A New Algorithm for Inversion $\bmod p^{k}$

Çetin Kaya Koç
University of California Santa Barbara
koc@cs.ucsb.edu

June 9, 2017

Abstract

A new algorithm for computing $x=a^{-1}\left(\bmod p^{k}\right)$ is introduced. It is based on the exact solution of linear equations using p-adic expansions. It starts with the initial value $c=a^{-1}(\bmod p)$ and iteratively computes the digits of the inverse $x=a^{-1}\left(\bmod p^{k}\right)$ in base p. The $\bmod 2$ version of the algorithm is significantly more efficient than the existing algorithms for small values of k. Moreover, the proposed algorithm computes all inverses $\bmod p^{i}$ or $\bmod 2^{i}$ for $i=1,2, \ldots, k$, and work for an arbitrary k. We also describe and analyze existing algorithms, and compare them to the proposed algorithm.

1 Introduction

Hardware and software realizations of public-key cryptographic algorithms require implementations the multiplicative inverse $\bmod p$ (prime) or n (composite). When the modulus is prime, we can compute the multiplicative inverse using Fermat's method as $a^{-1}=a^{p-2}(\bmod p)$. When it is composite, we can use Euler's method to compute the multiplicative inverse as $a^{-1}=a^{\phi(n)-1}(\bmod n)$, provided that we know $\phi(n)$. On the other hand, the extended Euclidean algorithm works for both prime and composite modulus

$$
\begin{aligned}
(u, v) & \leftarrow \operatorname{EEA}(a, n) \\
u \cdot a-v \cdot n & =1 \\
a^{-1} & =u \quad(\bmod n)
\end{aligned}
$$

The classical extended Euclidean algorithm requires division operations at each step, which is not preferred. On the other hand, variations of the binary extended Euclidean algorithms use shift, addition and subtraction operations [7, 12, 13]. We must note however that most inversion algorithms are variants of the classical Euclidean algorithm for computing the greatest common divisor of two integers $g=\operatorname{gcd}(a, n)$.

2 Inversion $\bmod 2^{k}$

The Montgomery multiplication algorithm is introduced by Peter Montgomery [11] in 1985. It computes the product $c=a \cdot b \cdot r^{-1}(\bmod n)$ for an arbitrary modulus n, without actually performing any mod n reductions. Interestingly, the algorithm does not directly need $r^{-1}(\bmod n)$, but it requires another quantity n^{\prime} which is related to it. The steps of the classical Montgomery multiplication algorithm are given below.

```
function Montgomery \((a, b)\)
input: \(a, b, n, r, n^{\prime}\)
output: \(u=a \cdot b \cdot r^{-1} \bmod n\)
1: \(\quad t \leftarrow a \cdot b\)
2: \(\quad m \leftarrow t \cdot n^{\prime}(\bmod r)\)
3: \(\quad u \leftarrow(t+m \cdot n) / r\)
4: \(\quad\) if \(u \geq n\) then \(u \leftarrow u-n\)
5: \(\quad\) return \(u\)
```

None of the steps of the Montgomery multiplication algorithm requires mod n calculations; instead they perform mod r reduction in Step 2 and division by r in Step 3. By selecting $r=2^{k}$ where $k>\log _{2}(n)$, these calculations are trivially implemented in software or hardware. The selection of $r=2^{k}$ requires that n be odd, which is often the case in cryptography.

The Montgomery multiplication algorithm makes use of a special quantity n^{\prime} which is one of the numbers produced by the extended Euclidean algorithm with inputs 2^{k} and n :

$$
\begin{aligned}
\left(u, n^{\prime}\right) & \leftarrow \operatorname{EEA}\left(2^{k}, n\right) \\
u \cdot 2^{k}-n^{\prime} \cdot n & =1 \\
n^{\prime} & =-n^{-1} \quad\left(\bmod 2^{k}\right)
\end{aligned}
$$

In other words, the Montgomery multiplication algorithm requires the computation of $n^{-1}\left(\bmod 2^{k}\right)$ rather than $r^{-1}(\bmod n)$. We may expect that inversion with respect to a special modulus such as 2^{k} might be easier than inversion with respect to an arbitrary modulus. Indeed this is the case.

Several algorithms for computing multiplicative inverse $\bmod 2^{k}$ have appeared in the literature some of which are significantly simpler than the basic EEA algorithm. In the following section, we review these algorithm.

3 Existing Algorithms for Inversion mod 2^{k}

Dussé and Kaliski [4] gave an efficient algorithm for computing the inverse $x=a^{-1}$ $\left(\bmod 2^{k}\right)$ for an odd a, therefore, $\operatorname{gcd}\left(a, 2^{k}\right)=1$. Arazi and $\mathrm{Qi}[1]$ review 3 known
algorithms (as of 2008), and introduce a new algorithm (Algorithm 4) for computing $a^{-1}\left(\bmod 2^{k}\right)$, where $k=2^{s}$. Furthermore, Dumas proved [3] that Algorithm 4 in [1] is a specific case of Hensel lifting [10], and introduced an iterative formula for computing $x=a^{-1}\left(\bmod p^{k}\right)$, where $k=2^{s}$. In this section, we describe these algorithms.

3.1 Dussé and Kaliski Algorithm

Dussé and Kaliski algorithm [4] is based on a specialized version of the extended Euclidean algorithm for computing the inverse. The pseudocode is given below [4, 8].

```
function DusseKaliski(a, 2
input: a,k where }a\mathrm{ is odd and }a<\mp@subsup{2}{}{k
output: }x=\mp@subsup{a}{}{-1}\operatorname{mod}\mp@subsup{2}{}{k
1:}\quadx\leftarrow
2: for }i=2\mathrm{ to }
2a: if 2 i-1 <a\cdotx(mod 2
2aa: }\quadx\leftarrowx+\mp@subsup{2}{}{i-1
3: return }
```

As an example, consider the computation of $23^{-1}\left(\bmod 2^{6}\right)$. Here, we have $a=23$ and $k=6$, and we start with $x=1$.

