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Abstract

When a pairing e : G1 × G2 → GT , on an elliptic curve E defined over Fq, is
exploited for an identity-based protocol, there is often the need to hash binary
strings into G1 and G2. Traditionally, if E admits a twist Ẽ of order d, then
G1 = E(Fq)∩E[r], where r is a prime integer, and G2 = Ẽ(Fqk/d)∩ Ẽ[r], where
k is the embedding degree of E w.r.t. r. The standard approach for hashing into
G2 is to map to a general point P ∈ Ẽ(Fqk/d) and then multiply it by the cofactor

c = #Ẽ(Fqk/d)/r. Usually, the multiplication by c is computationally expensive.
In order to speed up such a computation, two different methods (by Scott et al.
and by Fuentes et al.) have been proposed. In this paper we consider these two
methods for BLS pairing-friendly curves having k ∈ {12, 24, 30, 42, 48}, providing
efficiency comparisons. When k = 30, 42, 48, the Fuentes et al. method requires
an expensive one-off pre-computation which was infeasible for the computational
power at our disposal. In these cases, we theoretically obtain hashing maps that
follow Fuentes et al. idea.

Keywords: pairing-based cryptography, pairing-friendly elliptic curves, fast
hashing.

1 Introduction

Pairings on elliptic curves have been first used in cryptography to transport el-
liptic curve discrete logarithms into finite field discrete logarithms ([26], [13]),
for which there are index-calculus algorithms running in subexponential time.
In recent years, several protocols have been proposed with pairings on elliptic
curves as building blocks. Among them, it is possible to enumerate Joux’s three
party key agreement protocol [19], identity-based encryption [7], non-interactive
key-exchange [28] and short signatures schemes [8].

Traditionally, pairings that have been considered for applications are the Tate
and Weil pairings on elliptic curves over finite fields, and other related pairings,
for example the Eta pairing [4], the Ate pairing [18] and their generalisations
[17]. For a given finite field Fq and an elliptic curve E defined over it, all these
pairings take as inputs points on E(Fq) or on E(Fqk) - where Fqk is an extension
field of the base field Fq - and return as outputs elements of (Fqk)∗. In this paper
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we will only consider asymmetric pairings e. In particular, given a prime r such
that r||#E(Fq), then e will be of the form:

e : G1 ×G2 → GT

where G1 and G2 are elliptic curve subgroups of order r defined as:

– G1 = E(Fq) ∩ E[r],
– G2 = E[r] ∩ {(x, y) ∈ E(Fqk)|(xq, yq) = [q](x, y)},

while GT is a subgroup of order r of (Fqk)∗. With k is denoted the embedding
degree of E with respect to r, i.e. the smallest positive integer such that r | qk−1.

For pairing-based schemes to be secure, the discrete logarithm problems on
both E(Fq) and (Fqk)∗ must be computationally infeasible. Those elliptic curves
providing a fixed level of security along with efficiency of computations are called
pairing-friendly elliptic curves. For that class of elliptic curves the first formal
definition has been formulated in the comprehensive paper of Freeman et al.
[12]. The works of Balasubramanian and Koblitz [1] and Luca et al. [24] showed
that pairing-friendly elliptic curves are rare and then they require dedicated
constructions. In recent years, a number of methods for constructing such curves
have been proposed ([27], [5], [6], [11], [20]). The general pattern is the same for
all of them: given an embedding degree k, three integers n, r, q for which there
exists an elliptic curve E defined over Fq and such that

– #E(Fq) = n,
– r||n,
– k is the embedding degree of E w.r.t. r

are computed. Then the complex multiplication (CM) method is used to deter-
mine the equation of the above elliptic curve E.

However, instead of producing single pairing-friendly elliptic curves by means
of specific integers k, n, r, q, all the cited methods produce families of pairing-
friendly elliptic curves. In fact, such methods replace the integers n, r, q with
suitable polynomials n(x), r(x), q(x) ∈ Q[x]. For some appropriate x0 ∈ Z,
three integers n(x0), r(x0), q(x0) are obtained such that there exists an ellip-
tic curve E defined over Fq(x0) having #E(Fq(x0)) = n(x0), r(x0)||n(x0) and k
as embedding degree w.r.t. r(x0). The triple {n(x), r(x), q(x)} defines a fam-
ily of pairing-friendly elliptic curves, each of them parametrised by the in-
tegers n(x0), r(x0), q(x0) for some x0 ∈ Z. If for every x0 ∈ Z there exists
an elliptic curve with n(x0), r(x0), q(x0) as parameters, the family defined by
{n(x), r(x), q(x)} is said complete, otherwise it is called sparse.

