
1

PUF+IBE: Blending Physically Unclonable
Functions with Identity Based Encryption for

Authentication and Key Exchange in IoTs
Urbi Chatterjee, Vidya Govindan, Rajat Sadhukhan, Debdeep Mukhopadhyay, Member, IEEE,

Rajat Subhra Chakraborty, Senior Member, IEEE, Debashis Mahata, and Mukesh Prabhu

Abstract—Physically Unclonable Functions (PUFs) promise to be a critical hardware primitive to provide unique identities to billions of
connected devices in Internet of Things (IoTs). In traditional authentication protocols a user presents a set of credentials with an
accompanying proof such as password or digital certificate. However, IoTs need more evolved methods as these classical techniques
suffer from the pressing problems of password dependency and inability to bind access requests to the “things” from which they
originate. Additionally, the protocols need to be lightweight and heterogeneous. Although PUFs seem promising to develop such
mechanism, its unclonability property puts forward an open problem of how to develop such mechanism without needing to store the
challenge-response pair (CRP) explicitly at the verifier end.
In this paper, we develop an authentication and key exchange protocol called PUF+IBE by combining the ideas of Identity based
Encryption (IBE) using Cryptographic Pairing with PUFs. We show that this combination can help to do away with the requirement of
explicitly storing the secret CRPs. The proposed protocol is based on two security assumptions: (a) physical and mathematical
unclonability of the constituent PUFs, and, (b) computational intractability of the Elliptic Curve Discrete Logarithm Problem (ECDLP).
The security of the protocol is proved in a formal way under the Session Key Security and the Universal Composability Framework. A
prototype of the protocol has been implemented to realize a secured video surveillance camera using a combination of an Intel Edison
board, with a Digilent Nexys-4 FPGA board comprising of an Artix-7 FPGA, together serving as the IoT node. We show, though the
stand-alone video camera can be subjected to man-in-the-middle attack via IP-spoofing using standard network penetration tools, the
camera augmented with the proposed protocol resists such attacks and it suits aptly in an IoT infrastructure making the protocol
deployable for the industry.

Index Terms—Physically Unclonable Functions, Elliptic Curve Cryptography, Identity based Encryption, Internet of Things, Device
Authentication, Key management.

F

1 INTRODUCTION

IoTs have opened up an ubiquitous sensing-
communicating-actuating network with information
sharing across platforms, blended seamlessly in various
areas of modern day-to-day living. But as with most
emerging technologies, innovation comes first, and
security is only an afterthought in reaction to discovered
vulnerabilities. The devices deployed in an IoT framework
usually generate large quantities of security-sensitive data.
One of the major security challenges in IoT framework as
presented in [1], is the authentication and key management
of potentially billions of devices deployed in the network.
We try to address this problem and provide a lightweight
and secure solution using PUF and IBE [2]. PUFs can
be proposed as an unconventional, lightweight hardware

• Urbi Chatterjee, Vidya Govindan, Rajat Sadhukhan, Debdeep
Mukhopadhyay and Rajat Subhra Chakraborty are the members of
Secure Embedded Architecture Laboratory (SEAL), Department of
Computer Science and Engineering, Indian Institute of Technology
Kharagpur,Kharagpur,India-721302.
E-mail: urbi.chatterjee@cse.iitkgp.ernet.in,
{vidya.govindan, rajat.sadhukhan}@iitkgp.ac.in, {debdeep,
rschakraborty}@cse.iitkgp.ernet.in

• Debashis Mahata and Mukesh Prabhu are the members of Wipro Techno-
gies, India.
E-mail:{debashis.mahata, mukesh.prabhu}@wipro.com

security primitive that provides reasonable degree of
security [3], [4], [5]. A Silicon PUF [6], [7] is a mapping
γ : {0, 1}n → {0, 1}m, where the output m-bit “response”
are unambiguously identified by both the n “challenge”
bits and the unclonable, instance-specific system behaviour.
So, it can act as a hardware fingerprint of the device.
PUFs have been proposed in various security applications
such as IC anti-counterfeiting, device identification
and authentication [8], binding hardware to software
platforms [9], secure storage of cryptographic secrets [10],
keyless secure communication [11], etc. A specific challenge
and its corresponding response together form a Challenge-
Response Pair (CRP) for a given PUF instance. PUF based
authentication protocols rely on a “challenge-response
authentication” mechanism, rather than on a single secret
cryptographic key. We use this property to uniquely identify
each devices in the IoT framework. The identity generated
by the PUF is further used to generate private/public
key pairs for certificate less identity based encrytion; thus
offloads the complexity of managing the keys for each of
them. In summary, we make the following contributions:

• We propose an authentication and key exchange pro-
tocol combining the concepts of PUF and IBE, called
PUF+IBE. The protocol solves an open problem in the

2

domain of PUF based protocols, alleviating necessity
of the verifier to store explicitly the CRP of the PUF.
Because of the properties of PUF, the prover nodes do
not need to explicitly store keys, but rather generate
it at run time, based on which its public and private
key are generated. Due to the properties of IBE, these
keys are verified by the verifier, without requiring
explicit certificate management. The protocol is also
heterogeneous, in the sense that the verifier, which is
often a server, does not require possession of a PUF
and operates with a standard keyed hash function.

• We prove formally the security of the protocol in
the Session Key Security model and the Universal
Composability framework [12], [13].

• We implement a prototype of the protocol to securely
authenticate a video surveillance camera, commer-
cially purchased and devoid of any inbuilt security
feature. We make a hardware-software co-deisgn of
the prototype, by connecting the camera to a Intel
Edison board, providing the IP and hosting the pro-
tocol operation, while the hardware circuit of the
PUF is implemented and unique ID is generated
from a Artix-7 FPGA. We first show a man-in-the-
middle attack on the commercial video camera, and
then show when the proposed protocol is enabled,
the attack is subverted. We show that the protocol
is lightweight, consumes low power, and has a low
latency, suiting the requirements of IoT.

The rest of the paper is organized as follows. In Section 2
and 3 , we provide the security assumptions and the back-
ground of the work. In Section 4, we present our proposed
authentication and key exchange protocol. The correctness
and security analyses of the proposed scheme are described
in Section 5. The experimental setup, attack scenario and
resource overhead results have been provided in Section 6.
We conclude the paper with future research directions in
Section 7.

2 SYSTEM ASSUMPTIONS AND GOALS

System Model. The setting assumed is that each IoT node,
tries to authenticate to a server and communicate with the
server or with another node. Each node is enabled with a
PUF and has the capability to perform two elliptic curve
operations, namely scalar multiplication and a pairing oper-
ation along with a standard cryptographic hash function. On
the other hand the server, is assumed to have the capability
to compute keyed hash function, where the key is stored in
a Non-volatile memory.
Protocol Assumptions. We assume the adversary can have
access to the communication channel and can not only
be a passive observer, but can tamper the channel with
malicious data as an active adversary. The goal of the
adversary is to authenticate to the server on behalf of the
legitimate nodes, without possession of the node. The PUF
challenge-response, which is embedded in the node is not
accessible to the adversary. Further, the attacker can corrupt
the server (as by a malware) and can obtain access to the
databases which the server possesses. However, we assume
that the attacker cannot gain knowledge of the secret key. We
consider man-in-the-middle attacks on the authentication

protocol. The attack is successful if the adversary is able
to authenticate a wrong node by communicating messages
based on the eavesdropped messages sent by legitimate
nodes, or by corrupting the server. The protocol assumes
that there is an initial enrolment phase when the node is
registered in a trusted environment, but when the protocol
commences between the nodes and the verifying server,
the databases are accessible to the adversary. This makes
the model more practical for IoTs as in many such realistic
scenarios the server can be corrupted by adversaries and the
server may not have a PUF hardware. In this work, we do
not address the subsequent encryption of the messages be-
tween the nodes, but sketch that the public-private key pair
established can be used to communicate using established
protocols [2].
Design Goals. Next, we briefly discuss the design goals of
the proposed PUF based Authentication and Key Exchange
Protocol:

• No explicit key storage in ‘Things’: A primary objec-
tive of the protocol is that instead of having explicit
key storage, a PUF instance will be embedded in each
IoT data nodes which will act in an unpredictable
but repetitive way to provide unique identity to the
devices.