Table 1: Dussé and Kaliski Algorithm for computing $23^{-1}\left(\bmod 2^{6}\right)$.

i	2^{i-1}	2^{i}	x	$a \cdot x\left(\bmod 2^{i}\right)$	$2^{i-1} \stackrel{?}{<} a \cdot x$	x
2	2	4	1	$(23 \cdot 1 \bmod 4) \rightarrow 3$	$2<3$	$1+2=3$
3	4	8	3	$(23 \cdot 3 \bmod 8) \rightarrow 5$	$4<5$	$3+4=7$
4	8	16	7	$(23 \cdot 7 \bmod 16) \rightarrow 1$	$8 \nless 1$	7
5	16	32	7	$(23 \cdot 7 \bmod 32) \rightarrow 1$	$16 \nless 1$	7
6	32	64	7	$(23 \cdot 7 \bmod 64) \rightarrow 33$	$32<33$	$7+32=39$

At the end of the algorithm we find $x=39$, implying $23^{-1}=39\left(\bmod 2^{6}\right)$; this is indeed correct since $23 \cdot 39=1\left(\bmod 2^{6}\right)$. We note that during its iteration the Dussé and Kaliski algorithm actually computes consecutive inverses $23^{-1}\left(\bmod 2^{i}\right)$ for $i=1,2,3,4,5,6$:

$$
\begin{aligned}
& 23^{-1}=1 \quad(\bmod 2) \\
& 23^{-1}=3\left(\bmod 2^{2}\right) \\
& 23^{-1}=7 \quad\left(\bmod 2^{3}\right) \\
& 23^{-1}=7 \quad\left(\bmod 2^{4}\right) \\
& 23^{-1}=7 \quad\left(\bmod 2^{5}\right) \\
& 23^{-1}=39 \quad\left(\bmod 2^{6}\right)
\end{aligned}
$$

3.2 Algorithm 2 in Arazi and Qi Paper

Arazi and Qi [1] review three existing algorithns, and introduce a new algorithm. All 4 algorithms in [1] compute $x=a^{-1}\left(\bmod 2^{k}\right)$. First of all, Algorithm 1 is Dussé and Kaliski algorithm. Algorithm 2 is described in the narrative of the article [1] without explicitly giving its steps. We find it useful to describe this algorithm and give its pseudocode. Assume a and x are k-bit binary numbers. Since a and x are both odd, i.e., $A_{0}=X_{0}=1$, they can be written as

$$
\begin{aligned}
& a=\left(A_{k-1} A_{k-2} \cdots A_{1} A_{0}\right)=\left(A_{k-1} A_{k-2} \cdots A_{1} 1\right) \\
& x=\left(X_{k-1} X_{k-2} \cdots X_{1} X_{0}\right)=\left(X_{k-1} X_{k-2} \cdots X_{1} 1\right)
\end{aligned}
$$

The main idea of Algorithm 2 is that the equality

$$
a \cdot x=1=(00 \cdots 01)_{2} \quad\left(\bmod 2^{k}\right)
$$

implies the least significant k bits of $y=a \cdot x$ is equal to $(00 \cdots 01)_{2}$, and y can be written as

$$
\begin{equation*}
y=a \cdot x=(\overbrace{Z_{k-1} \cdots Z_{1} Z_{0}}^{k \text { bits }} \overbrace{00 \cdots 01}^{k \text { bits }})_{2} \tag{1}
\end{equation*}
$$

Our aim is to compute the remaining bits of x, i.e., X_{i} for $i=1,2, \ldots, k-1$, making sure that as y is iteratively computed, its least significant k bits become equal to $(00 \cdots 01)_{2}$ according to Equation (1).

Notice that the LSB of a is 1 , and thus, the i th bit of $2^{i} \cdot a$ is equal to 1 for any $i \in[1, k-1]$. Iterative computation of y is accomplished by starting with $y=a$, adding $2^{i} \cdot a$ to y if $Y_{i}=1$, since this would make the resulting Y_{i} zero. By proceeding to the left, we make all $Y_{i}=0$ for $i=1,2, \ldots, k-1$, except $Y_{0}=1$. The steps of Algorithm2 are given below. It computes the bits of the inverse x from right to left, at the i th step either adding $2^{i} \cdot a$ to y or not, and determining X_{i} as 1 or zero.

```
function Algorithm2( \(a, 2^{k}\) )
input: \(a, k\) where \(a\) is odd and \(a<2^{k}\)
output: \(x=a^{-1} \bmod 2^{k}\)
1: \(\quad y \leftarrow a\)
2: \(\quad X_{0} \leftarrow 1\)
3: \(\quad\) for \(i=1\) to \(k-1\)
3a: \(\quad\) if \(Y_{i}=1\)
3aa: \(\quad y \leftarrow y+2^{i} \cdot a\)
3ab: \(\quad X_{i} \leftarrow 1\)
3b: else
3ba: \(\quad X_{i} \leftarrow 0\)
4: return \(x=\left(X_{k-1} \cdots X_{1} X_{0}\right)_{2}\)
```

The computation of $23^{-1}\left(\bmod 2^{6}\right)$ using Algorithm2 is illustrated in Table 2. The initial value of y is $a=23$, and at each step Y_{i} is checked; if $Y_{i}=1$, then $2^{i} \cdot a$ is added to y.

Table 2: Algorithm 2 for computing $23^{-1}\left(\bmod 2^{6}\right)$.

i	y	Y_{i}	$y=y+2^{i} \cdot a$	X_{i}
0	$23=(000000010111)$	1	$y=23$	1
1	$23=(000000010111)$	1	$y=23+2 \cdot 23 \rightarrow 69$	1
2	$69=(000001000101)$	1	$y=69+2^{2} \cdot 23 \rightarrow 161$	1
3	$161=(000010100001)$	0	$y=161$	0
4	$161=(000010100001)$	0	$y=161$	0
5	$\begin{aligned} & 161=\left(\begin{array}{l} 000010100001 \end{array}\right) \\ & 897=(001110000001) \end{aligned}$	1	$y=161+2^{5} \cdot 23 \rightarrow 897$	1

As the progress of the algorithm shows the lower $k=6$ bits of y eventually becomes (000001). The inverse x is computed as $x=(100111)_{2}=39$. this is indeed correct since $23 \cdot 39=1\left(\bmod 2^{6}\right)$.

3.3 Algorithm 3 in Arazi and Qi Paper

Arazi and Qi describe Algorithm 3 in detail [1], and give pseudocode. This algorithm has two stages: in the first stage which is called Algorithm 3a, the quantity $-v=$ $\left(2^{k}\right)^{-1}(\bmod a)$ is computed. In the second stage (Algorithm 3b), the quantity $-v$ is used to compute $x=a^{-1}\left(\bmod 2^{k}\right)$. This algorithm is essentially the extended Euclidean algorithm. Given $\operatorname{gcd}\left(a, 2^{k}\right)=1$, the EEA computes

$$
\begin{aligned}
(x, v) & \leftarrow \operatorname{EEA}\left(a, 2^{k}\right) \\
x \cdot a-v \cdot 2^{k} & =1 \\
a^{-1} & =x \quad\left(\bmod 2^{k}\right) \\
\left(2^{k}\right)^{-1} & =-v \quad(\bmod a)
\end{aligned}
$$

After $-v$ is available, we can compute x using the identity

$$
x=\frac{1+v \cdot 2^{k}}{a}
$$

which requires a shift (the computation of $v \cdot 2^{k}$), an increment operation, and a division by a operation (which is very expensive). Algorithm 3 is the least efficient of all 4 algorithms in [1], since it requires a full division with k-bit integers in the second stage of the algorithm.

