
A New Algorithm for Inversion mod pk

Çetin Kaya Koç
University of California Santa Barbara

koc@cs.ucsb.edu

June 9, 2017

Abstract

A new algorithm for computing x = a−1 (mod pk) is introduced. It is based
on the exact solution of linear equations using p-adic expansions. It starts with
the initial value c = a−1 (mod p) and iteratively computes the digits of the
inverse x = a−1 (mod pk) in base p. The mod 2 version of the algorithm is
significantly more efficient than the existing algorithms for small values of k.
Moreover, the proposed algorithm computes all inverses mod pi or mod 2i for
i = 1, 2, . . . , k, and work for an arbitrary k. We also describe and analyze
existing algorithms, and compare them to the proposed algorithm.

1 Introduction

Hardware and software realizations of public-key cryptographic algorithms require
implementations the multiplicative inverse mod p (prime) or n (composite). When the
modulus is prime, we can compute the multiplicative inverse using Fermat’s method
as a−1 = ap−2 (mod p). When it is composite, we can use Euler’s method to compute
the multiplicative inverse as a−1 = aφ(n)−1 (mod n), provided that we know φ(n).
On the other hand, the extended Euclidean algorithm works for both prime and
composite modulus

(u, v) ← EEA(a, n)

u · a− v · n = 1

a−1 = u (mod n)

The classical extended Euclidean algorithm requires division operations at each step,
which is not preferred. On the other hand, variations of the binary extended Eu-
clidean algorithms use shift, addition and subtraction operations [7, 12, 13]. We must
note however that most inversion algorithms are variants of the classical Euclidean
algorithm for computing the greatest common divisor of two integers g = gcd(a, n).

1



2 Inversion mod 2k

The Montgomery multiplication algorithm is introduced by Peter Montgomery [11]
in 1985. It computes the product c = a · b · r−1 (mod n) for an arbitrary modulus n,
without actually performing any mod n reductions. Interestingly, the algorithm does
not directly need r−1 (mod n), but it requires another quantity n′ which is related to
it. The steps of the classical Montgomery multiplication algorithm are given below.

function Montgomery(a, b)
input: a, b, n, r, n′

output: u = a · b · r−1 mod n
1: t← a · b
2: m← t · n′ (mod r)
3: u← (t+m · n)/r
4: if u ≥ n then u← u− n
5: return u

None of the steps of the Montgomery multiplication algorithm requires mod n calcu-
lations; instead they perform mod r reduction in Step 2 and division by r in Step 3.
By selecting r = 2k where k > log2(n), these calculations are trivially implemented in
software or hardware. The selection of r = 2k requires that n be odd, which is often
the case in cryptography.

The Montgomery multiplication algorithm makes use of a special quantity n′ which
is one of the numbers produced by the extended Euclidean algorithm with inputs 2k

and n:

(u, n′) ← EEA(2k, n)

u · 2k − n′ · n = 1

n′ = −n−1 (mod 2k)

In other words, the Montgomery multiplication algorithm requires the computation of
n−1 (mod 2k) rather than r−1 (mod n). We may expect that inversion with respect
to a special modulus such as 2k might be easier than inversion with respect to an
arbitrary modulus. Indeed this is the case.

Several algorithms for computing multiplicative inverse mod 2k have appeared in
the literature some of which are significantly simpler than the basic EEA algorithm.
In the following section, we review these algorithm.

3 Existing Algorithms for Inversion mod 2k

Dussé and Kaliski [4] gave an efficient algorithm for computing the inverse x = a−1

(mod 2k) for an odd a, therefore, gcd(a, 2k) = 1. Arazi and Qi [1] review 3 known

2



algorithms (as of 2008), and introduce a new algorithm (Algorithm 4) for computing
a−1 (mod 2k), where k = 2s. Furthermore, Dumas proved [3] that Algorithm 4 in
[1] is a specific case of Hensel lifting [10], and introduced an iterative formula for
computing x = a−1 (mod pk), where k = 2s. In this section, we describe these
algorithms.

3.1 Dussé and Kaliski Algorithm

Dussé and Kaliski algorithm [4] is based on a specialized version of the extended
Euclidean algorithm for computing the inverse. The pseudocode is given below [4, 8].

function DusseKaliski(a, 2k)
input: a, k where a is odd and a < 2k

output: x = a−1 mod 2k

1: x← 1
2: for i = 2 to k
2a: if 2i−1 < a · x (mod 2i)
2aa: x← x+ 2i−1

3: return x

As an example, consider the computation of 23−1 (mod 26). Here, we have a = 23
and k = 6, and we start with x = 1.