• Lightweightedness and minimal overhead on ex-
ecution time : The hardware overhead and power-
consumption of the PUF enabled node and the la-
tency to authenticate a legitimate node should be
very less.

• No explicit storage of CRP with verifier: Unlike
traditional PUF-based authentication protocols the
verifier will not have access to the CRP database of
the PUF of the prover node. This is to ensure that if
the verifier gets compromised, no one should be able
to mathematically clone the PUF instances using the
CRP databases.

• Efficient management of public/ private keys with-
out central authority: The scheme should be de-
signed in such a way that there is no need to involve
central certificate authority to sign the public keys.
A verifier can easily verify the public key of the
prover as it holds information derived from the PUF
instance of the prover. The public-private key should
be suitably tied to the PUF instance of the node, and
that serves as the root of trust.

3 ALTERNATIVE APPROACHES AND RELATED
WORK

In this section we discuss conventional protocols and their
shortcomings for authentication and key exchange among
the nodes of an IoT system.

3.1 PUF based Protocols
Several lightweight PUF-based authentication proto-
cols [14], [15], [16], [17], [18], [19] have been proposed
in the recent past. But in [20], the authors demonstrated
several vulnerabilities such as Denial-of-Service (DoS) at-
tack, synchronization problem, replay attack, token/server
impersonation that have made these protocols unacceptable

3

in their original form. Moreover, in most of the PUF based
authentication schemes, a verifier node granting authentic-
ity to a prover node, has prior access to a subset of CRP
database or a model of the PUF instance embedded at the
prover node. Now, if we map this set-up in a hierarchical
network of IoT framework, it may expand the attack surface
substantially, as the integrity of CRP details at lower level
network nodes may get compromised due to easy accessi-
bility. Hence, we cannot adopt any of these protocols in its
current form.
In this paper, we have tried to overcome the above-
mentioned problems through an identity based authentica-
tion and key exchange protocol, utilizing the device-specific
behaviour of PUFs. In our scheme, the prover (resource-
constrained) node is PUF-enabled, but the verifier (less
resource-constrained) node does not need to hold the subset
of the CRP database or the model of the PUF instance.
Rather, it contains a keyed hash function which is used to
authenticate the PUF instance without knowing the actual
response of a given challenge. We have assumed that the
key is stored in a secure non-volatile memory. However,
the prover which is often the data collecting node, does
not need to explicitly store any key, but rather the secret
is generated from the response of a PUF which is embedded
in the device.

3.2 Public Key Based Protocols

Authentication and key exchange have been traditionally
handled by the use of public key encryption. The two
conventional ways of handling authentication is by the use
of Public Key Infrastructure (PKI) or by the use of Identity
Based Encryptions (IBE). In [21], new protocols have been
proposed for the IP protection problem on FPGAs using
PUFs and PKI based public key cryptography. But PKI has
been plagued with several shortcomings of non-uniform
standards, and most importantly the difficulty of handling
certificates generated by a trusted third party, virtually
making it infeasible for IoT applications where billions of
devices are expected to communicate. As an alternative,
identity based encryptions are attractive as they provide a
mechanism of generating public keys from publicly known
information. However, in classic IBE the secret keys of a
node are not tied to its physical identity, and the proof of
identity is usually in the form of a password or a digital
certificate that include a user’s public key. Moreover, some
of these secrets need to be explicitly stored in the nodes.
Further, classic IBE requires a Public Key Generator (PKG)
which is used to generate private keys for the nodes and
transfer through secured channels. This makes the key ex-
change unwieldy and difficult for real life deployment for
the scalability of IoT applications.
In the proposed protocol, we have blended IBE with identity
generated by the PUF embedded in a node. It leads to a
certificate-less protocol, where no explicit keys need to be
stored in the nodes, while IBE provides security based on
strong well-founded hard problems. The key exchange in
the proposed protocol is made seamless by allowing the
nodes with the PUFs generating its keys, while the verifier
simply checks its authenticity and passes a verified public
key to another node for further communications. Current

availability of several lightweight hardware and software
implementations [22], [23], [24], [25], [26], [27], [28], [29],
[30], for elliptic curve cryptography and bilinear pairing,
and lightweight designs for PUFs make such a protocol
require less hardware area, consume low power and yet
have low latency.
Security of Commercial IoT Appliances. Surprisingly, even
with the growing importance of security, several IoT ap-
pliances have very little to no support for it. As a use-
case, in this paper we study video surveillance cameras,
which are considered as a very popular IoT application [31],
[32], [33]. Till now, several passive and active attacks [34],
[35] such as visual layer attacks, abusing covert channel
and data ex-filtration attacks, jamming, Denial-of-service,
and side channel attacks have been proposed for video
surveillance system. As a countermeasure, many public
key infrastructure based user authentication protocols [36],
[37] were proposed in literature. However the fact remains
that many network-enabled camera vendors do not use
data encryption, to increase the throughput and to de-
crease memory and power footprint [38], [39]. Additionally,
some of the current video streaming protocols such as RTP,
RTSP and video steaming engines such as WOWZA, Mjpg-
Streamer etc. do not even support secure network protocols
such as SSL [40]. Moreover, in [41], Zheng et. al. shows
how Dynamic Vision Sensor based PUF can be used for
identification and secret key generation for cameras used in
reactive monitoring system. This inspires us to develop PUF
based authentication and key exchange protocol which will
ensure the device authentication irrespective of the security
level of the network protocol running on it.

4 PUF+IBE: PROPOSED AUTHENTICATION AND
KEY EXCHANGE PROTOCOL

In this section, we describe the authentication and key ex-
change protocol that can be suitably implemented in an IoT
infrastructure. Fig. 1 represents the functional blocks of the
proposed security architecture. The architecture consists of
four major components: the Security Credential Generator
(SCG), the Security Association Provider (SAP), the Verifier
Node and the PUF IoT Node. Smart IoT nodes, which
play the role of prover, reside at the lowest level of the
architecture. In our proposal, we assume these data nodes
to be PUF-enabled, and having low hardware and software
footprint and limited computational abilities. They prove
their authenticity using respective embedded PUF instances
to the immediate upper layer nodes, which play the role
of verifier. These verifier nodes are relatively resourceful,
and hence can execute both classical and unconventional
security protocols. As shown in Fig. 1, we assume that the
network infrastructure supports PUF based authentication
and key exchange protocol between the prover data nodes
at the leaf level and the verifier nodes. On the other hand,
the verifier and all the upper layer nodes follow traditional
security algorithms for data confidentiality and integrity.
The proposed protocol has two main phases: In the Enrol-
ment phase, a CRP database is generated for each of the IoT
data nodes (marked as ‘1’). The CRP databases (CRPDBs)
are assumed to be stored in a secure database in a trusted

4

Fig. 1. Hierarchical IoT architecture and proposed secure communication mechanism.

environment, outside the reach of the typical IoT communi-
cations. These database entries are never directly used for
authentication. Rather a security relationship mapping is
created (marked as ‘2’) for each CRP which hides the input-
output correlation of the PUF instance. These mapping
entries are stored in CRP Mapping Databases (MAPDBs)
maintained outside the trusted environment. Additionally,
a randomly generated key is provided to the verifier for
each prover node. It is stored in a secure NVM and used to
dynamically generate a mapped response for a particular
challenge of a PUF instance. In the Authentication and
key exchange phase, the verifier uses challenges randomly
selected from MAPDB and validates responses from the
prover node dynamically at the time of protocol execution.
The protocol is designed in a way that both the prover and
the verifier mutually authenticate each other. Finally, the
verifier node coordinates between different prover nodes for
generation and sharing of public keys (marked as ‘3’).

