As the relinearization
window r increases, the re-encryption time declines until the ring dimension
is forced to double by the security constraint. This lowest re-encryption
runtime occurs at r = 8 and r = 4 for NTRU-ABD-PRE and BV-PRE,
respectively. Note that the encryption and decryption runtimes for these
values of r are approximately the same as for r = 1, which implies that
r = 8 and r = 4 are optimal values for all operations of NTRU-ABD-
PRE and BV-PRE, respectively, from the runtime/latency perspective. At
the same time, the re-encryption throughput at r = 16 is highest for both
schemes. This implies that in applications where re-encryption througput
needs to be maximized and latency requirements are low, r = 16 could
be the preferred choice. It should be noted that the ciphertext expansion
grows with r, memory usage by PRE clients increases proportionally to
the number of bits required to represent the ciphertext modulus and ring
dimension, and memory usage by PRE servers declines as the re-encryption
keys are composed of blog2 (q) /rc+ 1 ring elements.

37



Table 7: Experimental runtime performance of encryption, decryption, and
re-encryption operations on relinearization window size r at p=2 and d=1.

Configuration Runtime Throughput

PRE Scheme r n k
Enc
(ms)

Dec
before
ReEnc
(ms)

ReEnc
(ms)

Dec
after
ReEnc
(ms)

Enc
(Kbps)

ReEnc
(Kbps)

Dec
after
ReEnc
(Kbps)

NTRU-ABD-PRE

1 1024 35 2.13 2.45 67.08 2.44 481.06 15.26 418.85
2 1024 35 2.13 2.45 36.65 2.44 480.75 27.94 419.03
4 1024 35 2.13 2.45 21.27 2.44 480.09 48.15 418.86
8 1024 38 2.11 2.46 13.88 2.44 484.61 73.77 418.95
16 2048 48 4.72 5.45 19.97 5.42 434.23 102.57 377.71

BV-PRE

1 512 17 0.85 0.76 11.77 0.76 604.37 43.51 674.62
2 512 17 0.83 0.74 6.38 0.74 615.12 80.21 691.43
4 512 18 0.84 0.77 4.33 0.76 607.58 118.27 676.02
8 1024 22 1.78 1.60 6.23 1.60 576.85 164.25 639.50
16 1024 29 2.00 1.82 5.41 1.82 512.23 189.15 562.60

Table 8 illustrates the effect of plaintext modulus p on performance met-
rics of PRE operations for both schemes. The relinearization window is
kept constant (r = 1). One can see that runtime increases as p rises due
to increased requirements on the number of bits k required to represent the
ciphertext modulus q and the ring dimension n. At the same time, plaintext
throughputs increase until p = 4096 for both schemes. Ciphertext expansion
factors, defined as k/ log2 p, are highest at p = 65536. This suggests that
larger plaintext moduli may be suggested when high throughput and low
ciphertext expansion are sought, and latency requirements are secondary.
One can also see that the memory usage of both PRE clients and servers
increases with p due to requiring more bits to represent the ciphertext modu-
lus and larger ring dimensions, which may be an issue for embedded systems
(PRE clients).

All tables for single-hop re-encryption suggest that BV-PRE outper-
forms NTRU-ABD-PRE for all performance metrics. The best BV-PRE
re-encryption runtime of 4.33 ms is almost two orders of magnitudes faster
than the runtime reported for comparable conditions (same ring dimen-
sion of 512) in the independent work of [31]. Besides being faster than the
scheme reported in [31], BV-PRE is unidirectional and is based strictly on

38



Table 8: Experimental runtime performance of encryption, decryption, and
re-encryption operations on plaintext modulus p at r=1 and d=1.