Table 1: Dussé and Kaliski Algorithm for computing 23−1 (mod 26).

i 2i−1 2i x a · x (mod 2i) 2i−1
?
< a · x x

2 2 4 1 (23 · 1 mod 4)→ 3 2 < 3 1 + 2 = 3

3 4 8 3 (23 · 3 mod 8)→ 5 4 < 5 3 + 4 = 7

4 8 16 7 (23 · 7 mod 16)→ 1 8 6< 1 7

5 16 32 7 (23 · 7 mod 32)→ 1 16 6< 1 7

6 32 64 7 (23 · 7 mod 64)→ 33 32 < 33 7 + 32 = 39

At the end of the algorithm we find x = 39, implying 23−1 = 39 (mod 26); this
is indeed correct since 23 · 39 = 1 (mod 26). We note that during its iteration the
Dussé and Kaliski algorithm actually computes consecutive inverses 23−1 (mod 2i)
for i = 1, 2, 3, 4, 5, 6:

23−1 = 1 (mod 2)

23−1 = 3 (mod 22)

23−1 = 7 (mod 23)

23−1 = 7 (mod 24)

23−1 = 7 (mod 25)

23−1 = 39 (mod 26)

3



3.2 Algorithm 2 in Arazi and Qi Paper

Arazi and Qi [1] review three existing algorithns, and introduce a new algorithm. All
4 algorithms in [1] compute x = a−1 (mod 2k). First of all, Algorithm 1 is Dussé and
Kaliski algorithm. Algorithm 2 is described in the narrative of the article [1] without
explicitly giving its steps. We find it useful to describe this algorithm and give its
pseudocode. Assume a and x are k-bit binary numbers. Since a and x are both odd,
i.e., A0 = X0 = 1, they can be written as

a = (Ak−1Ak−2 · · ·A1A0) = (Ak−1Ak−2 · · ·A11)

x = (Xk−1Xk−2 · · ·X1X0) = (Xk−1Xk−2 · · ·X11)

The main idea of Algorithm 2 is that the equality

a · x = 1 = (00 · · · 01)2 (mod 2k)

implies the least significant k bits of y = a · x is equal to (00 · · · 01)2, and y can be
written as

y = a · x = (

k bits︷ ︸︸ ︷
Zk−1 · · ·Z1Z0

k bits︷ ︸︸ ︷
00 · · · 01)2 (1)

Our aim is to compute the remaining bits of x, i.e., Xi for i = 1, 2, . . . , k− 1, making
sure that as y is iteratively computed, its least significant k bits become equal to
(00 · · · 01)2 according to Equation (1).

Notice that the LSB of a is 1, and thus, the ith bit of 2i · a is equal to 1 for any
i ∈ [1, k − 1]. Iterative computation of y is accomplished by starting with y = a,
adding 2i ·a to y if Yi = 1, since this would make the resulting Yi zero. By proceeding
to the left, we make all Yi = 0 for i = 1, 2, . . . , k − 1, except Y0 = 1. The steps of
Algorithm2 are given below. It computes the bits of the inverse x from right to left,
at the ith step either adding 2i · a to y or not, and determining Xi as 1 or zero.

function Algorithm2(a, 2k)
input: a, k where a is odd and a < 2k

output: x = a−1 mod 2k

1: y ← a
2: X0 ← 1
3: for i = 1 to k − 1
3a: if Yi = 1
3aa: y ← y + 2i · a
3ab: Xi ← 1
3b: else
3ba: Xi ← 0
4: return x = (Xk−1 · · ·X1X0)2

4



The computation of 23−1 (mod 26) using Algorithm2 is illustrated in Table 2. The
initial value of y is a = 23, and at each step Yi is checked; if Yi = 1, then 2i · a is
added to y.

Table 2: Algorithm 2 for computing 23−1 (mod 26).

i y Yi y = y + 2i · a Xi

0 23 = (000000 010111) 1 y = 23 1

1 23 = (000000 010111) 1 y = 23 + 2 · 23→ 69 1

2 69 = (000001 000101) 1 y = 69 + 22 · 23→ 161 1

3 161 = (000010 100001) 0 y = 161 0

4 161 = (000010 100001) 0 y = 161 0

5 161 = (000010 100001) 1 y = 161 + 25 · 23→ 897 1

897 = (001110 000001)

As the progress of the algorithm shows the lower k = 6 bits of y eventually becomes
(000001). The inverse x is computed as x = (100111)2 = 39. this is indeed correct
since 23 · 39 = 1 (mod 26).