Fig. 2 demonstrates the situation when two prover nodes

try to communicate with each other, their corresponding
verifier nodes first authenticate them. Then, public keys are
exchanged between the verifier nodes, followed by informa-
tion exchange between the prover nodes via the verifier nodes.
The secrecy and integrity of the messages are ensured by the
classical security mechanisms. In case of mobile data nodes,
if a node moves to a new location, then it will be connected
to a new verifier. The request/response between the actual
verifier and the prover would be routed using the classical
security enabled communication channel.

We now describe details of the steps and constructs used
in the proposed security protocol.

4.1 Public Mathematical Parameters

Our scheme requires that the communicating parties must
agree on some mathematical parameters before initiating
communication. For some large prime value q, we define an
elliptic curve and generate three groups G1, G2 and G3 on
the points of an elliptic curve to define cryptographic pair-

5

IoT Prover
Node A

Verifier
Node A

Verifier
Node B

IoT Prover
Node B

Classical Security Channel

Request to Authenticate
Prover Node B

Authentication result with public
key of Prover Node B

PUF Authentication

Prover Node B Prover Node A
Public key of

PUF Authentication

Public key of

Public key of Prover Node A

Fig. 2. Intergroup communication in the proposed protocol.

ing. Pairing is an admissible bilinear map ê: G1 × G2 → G3

which satisfies the following three properties:
1) Bilinearity: ∀a, b ∈ F ∗q ,∀P ∈ G1, Q ∈ G1 : e(aP, bQ) =
e(P,Q)ab.

2) Non-degeneracy: e(P,Q) 6= 1.
3) Computability: There exist an efficient algorithm to

compute e.
For further details, please refer to Section 2 of [42]. We also
need to choose three secure cryptographic hash functions:
H1 : {0, 1}n → G∗1, H2 : {0, 1}n × {0, 1}m → G∗2, H3 :
G2 → {0, 1}n, where n and m are the bit lengths of the PUF
response and secret key, respectively, in our context. So, the
public mathematical parameters are: <p, G1, G2, G3, e, n,
H1, H2, H3>.

4.2 Enrolment Phase
Before deploying the nodes in the communication network,
the enrolment phase is executed for each node in a secure and
trusted environment. The steps are shown in Fig. 3, and are
summarized as follows:

• A Security Credential Generator (SCG) sends a random
challenge CA to the IoT Node A.

• Node A applies the challenge CA to its PUF, and
generates the output RA = PUF (CA), and returns
it to the SCG.

• The SCG stores the response along with the challenge
by appending <CA, RA> to its CRPDB.

• Next, the SCG uniquely selects an m-bit key KA for
node A and randomly generates an n-bit challenge
CS , and then it calculates:

PS = H2KA
(CS), PA = H1(RA)

Then, the SCG randomly selects an element a from
Z∗q and calculates:

B = PA−a ·PS , d1 = H3(H1(CA||CS ||a)+B+PS)

In this way, a new tuple < Ca, CS , a, B, d1 > is
generated and stored in the MAPDB of the Security
Association Provider (SAP). This procedure is repeated
according to the memory capacity of the SAP and the
SCG.

• Finally, the key KA along with the index of Node A
are stored in the secure non-volatile memory of the
verifier.

At the end of the enrolment phase for a given node A,
the verifier supervising it will have only the secret key.
For authentication, the SAP will transfer an entry randomly

from the mapping database of the node A to the verifier.
The verifier will calculate the response of the PUF on-the-
fly to authenticate node A. Here, we have assumed that the
verifier will securely store the secret key for the keyed hash
function in a non-volatile memory. We can achieve this goal
using the commercially available tamper-proof NVM chips,
e.g. those used in Trusted Platform Module (TPM) [43]

4.3 The Authentication and Key Exchange Phase
The second phase of this protocol performing authentication
and key sharing is described below as shown in Fig. 4. Con-
sider a situation where IoT node A wishes to communicate
with IoT node B, with both A and B being at the lowest
levels of the IoT hierarchy.

• At first, IoT node A initiates a request to the verifier
for authentication. The verifier forwards the request
to the SAP.

• The SAP randomly chooses an entry
< CA, CS , a, B, d1 > from MapDBA and sends
it back to the verifier.

• Now, the verifier performs the following computa-
tions:

PS = H2KA
(CS)

• If d1 == H3(H1(CA||CS ||a) + B + PS), then it
calculates:

PA = a · PS +B

• Next, the verifier randomly chooses a value x such
that x ∈R Z∗q and computes:

QA = PA + x · PS , VA = e(PA, x · PS)

and sends this value to node A as the tuple <
CA, QA>.

• On receiving the message, node A first calculates the
following:

P ′A = H1(PUFA(CA)), P ′S = QA−P ′A, V ′A = e(P ′A, P
′
S)

• Next, nodeA randomly chooses two values t andRA
such that t ∈R Z∗q and RA ∈R G∗1. Then it computes
the public and private key pair:

KAPUB = t ·QA,KAPRV = t ·RA
and it sends the verifier the tuple
< V ′A,KAPUB , RA, H3(P ′S +KAPUB +RA)>.

• If VA equals V ′A and H3(P ′S +KAPUB +RA) equals
H3(x ·PS +KAPUB +RA), the verifier accepts node
A as an authenticated device, and accepts its public
key.

• Since node A wishes to communicate with node
B, it needs the verifier to authenticate node B.
Hence, the verifier follows a similar procedure for
node B as described above to authenticate node B,
and accepts its public key KBPUB upon successful
authentication. Finally, it sends node A the tuple
<KBPUB , QB , RB , H3(PA+KBPUB+QB+RB)>.
On receiving it, if node A finds that H3(PA +
KBPUB + QB + RB) equals H3(P ′A + KBPUB +
QB +RB), then the verifier is authenticated, as only
the verifier can retrieve the value of PA using PS ,
and node A accepts the public key of node B.

6

Security Credential Generator

RA = PUFA(CA)

PUF Enabled Verifier

KA

PA = H1(RA) and PS = H2KA
(CS)

a ∈R Z∗
q

CS ∈R {0,1}n and KA ∈R {0,1}m

B = PA − a ·Ps

d1 = H3(H1(CA||CS||a) +B +PS)

RA

CA

< CA,CS, a,B,d1 >
Append < CA,CS, a,B,d1 > for

IoT Node A Security Association Provider

Stores < Node A,KA >

Randomly chooses a Challenge CA.

Append < CA,RA > into CRPDB.

Node A into MAPDB.

in NVM.

Fig. 3. Enrolment phase of the proposed protocol.

IDA

CA,QA

KAPUB = t ·QA

IDA, IDS

IoT Node A Security Association ProviderPUF Enabled Verifier

< CA,CS, a,B,d1 > ∈R MAPDBA

< CA,CS, a,B,d1 >

If H3(H1(CA||CS||a) +B +PS) == d1

then, it calculates the following :

PA = aPS +B

QA = PA + x ·PS

PS = H2KA
(CS)

x ∈R Z∗
q

KAPRV = t ·RA

P′
S = QA −P′

A

VA = e(PA,xPS)

V′
A = e(P′

A,P
′
S)

t ∈R Z∗
q

RA ∈R G∗
1

P′
A = H1(PUFA(CA))

V′
A,KAPUB,RA,

H3(P′
S +KAPUB +RA)

If VA == V′
A and

H3(KAPUB +P′
S +RA) ==

H3(KAPUB + xPS +RA)

Node A is authenticated.