Among the paring-friendly families (sparse or complete) of curves obtained
with the methods enumerated above, we have MNT curves [27], BLS curves [5],
BN curves [6], Freeman curves [11] and KSS curves [20].
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When pairings on elliptic curves are exploited for identity-based protocols,
there is often the need to hash binary strings into G1 and G2. Hashing to G1 is
relatively easy. In fact, since G1 is the unique subgroup of order r of E(Fq), the
standard approach is to hash to a general point P ∈ E(Fq) and then multiply
it by the cofactor c = #E(Fq)/r. If E admits a twist of degree d that divides

k, then G2 is isomorphic to Ẽ(Fqk/d) ∩ Ẽ[r], where Ẽ is a degree d twist of
E/Fqk/d [18], and consequently the same approach can be used for hashing into
G2. Nevertheless, the latter requires a multiplication by a large cofactor and
hence expensive computations.

In 2009, Scott et al. [29] reduced the computational cost of this cofactor
multiplication exploiting an efficiently-computable endomorphism ψ : Ẽ → Ẽ.
An improvement of this method was then obtained by Fuentes et al. in 2011
[14]. Since pairing-friendly families vary significantly, in order to highlight the
benefits of the two methods, families of curves were considered case-by-case
in [29] and in [14]. In particular, both papers focus on BN curves (k = 12),
Freeman curves (k = 10) and KSS curves (k = 8, 18). However, new advances
on the Number Field Sieve ([3], [21]) for computing discrete logarithms in GT

decrease the security of some asymmetric parings, including those build on BN
curves [25], [2].

In the light of these results, BLS curves are attracting more interest, also
for efficiency reasons. Despite this, we do not know of any publication or source
where both Scott et al. and Fuentes et al. methods have been explicitly applied
to BLS curves with k ∈ {12, 24, 30, 42, 48}.
In this paper that gap is filled for BLS curves having k = 12, 24, and efficiency
comparisons between the two methods are provided. Such a comparison con-
trasts with that of a recently-published book [10, 8-21] where it is stated that
for BLS curves with k = 12, 24 the most efficient method for mapping into G2

is the one proposed by Scott et al.. Both methods require a pre-computation
to obtain formulas for a specific family of pairing-friendly curves. Scott et al.
method needs only polynomial modular arithmetic, while Fuentes et al. method
goes through the application of the LLL algorithm to a polynomial matrix, in or-
der to obtain a lattice’s polynomial h(z) having small coefficients. We executed
the former computation also for BLS curves having k = 30, 42, 48, while the lat-
ter computation is prohibitive as the embedding degree k grows. Nevertheless,
without LLL algorithm, here we supply a suitable polynomial h(z) that allows
to speed up cofactor multiplications. Our efficiency conclusions are that hashing
following Fuentes et al. method is faster than applying Scott et al. method, for
every k ∈ {12, 24, 30, 42, 48}.

The remainder of this paper is organized as follows. In Section 2 we recall
Scott et al. and Fuentes et al. methods. For the sake of easy reference, in Subsec-
tion 2.1 we summarise the parameters of BLS curves. In Section 3 and 4, Scott et
al. and Fuentes et al. methods are applied to BLS curves with embedding degree
k ∈ {12, 24, 30, 42, 48}. Finally, in Section 5 an efficiency comparison between
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the two methods is provided.

2 Known methods for efficiently mapping into G2

The problem of generating random points in G2, known as hashing to G2, is
usually solved selecting a random point P ∈ Ẽ(Fqk/d) and then computing cP ,

where c is the cofactor defined as c = #Ẽ(Fqk/d)/r. Due to the size of c, this
scalar multiplication is generally expensive and consequently a bottleneck in
hashing to G2. In [16], Gallant, Lambert and Vanstone give a method to speed
up point multiplications wP in E(Fq)[r]. This method is based on the knowledge
of a non-trivial multiple of the point P , that is deduced from an efficiently com-
putable endomorphism ψ of E such that ψ(P ) is a multiple of P . Starting from
this idea, Galbraith and Scott [15] reduce the computational cost of multiplying
by the cofactor c introducing a suitable group endomorphism ψ : Ẽ → Ẽ. Such
an endomorphism is defined as ψ = φ−1 ◦π◦φ, where π is the q-power Frobenius
on E and φ is an isomorphism from the twist curve Ẽ to E. The endomorphism
ψ satisfies

ψ2(P )− tψ(P ) + qP (1)

for all P ∈ Ẽ(Fqk/d). In the above relation t is the trace of Frobenius, i.e.
#E(Fq) = q + 1− t. Galbraith and Scott propose to first express the cofactor c
to the base q as

c = c0 + c1q + · · ·+ c`q
` (2)

and then use (1) to simplify the multiplication cP to

[g0]P + [g1]ψ(P ) + · · ·+ [g2`]ψ
2`(P ) (3)

where | gi | < q for every i. This approach is further exploited by Scott et al.
in [29], where it is applied to several families of pairing-friendly curves. In par-
ticular, the curves take into account in [29] are: the MNT curves for the case
k = 6, the BN curves with k = 12, the Freeman curves with k = 10 and the KSS
curves for the cases k = 8 and k = 18. It is important to highlight that all these
families of curves are defined over a prime field Fp and they have p, the order r
and the trace t expressed as polynomials. Consequently, also the cofactor c can
be described as a polynomial of Q[x]. Thanks to that parameterisation Scott et
al. reduce the cofactor multiplication cP to the evaluation of a polynomial of the
powers ψi(P ), with coefficients that are polynomials in x having degree smaller
than deg(p(x)). In this way a further speed up in the cofactor multiplication is
reached.