The computation of $-v=\left(2^{k}\right)^{-1}(\bmod a)$ for an odd a is quite easy, due to the Montgomery reduction algorithm called CIOS [9]. Written also as $-v=2^{-k}(\bmod a)$,
we first compute this quantity $v=\left(V_{k-1} \cdots V_{1} V_{0}\right)$ using the CIOS algorithm at the end of Step 2, and then compute the inverse x in Step 3.

```
function Algorithm3 ( \(a, 2^{k}\) )
input: \(a, k\) where \(a\) is odd and \(a<2^{k}\)
output: \(x=a^{-1} \bmod 2^{k}\)
1: \(\quad v \leftarrow 1\)
2: \(\quad\) for \(i=0\) to \(k-1\)
2a: \(\quad\) if \(V_{0}=1\)
2aa: \(\quad v \leftarrow v+a\)
2b: \(\quad v \leftarrow v / 2\)
3: \(\quad x \leftarrow\left(1+v \cdot 2^{k}\right) / a\)
4: return \(x\)
```

An important property of Algorithm 3 is that the quantity $\left(1+v \cdot 2^{k}\right)$ is divisible by a. This is easily proved by noting that $-v=2^{-k}(\bmod a)$ implies $-v \cdot 2^{k}=1(\bmod a)$, and thus, $-v \cdot 2^{k}=1+N \cdot a$ for some integer N. Therefore, $1+v \cdot 2^{k}=-N \cdot a$.

Steps 1 and 2 of Algorithm 3 for computing $23^{-1}\left(\bmod 2^{6}\right)$ is illustrated in Table 3. The initial value is $v=1$, and at each step V_{0} is checked; if $V_{0}=1$, then a is added to v, and v is shifted to left (i.e., divided by 2).

Table 3: Steps 1 and 2 of Algorithm 3 for computing $23^{-1}\left(\bmod 2^{6}\right)$.

i	v	V_{0}	$v=v+a$	$v=v / 2$
0	$1=(000001)$	1	$v=1+23 \rightarrow 24$	$v=24 / 2 \rightarrow 12$
1	$12=(001100)$	0	$v=12$	$v=12 / 2 \rightarrow 6$
2	$6=(000110)$	0	$v=6$	$v=6 / 2 \rightarrow 3$
3	$3=(000011)$	1	$v=3+23 \rightarrow 26$	$v=26 / 2 \rightarrow 13$
4	$13=(001101)$	1	$v=13+23 \rightarrow 36$	$v=36 / 2 \rightarrow 18$
5	$18=(010010)$	0	$v=18$	$v=18 / 2 \rightarrow 9$

At the end of Step 2 for $i=5$, we obtain $-v=9$. In Step 3, we use the formula $\left(1+v \cdot 2^{k}\right) / a$ and the value of $-v=9$, to compute the inverse as $x=\left(1+(-9) \cdot 2^{6}\right) / 23=$ -25 , which is equal to $39\left(\bmod 2^{6}\right)$.

3.4 Algorithm 4 in Arazi and Qi Paper

Algorithm 4 is the last one described in [1], and it is the contribution of the authors. It is based on the idea that, given $a=\left(a_{H} a_{L}\right)=a_{H} \cdot 2^{i}+a_{L}$ where a_{H} and a_{L} are the upper and lower i bits of the $2 i$-bit binary number a, the inverse $x=a^{-1}\left(\bmod 2^{2 i}\right)$ can be computed from the inverse of $a_{L} \bmod 2^{i}$. Algorithm 4 computes the inverse of $a \bmod 2^{k}$ where k is a power of 2 , that is, it computes $x=a^{-1}\left(\bmod 2^{2^{s}}\right)$, and it
accomplishes this computation in $s=\log _{2}(k)$ steps. In other words, the number of steps is logarithmic in k.

Given $a=\left(a_{H} a_{L}\right)=a_{H} \cdot 2^{i}+a_{L}$ and $x=\left(x_{H} x_{L}\right)=x_{H} \cdot 2^{i}+x_{L}$, we assume $x_{L}=a_{L}^{-1}\left(\bmod 2^{i}\right)$ is already computed and available. Note that $a_{H}, a_{L}, x_{H}, x_{L}$ are all i-bit integers. Algorithm 4 computes the upper part x_{H} of the inverse $x=a^{-1}$ $\left(\bmod 2^{2 i}\right)$ in 3 steps:

1. Compute the product $a_{L} \cdot x_{L}=\left(b_{H} b_{L}\right)=b_{H} \cdot 2^{i}+b_{L}=b_{H} \cdot 2^{i}+1$.
2. Compute the product $a_{H} \cdot x_{L}=\left(c_{H} c_{L}\right)=c_{H} \cdot 2^{i}+c_{L}$.
3. Compute the expression $x_{H}=-\left(b_{H}+c_{L}\right) \cdot x_{L}\left(\bmod 2^{i}\right)$.
4. The inverse is given as $x=\left(x_{H} x_{L}\right)=x_{H} \cdot 2^{i}+x_{L}$.

An algebraic proof is given in [1]. Here we illustrate this method for the 32-bit number $a=2583209455=(99 f 8 a 5 e f)_{16}$. This gives $a_{H}=39416=(99 f 8)_{16}$ and $a_{L}=42479=(a 5 e f)_{16}$. Furthermore, we assume the inverse of the lower part $a_{L} \bmod$ 2^{16} is already computed and available: $x_{L}=a_{L}^{-1}\left(\bmod 2^{16}\right)$ as $x_{L}=10511=(290 f)_{16}$. We then compute x_{H} using

1. $a_{L} \cdot x_{L}=42479 \cdot 10511=446496769=(1 a 9 d 0001)_{16}=\left(b_{H} b_{L}\right)$.

This gives $b_{H}=6813=(1 a 9 d)_{16}$ and $b_{L}=1$.
2. $a_{H} \cdot x_{L}=39416 \cdot 10511=414301576=(18 b 1 b d 88)_{16}=\left(c_{H} c_{L}\right)$.