Similarly, AP authenticates Node B.KBPUB,QB,RB,

If H3(KBPUB +QB +RB +PA) ==

Node A accepts the public key of Node B.

AP is authenticated and

H3(KBPUB +QB +PB +P′
A)

H3(PA +KBPUB +QB +RB)

Fig. 4. The authentication and key exchange phase.

5 SECURITY ANALYSIS

Attack Models: Next we will shortly describe two different
attack models in which we will analyse the security of the
proposed authentication and key exchange protocol.

• Session Key Security Model: Here all parties in-
volved in the protocol such as SCG, SAP, verifier
and PUF IoT Nodes are assumed to be trusted. The
attacker either (i) eavesdrops the communication link
without any change or addition to the messages (e.g.
packet sniffing attack) or, (ii) has full control over
the links and can modify the messages (e.g. packet
injection or re-routing attack). In Section 5.1.3, it has
been shown that the protocol is secure against both
of these attack variants.

• Universally Composite Framework: This model en-
sures that the proposed key exchange protocol pro-
vides the same security when used by any other
protocol to set up session keys between two parties,
even when it runs in parallel with an arbitrary set
of other protocols in a distributed communication
network. The primary concepts of this framework
are described in Section 5.2. We have described an

ideal functionality of the asymmetric key exchange
protocol in Section 5.2.1. Here also the attacker has
full control over the links. Moreover, she can get
more advantages if some of the participants get com-
promised. We have shown three different scenarios
where

1) The verifier and the two communicating parties
are honest (ideal case).

2) The verifier is corrupt (e.g., the attacker can have
access to the CRP database for a limited time)

3) Either of the two communicating parties or both
are corrupt (e.g., in real life implementation, we
can picture this scenario as the attacker can control
the internal functioning of the node and tries to
send some malicious information to disrupt the
system).

5.1 Session-Key Security
The definition of Session-Key Security (SK security) is based
on the approach called “security by indistinguishability”. To
elaborate, this approach evaluates the security of a crypto-
graphic system as follows. Suppose, two games Game1 and

7

Game2 are constructed in which the adversary communi-
cates with the protocol under consideration. If no feasible
adversary can distinguish between whether she is interact-
ing with Game1 or Game2, then the protocol is said to be
indistinguishable and secure. Further, in order to ensure
that the proposed cryptographic scheme is secure against
differing capabilities of the attacker, usually two adversarial
models are considered:

• The Unauthenticated-link Adversarial Model
(UM): Here, a probabilistic polynomial-time (PPT)
attacker is considered who has full access/control
over the communication links, along with the
scheduling of all protocol events such as initiation
of protocols and message delivery.

• The Authenticated-link Adversarial Model (AM):
In this case, the attacker is restricted to only deliver
messages truly generated by the parties without any
change or addition to them.

We prove that our protocol is secure against UM, which in
turn ensures that the protocol is secure against AM.
Consider the following experiment under UM: the attacker
Λ chooses to attack a session under test, and let κ be the
shared session key of the session. A random coin tossing is
performed, with its result encoded as a bit b. If b = 0, the
value κ is given to the attacker Λ, otherwise a random value
r, chosen from the probability distribution of keys generated
by the protocol π. The attacker outputs a bit b′ at the end.

Definition 1. Session Key Secure (SK-Secure) Protocol A
key-exchange (KE) protocol π is called SK-secure if the
following properties hold for any KE-adversary Λ in the
UM:

1) Protocol π satisfies the property that if two uncorrupted
parties successfully complete a session then they both
output the same key, and,

2) the probability that Λ guesses correctly the bit i.e., b′ =
b is more than 1

2 by only a negligible quantity.

5.1.1 Security Assumptions
As mentioned previously, there are two security assump-
tions at the foundation of the secure communication proto-
col proposed. The first security assumption is the physical
and mathematical unclonability of PUFs by a polynomial-
time algorithm, which implies that it is computationally
infeasible to construct the challenge-response mapping of
an arbitary PUF instance. Although most PUF variants
are physically unclonable at the current state-of-the-art (a
notable exception being the successful effort of SRAM PUF
cloning reported in [44]), successful mathematical modeling
(“model-building attacks”) have been widely reported [45].
However, by choosing relatively secure PUF variants such as
Lightweight Secure PUF or XOR PUF [45], we can avoid both
physical and mathematical cloning in practice. This security
assumption is formalized in the definitions below:

Definition 2. (Decisional Uniqueness Problem (DUP) for
PUF) Given an n-bit output of an arbitrary PUF instance
PUFAdv, a challenge C and an n-bit string z ∈ {0, 1}n,
the DUP aims to decide whether z = PUFN (C) for a
PUF instance PUFN , or a random n-bit string.

Definition 3. (Decisional Uniqueness Problem Assump-
tion) The problem of fabricating a PUF instance PUFN
using another instance PUFAdv is hard, and for all
probabilistic, polynomial time algorithm A, there exists
a negligible function negl(·) such that:

| Pr[A(C,PUFAdv, z) = 1]−
Pr[A(C,PUFAdv, PUFN (C)) = 1] |6 negl(n)

where n is the number of response bits of the PUF
instance.

This implies that given an arbitrary challenge C and an
arbitrary PUF instance PUFAdv, the adversary A behaves
almost identically, for a random element z ∈ {0, 1}n, and
the actual n-bit response PUFN (C). Another way of inter-
preting the Decisional Uniqueness Problem Assumption is
that the ensemble of tuples of type (C,PUFAdv, z) is com-
putationally indistinguishable from the ensemble of tuples
of type (C,PUFAdv, PUFN (C)).

The second important security assumption is the com-
putational infeasibility of the Elliptic Curve Discrete Log-
arithm Problem (ECDLP):
Definition 4. (Elliptic Curve Discrete Logarithm Problem

(ECDLP)) Let E(K) be a discrete elliptic curve over a
finite field K ; let there exist points P,Q ∈ E(K) such
that Q ∈<P>, where P is a primitive point (capable of
generating any arbitrary point on E(K)), and < P >
denotes the set of points generated by adding P to itself
k times, for some integer k. The ECDLP problem is to
find the value of the scalar multiple k, given P and Q.
ECDLP is considered computationally intractable at the
current state-of-the-art for proper choices of the curve
E(K).

5.1.2 Correctness Proof of the Proposed Scheme
We consider a setting with two parties, IoT node A and
the verifier monitoring the authentication procedure of
node A. We denote the protocol by π. Recall that node A
and the verifier contain PUF instance PUFA and a secure
NVM storingKA. Moreover, let outputnodeA,π(CA, QA) and
outputS,π(CA, CS , a, B) denote the respective outputs of
nodeA and the verifier. We assume that this output takes the
form of an element of G∗3 that is supposed to be considered
as the identity of node A, and should be shared by node A
and the verifier. Hence,

outputnodeA,π(CA, QA) = e(H1(PUFA(CA),

QA −H1(PUFA(CA))

and

outputS,π(CA, CS , a, B) = e(a ·H2KA
(CS) +B, x ·H2KA

(CS))

Next, we present the definition of the correctness require-
ment. It states that, except with negligible probability, node
A and the verifier will generate the same identity, and only
node A will be authenticated to the verifier.
Definition 5. (Correctness of Protocol) A protocol π for

authentication and key exchange is denoted as correct
if there exists a negligible function negl(·), such that for
every possible value of n:

Pr[outputnodeA,π(CA, QA) 6= outputS,π(CA, CS , a, B)] 6 negl(n)

8

It can be observed that:

e(a ·H2KA
(CS) +B, x ·H2KA

(CS)) = e(PA, x ·H2KA
(CS)) =

e((H1(PUFA(CA)), QA −H1(PUFA(CA))

This means that node A and the verifier will output the
same value, thereby proving the correctness of the scheme.
It may be noted that the rationale for the choices of the
public and private keys are based on [2]. The exact descrip-
tion of the encryption process is beyond the scope of the
present work, but for the sake of completeness, we would
like to sketch that for encryption. For a random string w, the
node A can compute, a string λ = e(KBPUB , RB)w = e(t ·
QB , RB)w=e(QB , RB)t·w, which can be used to confide a
message to be sent to node B. The encryptor sends a hint for
w to node B, which is w ·QB . The decryptor node B using
the hint and its private key can compute this string by calcu-
lating e(w·QB ,KBPRV)=e(w·QB , t·RB)=e(QB , RB)t·w=λ.
This explains briefly the choices for the public and private
keys in the proposed key exchange protocol.