Fuentes et al. [14] improve Scott et al. method observing that in order to
compute cP it is sufficient to multiply P by c′, a multiple of c such that c′ 6≡ 0
(mod r). They show that if Ẽ(Fqk/d) is cyclic and q ≡ 1 (mod d), then there
exists a polynomial

h(z) = h0 + h1z + · · ·+ hϕ(k)−1z
ϕ(k)−1 ∈ Z[x] (4)
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such that h(ψ)P is a multiple of cP for all P ∈ Ẽ(Fqk/d). Furthermore, the

coefficients of h(z) are such that | hi |ϕ(k)≤ c for all i. The proof of this result is by
construction and, exploiting the LLL algorithm of Lenstra, Lenstra and Lovasz
[23], it leads to a procedure to explicitly compute h(z). For the sake of easy
reference we briefly recall the steps of the proof. With ñ we denote the cardinality
#Ẽ(Fqk/d) = qk/d + 1− t̃, with f̃ the integer such that t̃2− 4qk/d = Df̃2 (where
D is square-free) and, analougously, with f the integer for which t2− 4q = Df2.
First of all it is observed that, for every point P ∈ Ẽ(Fqk/d), it holds ψ(P ) = aP
with:

a =
t

2
± f(t̃− 2)

2f̃
(5)

and therefore [h(ψ)]P = [h(a)]P . Secondly, it is necessary to note that

(ψ|Ẽ(F
qk/d )

)k = idẼ(F
qk/d )

.

Hence Φk(a) ≡ 0 (mod ñ), where Φk is the k-th cyclotomic polynomial (it has
degree equal to ϕ(k)). This allows us to restrict the search of h(z) into the set
of all polynomials of Z[z] having degree less than ϕ(k). Considering the vectors
of the integer lattice generated by the matrix

M =

[
c 0
a Iϕ(k)−1

]
as coefficients of 1, z, z2, . . . , zϕ(k)−1 respectively, we obtain polynomials h(z) ∈
Z[z] such that h(a) ≡ 0 (mod c). Finally, it is observed that the considered lat-
tice and the set of all vectors (± | c |1/ϕ(k), . . . ,± | c |1/ϕ(k)) have non-empty
intersection. A lattice element lying in this intersection could be obtained using
the LLL algorithm [23]; such an element determines the coefficients of apolyno-
mial h(z) ∈ Z[z] with the desired properties.

In [14], such a polynomial is obtained for the BN curves with k = 12, the
Freeman curves with k = 10, the KSS curves for the cases k = 8 and k = 18.
We underline that the computed h(z) have coefficients that are polynomials in
x having degrees smaller than deg(c(x))/ϕ(k). Consequently, they compute a
formula for hashing into G2 for each of these curves and compare their compu-
tational results with those of Scott et al. method for the same curves, showing
that their method is faster for all the considered curves.

Families of pairing-friendly curves vary significantly and hence it is not possi-
ble to a priori determine if one of the two above hashing methods is more efficient
than the other for a given family. BLS curves [5] are recently gaining increasing
interest. Thus it is of great concern to determine also for these curves which is,
among the Scott et al. and the Fuentes et al. methods, the more efficient one.
In [10, Sec. 8.5], Scott et al. method is explicitly applied to BLS curves having
k ∈ {12, 24} and authors state that in these cases the most efficient method for
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hashing into G2 is the one proposed by Scott et al..

Concerning BLS curves having k = {12, 24}, in this paper we deduce the for-
mulas derived from the application of both methods and we provide evidences
that, on the contrary, the most efficient method is the one of Fuentes et al.. Fur-
thermore, we present analogous formulas for BLS curves with k ∈ {30, 42, 48}, to-
gether with an efficiency comparison. Focusing on Fuentes et al. method, for the
the cases k = 12, 24 we determine h(z) performing computations with MAGMA
[9] on a CPU with an Intel Xeon Process 5460 at 3.16 GHz with a cache of 6 MB.
In particular, we exploit MAGMA to apply the implemented LLL algorithm to
the polynomial matrix M above. However, the same MAGMA computations for
the cases k = 30, 42, 48 are infeasible with the mentioned computational power.
Then we deduce h(z) theoretically. We verify the correctness of the proposed
h(z)’s by checking that h(a(x)) is equivalent to a multiple of c(x) modulo ñ(x).
In particular, we obtain that

h(a(x)) ≡ 3(xk/6 − 1)c(x) mod ñ(x)

for k ∈ {30, 42, 48}. Furthermore, for k = 48 the proposed polynomial is such
that deg(hi(x)) ≤ deg(c(x))/ϕ(k) for every i, while for k = 30, 42 this condition
holds for every hi(x) except h0(x), that has degree equal to bdeg(c(x))/ϕ(k)c+1.