3.3 Algorithm 3 in Arazi and Qi Paper

Arazi and Qi describe Algorithm 3 in detail [1], and give pseudocode. This algorithm
has two stages: in the first stage which is called Algorithm 3a, the quantity −v =
(2k)−1 (mod a) is computed. In the second stage (Algorithm 3b), the quantity −v
is used to compute x = a−1 (mod 2k). This algorithm is essentially the extended
Euclidean algorithm. Given gcd(a, 2k) = 1, the EEA computes

(x, v) ← EEA(a, 2k)

x · a− v · 2k = 1

a−1 = x (mod 2k)

(2k)−1 = −v (mod a)

After −v is available, we can compute x using the identity

x =
1 + v · 2k

a

which requires a shift (the computation of v · 2k), an increment operation, and a
division by a operation (which is very expensive). Algorithm 3 is the least efficient of
all 4 algorithms in [1], since it requires a full division with k-bit integers in the second
stage of the algorithm.

The computation of −v = (2k)−1 (mod a) for an odd a is quite easy, due to the
Montgomery reduction algorithm called CIOS [9]. Written also as −v = 2−k (mod a),

5



we first compute this quantity v = (Vk−1 · · ·V1V0) using the CIOS algorithm at the
end of Step 2, and then compute the inverse x in Step 3.

function Algorithm3(a, 2k)
input: a, k where a is odd and a < 2k

output: x = a−1 mod 2k

1: v ← 1
2: for i = 0 to k − 1
2a: if V0 = 1
2aa: v ← v + a
2b: v ← v/2
3: x← (1 + v · 2k)/a
4: return x

An important property of Algorithm 3 is that the quantity (1+v ·2k) is divisible by a.
This is easily proved by noting that −v = 2−k (mod a) implies −v · 2k = 1 (mod a),
and thus, −v · 2k = 1 +N · a for some integer N . Therefore, 1 + v · 2k = −N · a.

Steps 1 and 2 of Algorithm 3 for computing 23−1 (mod 26) is illustrated in Table
3. The initial value is v = 1, and at each step V0 is checked; if V0 = 1, then a is added
to v, and v is shifted to left (i.e., divided by 2).

Table 3: Steps 1 and 2 of Algorithm 3 for computing 23−1 (mod 26).

i v V0 v = v + a v = v/2

0 1 = (000001) 1 v = 1 + 23→ 24 v = 24/2→ 12

1 12 = (001100) 0 v = 12 v = 12/2→ 6

2 6 = (000110) 0 v = 6 v = 6/2→ 3

3 3 = (000011) 1 v = 3 + 23→ 26 v = 26/2→ 13

4 13 = (001101) 1 v = 13 + 23→ 36 v = 36/2→ 18

5 18 = (010010) 0 v = 18 v = 18/2→ 9

At the end of Step 2 for i = 5, we obtain −v = 9. In Step 3, we use the formula
(1+v·2k)/a and the value of −v = 9, to compute the inverse as x = (1+(−9)·26)/23 =
−25, which is equal to 39 (mod 26).

3.4 Algorithm 4 in Arazi and Qi Paper

Algorithm 4 is the last one described in [1], and it is the contribution of the authors.
It is based on the idea that, given a = (aHaL) = aH · 2i + aL where aH and aL are the
upper and lower i bits of the 2i-bit binary number a, the inverse x = a−1 (mod 22i)
can be computed from the inverse of aL mod 2i. Algorithm 4 computes the inverse
of a mod 2k where k is a power of 2, that is, it computes x = a−1 (mod 22s), and it

6



accomplishes this computation in s = log2(k) steps. In other words, the number of
steps is logarithmic in k.

Given a = (aHaL) = aH · 2i + aL and x = (xHxL) = xH · 2i + xL, we assume
xL = a−1L (mod 2i) is already computed and available. Note that aH , aL, xH , xL are
all i-bit integers. Algorithm 4 computes the upper part xH of the inverse x = a−1

(mod 22i) in 3 steps:

1. Compute the product aL · xL = (bHbL) = bH · 2i + bL = bH · 2i + 1.

2. Compute the product aH · xL = (cHcL) = cH · 2i + cL.

3. Compute the expression xH = −(bH + cL) · xL (mod 2i).

4. The inverse is given as x = (xHxL) = xH · 2i + xL.

An algebraic proof is given in [1]. Here we illustrate this method for the 32-bit
number a = 2583209455 = (99f8a5ef)16. This gives aH = 39416 = (99f8)16 and
aL = 42479 = (a5ef)16. Furthermore, we assume the inverse of the lower part aL mod
216 is already computed and available: xL = a−1L (mod 216) as xL = 10511 = (290f)16.
We then compute xH using

1. aL · xL = 42479 · 10511 = 446496769 = (1a9d0001)16 = (bHbL).
This gives bH = 6813 = (1a9d)16 and bL = 1.

