
Foundations for Actively Secure
Card-based Cryptography

Alexander Koch and Stefan Walzer

Karlsruhe Institute of Technology (KIT), TU Ilmenau,
alexander.koch@kit.edu, stefan.walzer@tu-ilmenau.de

Abstract. Card-based cryptography allows to do secure multiparty com-
putation in simple and elegant ways, using only a deck of playing cards,
as first proposed by den Boer (EUROCRYPT 1989). Many protocols as
of yet come with an “honest-but-curious” disclaimer. However, a central
goal of modern cryptography is to provide security also in the presence
of malicious attackers. At the few places where authors argue for the
active security of their protocols, this is done ad-hoc and restricted to the
concrete operations needed, often even using additional physical tools,
such as envelopes or sliding cover boxes.
This paper provides the first systematic approach to active security in
card-based protocols. We show how a large and natural class of shuffling
operations, namely those which (opaquely) permute the cards according to
a uniform distribution on a permutation group, can be implemented using
only a linear number of helping cards. This ensures that any (information-
theoretically) secure cryptographic protocol in the abstract model of
Mizuki and Shizuya (Int. J. Inf. Secur., 2014), restricted to this natural
class of shuffles, can be realized in an actively secure fashion. These
shuffles already allow for securely computing any circuit (Mizuki and
Sone, FAW 2009). In the process, we develop a more concrete model for
card-based cryptographic protocols with two players, which we believe to
be of independent interest.

Keywords: Card-based protocols · Card shuffling · Secure multiparty
computation · Active security · Cryptography without computers

1 Introduction

The elegant “five-card trick” of den Boer [dBoe89] allows two players – here called
Alice and Bob – to compute a logical AND of two private bits, using five playing
cards. For instance, if the bit of a player encodes whether they have romantic
interest for the other player, the protocol will result in a “yes”-output if and
only if there is mutual interest, sparing a party with an unrequited crush the
embarrassment of having this information revealed.

More generally, using a deck of playing cards (usually with symbols ♥, ♣),
Alice and Bob can jointly compute an arbitrary boolean function on multiple
secret inputs such that neither player learns anything (new) about the input,
except, possibly, what can be learned from looking at the output. One distinctive

feature is that these protocols do not need a computer, which makes their security
tangible with no need to rely on opaque hardware or malware-prone operating
systems. This issue is long-known in the context of cryptographic voting which
therefore often work with physical objects, such as special ballot papers or receipts,
cf. e.g. [PH10; BMR07; MN06b].

Card-based protocols are elegant and simple and have become popular for
introducing secure multiparty computation in lectures and to non-experts.

The feasibility of general secure multiparty computation with cards was shown
in [dBoe89; CK93; NR98; Sti01]. Since then, researchers proposed a wide range
of protocols with different objectives and parameters. One line of research has
been to minimize the number of cards used in protocols. In this regard, [MS09;
MKS12; KWH15; NNH+15; KKW+17] try to minimize the number of cards for
AND, XOR or bit copy protocols, achieving, for instance, the minimum number
of four cards for AND protocols both in committed1 and non-committed format.
Moreover, [NHMS15; Miz16; KWH15] are concerned with protocols for general
circuits, using the least number of cards.

Besides these protocols, there have been nice, specialized protocols for tasks,
such as cryptographic voting [MAS13] and generating a private fixed-point-free
permutation of a set of players, which can be used for names-in-the-hat-like
games for the holiday season (“secret santa”) where the non-existence of fixed
points ensures that nobody needs to give a present to themselves, cf. [ICM15;
CK93].

The key operations that introduce randomness in a controlled manner are
shuffles. A shuffle operation causes a sequence of cards to be rearranged according
to random permutation such that observers cannot tell which permutation was
chosen. All early protocols relied solely on a uniform random cut, which is a
shuffle causing a cyclic shift on a pile of cards with uniformly random offset. Niemi
and Renvall [NR98, Sect. 3] and den Boer [dBoe89] plausibly argue that random
cuts can be performed by repeatedly cutting a pile of cards in quick succession,
as players are unable to keep track of the offsets. Other shuffle operations were
justified, including “dihedral group” shuffles [NR98] and [Sti01, Sect. 7], random
bisection cuts [MS09; UNH+16] and unequal division shuffles [CHL13; NNH+15;
NHMS16].