We conclude this Section briefly recalling BLS curves parameters.

2.1 BLS curves

In 2003 Barreto, Lynn and Scott [5] proposed a polynomial parameterisation for
complete pairing-friendly families of curves having fixed embedding degrees, CM
discriminant D equal to 3 and short Weierstrass equation E : y2 = x3 + b. All
the curves of these families are defined over prime fields Fp.
For efficiency reasons, in the following we consider only those BLS curves with
embedding degree k ≡ 0 (mod 6) and k - 18. They admit a twist of degree d = 6
[18] and this allow to consider G2 as a subgroup of Ẽ(Fpk/6). In this case BLS
curves are parameterised by the following polynomials [12]:

r(x) = Φk(x)

t(x) = x+ 1

p(x) =
1

3
(x− 1)2(xk/3 − xk/6 + 1) + x

where Φk is the cyclotomic polynomial of order k.

3 Scott et al. method on BLS curves

In this section the Scott et al. hashing method is applied to BLS curves having
embedding degree k equal to 12, 24, 30, 42 and 48 respectively. Such an appli-
cation requires first to determine the cardinality ñ(x) ∈ Q[x] of Ẽ(Fp(x)k/d) -
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where d, in what follows, is always equal to 6 - and then to execute polynomial
modular arithmetic as specified in Algorithm 2 of [29].

3.1 BLS-12

For BLS curves with k = 12, the prime p and the group order r are parameterised
by the polynomials:

p(x) =
1

3
(x− 1)2(x4 − x2 + 1) + x;

r(x) =x4 − x2 + 1.

Since k/d = 2, the group G2 is expressed as a subgroup of Ẽ(Fp(x)2) and the
cofactor c(x) is:

c(x) =
1

9
(x8 − 4x7 + 5x6 − 4x4 + 6x3 − 4x2 − 4x+ 13) (6)

Applying Scott et al. method, the scalar multiplication [3c(x)]P , for some ratio-
nal point P ∈ Ẽ(Fp(x)2), is reduced to

[x3 − x2 − x+ 4]P + [x3 − x2 − x+ 1]ψ(P ) + [−x2 + 2x− 1]ψ2(P ) (7)

We consider [3c(x)]P instead of [c(x)]P to ignore the common denominator of
3 that occurs writing c(x) to the base p(x). According to [10, sec. 8.5], this can
be computed at the cost of 6 point additions, 2 point doublings, 3 scalar multi-
plications by the parameter x and 3 applications of ψ.

3.2 BLS-24

With the name BLS-24 we denote the BLS curves having embedding degree k
equal to 24. Such curves are parameterised by the polynomials:

p(x) =
1

3
(x− 1)2(x8 − x4 + 1) + x;

r(x) =x8 − x4 + 1.

As before, we consider [3c(x)] instead of [c(x)]P in order to ignore the common
denominator of 3 that occurs writing c(x) to the base p(x). In this case G2 ⊂
Ẽ(Fp(x)4) and the cofactor is a polynomial c(x) of degree 32. Applying Scott et

al. method, the scalar multiplication [3c(x)]P - where P ∈ Ẽ(Fp(x)4) - is reduced
to

λ0P +

6∑
i=1

λiψ
i(P ) (8)

where λ0, λ1, λ2, λ3, λ4, λ5, λ6 are polynomials of Z[x] of degrees less than or
equal to 8. These polynomials are fully reported in Appendix A for the sake of
readability.
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According to [10, sec. 8.5], the multiplication [3c(x)]P can be computed at
the cost of 21 point additions, 4 point doublings, 8 scalar multiplications by the
parameter x and 6 applications of ψ.

3.3 BLS-30

BLS curves having embedding degree k = 30 are parameterised by:

p(x) =
1

3
(x− 1)2(x10 − x5 + 1) + x;

r(x) =x8 + x7 − x5 − x4 − x3 + x+ 1.

In this case the cofactor is a polynomial c(x) of degree 52 while G2 is subgroup
of order r(x) of Ẽ(Fp(x)5). The Scott et al. method leads to express the scalar

multiplication [3c(x)]P , for some rational point P ∈ Ẽ(Fp(x)5), as:

λ0P +
8∑

i=1

λiψ
i(P ) (9)

where {λj | j = 0, . . . , 8} are polynomials of Z[x] having degrees less than or
equal to 11 (see Appendix A for their details).

Multiplication [3c(x)]P can hence be computed at the cost of 82 point addi-
tions, 16 point doublings, 11 scalar multiplications by the parameter x and 67
applications of ψ.

3.4 BLS-42

In the case of BLS curves having k = 42, G2 is the subgroup Ẽ(Fp(x)7)∩ Ẽ[r(x)],
where:

p(x) =
1

3
(x− 1)2(x14 − x7 + 1) + x;

r(x) =x12 + x11 − x9 − x8 + x6 − x4 − x3 + x+ 1.