2. aH · xL = 39416 · 10511 = 414301576 = (18b1bd88)16 = (cHcL).
This gives cH = (18b1)16 = 6321 and cL = (bd88)16 = 48520.

3. xH = −(6813 + 48520) · 10511 (mod 216). This gives xH = 26837 = (68d5)16.

4. The inverse: x = (xHxL) = (68d5290f)16 = 1758800143.
This is indeed correct 2583209455 · 1758800143 = 1 (mod 232).

Algorithm 4 is a essentially a recursive algorithm. The inverse of a mod 22i can
be used to compute the inverse a mod 24i, and so on. However, it can also be made
iterative by first computing the inverse mod 21, using this inverse to compute the
inverse mod 22, and so on. The authors describe Algorithm 4 in the narrative of the
article [1], however they do not provide a pseudocode. Below we give the pseudocode
for computing the inverse mod 2k for k = 2s. Here, the binary expansion of a is
expressed as a = (Ak−1 · A1A0) and k = 2s for some integer s.

function Algorithm4(a, 2k)
input: a, k where a is odd, a < 2k, and k = 2s

output: x = a−1 mod 2k

1: aL ← A0

2: aH ← A1

3: xL ← 1

7



4: for i = 1 to s
4a: (bHbL)← aL · xL
4b: (cHcL)← aH · xL
4c: xH ← −(bH + cL) · xL (mod 22i−1

)
4d: aL ← (A2i−1 · · ·A0)2
4e: aH ← (A2i+1−1 · · ·A2i)2
4f: xL ← (xHxL)
4: return x = (xHxL)

Table 4 illustrates the inverse computation x = a−1 (mod 232) for a = (99f8a5ef)16,
where s = 5. The algorithm computes the inverse x = a−1 (mod 232), by successively
computing the inverse mod 2i for i = 1, 2, 4, 8, 16, 32.

Table 4: Algorithm 4 for computing (99f8a5ef)−116 (mod 232).
s (aH aL) xL (bH bL)← aL · xL (cH cL)← aH · xL xH (xH xL)

1 (1 1)2 (1)2 (0 1)2 (0 1)2 (1)2 (1 1)2

2 (11 11)2 (11)2 (10 01)2 (10 01)2 (11)2 (11 11)2

3 (e f)16 (f)16 (e 1)16 (d 2)16 (0)16 (0 f)16

4 (a5 ef)16 (0f)16 (0e 01)16 (09 ab)16 (29)16 (29 0f)16

5 (99f8 a5ef)16 (290f)16 (1a9d 0001)16 (18b1 bd88)16 (68d5)16 (68d5 290f)16

The result is indeed correct since (99f8a5ef)16 · (68d5290f)16 = 1 (mod 232). We
note that Algorithm 4 actually computes a−1 mod 22i for i = 0, 1, 2, 3, 4, 5:

(99f8a5ef)−116 = (1)2 (mod 2)

(99f8a5ef)−116 = (11)2 (mod 22)

(99f8a5ef)−116 = (f)16 (mod 24)

(99f8a5ef)−116 = (0f)16 (mod 28)

(99f8a5ef)−116 = (290f)16 (mod 216)

(99f8a5ef)−116 = (68d5290f)16 (mod 232)

However, inverses modulo other powers of 2 are not computed. While the algorithm
takes s = log2(k) steps, it also computes s = log2(k) inverses. It is not clear if
Algorithm 4 as formulated can be generalized for an arbitrary k, say k = 29; it seems
that it cannot be. The authors describe a method (without detail) in Section 2.2 of
[1] for dealing with a composite k, but they do not give a method for computing the
inverse for an arbitrary k.

3.5 Newton-Raphson Iteration by Dumas

Dumas in [3] shows that Algorithm 4 given by Arazi and Qi [1] is actually a specific
case of Hensel lifting [10], and provides a proof of the derivation of it. Dumas also

8



gives Hensel’s lemma mod pk and its proof from Newton-Raphson iteration. This
results in several formulas for computing a−1 (mod 2k) for k = 2s, one of which is
Algorithm 4. Dumas studies different implementation variants of this iteration and
shows that the explicit formula works well for small exponent values but it is slower
or large exponent, for example, more than 700 bits. An important contribution of
Dumas is an iterative formula which computes xs = a−1 (mod p2

s
) for a prime p, by

iterating over i = 1, 2, . . . , s as

x0 = a−1 (mod p)

xi = xi−1 · (2− a · xi−1) mod p2
i

By selecting p = 2, the formula also specializes to the binary case. The number of
steps of the iteration is s = log2(k). Below we illustrate the computation of xs = a−1

(mod p2
s
) for a = 12, p = 5, and s = 4. The iteration starts with x0 = 12−1 (mod 5),

which is found as x0 = 3, and proceeds over i = 1, 2, 3, 4.