This gives $c_{H}=(18 b 1)_{16}=6321$ and $c_{L}=(b d 88)_{16}=48520$.
3. $x_{H}=-(6813+48520) \cdot 10511\left(\bmod 2^{16}\right)$. This gives $x_{H}=26837=(68 d 5)_{16}$.
4. The inverse: $x=\left(x_{H} x_{L}\right)=(68 d 5290 f)_{16}=1758800143$.

This is indeed correct $2583209455 \cdot 1758800143=1\left(\bmod 2^{32}\right)$.
Algorithm 4 is a essentially a recursive algorithm. The inverse of $a \bmod 2^{2 i}$ can be used to compute the inverse $a \bmod 2^{4 i}$, and so on. However, it can also be made iterative by first computing the inverse mod 2^{1}, using this inverse to compute the inverse $\bmod 2^{2}$, and so on. The authors describe Algorithm 4 in the narrative of the article [1], however they do not provide a pseudocode. Below we give the pseudocode for computing the inverse $\bmod 2^{k}$ for $k=2^{s}$. Here, the binary expansion of a is expressed as $a=\left(A_{k-1} \cdot A_{1} A_{0}\right)$ and $k=2^{s}$ for some integer s.

$$
\begin{aligned}
& \text { function Algorithm } 4\left(a, 2^{k}\right) \\
& \text { input: } a, k \text { where } a \text { is odd, } a<2^{k} \text {, and } k=2^{s} \\
& \text { output: } x=a^{-1} \bmod 2^{k} \\
& \text { 1: } \quad a_{L} \leftarrow A_{0} \\
& \text { 2: } \quad a_{H} \leftarrow A_{1} \\
& \text { 3: } \quad x_{L} \leftarrow 1
\end{aligned}
$$

$$
\begin{array}{lc}
\text { 4: } & \text { for } i=1 \text { to } s \\
\text { 4a: } & \left(b_{H} b_{L}\right) \leftarrow a_{L} \cdot x_{L} \\
\text { 4b: } & \left(c_{H} c_{L}\right) \leftarrow a_{H} \cdot x_{L} \\
\text { 4c: } & x_{H} \leftarrow-\left(b_{H}+c_{L}\right) \cdot x_{L}\left(\bmod 2^{2^{i-1}}\right) \\
\text { 4d: } & a_{L} \leftarrow\left(A_{2^{i}-1} \cdots A_{0}\right)_{2} \\
\text { 4e: } & a_{H} \leftarrow\left(A_{2^{i+1}-1} \cdots A_{2^{i}}\right)_{2} \\
\text { 4f: } & x_{L} \leftarrow\left(x_{H} x_{L}\right) \\
\text { 4: } & \text { return } x=\left(x_{H} x_{L}\right)
\end{array}
$$

Table 4 illustrates the inverse computation $x=a^{-1}\left(\bmod 2^{32}\right)$ for $a=(99 f 8 a 5 e f)_{16}$, where $s=5$. The algorithm computes the inverse $x=a^{-1}\left(\bmod 2^{32}\right)$, by successively computing the inverse $\bmod 2^{i}$ for $i=1,2,4,8,16,32$.

Table 4: Algorithm 4 for computing $(99 f 8 a 5 e f)_{16}^{-1}\left(\bmod 2^{32}\right)$.

s	$\left(a_{H} a_{L}\right)$	x_{L}	$\left(b_{H} b_{L}\right) \leftarrow a_{L} \cdot x_{L}$	$\left(c_{H} c_{L}\right) \leftarrow a_{H} \cdot x_{L}$	x_{H}	$\left(x_{H} x_{L}\right)$
1	$(11)_{2}$	$(1)_{2}$	$(01)_{2}$	$(01)_{2}$	$(1)_{2}$	$(11)_{2}$
2	$(1111)_{2}$	$(11)_{2}$	$(1001)_{2}$	$(1001)_{2}$	$(11)_{2}$	$(1111)_{2}$
3	$(e f)_{16}$	$(f)_{16}$	$(e 1)_{16}$	$(d 2)_{16}$	$(0)_{16}$	$(0 f)_{16}$
4	$(a 5 \text { ef })_{16}$	$(0 f)_{16}$	$(0 e 01)_{16}$	$(09 a b)_{16}$	$(29)_{16}$	$(290 f)_{16}$
5	$(99 f 8 \text { a5ef })_{16}$	$(290 f)_{16}$	$(1 a 9 d 0001)_{16}$	$(18 b 1 b d 88)_{16}$	$(68 d 5)_{16}$	$(68 d 5290 f)_{16}$

The result is indeed correct since $(99 f 8 a 5 e f)_{16} \cdot(68 d 5290 f)_{16}=1\left(\bmod 2^{32}\right)$. We note that Algorithm 4 actually computes $a^{-1} \bmod 2^{2^{i}}$ for $i=0,1,2,3,4,5$:

$$
\begin{aligned}
(99 f 8 a 5 e f)_{16}^{-1} & =(1)_{2} \quad(\bmod 2) \\
(99 f 8 a 5 e f)_{16}^{-1} & =(11)_{2} \quad\left(\bmod 2^{2}\right) \\
(99 f 8 a 5 e f)_{16}^{-1} & =(f)_{16} \quad\left(\bmod 2^{4}\right) \\
(99 f 8 a 5 e f)_{16}^{-1} & =(0 f)_{16} \quad\left(\bmod 2^{8}\right) \\
(99 f 8 a 5 e f)_{16}^{-1} & =(290 f)_{16} \quad\left(\bmod 2^{16}\right) \\
(99 f 8 a 5 e f)_{16}^{-1} & =(68 d 5290 f)_{16} \quad\left(\bmod 2^{32}\right)
\end{aligned}
$$

However, inverses modulo other powers of 2 are not computed. While the algorithm takes $s=\log _{2}(k)$ steps, it also computes $s=\log _{2}(k)$ inverses. It is not clear if Algorithm 4 as formulated can be generalized for an arbitrary k, say $k=29$; it seems that it cannot be. The authors describe a method (without detail) in Section 2.2 of [1] for dealing with a composite k, but they do not give a method for computing the inverse for an arbitrary k.