The cofactor is parameterised by a polynomial c(x) of degree 100. Writing it
to the base p(x), the scalar multiplication [3c(x)]P , for some rational point
P ∈ Ẽ(Fp(x)7), is reduced to

λ0P +

12∑
i=1

λiψ
i(P ) (10)

where {λj | j = 0, . . . , 12} are polynomials in x with integral coefficients and
having degrees less than or equal to 15 (see Appendix A for their complete form).

Then [3c(x)]P can be computed at the cost of 151 point additions, 54 point
doublings, 15 scalar multiplications by the parameter x and 125 applications
of ψ.
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3.5 BLS-48

For BLS curves having k = 48, the prime p and the group order r are parame-
terised by the polynomials:

p(x) =
1

3
(x− 1)2(x16 − x8 + 1) + x;

r(x) =x16 − x8 + 1.

The cofactor c(x) is a polynomial of degree 128 and G2 is a subgroup of Ẽ(Fp(x)8).
Applying Scott et al. method, the scalar multiplication [3c(x)]P , for some ratio-
nal point P ∈ Ẽ(Fp(x)8), is reduced to

λ0P +

14∑
i=1

λiψ
i(P ) (11)

where {λj | j = 0, . . . , 14} are polynomials of Z[x] having degrees less than or
equal to 16 (see Appendix A for details).

As in previous cases, we consider [3c(x)]P instead of [c(x)P ] for the common
denominator of 3 that occurs writing c(x) to the base p(x). This multiplication
can be computed at the cost of 132 point additions, 120 point doublings, 16
scalar multiplications by the parameter x and 130 applications of ψ.

4 Fuentes et al. method on BLS curves

In this section we apply the Fuentes et al. hashing method to BLS curves having
embedding degree k equal to 12 or 24. We have already noticed that this method
requires an expensive one-off pre-computation in order to obtain the polynomial
h(z). Such a computation was infeasible, for the computational power at our
disposal, in the cases k ∈ {30, 42, 48}. However, we noticed a shared structure
between the two polynomials returned for BLS-12 and BLS-24 curves. Then we
exploit such a recursion to theoretically deduce suitable polynomials h(z) also for
BLS curves having k ∈ {30, 42, 48}. The one proposed for BLS-48 curves satisfies
conditions of Theorem 1 in [14]. On the other hand, polynomials h(z)’s proposed
for BLS-30 and BLS-42 are such that h(a(x)) is equivalent to a multiple of c(x)
modulo ñ(x) and deg(hi(x)) ≤ deg(c(x))/ϕ(k) for all i except i = 0. In fact, in
both cases h0(x) satisfies the relation

bdeg(c(x))/ϕ(k)c+ 1.

Therefore, even if for k ∈ {30, 42} we provide polynomials h(z)’s that do not
fully satisfy conditions of Theorem 1 in [14], what we proposed is extremely
tight to a polynomial h(z) fully satisfying such conditions. As we will see, also
polynomials h(z)’s that we proposed for BLS-30 and BLS-42 curves lead to a
speed-up in the cofactor multiplication compared to the Scott et al. method.
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4.1 BLS-12

For BLS curves with k = 12, the parameter a, deduced from (5), is the following
polynomial in x:

a(x) =
1

2

(
t(x) + f(x)

t̃(x)− 2

f̃(x)

)
(mod ñ(x)) =

25

299
x11 − 25

69
x10 +

508

897
x9−

−268

897
x8− 112

897
x7 +

586

897
x6− 518

897
x5− 126

299
x4 +

367

299
x3− 215

897
x2 +

64

299
x+

41

69
.

Reducing the matrix

M =


c(x) 0 0 0

−a(x) mod c(x) 1 0 0
−a(x)2 mod c(x) 0 1 0
−a(x)3 (mod c(x)) 0 0 1


using the LLL algorithm [23], we obtain

M ′ =


−x+ 1 −2 x− 1 x2 − x+ 1
−2 0 x2 − x+ 1 x− 1
0 x2 − x− 1 x− 1 2

x2 − x− 1 x− 1 2 0

 .
Considering the 4-th row of M ′, the polynomial h(z) can be defined as

h(z) =

4∑
i=1

M ′(4, i)zi−1 = (x2 − x− 1) + (x− 1)z + 2z2

and so

h(a) = (x2 − x− 1) + (x− 1)a+ 2a2 ≡ (3x2 − 3)c(x) (mod ñ(x))

with gcd(3x2 − 3, r(x)) = 1. Hence, if P ∈ Ẽ(Fp(x)2), then [h(a)]P is a multiple
of [c]P . In particular:

[h(a)]P = [h(ψ)]P = [x2 − x− 1]P + [x− 1]ψ(P ) + ψ2(2P ) (12)

that can be computed at the cost of 5 point additions, 1 point doubling, 2 scalar
multiplications by the parameter x and 3 applications of ψ.