Configuration Runtime Throughput

PRE Scheme p n k
Enc
(ms)

Dec
before
ReEnc
(ms)

ReEnc
(ms)

Dec
after
ReEnc
(ms)

Enc
(Kbps)

ReEnc
(Kbps)

Dec
after
ReEnc
(Kbps)

NTRU-ABD-PRE

2 1024 35 2.13 2.45 67.08 2.44 481.06 15.26 418.85
16 2048 53 5.38 7.73 228.30 7.55 1523.62 35.88 1085.06
256 4096 78 16.20 23.05 1016.58 22.98 2022.23 32.23 1425.92
4096 4096 102 20.00 28.94 1642.66 28.88 2458.12 29.92 1701.95
65536 4096 126 21.24 33.66 2141.11 34.03 3085.50 30.61 1925.83

BV-PRE

2 512 17 0.85 0.76 11.77 0.76 604.37 43.51 674.62
16 512 20 0.95 0.91 13.84 0.92 2156.82 147.93 2221.67
256 1024 25 2.03 1.90 36.65 1.95 4028.96 223.53 4200.40
4096 1024 29 2.33 2.15 47.28 2.19 5269.21 259.90 5600.50
65536 1024 33 2.74 2.47 63.57 2.41 5989.05 257.73 6809.95

the RLWE assumption.
We observed experimentally that as ring dimension n increases for our

schemes, the latency due to Encryption, Re-Encryption and Decryption in-
crease, but the ammortized cost and throughput decrease. Furthermore,
ciphertext expansion and memory requirements increase. The effect of in-
creasing the relinearization window r is similar to the effects of increasing n,
except that Re-Encryption latency decreases and throughput increases. The
effects of increasing plaintext modulus p is similar to the effect of increasing
ring dimension. These results may be used for selecting optimal configura-
tion of these three parameters in practical single-hop PRE applications.

8.3 Multi-Hop Re-Encryption

Table 9 illustrates the dependence of runtime, throughputs, and ciphertext
expansion factors on the number of re-encryption hops for PRE-BV with se-
curity parameter δ ≤ 1.006. The results for NTRU-ABD-PRE are not listed
because the scheme supports only two re-encryption hops with the second
hop requiring more bits k to represent the ciphertext modulus q, as seen in
Table 3. It can be seen that PRE-BV scales well with re-encryption depth.
For the first 20 hops, the runtime and throughput metrics are approximately

39



Table 9: Dependence of performance metrics for BV-PRE encryption, de-
cryption, and re-encryption operations on the number of re-encryption hops
d at r=1 and p=2.

Configuration Runtime Throughput

d n k
Enc
(ms)

Dec
before
ReEnc
(ms)

First
ReEnc
(ms)

Last
ReEnc
(ms)

Dec
after
ReEnc
(ms)

Enc
(Kbps)

ReEnc
(Kbps)

Dec
after last
ReEnc
(Kbps)

1 512 17 0.85 0.76 11.77 – 0.76 604.37 43.51 674.62

2 512 18 0.86 0.77 12.84 12.82 0.77 597.52 39.88 667.48

5 512 19 0.85 0.76 13.74 13.43 0.76 604.31 37.27 672.78

10 512 19 0.85 0.77 13.56 13.57 0.76 602.13 37.75 670.37

20 512 20 0.84 0.76 13.69 13.69 0.75 611.51 37.40 681.35

50 1024 22 1.83 1.67 33.98 33.60 1.67 560.44 30.13 613.60

100 1024 23 2.00 1.87 39.45 39.38 1.86 512.11 25.96 550.19

the same for encryption and decryption operations, and degrade by at most
20% for the re-encryption operation. For larger re-encryption depths (up to
100), the encryption/decryption throughputs degrade only by at mosty 20%
as compared to the single-hop case while re-encryption throughput declines
by 40%. It should be noted that the observed enryption/decryption times
are still under 2 ms, which may be adequate for many practical applications.

The runtimes for first re-encryption hop and last re-encryption hop
are essentially the same for all re-encryption depths, with the latter be-
ing slightly lower due to local caching effects of the implementation. The
decryption times after regular encryption and proxy re-encryption are ap-
proximately the same.

9 Application

A major security challenge for Pub/Sub systems is confidentiality of in-
formation which is distributed by the Pub/Sub broker. Existing Pub/Sub
systems protect information payloads via encryption that requires either:
1) the publisher and subscriber coordinate to establish the encryption and
decryption keys or 2) the Pub/Sub broker decrypts the information pay-
loads from the publishers and then encrypts this information payload again
for re-transmission to the subscribers. The first solution contradicts one of

40



the goals of Pub/Sub systems, i.e., the decoupling of publishers and sub-
scribers. The second solution solves this issue, but gives the broker access
to the unprotected information. Thus, it makes the broker a ripe target for
adversaries to compromise and steal sensitive information.