3.5 Newton-Raphson Iteration by Dumas

Dumas in [3] shows that Algorithm 4 given by Arazi and Qi [1] is actually a specific case of Hensel lifting [10], and provides a proof of the derivation of it. Dumas also
gives Hensel's lemma mod p^{k} and its proof from Newton-Raphson iteration. This results in several formulas for computing $a^{-1}\left(\bmod 2^{k}\right)$ for $k=2^{s}$, one of which is Algorithm 4. Dumas studies different implementation variants of this iteration and shows that the explicit formula works well for small exponent values but it is slower or large exponent, for example, more than 700 bits. An important contribution of Dumas is an iterative formula which computes $x_{s}=a^{-1}\left(\bmod p^{2^{s}}\right)$ for a prime p, by iterating over $i=1,2, \ldots, s$ as

$$
\begin{aligned}
x_{0} & =a^{-1}(\bmod p) \\
x_{i} & =x_{i-1} \cdot\left(2-a \cdot x_{i-1}\right) \bmod p^{2^{i}}
\end{aligned}
$$

By selecting $p=2$, the formula also specializes to the binary case. The number of steps of the iteration is $s=\log _{2}(k)$. Below we illustrate the computation of $x_{s}=a^{-1}$ $\left(\bmod p^{2^{s}}\right)$ for $a=12, p=5$, and $s=4$. The iteration starts with $x_{0}=12^{-1}(\bmod 5)$, which is found as $x_{0}=3$, and proceeds over $i=1,2,3,4$.

Table 5: Dumas iteration for computing $12^{-1}\left(\bmod 5^{16}\right)$.

i	x_{i-1}	$p^{2^{i}}$	$x_{i}=x_{i-1} \cdot\left(2-a \cdot x_{i-1}\right) \bmod p^{2^{i}}$
1	$x_{0}=3$	5^{2}	$x_{1}=3 \cdot(2-12 \cdot 3) \rightarrow 23$
2	$x_{1}=23$	5^{4}	$x_{2}=23 \cdot(2-12 \cdot 23) \rightarrow 573$
3	$x_{2}=573$	5^{8}	$x_{3}=573 \cdot(2-12 \cdot 573) \rightarrow 358073$
4	$x_{3}=358073$	5^{16}	$x_{4}=358073 \cdot(2-12 \cdot 358073) \rightarrow 139872233073$

The result $x_{4}=139872233073$ is indeed correct since $12 \cdot 139872233073=1\left(\bmod 5^{16}\right)$. We note that during its iteration the Dumas algorithm actually computes consecutive inverses $12^{-1}\left(\bmod 5^{2^{i}}\right)$ for $i=0,1,2,3,4$:

$$
\begin{aligned}
& 12^{-1}=3(\bmod 5) \\
& 12^{-1}=23\left(\bmod 5^{2}\right) \\
& 12^{-1}=573\left(\bmod 5^{4}\right) \\
& 12^{-1}=358073 \quad\left(\bmod 5^{8}\right) \\
& 12^{-1}=139872233073\left(\bmod 5^{16}\right)
\end{aligned}
$$

However, inverses modulo other powers of 5 are not computed. While the algorithm takes $s=\log _{2}(k)$ steps, it also computes $s=\log _{2}(k)$ inverses.

The binary version of the algorithm is similar, but it is more compact than Algorithm 4. It uses the same formula as for p, but taking $p=2$ and assuming that a is odd. The starting value $x_{0}=1$ since $p=2$ and a is odd. Below we illustrate the computation of $x_{s}=a^{-1}\left(\bmod p^{2^{s}}\right)$ for $a=23, p=2$, and $s=5$. The iteration starts with $x_{0}=23^{-1}(\bmod 2)$, which is found as $x_{0}=1$, and proceeds over $i=1,2,3,4,5$ by computing $x_{i}=x_{i-1} \cdot\left(2-a \cdot x_{i-1}\right) \bmod 2^{2^{i}}$.

Table 6: Dumas iteration for computing $23^{-1}\left(\bmod 2^{32}\right)$.

i	x_{i-1}	$2^{2^{i}}$	$x_{i}=x_{i-1} \cdot\left(2-a \cdot x_{i-1}\right) \bmod 2^{2^{i}}$
1	$x_{0}=1$	2^{2}	$x_{1}=1 \cdot(2-23 \cdot 1) \rightarrow 3$
2	$x_{1}=3$	2^{4}	$x_{2}=3 \cdot(2-23 \cdot 3) \rightarrow 7$
3	$x_{2}=7$	2^{8}	$x_{3}=7 \cdot(2-23 \cdot 7) \rightarrow 167$
4	$x_{3}=167$	2^{16}	$x_{4}=167 \cdot(2-23 \cdot 167) \rightarrow 14247$
5	$x_{4}=14247$	2^{32}	$x_{5}=14247 \cdot(2-23 \cdot 14247) \rightarrow 3921491879$

The result $x_{5}=3921491879$ is indeed correct since $23 \cdot 3921491879=1\left(\bmod 2^{16}\right)$. We note that during its iteration the Dumas algorithm actually computes $13^{-1}\left(\bmod 2^{2^{i}}\right)$ for $i=0,1,2,3,4,5$:

$$
\begin{aligned}
& 23^{-1}=1(\bmod 2) \\
& 23^{-1}=3\left(\bmod 2^{2}\right) \\
& 23^{-1}=7\left(\bmod 2^{4}\right) \\
& 23^{-1}=167 \quad\left(\bmod 2^{8}\right) \\
& 23^{-1}=14247 \quad\left(\bmod 2^{16}\right) \\
& 23^{-1}=3921491879 \quad\left(\bmod 2^{32}\right)
\end{aligned}
$$

However, inverses modulo other powers of 2 are not computed.

4 A New Algorithm for Inversion mod p^{k}

We introduce a new algorithm for computing $x=a^{-1}\left(\bmod p^{k}\right)$ for a prime p and arbitrary positive integer k. Our algorithm relies on Dixon's algorithm [2] for exact solution linear equations using p-adix expansions, whose general idea is credited to German mathematician Kurt Wilhelm Sebastian Hensel. Dixon's algorithm aims to exactly solve a linear system of equations with integer coefficients, such as $\mathrm{A} \cdot \mathrm{x}=\mathrm{b}$ in the sense that the solutions are obtained as rational numbers rather than approximate values using floating-point arithmetic.