4.2 BLS-24

Proceeding as in the previous case also for the BLS curves having k = 24, we
obtain:

h(z) = (x4 − x3 − 1) + (x3 − x2)z + (x2 − x)z2 + (x− 1)z3 + 2z4
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with h(a) equivalent to (3x4− 3)c(x) modulo ñ(x). Since gcd(3x4− 3, r(x)) = 1,
the following map sends a point P ∈ Ẽ(Fp(x)4) to a point of G2:

P → [x4−x3−1]P+[x3−x2]ψ(P )+[x2−x]ψ2(P )+[x−1]ψ3(P )+2ψ4(P ) (13)

To compute the image through such a map, the cost is of 9 point additions, 1
point doubling, 4 scalar multiplications by x and 10 applications of the endo-
morphism ψ.

4.3 BLS-30

Concerning the cofactor multiplication on BLS curves having embedding degree
k = 30, we introduce the polynomial

h(z) = (x7−2x6+2x5−x4−x2+x−1)+

4∑
i=1

(x7−i−2x6−i+2x5−i−x4−i)zi+(2x2−2x+2)z5

which leads to the following result.

Proposition 1 Given a BLS curve with k = 30, the map

P →[h(ψ)]P =
[
x7 − 2x6 + 2x5 − x4 − x2 + x− 1

]
P

+

4∑
i=1

[
x7−i − 2x6−i + 2x5−i − x4−i

]
ψi(P ) +

[
2x2 − 2x+ 2

]
ψ5(P )

(14)

returns a point of G2 = Ẽ(Fp(x)5) ∩ Ẽ[r] for every P ∈ Ẽ(Fp(x)5).

Proof. Deducing a(x) from relation (5), it is a straightforward computation to
verify that:

h(a(x)) ≡ 3(x5 − 1)c(x) mod ñ(x)

with gcd(3x5 − 3, r(x)) = 1.

Denoting with h0(x), . . . , h5(x) the coefficients of h(z), we underline that

deg(hi(x)) ≤ deg(c(x))/ϕ(k)

for all i ∈ {1, . . . , 5}, since c(x) has degree 52 and ϕ(30) = 8. On the other hand,
deg(h0(x)) is equal to bdeg(c(x))/ϕ(k)c+ 1.

The image (14) can be computed at the cost of 27 point additions, 1 point
doubling, 7 scalar multiplications by the parameter x and 25 applications of ψ.
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4.4 BLS-42

For the case of BLS curves with embedding degree k equal to 42, we propose the
polynomial

h(z) =
(
x9 − 2x8 + 2x7 − x6 − x2 + x− 1

)
+

+

6∑
i=1

(
x9−i − 2x8−i + 2x7−i − x6−i

)
zi +

(
2x2 − 2x+ 2

)
z7

(15)

for which holds the following.

Proposition 2 Given a BLS curve with k = 42 the map

P →[h(ψ)]P =
[
x9 − 2x8 + 2x7 − x6 − x2 + x− 1

]
P

+

6∑
i=1

[
x9−i − 2x8−i + 2x7−i − x6−i

]
ψi(P ) +

(
2x2 − 2x+ 2

]
ψ7(P )

(16)

returns a point of G2 = Ẽ(Fp(x)7) ∩ Ẽ[r] for every P ∈ Ẽ(Fp(x)7).

Proof. As before, once that a(x) is deduced from relation (5), it could be easily
verify that:

h(a(x)) ≡ 3(x7 − 1)c(x) mod ñ(x)

with gcd(3x7 − 3, r(x)) = 1.

Denoting with h0(x), . . . , h7(x) the coefficients of h(z), it is easy to observe
that deg(hi(x)) ≤ deg(c(x))/ϕ(k) for all i ∈ {1, . . . , 7}, since c(x) has degree 100
and ϕ(42) = 12. The degree of h0(x) is equal to bdeg(c(x))/ϕ(k)c+ 1.

The image (16) can be computed at the cost of 33 point additions, 1 point
doubling, 9 scalar multiplications by the parameter x and 42 applications of ψ.

4.5 BLS-48

For BLS curves with embedding degree k = 48 we introduce the polynomial

h(z) = (x8 − x7 − 1) +

7∑
i=1

(x8−i − x7−i)zi(P ) + 2z8

which leads to the following result.

Proposition 3 Given a BLS curve with k = 48 the map

P → [x8 − x7 − 1]P +

7∑
i=1

[x8−i − x7−i]ψi(P ) + 2ψ8(P ) (17)

returns a point of G2 = Ẽ(Fp(x)8)∩ Ẽ[r] for every P ∈ Ẽ(Fp(x)8). In particular,
h(z) satisfies the conditions of Theorem 1 in [14].
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Proof. Deducing a(x) from relation (5), it follows that:

h(a(x)) ≡ 3(x8 − 1)c(x) mod ñ(x)

with gcd(3x8 − 3, r(x)) = 1. Furthermore, denoting with h0(x), . . . , h8(x) the
coefficients of h(z), it is easy to observe that deg(hi(x)) ≤ deg(c(x))/ϕ(k) for all
i ∈ {0, . . . , 8}, since c(x) has degree 128 and ϕ(48) = 16.