In the formal computational model of Mizuki and Shizuya [MS14a], a protocol
specification may use any of the most general shuffling operations, namely
applying a permutation from an arbitrary permutation set chosen according to
an arbitrary distribution. This computational model is very useful when showing
impossibility results and lower bounds on cards, cf. [KWH15], but it seems unlikely
that all shuffle operations permitted in the model have a convincing real world
implementation. This spawned some formal protocols with apparently good

1 In a committed-format protocol, input and output bits are encoded by the order
of two face-down cards (a “commitment”) that hides the value and hence, may be
used as intermediary input to another protocol without looking at it, while those
not in committed format usually leak the output result in the process and are hence
unsuitable for larger circuits.

2

parameters, but unclear real-world implementations, especially if active security
is a concern [KWH15, Sect. 7].

There is to this day still no positive account of what shuffles can be done with
playing cards beyond the justification of individual protocols, and even then,
most work with “honest-but-curious” assumptions, with no guarantees when one
of the players deviates from the protocol.

Related Work. Other works have investigated the question of active attacks,
albeit with a different focus. Mizuki and Shizuya [MS14b] address active security
against adversaries who deviate from the input encoding, e.g. giving input (♥,♥)
instead of (♥,♣). We sketch in Appendix C how our results subsume this, using a
separate input phase. Moreover, they stress the necessity of non-symmetric backs
to avoid marking cards by turning them upside down. Finally, using a secret
sharing-like mechanism, they specify how to avoid security breaches by scuff
marks on the backs of the cards. Shinagawa et al. [SMS+15] describe a method
against injection attacks in their model using polarizing plates. Very recently and
independently, Ueda et al. [UNH+16] give a nice and elaborate implementation
of the special case of random bisection cuts, including experiments showing the
real-world security of the shuffle.

Besides short ad-hoc discussions of the shuffle security, we believe that this is
an exhaustive list of all investigations into active security so far. In particular,
the issue of ensuring that only permutations allowed in the protocol description
can be performed during a shuffling step has not been addressed for cases where
this is non-trivial.

Our Contribution. At several places in the literature, e.g. [CHL13, Sect. 8]
and [KWH15, Sect. 9], the open question of achieving actively secure shuffles and
protocols is posed. In this paper, we answer a significant part of this question by
explaining how any protocol in the model of [MS14a] that is restricted to uniform
closed shuffles can be transformed into an actively secure protocol using only a
linear number of helping cards.

Uniform closed shuffles, namely those that rearrange the cards according to
a uniform distribution on a permutation group, have already been identified in
[KWH15, Sect. 8] as a natural class of operations. Moreover, in [KKW+17] it is
shown that protocols computing AND in committed format and finite runtime,
when restricted to our actively-secure uniform closed shuffles need six cards,
which is a tight bound due to the protocol of [MS09]. Note that compared to the
setting without this restriction to the shuffles, we only need one additional card.

Furthermore, we define a new model for card-based cryptography, which we
call two-player protocols. These, in turn, use permutation protocols that allow
Alice to apply a π ∈ Π of her choosing to a sequence of face-down cards, such
that Bob learns nothing about her choice. We believe this to be of independent
interest, e.g. as an approach to formalize protocols such as the three-card AND
protocol by Karun Singh as described in [MWS15, Sect. 3.2] that does not fit
into the model of Mizuki and Shizuya.

3

The idea of using “private permutations” as base operations instead of shuffles
was first mentioned in [KWH15, Sect. 8]. Independently from our work, these
operations are used in [NTM+16] to more efficiently perform an instance of the
millionaires problem with cards and in [NSIO17] for the case of a three-input
voting protocol. The way they are used there causes the protocol to not be in
committed format.

2 Preliminaries

Permutations. A permutation of a set X = {1, . . . , n} for some n ∈ N, is a
bijective map π : X → X. The set Sn of all permutations of {1, . . . , n} is called
symmetric group. It has group structure with the identity map id as neutral
element and composition (◦) as group operation. We can apply a permutation π
of X to a set S ⊆ X writing π(S) := {π(s) | s ∈ S}. We say that π respects S if
π(S) = S. In that case, π also respects the complement X \ S and we can define
the restriction of π to S as the permutation τ with domain S and τ(s) = π(s)
for all s ∈ S. For elements x1, . . . , xk the cycle (x1 x2 . . . xk) denotes the cyclic
permutation π with π(xi) = xi+1 for 1 ≤ i < k and π(xk) = x1 and π(x) = x
for all x not occurring in the cycle. The domain of π is not apparent from the
cycle alone but can be any superset of the numbers occurring in the cycle. If
several cycles act on pairwise disjoint sets, we write them next to one another
to denote their composition. For instance (1 2)(3 4 5) denotes a permutation
with mappings {1 7→ 2, 2 7→ 1, 3 7→ 4, 4 7→ 5, 5 7→ 3}. (We omit the composition
operator ◦.) Every permutation can be written in such a cycle decomposition.