Similar to Dixon's approach, we formulate the inversion problem as the exact solution of the linear equation

$$
a \cdot x=1 \quad\left(\bmod p^{k}\right)
$$

for a prime p, an arbitrary positive integer $k>1$ and $\operatorname{gcd}(a, p)=1$ or $1<a<p$. By solving this equation, we compute the inverse $x=a^{-1}\left(\bmod p^{k}\right)$. The algorithm starts with the computation of

$$
c=a^{-1} \quad(\bmod p)
$$

using the extended Euclidean algorithm. It is more often the case that the prime p is small, thus, this computation does not constitute a bottleneck. In fact, the case of $p=2$ is trivial, since $c=1$ for any odd a. The algorithm then iteratively finds the digits of x expressed in base p such that $x=a^{-1}\left(\bmod p^{k}\right)$. In other words, the algorithm computes the vector $\left(X_{k-1} \cdots X_{1} X_{0}\right)_{p}$ with $X_{i} \in[0, p-1]$ such that

$$
x=\sum_{i=0}^{k-1} X_{i} \cdot p^{i}=X_{0}+X_{1} \cdot p+X_{2} \cdot p^{2}+\cdots+X_{k-1} \cdot p^{k-1}
$$

$$
\begin{aligned}
& \text { function } \operatorname{ModInverse}\left(a, p^{k}\right) \\
& \text { input: } a, p, k \\
& \text { output: } x=a^{-1} \bmod p^{k} \\
& \text { 1: } \quad c \leftarrow a^{-1}(\bmod p) \\
& \text { 2: } \quad b_{0} \leftarrow 1 \\
& \text { 3: } \quad \text { for } i=0 \text { to } k-1 \\
& \text { 3a: } \\
& \text { 3b: } \quad X_{i} \leftarrow c \cdot b_{i}(\bmod p) \\
& \text { 4: } \quad \text { return } x=\left(x_{i+1}-a \cdot X_{i}\right) / p \\
& \text { 3a } \left.\cdots X_{1} X_{0}\right)_{p}
\end{aligned}
$$

Consider the computation of $12^{-1}\left(\bmod 5^{5}\right)$. We have $a=12, p=5$, and $k=5$. First we compute $c=a^{-1}(\bmod p)$, which is found as $c=12^{-1}=2^{-1}=3(\bmod 5)$. Starting with the initial value $b_{0}=1$, the algorithm proceeds for $i=0,1,2,3,4$ as follows.

Table 7: ModInverse Algorithm for computing $12^{-1}\left(\bmod 5^{5}\right)$.

i	b_{i}	$X_{i}=c \cdot b_{i} \bmod p$	$b_{i+1}=\left(b_{i}-a \cdot X_{i}\right) / p$
0	$b_{0}=1$	$X_{0}=(3 \cdot 1 \bmod 5) \rightarrow 3$	$b_{1}=(1-12 \cdot 3) / 5 \rightarrow-7$
1	$b_{1}=-7$	$X_{1}=(3 \cdot(-7) \bmod 5) \rightarrow 4$	$b_{2}=(-7-12 \cdot 4) / 5 \rightarrow-11$
2	$b_{2}=-11$	$X_{2}=(3 \cdot(-11) \bmod 5) \rightarrow 2$	$b_{3}=(-11-12 \cdot 2) / 5 \rightarrow-7$
3	$b_{3}=-7$	$X_{3}=(3 \cdot(-7) \bmod 5) \rightarrow 4$	$b_{4}=(-7-12 \cdot 4) / 5 \rightarrow-11$
4	$b_{4}=-11$	$X_{4}=(3 \cdot(-11) \bmod 5) \rightarrow 2$	\ldots

The algorithm computes x expressed in base 5 as $x=\left(X_{4} X_{3} X_{2} X_{1} X_{0}\right)_{5}=(24243)_{5}$. In decimal, this is equal to $2 \cdot 5^{3}+4 \cdot 5^{3}+2 \cdot 5^{2}+4 \cdot 5+3=1823$. Indeed $12^{-1}=$ $1823\left(\bmod 5^{5}\right)$ since $12 \cdot 1823=1\left(\bmod 5^{5}\right)$. Our algorithm actually computes 12^{-1} $\left(\bmod 5^{k}\right)$ for $k=1,2,3,4,5$, which are given in base 5 as

$$
\begin{aligned}
& 12^{-1}=(3)_{5}=3 \quad(\bmod 5) \\
& 12^{-1}=(43)_{5}=23 \quad\left(\bmod 5^{2}\right) \\
& 12^{-1}=(243)_{5}=73 \quad\left(\bmod 5^{3}\right) \\
& 12^{-1}=(4243)_{5}=573 \quad\left(\bmod 5^{4}\right) \\
& 12^{-1}=(24243)_{5}=1823 \quad\left(\bmod 5^{5}\right)
\end{aligned}
$$

5 Correctness of ModInverse

First of all, the term $\left(b_{i}-a \cdot X_{i}\right)$ in Step 3b is divisible by p for every i since

$$
b_{i}-a \cdot X_{i}=b_{i}-a \cdot c \cdot b_{i}=b_{i}-b_{i}=0 \quad(\bmod p)
$$

due to the fact that $a \cdot c=1(\bmod p)$. Therefore, b_{i} is integer for every $i \in[0, k-1]$. It also follows that when $i=0$, the term $\left(b_{0}-a \cdot X_{0}\right)=(1-a \cdot c)$ is divisible by p. Furthermore, the terms b_{i} and x_{i} are found as

$$
\begin{aligned}
b_{i} & =(1-a \cdot c)^{i} / p^{i} \\
b_{i} \cdot p^{i} & =(1-a \cdot c)^{i} \\
X_{i} & =c \cdot b_{i} \quad(\bmod p)
\end{aligned}
$$

for $i=0,1, \ldots, k-1$. The identity for b_{i} can be proven by induction on i.
The Basis Step: For $i=0$, we have

$$
\begin{aligned}
b_{0} & =1 \\
X_{0} & =c \cdot b_{0}=c \quad(\bmod p)
\end{aligned}
$$

These follow from Step 2 and Step 3a of the algorithm for $i=0$.
The Inductive Step: Assume the formulas for b_{i} and X_{i} are correct for i. Due to Step 3 b , we can write $b_{i+1} \cdot p=b_{i}-a \cdot X_{i}$, and thus

$$
\begin{aligned}
b_{i+1} \cdot p & =b_{i}-a \cdot X_{i} \\
& =(1-a \cdot c)^{i} / p^{i}-a \cdot c \cdot(1-a \cdot c)^{i} / p^{i} \\
& =(1-a \cdot c)^{i} \cdot(1-a \cdot c) / p^{i} \\
& =(1-a \cdot c)^{i+1} / p^{i} \\
b_{i+1} \cdot p^{i+1} & =(1-a \cdot c)^{i+1}
\end{aligned}
$$

Once b_{i+1} is available, we can write from Step 3a as $x_{i+1}=c \cdot b_{i+1}(\bmod p)$. This concludes the induction.