5.1.3 Security Proof of the Proposed Scheme
From the security perspective, an authentication and key
exchange protocol is secure if the output VA generated by
node A and the verifier are identical, and no adversary can
correctly guess VA for the challenge < CA, CS , a, B > and
x chosen randomly. This has been formulated by giving an
adversary the values< CA, CS , a, B > from a protocol exe-
cution, and observing whether she can distinguish between
VA generated by node A, and the verifier, or a completely
random element of G∗3.
We would show that breaking the proposed protocol is
at least as difficult as solving the Decisional Uniqueness
Problem for PUFs, i.e., a successful attack on the pro-
posed protocol implies a feasible solution to the Decisional
Uniqueness Problem for PUFs. In order to demonstrate this,
an experiment has been presented next.
Let Adv be a probabilistic, polynomial time adversary, and
the number of PUF response bits be n. Then, consider the
following experiment:
The Eavesdropping Authentication and Key Exchange
Experiment Authadv,π(n, ζ,PUFAdv,VA0 ,VA1) :

1) The adversary Adv is provided:
a) A PUF instance PUFAdv and ζ=<
CA, CS , a, B,QA > where QA = ((a · H2KA

(CS) +
B) + (x ·H2KA

(CS))).
b) Two identities VA0

and VA1
, calculated based on a

chosen random bit b ∈ {0, 1}:
VAb

= e(a ·H2KA
(CS) +B, x ·H2KA

(CS))

VA1−b
= h ∈R G∗3

2) The adversary Adv will output a value b′. If b = b′, the
adversary Adv succeeds in the experiment.

Next we prove the following theorem.
Theorem 1. The authentication and key exchange protocol π

is secure in the presence of eavesdropping adversaries if
the Decisional Uniqueness Problem Assumption holds.

proof 1. To prove this, we show that the protocol π is secure
if the adversary succeeds in the experiment Authadv,π

with probability that is at most negligibly greater than
1
2 , i.e., for every probabilistic polynomial time adversary
Adv, there exists a negligible function negl(·) such that:

Pr[Authadv,π = 1] 6 1
2 + negl(n)

Let us assume that the adversary Adv has some non-
negligible advantage ε in breaking the protocol π. Then
we can construct an algorithm B which will have the
same advantage ε in breaking the Uniqueness problem.
Now, the algorithm B takes as input a random Unique-
ness Problem tuple (CA, PUFAdv, zA) (where zA =
PUFA(CA) or one random string belongs to {0, 1}∗)
and proceeds as follows:

1) SetUp: Provide Adv with PUFAdv.
2) Input tuple:

a) First it randomly chooses PS and x.
b) It calculates PA = H1(zA).
c) Then it calculates:

QA = PA + x · PS
d) Then sets ζ =<CA, CS , a, B,QA>, which is perfectly

random to the adversary Adv.
e) Next, it randomly chooses b ∈ {0, 1}.
f) It then calculates VAb

= e(PA, x · PS) and
VA1−b

= h ∈R G∗3
g) The algorithm B finally provides Adv the input tuple

< ζ, VA0
, VA1

>. If zA = PUFA(CA) , then VAb
will

be equal to e(PA, x · PS) and it will a valid input
tuple. Otherwise, VA0

, VA1
both will be some random

element of G∗3.
3) Guess: The adversary Adv returns b′, a guess of b. If
b = b′, then the algorithm B returns 1, implying that zA
are the correct responses of CA. Otherwise, it returns 0.

Hence, it is proved that the adversary Adv has the same
advantage ε as the adversary B. But, due to the hardness
of Uniqueness Problem, ε should be negligible. Hence,

Pr[Authadv,π = 1] 6 1
2 + negl(n)

Once the authentication is done successfully, node A se-
lects a random value t ∈R Z∗q . Then, it locally calcu-
lates {public,private} key pair K1PUB = t · QA and
K1PRV = t ·RA. It keeps K1PRV secret and sends K1PUB
to the verifier over the authenticated link. Now assuming
the complexity of the Computational Discrete Log Problem, the
probability that the adversary Adv can retrieve the value
of t from K1PUB , knowing the value of QA is negligible.
Hence the adversary Adv fails to calculate the correct value
of private key K1PRV .
If we consider the AM adversarial model, the adversary
Adv is restricted to only deliver messages truly generated
by the parties without any change or addition to them;
hence she fails to calculate the private key of node A. On the
other hand, in the UM adversarial model, any change in the
message sent over the channel will end up with difference in
the hashed value of the message at the data node and sever
node. From the result obtained in the previous theorem, we
conclude that: based on the complexity assumption of the
Computational Discrete Log Problem, Decisional Unique-
ness Problem and that the hash function is collision

9

resistant, the authentication and key-exchange protocol π
is SK-secure in AM as well as in UM model.
Hence, DUP ∧ ECDLP→ π is SK-secure.

=⇒ π is not SK-secure→ ¬ DUP ∨ ¬ ECDLP.
Next, we prove the compatibility of the scheme with the
universal composability framework.

5.2 Universal Composability Framework
The basic objective of Universal Composability (UC) frame-
work is to guarantee that any key exchange protocol pro-
vides the same security for any other protocol which wants
to set up session keys between two parties, even when it
runs in parallel with an arbitrary set of other protocols in
a distributed communication network. We prove that the
method of key exchange as proposed in this work is also
compatible with similar composability properties. It follows
the approach referred as “security by emulation of an ideal
process”. The primary concept of this principle is as given
below [13]:

1) The model of protocol execution consists of the commu-
nicating parties running the protocol and the adversary.
They are further considered as interacting computing
elements and modelled as Interactive Turing Machines
(ITMs).

2) We formulate an “ideal process” F that picks up the
task f of the desired functionality.

3) In the ideal process F all communicating parties pro-
vides inputs to an “idealized trusted party” which lo-
cally performs the task, and sends each party its desired
output. In this regard, it is the formal specification of the
security requirements of the task.

4) Additionally, a new algorithmic object, called the “en-
vironment machine” E , is added in this computational
model, which is considered to consist of everything
external to the current protocol execution, such as other
protocol executions and their adversaries, human users,
etc.

5) The adversary Λ can directly interact with E through-
out the execution of the protocol. They can exchange
information after each message or output generated by
a party running the protocol. The environment E also
has the permission to apply inputs to the communi-
cation parties, and collect outputs from them. But the
environment E is constrained to collect outputs of the
main program running in each party, and not the output
from the subroutines called from that main program.

6) A protocol π securely realizes the task f if π emulates the
ideal processF , i.e., if there exists an adversary Λ which
attacks protocol π, there also exists a “simulator” S that
achieves similar adversarial effect by interacting with
the ideal process F . In addition, no environment E can
tell with non-negligible probability of success whether
it is interacting with Λ and π, or with S and F for f .