PRE is a natural fit to support publish-subscribe because PRE maintains
data confidentiality even when the broker is compromised and an adversary
obtains all re-encryption keys and observes all communications between the
publisher, broker and subscriber. These features reduce the need for special,
difficult to use security-enabled hardware and software for high-assurance
applications, such as in military settings. A compromised PRE-enabled
broker would at most allow the adversary to learn which subscribers are
allowed to receive information from which publishers based on the existence
of re-encryption keys.

In this section we are particularly interested in understanding how to
parameterize the PRE schemes for three application use cases to illustrate
the adaptability of our design and implementation.

9.1 Enterprise Security

PRE could be very useful in enterprise-style computing environments such
as for medical file sharing. Enterprise environments are characterized by
high resource availability - both computational power at the publishers,
subscribers and PRE servers, but also bandwidth availability. The primary
concern would be overall throughput.

For single-hop applications, the goal is to maximize re-encryption through-
put. As tables 7 and 8 suggest, re-encryption throughput can be maximized
by increasing the relinearizaton window r or increasing the plaintext modu-
lus p (up to certain limits, until the ciphertext modulus bit length and ring
dimension start to significantly slow down the runtime). In the case of the
BV-PRE scheme, the plaintext throughputs can reach 250 Kbps. The com-
bined effect of increased plaintext modulus and relinearization window can
produce even higher plaintext outputs but this analysis should be performed
based on the requirements of a specific application. The BV-PRE scheme
can also provide a multi-hop capability without significantly increasing pa-
rameter requirements if the value of relinearization window r in expression
(8) does not exceed 8.

41



9.2 Embedded Support

At the opposite end of the resource availability spectrum is the use case of
embedded sensors that collect, encrypt and publish data to a PRE server.
To set up the environment, point-to-point communication approvals need to
be established, namely that:

• The sensors would need to have appropriate encryption keys.

• The sensors would need to be paired with the PRE server.

• The approval for subscribers to receive data would need to be received
to approve the generation of a re-encryption key hosted at the PRE
server.

PRE addresses the above measures to encrypt data at the sensor, trans-
mit the data to a cloud storage environment where processing is done, and
the encrypted results shared with intended recipients, without ever decrypt-
ing the data or sharing decryption keys. Recent results [22, 10] show that it
is possible to implement public key lattice encryption schemes, very similar
to our PRE schemes, and run them on very resource-limited devices, inl-
cuding devices using 8-bit AVR processors [22]. These results also provide
general design guidelines to port our designs into limited hardware.

Because embedded use cases require computationally intense operations
at low-powered sensor nodes, encryption throughput is paramount. It is
feasible that multi-hop encryption would be needed so that the encrypted
information can aggregate from the sensors to local PRE servers which send
data to a centralized encrypted information clearinghouse. In this situation,
the use of BV-PRE with r = 1 and a large plaintext modulus, for example,
p = 65536, would maximize encryption throughput.

An alternative formulation of this use-case for especially low-powered
sensor devices might rely on processors with 32-bit words, or less. In this
scenario it is generally important for modulus bit-widths to be within a
power-of-2 rather than without for increased performance. If the modulus
bit-width is larger than bit-width of the processor, then extra shuffling of
data and at least a factor-of-2 decrease in performance is likely to result.
Selecting BV-PRE at n = 512, r ∈ (1, 2, 4), and a ciphertext modulus bit-
width of 17-18 bits is recommended to maximize encryption throughput. It
should be noted that the ciphertext bit-width of up to 20 and ring dimension
of 512 can support up to 23 re-encryption hops of BV-PRE at p = 2 and
r = 1, as can be seen from Tables 5 and 9.

42



9.3 Hybrid Deployment with AES

This work is motivated by the problem of sharing data across coalition part-
ners who do not interact directly, including across administrative bound-
aries, yet want to control data access within each coalition partner by pol-
icy. While encryption and policy enforcement solutions are available, a
major challenge is the lack of suitable techniques to generate or share en-
cryption keys. For example, streaming video, images and text data are often
transmitted when encrypted by AES, because AES is considered both se-
cure and highly efficient. PRE can be used in these scenarios as an AES key
distribution mechanism.