To prove that the algorithm indeed computes $x=a^{-1}\left(\bmod p^{k}\right)$, we note that $a \cdot x$ can be written as

$$
\begin{aligned}
a \cdot \sum_{i=0}^{k-1} X_{i} \cdot p^{i} & =a \cdot \sum_{i=0}^{k-1} c \cdot b_{i} \cdot p^{i} \\
& =a \cdot \sum_{i=0}^{k-1} c \cdot(1-a \cdot c)^{i} \\
& =a \cdot c \cdot \frac{(1-a \cdot c)^{k}-1}{1-a \cdot c-1} \\
& =1-(1-a \cdot c)^{k}
\end{aligned}
$$

Thus, we find $a \cdot x=1-(1-a \cdot c)^{k}$. We have already determined that $(1-a \cdot c)$ is a multiple of p, thus, $(1-a \cdot c)^{k}$ is a multiple of p^{k}. This gives $a \cdot x=1\left(\bmod p^{k}\right)$.

6 Inversion mod 2^{k}

The proposed algorithm significantly simplifies when $p=2$, and it constitutes an efficient alternative to the existing algorithms. First of all, for $x=a^{-1}\left(\bmod 2^{k}\right)$ to exist, $\operatorname{gcd}\left(a, 2^{k}\right)$ must be 1 , which implies that a is odd. Given an odd a, the value of $c=a^{-1}(\bmod 2)$ is trivially found: $c=1$. The modified algorithm is given below.

```
function ModInverse( }a,\mp@subsup{2}{}{k}
input: a,k
output: }x=\mp@subsup{a}{}{-1}\operatorname{mod}\mp@subsup{2}{}{k
1:
2: for i=0 to k-1
2a: }\quad\mp@subsup{X}{i}{}\leftarrow\mp@subsup{b}{i}{}(\operatorname{mod}2
2b:
3: return }x=(\mp@subsup{X}{k-1}{}\cdots\mp@subsup{X}{1}{}\mp@subsup{X}{0}{}\mp@subsup{)}{2}{
```

The mod 2 operation in Step 2a is computed by checking the LSB. Obviously we have $X_{i} \in\{0,1\}$, and the inverse x is produced in base 2, that is $x=\left(X_{k-1} \cdots X_{1} X_{0}\right)_{2}$. On the other hand, the division by 2 in Step 2 b is performed by right shift. Below, we illustrate the computation of $a=23$ and $k=6$, in order to compare to the presented algorithms.

Table 8: ModInverse Algorithm for computing $23^{-1}\left(\bmod 2^{6}\right)$.

i	b_{i}	$X_{i}=b_{i}(\bmod 2)$	$b_{i+1}=\left(b_{i}-a \cdot X_{i}\right) / 2$
0	$b_{0}=1$	$X_{0}=1(\bmod 2) \rightarrow 1$	$b_{1}=(1-23 \cdot 1) / 2 \rightarrow-11$
1	$b_{1}=-11$	$X_{1}=-11(\bmod 2) \rightarrow 1$	$b_{2}=(-11-23 \cdot 1) / 2 \rightarrow-17$
2	$b_{2}=-17$	$X_{2}=-17(\bmod 2) \rightarrow 1$	$b_{3}=(-17-23 \cdot 1) / 2 \rightarrow-20$
3	$b_{3}=-20$	$x_{3}=-20(\bmod 2) \rightarrow 0$	$b_{4}=(-20-23 \cdot 0) / 2 \rightarrow-10$
4	$b_{4}=-10$	$X_{4}=-10(\bmod 2) \rightarrow 0$	$b_{5}=(-10-23 \cdot 0) / 2 \rightarrow-5$
5	$b_{5}=-5$	$X_{5}=-5(\bmod 2) \rightarrow 1$	

The algorithm produces the binary result $x=(100111)_{2}=39$. This is indeed correct, since $23^{-1}=39\left(\bmod 2^{6}\right)$. Our algorithm computes $23^{-1}\left(\bmod 2^{k}\right)$ for $k=1,2,3,4,5,6$, which are given in base 2 as

$$
\begin{aligned}
& 23^{-1}=(1)_{2}=1 \quad(\bmod 2) \\
& 23^{-1}=(11)_{2}=3 \quad\left(\bmod 2^{2}\right) \\
& 23^{-1}=(111)_{2}=7 \quad\left(\bmod 2^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 23^{-1}=(0111)_{2}=7 \quad\left(\bmod 2^{4}\right) \\
& 23^{-1}=(00111)_{2}=7 \quad\left(\bmod 2^{5}\right) \\
& 23^{-1}=(100111)_{2}=39 \quad\left(\bmod 2^{6}\right)
\end{aligned}
$$

7 Complexity Analysis

For each algorithm presented in this paper, we analyze the number steps (within the for-loop), the operations in each stage, and the types and sizes of the operands involved, and what the algorithm actually computes. These algorithms differ from another in terms of the number of steps, the types of outputs (for example, the whole number at once or digit-by-digit) and how many different inverses they compute.

A realistic complexity analysis of the algorithms would require that we count of number of bit operations. However, operations requiring $O(1)$ bit operations per step can safely be ignored. These include check the $L S B$ and right or left shift of the operands. Two important parameters are k (the size of a) and $s=\log _{2}(k)$. The symbols D, M, and A stand for the processing times for division, multiplication, and addition or subtraction operations. Table 9 summarizes our analysis.

Table 9: Complexity analysis of the modular inversion algorithms.

Algorithm	Steps	Operations	Oper Size	$a^{-1} \bmod p^{i}$	p	k
DK [4]	k	$1 M+2 A$	$1, \ldots, k$	$i=1, \ldots, k$	2	any
AQ [1] Alg 2	k	$1 M+1 A$	$1, . ., k$	only $i=k$	2	any
AQ [1] Alg 3	k	$1 M+1 A$	k	only $i=k$	2	any
	1	$1 D$	k			
AQ [1] Alg 4	s	$3 M+2 A$	$2^{1}, . ., 2^{s}$	$i=2^{0}, . ., 2^{s}$	2	2^{s}
Dumas [3] p^{k}	s	$2 M+1 A$	$2^{1}, . ., 2^{s}$	$i=2^{0}, . ., 2^{s}$	any	2^{s}
Dumas [3] 2^{k}	s	$2 M+1 A$	$2^{1}, . ., 2^{s}$	$i=2^{0}, . ., 2^{s}$	2	2^{s}
ModInv p^{k}	k	$1 M$	1	$i=1, . ., k$	any	any
	k	$1 M+1 A$	k			
ModInv 2^{k}	k	$1 A$	k	$i=1, . ., k$	2	any

There are three aspects of these modular inversion algorithms, and the interpretation of their complexity results should take them into account.