Table 5: Dumas iteration for computing 12−1 (mod 516).

i xi−1 p2
i

xi = xi−1 · (2− a · xi−1) mod p2
i

1 x0 = 3 52 x1 = 3 · (2− 12 · 3)→ 23

2 x1 = 23 54 x2 = 23 · (2− 12 · 23)→ 573

3 x2 = 573 58 x3 = 573 · (2− 12 · 573)→ 358073

4 x3 = 358073 516 x4 = 358073 · (2− 12 · 358073)→ 139872233073

The result x4 = 139872233073 is indeed correct since 12·139872233073 = 1 (mod 516).
We note that during its iteration the Dumas algorithm actually computes consecutive
inverses 12−1 (mod 52i) for i = 0, 1, 2, 3, 4:

12−1 = 3 (mod 5)

12−1 = 23 (mod 52)

12−1 = 573 (mod 54)

12−1 = 358073 (mod 58)

12−1 = 139872233073 (mod 516)

However, inverses modulo other powers of 5 are not computed. While the algorithm
takes s = log2(k) steps, it also computes s = log2(k) inverses.

The binary version of the algorithm is similar, but it is more compact than Al-
gorithm 4. It uses the same formula as for p, but taking p = 2 and assuming that a
is odd. The starting value x0 = 1 since p = 2 and a is odd. Below we illustrate the
computation of xs = a−1 (mod p2

s
) for a = 23, p = 2, and s = 5. The iteration starts

with x0 = 23−1 (mod 2), which is found as x0 = 1, and proceeds over i = 1, 2, 3, 4, 5
by computing xi = xi−1 · (2− a · xi−1) mod 22i .

9



Table 6: Dumas iteration for computing 23−1 (mod 232).

i xi−1 22i xi = xi−1 · (2− a · xi−1) mod 22i

1 x0 = 1 22 x1 = 1 · (2− 23 · 1)→ 3

2 x1 = 3 24 x2 = 3 · (2− 23 · 3)→ 7

3 x2 = 7 28 x3 = 7 · (2− 23 · 7)→ 167

4 x3 = 167 216 x4 = 167 · (2− 23 · 167)→ 14247

5 x4 = 14247 232 x5 = 14247 · (2− 23 · 14247)→ 3921491879

The result x5 = 3921491879 is indeed correct since 23·3921491879 = 1 (mod 216). We
note that during its iteration the Dumas algorithm actually computes 13−1 (mod 22i)
for i = 0, 1, 2, 3, 4, 5:

23−1 = 1 (mod 2)

23−1 = 3 (mod 22)

23−1 = 7 (mod 24)

23−1 = 167 (mod 28)

23−1 = 14247 (mod 216)

23−1 = 3921491879 (mod 232)

However, inverses modulo other powers of 2 are not computed.

4 A New Algorithm for Inversion mod pk

We introduce a new algorithm for computing x = a−1 (mod pk) for a prime p and
arbitrary positive integer k. Our algorithm relies on Dixon’s algorithm [2] for exact
solution linear equations using p-adix expansions, whose general idea is credited to
German mathematician Kurt Wilhelm Sebastian Hensel. Dixon’s algorithm aims to
exactly solve a linear system of equations with integer coefficients, such as A ·x = b in
the sense that the solutions are obtained as rational numbers rather than approximate
values using floating-point arithmetic.

Similar to Dixon’s approach, we formulate the inversion problem as the exact
solution of the linear equation

a · x = 1 (mod pk)

for a prime p, an arbitrary positive integer k > 1 and gcd(a, p) = 1 or 1 < a < p.
By solving this equation, we compute the inverse x = a−1 (mod pk). The algorithm
starts with the computation of

c = a−1 (mod p)

10



using the extended Euclidean algorithm. It is more often the case that the prime p
is small, thus, this computation does not constitute a bottleneck. In fact, the case
of p = 2 is trivial, since c = 1 for any odd a. The algorithm then iteratively finds
the digits of x expressed in base p such that x = a−1 (mod pk). In other words, the
algorithm computes the vector (Xk−1 · · ·X1X0)p with Xi ∈ [0, p− 1] such that

x =
k−1∑
i=0

Xi · pi = X0 +X1 · p+X2 · p2 + · · ·+Xk−1 · pk−1

function ModInverse(a, pk)
input: a, p, k
output: x = a−1 mod pk

1: c← a−1 (mod p)
2: b0 ← 1
3: for i = 0 to k − 1
3a: Xi ← c · bi (mod p)
3b: bi+1 ← (bi − a ·Xi)/p
4: return x = (Xk−1 · · ·X1X0)p

Consider the computation of 12−1 (mod 55). We have a = 12, p = 5, and k = 5.
First we compute c = a−1 (mod p), which is found as c = 12−1 = 2−1 = 3 (mod 5).
Starting with the initial value b0 = 1, the algorithm proceeds for i = 0, 1, 2, 3, 4 as
follows.