Single-hop application operation of PRE would provide the most control
for users to limit the spread of restricted data. Based on the RLWE security
constraint and PRE correctness constraint, we should keep q as small as
possible to guarantee correctness and use the lowest value of n that satisfies
the security requirements.

10 Discussion and Ongoing Activities

In this paper we present two new lattice-based PRE schemes. We experimen-
tally evaluate the performance of the PRE schemes. Our lattice encryption
library is an important aspect of our implementation performance in that
its modularity and extensibility enables us to further improve performance
with either improved mathematical libraries or even hardware acceleration
as these technologies become available.

A benefit of our PRE approach is that it supports applications on com-
modity computing hardware and improves the overall security of information
sharing in practical pub/sub systems. Taken together, this could greatly re-
duce the operational costs of highly regulated industries such as health-care
where regulatory compliance restricts the ability to outsource computation
to low cost cloud computing environments.

Although we have focused our discussion on PRE for situations with one
producer (Alice) and one consumer (Bob), there is no theoretical limit to the
number of producers and subscribers that can be used for PRE operations.
With PRE we can support general many-to-many operations where data
from many producers is securely shared with many consumers through the
PRE prototype, by generating multiple re-encryption keys, one for every per-
mitted publisher-subscriber information sharing pair. A possible approach
to address scalability is to distribute the operations of the PRE servers across
many computation nodes, and we seek to address this in follow-on research.

43



References

[1] M. Albrecht, S. Bai, and L. Ducas. A Subfield Lattice Attack on Over-
stretched NTRU Assumptions, pages 153–178. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2016.

[2] Y. Aono, X. Boyen, L. T. Phong, and L. Wang. Key-private proxy re-
encryption under LWE. In Progress in Cryptology–INDOCRYPT 2013,
pages 1–18. Springer, 2013.

[3] G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy
re-encryption schemes with applications to secure distributed storage.
ACM Transactions on Information and System Security (TISSEC),
9(1):1–30, 2006.

[4] A. Aysu, C. Patterson, and P. Schaumont. Low-cost and area-efficient
fpga implementations of lattice-based cryptography. In Hardware-
Oriented Security and Trust (HOST), 2013 IEEE International Sym-
posium on, pages 81–86, June 2013.

[5] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic
proxy cryptography. In Advances in CryptologyEUROCRYPT’98, pages
127–144. Springer, 1998.

[6] J. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved security for a
ring-based fully homomorphic encryption scheme. In M. Stam, editor,
Cryptography and Coding, volume 8308 of Lecture Notes in Computer
Science, pages 45–64. Springer Berlin Heidelberg, 2013.

[7] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully ho-
momorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):13, 2014.

[8] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic en-
cryption from (standard) lwe. In Proceedings of the 2011 IEEE 52Nd
Annual Symposium on Foundations of Computer Science, FOCS ’11,
pages 97–106, Washington, DC, USA, 2011. IEEE Computer Society.

[9] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption
from ring-LWE and security for key dependent messages. In CRYPTO,
pages 505–524, 2011.

44



[10] J. Buchmann, F. Göpfert, T. Güneysu, T. Oder, and T. Pöppelmann.
High-performance and lightweight lattice-based public-key encryption.
In Proceedings of the 2nd ACM International Workshop on IoT Pri-
vacy, Trust, and Security, pages 2–9. ACM, 2016.

[11] R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-
encryption. In P. Ning, S. D. C. di Vimercati, and P. F. Syverson,
editors, Proceedings of the 2007 ACM Conference on Computer and
Communications Security, CCS 2007, Alexandria, Virginia, USA, Oc-
tober 28-31, 2007, pages 185–194. ACM, 2007.

[12] Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates.
In ASIACRYPT, volume 7073 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2011.

[13] J. H. Cheon, J. Jeong, and C. Lee. An algorithm for NTRU prob-
lems and cryptanalysis of the GGH multilinear map without a low-
level encoding of zero. LMS Journal of Computation and Mathematics,
19:255–266, 1 2016.