1. These algorithms come in two flavors: linear versus logarithmic steps, i.e., those requiring k steps versus those requiring $s=\log _{2}(k)$ steps. There are 3 algorithms requiring logarithmic time which are Arazi and Qi Algorithm 3, and Dumas Algorithms for modulus p^{k} and 2^{k}. The remaining 5 algorithms require
$O(k)$ steps. However, it is not automatically concluded that the logarithmic time algorithms are superior. First of all, this will depend on the size of k. As we have discussed in Section 2, the most common use of the modular inversion algorithm is for the implementation of the Montgomery multiplication algorithm. In regard to this application, we note The classical Montgomery algorithm [11] requires k to be as large as the size of the RSA modulus n, thus, 512 to 2048. Here, the linear versus logarithmic complexity would be hugely different. However, the classical algorithm is hardly used in practice. The most deployed implementations use the CIOS algorithm [9] which chooses k to be the word size of the processor. If $k=32$, then $s=\log _{2}(32)=5$, and thus, the difference between linear versus logarithmic is not that great. For example, comparing Algorithm 4 to ModInverse algorithm, we see that the former requires $5 \cdot(3 M+2 A)$ operations while the latter requires $32 \cdot A$ operations. In modern processors, a multiplication operations requires 4 or more cycles, while the addition requires just one cycle. Taking $M=4 A$, we conclude that Algorithm 4 requires $5 \cdot(12 A+2 A)=70 A$ time however ModInverse requires only $32 A$.
2. The second point about comparing these 8 algorithms is that they can be divided into 2 sets: algorithms computing the inverse $\bmod p^{k}$ for any value of k versus algorithms that work only for specific values of k, here namely, for those k that is a power of 2 . The modular inversion algorithms that work for any k are the Dussé and Kaliski Algorithm, Arazi and Qi Algorithms 2 and 3, and ModInverse Algorithms for p^{k} and 2^{k}. The remaining 3 algorithms compute the inverse $\bmod p^{k}$ where $k=2^{s}$. It is not clear if any of these 3 algorithms can be used to compute the inverse for an arbitrary power of p.
3. The thid point about comparing these 8 algorithms is that they can be divided into 3 sets: 1) The first category of algorithms (Arazi and Qi Algorithms 2 and 3) compute the inverse for one single modulus (that is $\bmod 2^{k}$ for a given k). 2) The second category of algorithms (Arazi and Qi Algorithm 4, Dumas Algorithms for p^{k} and 2^{k}) compute the inverse for s moduli, specifically for $p^{2^{1}}, p^{2^{2}}, \ldots, p^{2^{s}}$, in other words, only for certain power of 2 powers of p. 3) The third category of algorithms (Dussé and Kaliski Algorithm and ModInverse Algorithms for p^{k} and 2^{k}), on the other hand, compute the inverse $\bmod p^{i}$ for $i=1,2, \ldots, k$.
4. Finally, we note that the ModInverse algorithms are the only algorithms that produce the digits (base p or 2) of the inverse directly, starting from the least significant digits proceeding to the most significant. These digit-by-digit arithmetic algorithms are also named as on-line arithmetic. Such algorithms introduce parallelism between sequential operations by overlapping these operations in a digit-pipelined fashion [5].

8 Conclusions

We have introduced a new algorithm for computing the inverse $a^{-1}\left(\bmod p^{k}\right)$ given a prime p and $a \in[1, p-1]$. The algorithm is based on the exact solution of linear equations using p-adic expansions, due to Dixon [2]. The new algorithm starts with the initial value $c=a^{-1}(\bmod p)$ and iteratively computes the inverse $x=a^{-1}\left(\bmod p^{k}\right)$. The binary version of the proposed algorithm (that is, when $p=2$) is significantly more efficient than the existing algorithms for computing $a^{-1}\left(\bmod 2^{k}\right)$ when k is small, which is the case for the CIOS Montgomery multiplication algorithm. Moreover, the proposed algorithm computes all inverses $\bmod p^{i}$ or 2^{i} for $i=1,2, \ldots, k$ and work for an arbitrary k. We have also described and analyzed 6 existing algorithms, and provided an extensive comparison and interpretation o the proposed algorithm.

9 Acknowledgements

The author thanks to Francois Grieu for comments in [6], Watson Ladd for comments on Dixon's algorithm being actually due to Hensel, Markku-Juhani Olavi Saarinen for comments on Newton-Raphson algorithm, and Michael Scott for reminding the references $[1,3]$.

References

[1] O. Arazi and H. Qi. On calculating multiplicative inverses modulo 2^{m}. IEEE Transactions on Computers, 57(10):1435-1438, October 2008.
[2] J. D. Dixon. Exact solution of linear equations using p-adic expansions. Numerische Mathematik, 40(1):137-141, 1982.
[3] J.-G. Dumas. On Newton-Raphson iteration for multiplicative inverses modulo prime powers. arXiv:1209.6626v3, https://arxiv.org/abs/1209.6626v3, 2012.
[4] S. R. Dussé and B. S. Kaliski Jr. A cryptographic library for the Motorola DSP56000. In I. B. Damgård, editor, Advances in Cryptology - EUROCRYPT 90, pages 230-244. Springer, LNCS Nr. 473, 1990.
[5] M. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann Publishers, 2004.
[6] F. Grieu. Answer to 'How to determine the multiplicative inverse modulo 64 (or other power of two)?'. StackExchange Cryptography, https://crypto. stackexchange.com/questions/47493, 2017.
[7] B. S. Kaliski Jr. The Montgomery inverse and its applications. IEEE Transactions on Computers, 44(8):1064-1065, 1995.
[8] Ç. K. Koç. High-Speed RSA Implementation. Technical Report TR 201, RSA Laboratories, 73 pages, November 1994.
[9] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Montgomery multiplication algorithms. IEEE Micro, 16(3):26-33, June 1996.
[10] E. V. Krishnamurthy and V. K. Murty. Fast iterative division of p-adic numbers. IEEE Transactions on Computers, 32(4):396-398, April 1983.
[11] P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation, 44(170):519-521, April 1985.
[12] E. Savaş and Ç. K. Koç. The Montgomery modular inverse - revisited. IEEE Transactions on Computers, 49(7):763-766, July 2000.
[13] E. Savaş and Ç. K. Koç. Montgomery inversion. Journal of Cryptographic Engineering, to appear, 2017.