The image (17) can be computed at the cost of 17 point additions, 1 point
doubling, 8 scalar multiplications by the parameter x and 36 applications of ψ.

5 Comparisons and conclusions

Here we present an efficiency comparison between the hash maps into G2 found
in the previous two sections. In the following table are reported computational
costs for hashing into G2. The central column concerns results obtained applying
Scott et al. method (see Section 3). The last column contains computational costs
obtained following the Fuentes et al. method (see Section 4). With ‘A’ we denote
a point addition, with ‘D’ a point doubling, with ‘Z’ a scalar multiplication by
the parameter x and with ‘ψ’ an application of the endomorphism ψ.
We underline that, in each hashing map, the most significant component is the
multiplication by x, since it computationally dominates other operations. In
fact, the algorithms to compute large scalar multiplications require many point
additions and doublings. Furthermore, the endomorphism ψ can be efficiently
computed.

Curve Scott et al. Fuentes et al.

BLS-12 6A 2D 3Z 3ψ 5A 1D 2Z 3ψ

BLS-24 21A 4D 8Z 6ψ 9A 1D 4Z 10ψ

BLS-30 82A 16D 11Z 67ψ 27A 1D 7Z 25ψ

BLS-42 151A 54D 15Z 125ψ 33A 1D 9Z 42ψ

BLS-48 132A 120D 16Z 130ψ 17A 1D 8Z 36ψ

Table 1. Comparison between the computational cost of each hash map.

In all the cases we have examined the hash maps found following the Fuentes
et al. method turned out to be more efficient than the ones found with the
Scott et al. method. Among the hash maps of Section 4, only those for the cases
k = 12, 24 are obtained applying rigorously Fuentes et al. method. For k = 12
we see a 3/2-fold improvement, while for k = 24 the hash map is twice as fast
as that of Scott et al.. Concerning BLS curves with k ∈ {30, 42, 48}, we theo-
retically propose suitable polynomials h(z) that satisfy conditions of Theorem
1 in [14] (k = 48) or that are extremely tight to a polynomial fully satisfying
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such conditions (k = 30, 42). For the cases k = 30 and k = 42, our proposals
lead, respectively, to a 11/7-fold improvement and an 11/9-fold improvement
with respect to the method of Scott et al.. For k = 48, the introduced hash map
is twice as fast as that of Scott et al..

Using the Apache Milagro Crypto Library [22] we implemented the hash maps
(7) and (12), obtained applying Scott et al. and Fuentes et al. methods on BLS
curves with embedding degree k = 12. In Table 2 we summarise the timing
results of a benchmark test on the two maps.

Processor Scott et al. Fuentes et al.

Intel(R) Core(TM) i5-5257U 64-bit - 2.7 GHz 2.83 ms 1.98 ms

Quad-core ARM Cortex A53 64-bit - 1.2 GHz 50.26 ms 35.88 ms

Table 2. Each value corresponds to the average time (in milliseconds) considered for
each hash from a sample of 1000 hashes.

These experimental results show that the hashing map obtained with the
Fuentes et al. method is approximately 30% faster than the map obtained with
the Scott et al. method, as we expected from Table 1.

Acknowledgement The authors acknowledge Professor Massimiliano Sala for
insightful discussions and for the support, and greatly thank Professor Michael
Scott for his critical reading of the manuscript.
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Appendix A

Here are listes the polynomials in x which are the coefficients of the hash maps
obtained applying the Scott et al method to BLS curves having k = 24, 30, 42, 48.

BLS-24

Given a rational point P ∈ Ẽ(Fp(x)4), the map (8) sends P into the element

λ0P +
∑6

i=1 λiψ
i(P ) of G2, where:

λ0 =− 2x8 + 4x7 − 3x5 + 3x4 − 2x3 − 2x2 + x+ 4,

λ1 =x5 − x4 − 2x3 + 2x2 + x− 1,

λ2 =x5 − x4 − x+ 1,

λ3 =x5 − x4 − x+ 1,

λ4 =− 3x4 + x3 + 4x2 + x− 3,

λ5 =3x3 − 3x2 − 3x+ 3,

λ6 =− x2 + 2x− 1.