5.2.1 UC Security of the Proposed Key Exchange Phase
The main concept of asymmetric key exchange ideal func-
tionalityFAKE is that: if both the communicating parties are
honest, the functionality provides them with two random
identities, which is written directly to the party’s input tape.
The adversary cannot have access to the tape, hence the

”Break”

AuthAdv,Π(n)

Solution to PUF’s

B

Instance of

Protocol Π

Instance of PUF’s

Decisional Uniqueness Problem

Decisional Uniqueness Problem

Fig. 5. The view of Authadv,π when it is run as a sub-routine of B
([46]).

values are invisible to her. If one of the communicating
parties is corrupt, then the adversary can easily determine
the identity of the corrupt party. FAKE is parameterized
by an integer N (the total number of permissible sessions),
where a verifier runs with exactly t data nodes and the
simulator S . The working principle of FAKE has been
shown the Fig. 6. Next we prove the security of FAKE .

Theorem 2. Protocol π securely realizes functionality FAKE .

proof 2.
Here we assume that (a) the adversary possesses a PUF
instance; (b) queries to the PUF are genuinely handed on
to the simulator S’s PUF, and (c) the PUF’s answers are
forwarded unmodified to the querying party throughout
all the simulations. We consider different usage and
security scenarios in turn.

Case-1: Verifier and node A are honest:

• Setup: Whenever the function-
ality FAKE receives message
(establish− sessionAKE, sid, Node A, Verifier)
for the first time, the simulator S queries the PUF
instance PUFA for k random challenges C1, C2,...,
Ck, and obtains responses RA1, RA2,..., RAk. Then,
it creates a list LA of k challenge-response pairs.

• It then hands over PUFA to node A.
• On receiving a message

(establish− sessionAKE, sid, Node A, Verifier),
FAKE increments p by one and the simulator S
sends (deliverAKE , sid, V erifier) to FAKE .

• FAKE then sends (deliverAKE , sid, VA, V erifier)
to the verifier.

• Now the simulator S is activated again and it simu-
lates that the server sends (CA, QA) to node A.

• When the adversary Λ instructs to send the lat-
ter message to node A, the simulator S sends
(deliverAKE , sid, VA, Node A) to FAKE .

• The probability that the value of e((PUFA(CA), x ·
H2KA

(CS)) is equal to VA is negligible (as proved in
Section 5.1.3).

Case-2: Verifier is corrupt:

• The simulator S let Verifier to instantiate PUFA, and
hands it over to node A.

• When the adversary Λ instructs to deliver message
(CA, QA), then the simulator S can easily evaluate

10

(establish− sessionAKE, sid,

If p > N

by Node A?

message written
in the input tape of FAKE in the input tape of FAKE

message written

by S?

Message ==

Yes

If p > 1 and A ∈ t

all parties are honest?

p = p + 1

p = p− 1

No

FAKE checks if

If there exists a tuple

FAKE deletes the tuples from the input tape

No

Message ==

FAKE sets p = 1

FAKE waits for new message

New Message

No

Yes Yes

No

No

Yes
Yes

No

No

No

Yes

Yes

Yes No

START (N, n)

STOP

(deliverAKE, sid, VA, Node A),

It draws a random value

VA in G∗
3.

Stores the messages

p = p + 1

(deliverAKE, sid, VA, Node A),

Stores the messages

Message ==

Yes

in the input tape of Node A.

then FAKE writes (deliverAKE, sid, VA, Node A)

(deliverAKE, sid, VA, Node A),

Similarly for Verifier

it writes (deliverAKE, sid, VA, Verifier)

on the input tape of Verifier.

Node A, Verifier) ?

(choose− valueAKE, sid, Node A, Verifier, VA)? (deliverAKE, sid, Node A, Verifier)?

(establish− sessionAKE, sid, Node A, Verifier)

(deliverAKE, sid, VA, Verifier).

(deliverAKE, sid, VA, Verifier).

S writes on his input tape

Verifier ?)

If there exists a tuple

(establish− sessionAKE, sid, Node A,

Fig. 6. The asymmetric key exchange ideal functionality.

VA = e(a · H2KA
(CS) + B, x · H2KA

(CS)), as the
server is corrupt. But it is to be noted that S does not
have access to KA. It can only get the final value of
VA.

• It next sends (choose −
valueAKE , sid, Node A, V erifier, VA) to
FAKE as it has already calculated the value of VA
and F increments the value of p by one.

• Finally, S sends the messages
(deliverAKE , sid, VA, Node A) to FAKE .

• Hence in this case the ID provided by F and the
identity calculated from the challenges given by the
server is same.

• But node A later chooses a random value t ∈ Z∗q
after getting the VA, and calculates the public and
private keys using them. Hence, the simulator S as
well as the adversary Λ cannot guess the asymmetric

key pairs for node A. This is due to fact that the
security of elliptic curve cryptography rests on the
assumption that the elliptic curve discrete logarithm
problem (ECDLP) is hard. Now as node A randomly
selects the value of t and QA, RA are the points on
the elliptic curve, it is assumed to be hard to predict
the value of t by the simulator S and the adversary Λ.
So, we can say that even if the server gets corrupted
for a limited time, the keys of the legitimate users
are not compromised which in turn ensures that the
data communicated between two nodes cannot be
retrieved by the corrupted server.

Case-3: node A is corrupt:
This case covers the situation if a party willingly hands
over its PUF to the adversary Λ. So, in this case, we
show that the adversary Λ can easily retrieve the value
of private key for that particular party.

11

• The set up phase is same as given in Case-1.
• On receiving a message (establish −

sessionAKE , sid, Node A, V erifier), the
simulator S increments p by one and sends
(choose − valueAKE , sid, Node A, V erifier, VA)
to FAKE .

• It is activated again and sends
(deliverAKE , sid, V erifier) to FAKE .

• Verifier writes the VA on its local tape and S is
activated again.

• It simulates the server sending (CA, VA) node A.
• When the adversary Λ instructs to deliver

the latter message to node A, S sends
(deliverAKE , sid, VA, Node A) to FAKE .

• If Node is corrupted, then Λ can easily find out the
random value chosen from Z∗q for calculating the
private and public keys, and hence the value of the
private keys are compromised.

Hence, the scheme securely realizes the ideal functionality
FAKE .

6 EXPERIMENTAL SETUP AND RESULTS

In this section, we describe an experimental evaluation of
the effectiveness of the proposed protocol to prevent an at-
tack on an IoT application, including the incurred hardware
and performance overheads.

6.1 Attack Scenario
We consider a scenario whereby a video camera transmits
unencrypted captured video over a network. An adver-
sary intercepts the network traffic to launch a “man-in-the-
middle attack” and a “replay attack”, to potentially modify
the information received at the receiver. To prevent this IP
spoofing and impersonation attack, the camera in conjunc-
tion with a PUF mapped on a FPGA and an embedded
board emulates an IoT node. The scenario is illustrated in
Fig. 7.

6.2 Experimental Setup
The off-the-shelf hardware components used in the attack
are: an Intel Edison embedded development platform, a Dig-
ilent Nexys-4 FPGA board containing Xilinx Artix-7 FPGA,
and a Logitech HD UVC camera as shown in Fig. 8.

In general scenario, the Logitech camera is connected to
Intel Edison Board through a USB interface to form an IoT
node. An mjpg-streamer software is run on the Edison board
to capture video using the camera, and send to a PC (the
receiver) through WiFi. The PC then displays the received
video in a web browser using the IP address of the Edison
board. Both the camera and the PC are connected to the
same WiFi network. Next, we use the hacking software
tools enabled by Kali Linux [47] as mentioned below and
perform a man-in-the-middle and replay attack on this
setup, through the following steps:

• First, the attacker finds out the IP address of the
Edison board from the network ARP table using the
arp command.

• The video packets are then sniffed using IP forward-
ing and ettercap tool and these frames are saved in the
attacker’s machine using the driftnet tool as shown in
Fig.10.