Table 7: ModInverse Algorithm for computing 12−1 (mod 55).

i bi Xi = c · bi mod p bi+1 = (bi − a ·Xi)/p

0 b0 = 1 X0 = (3 · 1 mod 5)→ 3 b1 = (1− 12 · 3)/5→ −7

1 b1 = −7 X1 = (3 · (−7) mod 5)→ 4 b2 = (−7− 12 · 4)/5→ −11

2 b2 = −11 X2 = (3 · (−11) mod 5)→ 2 b3 = (−11− 12 · 2)/5→ −7

3 b3 = −7 X3 = (3 · (−7) mod 5)→ 4 b4 = (−7− 12 · 4)/5→ −11

4 b4 = −11 X4 = (3 · (−11) mod 5)→ 2 . . .

The algorithm computes x expressed in base 5 as x = (X4X3X2X1X0)5 = (24243)5.
In decimal, this is equal to 2 · 53 + 4 · 53 + 2 · 52 + 4 · 5 + 3 = 1823. Indeed 12−1 =
1823 (mod 55) since 12 · 1823 = 1 (mod 55). Our algorithm actually computes 12−1

(mod 5k) for k = 1, 2, 3, 4, 5, which are given in base 5 as

12−1 = (3)5 = 3 (mod 5)

12−1 = (43)5 = 23 (mod 52)

12−1 = (243)5 = 73 (mod 53)

12−1 = (4243)5 = 573 (mod 54)

12−1 = (24243)5 = 1823 (mod 55)

11



5 Correctness of ModInverse

First of all, the term (bi − a ·Xi) in Step 3b is divisible by p for every i since

bi − a ·Xi = bi − a · c · bi = bi − bi = 0 (mod p)

due to the fact that a · c = 1 (mod p). Therefore, bi is integer for every i ∈ [0, k− 1].
It also follows that when i = 0, the term (b0 − a ·X0) = (1 − a · c) is divisible by p.
Furthermore, the terms bi and xi are found as

bi = (1− a · c)i/pi

bi · pi = (1− a · c)i

Xi = c · bi (mod p)

for i = 0, 1, . . . , k − 1. The identity for bi can be proven by induction on i.

The Basis Step: For i = 0, we have

b0 = 1

X0 = c · b0 = c (mod p)

These follow from Step 2 and Step 3a of the algorithm for i = 0.

The Inductive Step: Assume the formulas for bi and Xi are correct for i. Due to
Step 3b, we can write bi+1 · p = bi − a ·Xi, and thus

bi+1 · p = bi − a ·Xi

= (1− a · c)i/pi − a · c · (1− a · c)i/pi

= (1− a · c)i · (1− a · c)/pi

= (1− a · c)i+1/pi

bi+1 · pi+1 = (1− a · c)i+1

Once bi+1 is available, we can write from Step 3a as xi+1 = c · bi+1 (mod p).
This concludes the induction.

To prove that the algorithm indeed computes x = a−1 (mod pk), we note that a · x
can be written as

a ·
k−1∑
i=0

Xi · pi = a ·
k−1∑
i=0

c · bi · pi

= a ·
k−1∑
i=0

c · (1− a · c)i

= a · c · (1− a · c)k − 1

1− a · c− 1

= 1− (1− a · c)k

12



Thus, we find a · x = 1− (1− a · c)k. We have already determined that (1− a · c) is
a multiple of p, thus, (1− a · c)k is a multiple of pk. This gives a · x = 1 (mod pk).

6 Inversion mod 2k

The proposed algorithm significantly simplifies when p = 2, and it constitutes an
efficient alternative to the existing algorithms. First of all, for x = a−1 (mod 2k) to
exist, gcd(a, 2k) must be 1, which implies that a is odd. Given an odd a, the value of
c = a−1 (mod 2) is trivially found: c = 1. The modified algorithm is given below.

function ModInverse(a, 2k)
input: a, k
output: x = a−1 mod 2k

1: b0 ← 1
2: for i = 0 to k − 1
2a: Xi ← bi (mod 2)
2b: bi+1 ← (bi − a ·Xi)/2
3: return x = (Xk−1 · · ·X1X0)2

The mod 2 operation in Step 2a is computed by checking the LSB. Obviously we have
Xi ∈ {0, 1}, and the inverse x is produced in base 2, that is x = (Xk−1 · · ·X1X0)2.
On the other hand, the division by 2 in Step 2b is performed by right shift. Below, we
illustrate the computation of a = 23 and k = 6, in order to compare to the presented
algorithms.