BLS-30

The map (9) sends P ∈ Ẽ(Fp(x)5) into the element λ0P +
∑8

i=1 λiψ
i(P ) ∈ G2,

with:

λ0 = x11 − x10 − 2x9 + 3x8 + 2x7 − 3x6 − x5 + 2x4 − x3 + 4x2 + x+ 7,

λ1 = x11 − 3x10 + 3x9 + x8 − 5x7 + x6 + 4x5 − x4 − 4x3 + 4x2 − 8x− 11,

λ2 = − x10 + 4x9 − 6x8 + 5x7 − 2x6 + 2x5 − 5x4 + 4x3 − 3x+ 11,

λ3 = x8 − 2x7 + 2x6 − x5 − x4 + 2x3 − 2x2 + x,

λ4 = x8 − 2x7 + 2x6 − x5 − x3 + 2x2 − 2x+ 1,

λ5 = − 4x7 + 3x6 + 2x5 − x4 − x3 + 2x2 + 3x− 4,

λ6 = 6x6 − 7x5 − 3x4 + 8x3 − 3x2 − 7x+ 6,

λ7 = − 4x5 + 8x4 − 4x3 − 4x2 + 8x− 4,

λ8 = x4 − 3x3 + 4x2 − 3x+ 1.

BLS-42

The map (10) sends P ∈ Ẽ(Fp(x)7) into the element λ0P +
∑12

i=1 λiψ
i(P ) ∈ G2,

with:

λ0 = −4x15 + 7x14 − x13 − 4x12 + 4x11 + 2x10 − 4x9 + 5x8 − 4x7 − 2x6 + 2x5

− 2x4 − 4x3 + 9x2 + 5x+ 9,
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λ1 = 6x15 − 7x14 − 9x13 + 15x12 − 14x10 + 7x9 − 2x8 − 5x7 + 13x6 − 3x5

− 7x4 + 11x3 + 6x2 − 22x− 19,

λ2 = −7x14 + 15x13 − 4x12 − 14x11 + 15x10 + 2x9 − 13x8 + 19x7 − 9x6 − 14x5

+ 15x4 − 16x2 + 4x+ 22,

λ3 = 2x13 − 6x12 + 6x11 + x10 − 8x9 + 8x8 − 3x7 − 9x6 + 12x5 + 2x4 − 13x3

+ 10x2 + 4x− 6,

λ4 = −x12 + 4x11 − 6x10 + 5x9 − 2x8 + 3x5 − 7x4 + 5x3 + x2 − 5x+ 3,

λ5 = x10 − 2x9 + 2x8 − x7 − x4 + 2x3 − 2x2 + x,

λ6 = x10 − 2x9 + 2x8 − x7 − x3 + 2x2 − 2x+ 1,

λ7 = −6x9 − 2x8 + 2x7 + 6x6 + 6x3 + 2x2 − 2x− 6,

λ8 = 15x8 + 5x7 − 19x6 − 8x5 + 14x4 − 8x3 − 19x2 + 5x+ 15,

λ9 = −20x7 + 5x6 + 30x5 − 15x4 − 15x3 + 30x2 + 5x− 20,

λ10 = 15x6 − 16x5 − 12x4 + 26x3 − 12x2 − 16x+ 15,

λ11 = −6x5 + 12x4 − 6x3 − 6x2 + 12x− 6,

λ12 = x4 − 3x3 + 4x2 − 3x+ 1.

BLS-48

The map (11) P ∈ Ẽ(Fp(x)8) into the element λ0P +
∑14

i=1 λiψ
i(P ) of G2, where:

λ0 = −6x16 − 2x15 + 8x14 + 14x13 − 14x11 − 8x10 + 3x9 + 11x8 + 8x7 − 14x5

− 14x4 + 8x2 + 5x+ 4,

λ1 = 10x15 + 6x14 − 26x13 − 22x12 + 22x11 + 26x10 − 5x9 − 11x8 − 16x7 − 24x6

+ 10x5 + 46x4 + 24x3 − 16x2 − 19x− 5,

λ2 = −14x14 + 4x13 + 34x12 − 34x10 − 3x9 + 13x8 + 24x6 + 26x5 − 34x4 − 56x3

+ 29x+ 11,

λ3 = 8x13 − 8x12 − 16x11 + 16x10 + 9x9 − 9x8 − 22x5 − 10x4 + 40x3 + 24x2

− 19x− 13,

λ4 = −4x12 + 8x11 − 7x9 + 3x8 + 12x4 − 4x3 − 20x2 + 3x+ 9,

λ5 = x9 − x8 − 4x3 + 4x2 + 3x− 3,

λ6 = x9 − x8 − x+ 1,

λ7 = x9 − x8 − x+ 1,

λ8 = −7x8 − 13x7 − 8x6 + 14x5 + 28x4 + 14x3 − 8x2 − 13x− 7,

λ9 = 21x7 + 43x6 + 6x5 − 70x4 − 70x3 + 6x2 + 43x+ 21,
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λ10 = −35x6 − 55x5 + 34x4 + 112x3 + 34x2 − 55x− 35,

λ11 = 35x5 + 29x4 − 64x3 − 64x2 + 29x+ 35,

λ12 = −21x4 + x3 + 40x2 + x− 21,

λ13 = 7x3 − 7x2 − 7x+ 7,

λ14 = −x2 + 2x− 1.
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