[14] J.-F. Dhem and J.-J. Quisquater. Recent results on modular multipli-
cations for smart cards. In J.-J. Quisquater and B. Schneier, editors,
Smart Card Research and Applications, volume 1820 of Lecture Notes
in Computer Science, pages 336–352. Springer Berlin Heidelberg, 2000.

[15] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144, 2012. http:
//eprint.iacr.org/2012/144.

[16] X. Fan and F.-H. Liu. Various proxy re-encryption schemes from
lattices. Cryptology ePrint Archive, Report 2016/278, 2016. http:

//eprint.iacr.org/2016/278.

[17] C. Gentry, S. Halevi, and N. Smart. Homomorphic evaluation of the
AES circuit. In R. Safavi-Naini and R. Canetti, editors, Advances in
Cryptology CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 850–867. Springer Berlin / Heidelberg, 2012.

[18] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public
key cryptosystem. In J. P. Buhler, editor, Algorithmic Number Theory,
volume 1423 of Lecture Notes in Computer Science, pages 267–288.
Springer Berlin Heidelberg, 1998.

45



[19] A.-A. Ivan and Y. Dodis. Proxy cryptography revisited. In NDSS, 2003.

[20] E. Kirshanova. Proxy re-encryption from lattices. In Public-Key
Cryptography–PKC 2014, pages 77–94. Springer, 2014.

[21] R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-
based encryption. In CT-RSA, pages 319–339, 2011.

[22] Z. Liu, H. Seo, S. Sinha Roy, J. Großschädl, H. Kim, and I. Ver-
bauwhede. Efficient Ring-LWE Encryption on 8-Bit AVR Processors,
pages 663–682. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[23] A. López-Alt, E. Tromer, and V. Vaikuntanathan. Multikey fully ho-
momorphic encryption and on-the-fly multiparty computation. IACR
Cryptology ePrint Archive, 2013:94, 2013. Full Version of the STOC
2012 paper with the same title.

[24] V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and
Learning with Errors over Rings, pages 1–23. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

[25] V. Lyubashevsky, C. Peikert, and O. Regev. A Toolkit for Ring-LWE
Cryptography, pages 35–54. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013.

[26] D. Micciancio. Duality in lattice cryptography. In Public Key Cryptog-
raphy, 2010. Invited talk.

[27] D. Micciancio. Lattice-based cryptography. In Encyclopedia of Cryp-
tography and Security, pages 713–715. Springer, 2011.

[28] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter,
faster, smaller. In EUROCRYPT, pages 700–718, 2012.

[29] D. Micciancio and O. Regev. Worst-case to average-case reductions
based on Gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.
Preliminary version in FOCS 2004.

[30] D. Micciancio and O. Regev. Lattice-based cryptography. In Post
Quantum Cryptography, pages 147–191. Springer, February 2009.

[31] D. Nuñez, I. Agudo, and J. Lopez. NTRUReEncrypt: An efficient proxy
re-encryption scheme based on NTRU. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security,
pages 179–189. ACM, 2015.

46



[32] C. Peikert. An efficient and parallel gaussian sampler for lattices. In
T. Rabin, editor, Advances in Cryptology CRYPTO 2010, volume 6223
of Lecture Notes in Computer Science, pages 80–97. Springer Berlin
Heidelberg, 2010.

[33] L. T. Phong, L. Wang, Y. Aono, M. H. Nguyen, and X. Boyen. Proxy
re-encryption schemes with key privacy from lwe. Cryptology ePrint
Archive, Report 2016/327, 2016. http://eprint.iacr.org/2016/327.

[34] O. Regev. Quantum computation and lattice problems. SIAM J. Com-
put., 33(3):738–760, 2004. Preliminary version in FOCS 2002.

[35] D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case prob-
lems over ideal lattices. In K. G. Paterson, editor, Advances in Cryptol-
ogy EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer
Science, pages 27–47. Springer Berlin Heidelberg, 2011.

[36] J. van de Pol. Quantifying the security of lattice-based cryptosystems
in practice. In Mathematical and Statistical Aspects of Cryptography,
2012.

47