Table 8: ModInverse Algorithm for computing 23−1 (mod 26).

i bi Xi = bi (mod 2) bi+1 = (bi − a ·Xi)/2

0 b0 = 1 X0 = 1 (mod 2)→ 1 b1 = (1− 23 · 1)/2→ −11

1 b1 = −11 X1 = −11 (mod 2)→ 1 b2 = (−11− 23 · 1)/2→ −17

2 b2 = −17 X2 = −17 (mod 2)→ 1 b3 = (−17− 23 · 1)/2→ −20

3 b3 = −20 x3 = −20 (mod 2)→ 0 b4 = (−20− 23 · 0)/2→ −10

4 b4 = −10 X4 = −10 (mod 2)→ 0 b5 = (−10− 23 · 0)/2→ −5

5 b5 = −5 X5 = −5 (mod 2)→ 1

The algorithm produces the binary result x = (100111)2 = 39. This is indeed
correct, since 23−1 = 39 (mod 26). Our algorithm computes 23−1 (mod 2k) for
k = 1, 2, 3, 4, 5, 6, which are given in base 2 as

23−1 = (1)2 = 1 (mod 2)

23−1 = (11)2 = 3 (mod 22)

23−1 = (111)2 = 7 (mod 23)

13



23−1 = (0111)2 = 7 (mod 24)

23−1 = (00111)2 = 7 (mod 25)

23−1 = (100111)2 = 39 (mod 26)

7 Complexity Analysis

For each algorithm presented in this paper, we analyze the number steps (within
the for-loop), the operations in each stage, and the types and sizes of the operands
involved, and what the algorithm actually computes. These algorithms differ from
another in terms of the number of steps, the types of outputs (for example, the whole
number at once or digit-by-digit) and how many different inverses they compute.

A realistic complexity analysis of the algorithms would require that we count of
number of bit operations. However, operations requiring O(1) bit operations per step
can safely be ignored. These include check the LSB and right or left shift of the
operands. Two important parameters are k (the size of a) and s = log2(k). The
symbols D, M , and A stand for the processing times for division, multiplication, and
addition or subtraction operations. Table 9 summarizes our analysis.

Table 9: Complexity analysis of the modular inversion algorithms.

Algorithm Steps Operations Oper Size a−1 mod pi p k

DK [4] k 1M + 2A 1, .., k i = 1, .., k 2 any

AQ [1] Alg 2 k 1M + 1A 1, .., k only i = k 2 any

AQ [1] Alg 3 k 1M + 1A k only i = k 2 any

1 1D k

AQ [1] Alg 4 s 3M + 2A 21, .., 2s i = 20, .., 2s 2 2s

Dumas [3] pk s 2M + 1A 21, .., 2s i = 20, .., 2s any 2s

Dumas [3] 2k s 2M + 1A 21, .., 2s i = 20, .., 2s 2 2s

ModInv pk k 1M 1 i = 1, .., k any any

k 1M + 1A k

ModInv 2k k 1A k i = 1, .., k 2 any

There are three aspects of these modular inversion algorithms, and the interpretation
of their complexity results should take them into account.

1. These algorithms come in two flavors: linear versus logarithmic steps, i.e., those
requiring k steps versus those requiring s = log2(k) steps. There are 3 algo-
rithms requiring logarithmic time which are Arazi and Qi Algorithm 3, and
Dumas Algorithms for modulus pk and 2k. The remaining 5 algorithms require

14



O(k) steps. However, it is not automatically concluded that the logarithmic
time algorithms are superior. First of all, this will depend on the size of k.
As we have discussed in Section 2, the most common use of the modular in-
version algorithm is for the implementation of the Montgomery multiplication
algorithm. In regard to this application, we note The classical Montgomery
algorithm [11] requires k to be as large as the size of the RSA modulus n, thus,
512 to 2048. Here, the linear versus logarithmic complexity would be hugely
different. However, the classical algorithm is hardly used in practice. The most
deployed implementations use the CIOS algorithm [9] which chooses k to be
the word size of the processor. If k = 32, then s = log2(32) = 5, and thus,
the difference between linear versus logarithmic is not that great. For exam-
ple, comparing Algorithm 4 to ModInverse algorithm, we see that the former
requires 5 · (3M + 2A) operations while the latter requires 32 · A operations.
In modern processors, a multiplication operations requires 4 or more cycles,
while the addition requires just one cycle. Taking M = 4A, we conclude that
Algorithm 4 requires 5 · (12A + 2A) = 70A time however ModInverse requires
only 32A.