• The attacker starts scanning the network in monitor
mode to get the router’s BSSID and associated clients
using the airmon-ng and airodump-ng tools.

• Next, it de-authenticates the Edison board from the
network using the deauth option in the aireplay-ng
tool. Once this is done, the video stream stops at PC’s
end for a short interval of time as shown in Fig. 10.

• Then, the attacker spoofs the IP address of the Edison
board and starts streaming the pre-captured video
using the same mjpg-streamer tool.

• Now, the receiver PC actually gets data from the
attacker’s computer, which can either be a replayed
or modified version of the video stream captured
earlier.

Next, the PUF circuitry is implemented on the Xilinx Artix-
7 FPGA and is connected to the Edison Board. The com-
munication between FPGA and Edison board is established
through a Universal Asynchronous Receive/Transmit (UART)
interface. The Edison board, Artix-7 FPGA and the camera
together form a smart IoT node and can act as a prover. The
receiver PC acts as the verifier that can generate and validate
the response of the PUF instance embedded in Artix-7, and
subsequently authenticate the IoT node. Now, with the mod-
ified set up, the system works as follows: before streaming
the video in the web page, the PC first authenticates the

Fig. 8. Experimental setup for smart IoT node.

Fig. 9. The video frames are saved in jpeg format in the adversary’s
machine using driftnet tool which are used for replay.

12

Fig. 7. Attack on video surveillance system and protection against it: (a) and (b) show the successful attack in the absence of PUF based
authentication mechanism, while (c) and (d) show the prevention of the attack in the presence of the proposed PUF based authentication system.

Edison board using our proposed protocol and validates
the public keys. Later, if the attacker de-authenticates the
Edison board from the network, the video streaming will
stop at PC’s end. Before reloading the web page, the PC
again re-authenticates the device of the video source. This is
where the adversary fails to authenticate herself as she does
not possess the correct PUF instance.

6.3 Experimental Results
The PUF design and implementation was performed using
Xilinx ISE (v 14.2) design environment. We applied a 64-bit
challenge as a seed to a circular left shift module. After 10
cycles, the output of the module was input to the LSPUF
[48], and the 10-bit output from the PUF was stored. This
process was repeated 5 times to get a 50-bit response from
the PUF. As hardware overhead for deploying the PUF in
the FPGA, the number of required Slices, Registers and
LUTs are 547, 288 and 1347 respectively. The power con-
sumption of the circuit reported by Xilinx XPower Analyzer
CAD software tool was 0.044 W.
For software implementation of the elliptic curve crypto-
graphic operations, we used the MIRACL Crypto SDK [49],
which provides a C++ software library for elliptic curve
cryptography. The specification of the elliptic curve is as
follows: the 512 bit prime number p= 8D5006492B424C09D2

Fig. 10. The camera is de-authenticated from the wireless network by
the adversary using aireplay tool (right).

FEBE717EE382A57EBE3A352FC383E1AC79F21DDB43706C
FB192333A7E9CF644636332E83D90A1E56EFBAE8715AA07
883483F8267E80ED3, order r=80000000000000000000000000
00000000020001; the curve being y2 = x3 + Ax + B where:
A=-3 and B=609993837367998001C95B87A6BA872135E26
906DB4C192D6E038486177A3EDF6C50B9BB20DF881F2BD
05842F598F3E037B362DBF89F0A62E5871D41D951BF8E. We
ported our implementations to the Edison platform. Overall,
the executable took approximately 512 kB of memory on the
Edison board. The latency overhead incurred running the
end-to-end authentication scheme before the video stream-
ing was approximately 480.11 ms on average. These over-
head results demonstrates that the proposed protocol can
be implemented while incurring acceptable resource and
performance overhead.

7 CONCLUSIONS

We have developed a secure PUF based authentication and
certificate-less identity based key exchange protocol. Formal
security proofs for the protocol have been formulated under
the SK security and UC framework. The asymmetric nature
of the protocol overcomes the shortcomings of previously
proposed CRP based PUF authentication mechanism and
suits appropriately in a distributed IoT framework. We
have also demonstrated an attack on a prototype video
surveillance system, and showed how the proposed scheme
can be useful in mitigating the security vulnerability at
low hardware and performance overheads. In future, our
research work will be directed towards optimization of
the resources for frame encryption and investigating side-
channel attacks on the proposed protocol implementation.

REFERENCES

[1] A. Sadeghi, C. Wachsmann, and M. Waidner, “Security and pri-
vacy challenges in industrial internet of things,” in Proceedings of
the 52nd Annual Design Automation Conference, San Francisco, CA,
USA, June 7-11, 2015, 2015, pp. 54:1–54:6.

[2] D. Boneh and M. K. Franklin, “Identity-Based Encryption from the
Weil Pairing,” SIAM J. Comput., vol. 32, no. 3, pp. 586–615, 2003.

[3] NXP, “ME and MY SMARTER WORLD,” http://blog.nxp.com/
identification/puf-the-magic-dragon-of-smart-card-security.

[4] IoTONE, “PUF The Magic (IoT) Dragon,” http://www.iotone.
com/guide/puf-the-magic-iot-dragon/g488.

13

[5] D. Mukhopadhyay, “PUFs as Promising Tools for Security in
Internet of Things,” IEEE Design & Test, vol. 33, no. 3, pp. 103–
115, 2016.

[6] R. Pappu, “Physical One-way functions,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, USA, 2001.

[7] D. LIM, “Extracting Secret keys from Integrated Circuits,” USA,
2004.

[8] M. Majzoobi and F. Koushanfar, “Time-Bounded Authentication
of FPGAs,” IEEE Transactions on Information Forensics and Security,
vol. 6, no. 3-2, pp. 1123–1135, 2011.

[9] S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “Ex-
tended Abstract: The Butterfly PUF Protecting IP on every FPGA,”
in Proceedings of the IEEE International Workshop on Hardware-
Oriented Security and Trust, ser. HOST ’08, 2008, pp. 67–70.

[10] M. M. Yu, D. M’Raı̈hi, R. Sowell, and S. Devadas, “Lightweight
and Secure PUF Key Storage Using Limits of Machine Learning,”
in Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th
International Workshop, Nara, Japan, September 28 - October 1, 2011.
Proceedings, 2011, pp. 358–373.

[11] U. Rührmair, “SIMPL Systems as a Keyless Cryptographic and
Security Primitive,” in Cryptography and Security. Springer, 2012,
pp. 329–354.

[12] R. Canetti and H. Krawczyk, “Analysis of Key-Exchange Protocols
and Their Use for Building Secure Channels,” in Advances in Cryp-
tology - EUROCRYPT 2001, International Conference on the Theory
and Application of Cryptographic Techniques, Innsbruck, Austria, May
6-10, 2001, Proceeding, 2001, pp. 453–474.

[13] R. Canetti, “Universally Composable Security: A New Paradigm
for Cryptographic Protocols,” in 42nd Annual Symposium on Foun-
dations of Computer Science, FOCS 2001, 14-17 October 2001, Las
Vegas, Nevada, USA, 2001, pp. 136–145.

[14] B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas, “Controlled
Physical Random Functions,” in 18th Annual Computer Security
Applications Conference (ACSAC 2002), 9-13 December 2002, Las
Vegas, NV, USA, 2002, pp. 149–160.

[15] E. Öztürk, G. Hammouri, and B. Sunar, “Towards Robust Low
Cost Authentication for Pervasive Devices,” in Sixth Annual IEEE
International Conference on Pervasive Computing and Communications
(PerCom 2008), 17-21 March 2008, Hong Kong, 2008, pp. 170–178.

[16] S. Katzenbeisser, Ü. Koçabas, V. van der Leest, A. Sadeghi, G. J.
Schrijen, and C. Wachsmann, “Recyclable PUFs: logically recon-
figurable PUFs,” J. Cryptographic Engineering, vol. 1, no. 3, pp. 177–
186, 2011.