2. The second point about comparing these 8 algorithms is that they can be divided
into 2 sets: algorithms computing the inverse mod pk for any value of k versus
algorithms that work only for specific values of k, here namely, for those k
that is a power of 2. The modular inversion algorithms that work for any k
are the Dussé and Kaliski Algorithm, Arazi and Qi Algorithms 2 and 3, and
ModInverse Algorithms for pk and 2k. The remaining 3 algorithms compute the
inverse mod pk where k = 2s. It is not clear if any of these 3 algorithms can be
used to compute the inverse for an arbitrary power of p.

3. The thid point about comparing these 8 algorithms is that they can be divided
into 3 sets: 1) The first category of algorithms (Arazi and Qi Algorithms 2
and 3) compute the inverse for one single modulus (that is mod 2k for a given
k). 2) The second category of algorithms (Arazi and Qi Algorithm 4, Dumas
Algorithms for pk and 2k) compute the inverse for s moduli, specifically for
p2

1
, p2

2
, . . . , p2

s
, in other words, only for certain power of 2 powers of p. 3) The

third category of algorithms (Dussé and Kaliski Algorithm and ModInverse
Algorithms for pk and 2k), on the other hand, compute the inverse mod pi for
i = 1, 2, . . . , k.

4. Finally, we note that the ModInverse algorithms are the only algorithms that
produce the digits (base p or 2) of the inverse directly, starting from the least
significant digits proceeding to the most significant. These digit-by-digit arith-
metic algorithms are also named as on-line arithmetic. Such algorithms intro-
duce parallelism between sequential operations by overlapping these operations
in a digit-pipelined fashion [5].

15



8 Conclusions

We have introduced a new algorithm for computing the inverse a−1 (mod pk) given a
prime p and a ∈ [1, p−1]. The algorithm is based on the exact solution of linear equa-
tions using p-adic expansions, due to Dixon [2]. The new algorithm starts with the
initial value c = a−1 (mod p) and iteratively computes the inverse x = a−1 (mod pk).
The binary version of the proposed algorithm (that is, when p = 2) is significantly
more efficient than the existing algorithms for computing a−1 (mod 2k) when k is
small, which is the case for the CIOS Montgomery multiplication algorithm. More-
over, the proposed algorithm computes all inverses mod pi or 2i for i = 1, 2, . . . , k and
work for an arbitrary k. We have also described and analyzed 6 existing algorithms,
and provided an extensive comparison and interpretation o the proposed algorithm.

9 Acknowledgements

The author thanks to Francois Grieu for comments in [6], Watson Ladd for comments
on Dixon’s algorithm being actually due to Hensel, Markku-Juhani Olavi Saarinen
for comments on Newton-Raphson algorithm, and Michael Scott for reminding the
references [1, 3].

References

[1] O. Arazi and H. Qi. On calculating multiplicative inverses modulo 2m. IEEE
Transactions on Computers, 57(10):1435–1438, October 2008.

[2] J. D. Dixon. Exact solution of linear equations using p-adic expansions. Nu-
merische Mathematik, 40(1):137–141, 1982.

[3] J.-G. Dumas. On Newton-Raphson iteration for multiplicative inverses mod-
ulo prime powers. arXiv:1209.6626v3, https://arxiv.org/abs/1209.6626v3,
2012.

[4] S. R. Dussé and B. S. Kaliski Jr. A cryptographic library for the Motorola
DSP56000. In I. B. Damg̊ard, editor, Advances in Cryptology - EUROCRYPT
90, pages 230–244. Springer, LNCS Nr. 473, 1990.

[5] M. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann Publishers,
2004.

[6] F. Grieu. Answer to ‘How to determine the multiplicative inverse modulo 64
(or other power of two)?’. StackExchange Cryptography, https://crypto.

stackexchange.com/questions/47493, 2017.

16



[7] B. S. Kaliski Jr. The Montgomery inverse and its applications. IEEE Transac-
tions on Computers, 44(8):1064–1065, 1995.

[8] Ç. K. Koç. High-Speed RSA Implementation. Technical Report TR 201, RSA
Laboratories, 73 pages, November 1994.

[9] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Montgomery
multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.

[10] E. V. Krishnamurthy and V. K. Murty. Fast iterative division of p-adic numbers.
IEEE Transactions on Computers, 32(4):396–398, April 1983.

[11] P. L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44(170):519–521, April 1985.

[12] E. Savaş and Ç. K. Koç. The Montgomery modular inverse - revisited. IEEE
Transactions on Computers, 49(7):763–766, July 2000.

[13] E. Savaş and Ç. K. Koç. Montgomery inversion. Journal of Cryptographic En-
gineering, to appear, 2017.

17