[17] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. De-
vadas, “Slender PUF Protocol: A Lightweight, Robust, and Secure
Authentication by Substring Matching,” in 2012 IEEE Symposium
on Security and Privacy Workshops, San Francisco, CA, USA, May
24-25, 2012, 2012, pp. 33–44.

[18] Ü. Koçabas, A. Peter, S. Katzenbeisser, and A. Sadeghi, “Converse
PUF-Based Authentication,” in Trust and Trustworthy Computing -
5th International Conference, 2012, Vienna, Austria, June 13-15, 2012.
Proceedings, 2012, pp. 142–158.

[19] M. van Dijk and U. Rührmair, “Physical unclonable functions
in cryptographic protocols: Security proofs and impossibility re-
sults,” IACR Cryptology ePrint Archive, vol. 2012, p. 228, 2012.

[20] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Secure
Lightweight Entity Authentication with Strong PUFs: Mission Im-
possible?” in Cryptographic Hardware and Embedded Systems - CHES
2014 - 16th International Workshop, Busan, South Korea, September
23-26, 2014. Proceedings, 2014, pp. 451–475.

[21] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “Physical
Unclonable Functions, FPGAs and Public-Key Crypto for IP Pro-
tection,” in FPL 2007, International Conference on Field Programmable
Logic and Applications, Amsterdam, The Netherlands, 27-29 August
2007, 2007, pp. 189–195.

[22] Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede, “Elliptic-
Curve-Based Security Processor for RFID,” IEEE Trans. Computers,
vol. 57, no. 11, pp. 1514–1527, 2008.

[23] L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Ver-
bauwhede, “Low-Cost Elliptic Curve Cryptography for Wireless
Sensor Networks,” in Security and Privacy in Ad-Hoc and Sensor
Networks, Third European Workshop, ESAS 2006, Hamburg, Germany,
September 20-21, 2006, Revised Selected Papers, 2006, pp. 6–17.

[24] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Ver-
bauwhede, “An Elliptic Curve Processor Suitable For RFID-Tags,”
IACR Cryptology ePrint Archive, vol. 2006, p. 227, 2006.

[25] X. Xiong, D. S. Wong, and X. Deng, “TinyPairing: A Fast and
Lightweight Pairing-Based Cryptographic Library for Wireless
Sensor Networks,” in 2010 IEEE Wireless Communications and Net-
working Conference, 2010, Proceedings, Sydney, Australia, 18-21 April
2010, 2010, pp. 1–6.

[26] M. Yoshitomi, T. Takagi, S. Kiyomoto, and T. Tanaka, “Efficient
Implementation of the Pairing on Mobilephones Using BREW,
journal = IEICE Transactions,” vol. 91-D, no. 5, pp. 1330–1337,
2008.

[27] T. Acar, K. E. Lauter, M. Naehrig, and D. Shumow, “Affine Pairings
on ARM,” IACR Cryptology ePrint Archive, vol. 2011, p. 243, 2011.

[28] G. Grewal, R. Azarderakhsh, P. Longa, S. Hu, and D. Jao, “Effi-
cient Implementation of Bilinear Pairings on ARM Processors,” in
Selected Areas in Cryptography, 19th International Conference, 2012,
Windsor, ON, Canada, August 15-16, 2012, Revised Selected Papers,
2012, pp. 149–165.

[29] M. Shirase, Y. Miyazaki, T. Takagi, D. Han, and D. Choi, “Effi-
cient Implementation of Pairing-Based Cryptography on a Sensor
Node,” IEICE Transactions, vol. 92-D, no. 5, pp. 909–917, 2009.

[30] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura,
H. Eberle, and S. C. Shantz, “Sizzle: A standards-based end-to-end
security architecture for the embedded internet,” Pervasive and
Mobile Computing, vol. 1, no. 4, pp. 425 – 445, 2005, special Issue
on PerCom 2005. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1574119205000568

[31] Systemsurveyor, “How the Internet of Things (IoT) Relates
to Surveillance and Security,” http://systemsurveyor.com/iot
survellance/.

[32] IFSEC Global, “Smart CCTV and the Internet of Things:
2016 trends and Predictions,” https://www.ifsecglobal.com/
smart-cctv-and-the-internet-of-things-2016-trends-and-predications/.

[33] CSO, “Report: Surveillance cameras most dan-
gerous IoT devices in enterprise,” http://www.
csoonline.com/article/3142484/internet-of-things/
report-surveillance-cameras-most-dangerous-iot-devices-in-enterprise.
html.

[34] A. Costin, “Security of CCTV and Video Surveillance Systems:
Threats, Vulnerabilities, Attacks, and Mitigations,” in Proceedings
of the 6th International Workshop on Trustworthy Embedded Devices.
ACM, 2016, pp. 45–54.

[35] H. Li, Y. He, L. Sun, X. Cheng, and J. Yu, “Side-channel infor-
mation leakage of encrypted video stream in video surveillance
systems,” in Computer Communications, IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on. IEEE, 2016, pp. 1–9.

[36] U. L. Puvvadi, K. Di Benedetto, A. Patil, K.-D. Kang, and Y. Park,
“Cost-effective security support in real-time video surveillance,”
IEEE Transactions on Industrial Informatics, vol. 11, no. 6, pp. 1457–
1465, 2015.

[37] T.-S. Park and M.-S. Jun, “User authentication protocol for block-
ing malicious user in network CCTV environment,” in Computer
Sciences and Convergence Information Technology (ICCIT), 2011 6th
International Conference on. IEEE, 2011, pp. 18–24.

[38] Nik Rawlinson, “How to set up a cheap home security
system using Dynamic DNS,” http://www.cnet.com/how-to/
how-to-set-up-a-cheap-home-security-system-using-dynamic-dns/.

[39] Stack Exchange, “Securing remotely accessi-
ble IP cameras that do not support HTTPS,”
http://security.stackexchange.com/questions/56779/
securing-remotely-accessible-ip-cameras-that-do-not-support-https.

[40] Wowza Media Systems, “RTP/RTSP over SSL,”
https://www.wowza.com/forums/showthread.php?
34002-RTP-RTSP-over-SSL.

[41] Y. Zheng, Y. Cao, and C. Chang, “A new event-driven dynamic
vision sensor based physical unclonable function for camera
authentication in reactive monitoring system,” in 2016 IEEE Asian
Hardware-Oriented Security and Trust, AsianHOST 2016, Yilan,
Taiwan, December 19-20, 2016, 2016, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/AsianHOST.2016.7835551

[42] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, “A PUF-
based Secure Communication Protocol for IoT,” IACR Cryptology
ePrint Archive, vol. 2016, p. 674, 2016.

[43] Infenion, “Trusted Platform Module Fundamental,” http://cs.
unh.edu/∼it666/reading list/Hardware/tpm fundamentals.pdf,
2008.

[44] C. Helfmeier, C. Boit, D. Nedospasov, and J.-P. Seifert, “Cloning
physically unclonable functions,” in Hardware-Oriented Security

14

and Trust (HOST), 2013 IEEE International Symposium on. IEEE,
2013, pp. 1–6.

[45] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable func-
tions,” in Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, Chicago, Illinois, USA, October
4-8, 2010, 2010, pp. 237–249.

[46] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chap-
man and Hall/CRC Press, 2007.

[47] Offensive Security, “Kali Linux: Penatration Testing,” http://
www.kali.org.

[48] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight
secure PUFs,” in 2008 International Conference on Computer-Aided
Design, ICCAD 2008, San Jose, CA, USA, November 10-13, 2008, 2008,
pp. 670–673.

[49] MIRACL, “MIRACL Crypto Library User Documentation,” http:
//docs.miracl.com/miracl, 2016.