By a conjugate of a permutation π ∈ Sn we mean any permutation of the
form π′ := τ−1 ◦π ◦ τ where τ ∈ Sn. For a set Π ⊆ Sn of permutations and
τ ∈ Sn the set τ−1 ◦Π ◦ τ := {τ−1 ◦π ◦ τ | π ∈ Π} is a conjugate of Π. Given an
arbitrary sequence of objects Γ = (Γ [1], . . . , Γ [n]) and a permutation π ∈ Sn then
applying π to Γ yields the sequence π(Γ) = (Γ [π−1(1)], Γ [π−1(2)], . . . , Γ [π−1(n)]).
Intuitively, the object in position i is transported to position π(i).

Sets and Groups. If g1, g2, . . . , gk ∈ G are group elements, 〈g1, . . . , gk〉 is the
smallest subgroup of G containing g1, . . . , gk and called the subgroup generated
by {g1, . . . , gk}. For g ∈ G the order of g is ord(g) = |〈g〉| = min{k ≥ 1 | gk = id}.
In the following, a group is implicitly also the set of its elements.

Multisets and Decks. J♦,♦,♦,♠,♠K is the multiset containing three copies
of ♦ and two copies of ♠, also written as J3 ·♦, 2 ·♠K. If such a multiset represents
cards, it is called a deck. All cards are implicitly assumed to have the same back,
unless stated otherwise. Cards can lie face-up or face-down. When face-down,
all cards are indistinguishable (unless they have different backs). When face-up,
cards with the same symbol are indistinguishable. Throughout this paper, cards
are always face-down with the exception of special operations that reveal the
front of some card(s). To simplify the specification of protocols, such operations

4

R
ea
l
W
or
ld

–
A
ct
u
al

P
la
ye
rs

T
w
o
P
la
ye
r
M
o
d
el

–
Id
ea
li
ze
d
P
la
ye
rs

M
iz
u
k
i–
S
h
iz
u
ya

M
o
d
el

(n
o

p
la

y
er

s)

Chosen Pile Cut

k = !
k

k = ?

Special Case: Chosen Cut

k = !

k

k = ?

Uniform Cut

k = ?

k

k = ?

Assumption: Cuts imperfectly observable

Players lose track of repeated cuts.

Tool: Deck with red backs

J♠,♦, . . . ,♦K

(Formal) Action: Chosen Pile Cut

ki = k = !

k1 k2

. . .

kl

ki
!
= kj

Permutation Protocol: Generalized Coupled Rotation

See Figure 6. Special Case: Two piles

Helping Deck

J♠,♠,♠,♦, . . . ,♦K

Helping Deck

J♠,♦, . . . ,♦K

Action: Chosen Generalized Coupled Rotation

ki = k = !

k1 k2

. . .

kl

ki
!
= kj

Special Case: Two piles

k1 = k2 = !

k1 k2

k1
!
= k2

Action: Chosen Permutation from Closed Π

π = ! π
!∈ Π

Other Actions

turn: reveal cards
perm: public permutation
result: output

Model: Two Player Protocol

Actions: privatePerm, perm, turn, result

Notion: Active Security

Permutation sets implemented, player
knowledge independent of in-/output.

Security-respecting Implementation (see Proposition 2)

Model: Uniform Closed MS Protocol

Actions: shuffle, perm, turn, result

Notion: Security

Execution path independent of
in-/output.

Action: Uniform Closed Shuffle

π ∈ Π
(random)

requires

uses uses

informally justified by

uses

uses

uses

formally implemented by

decomposes into

may use

may use

may use

has

has

A uniform cut rotates a pile
of cards by a uniformly ran-
dom value unknown to Al-
ice and Bob. From this we
build chosen cuts leaving a
pile rotated by a value cho-
sen by Alice but unknown to
Bob. When generalized to
chosen pile cuts and formal-
ized, we obtain a chosen pile
cut action that rotates a se-
quence of equally-sized piles
by a value k chosen by Alice.
Bob remains oblivious of that
value but he can be sure that
the cards are not rearranged
in any other way. In particu-
lar he knows that each pile is
rotated by the same amount,
even if Alice is dishonest.
With the help of a
permutation protocol this
is extended to the case where
piles may have different sizes.
This yields chosen coupled
rotations in the case of two
piles and chosen generalized
coupled rotations in the case
of more than two piles.
These are powerful enough to
build arbitrary chosen per-
mutations from a closed per-
mutation set. In that setting,
Alice may choose any permu-
tation π from a group of per-
mutations Π. Bob will not
learn π but can be sure that
no permutation outside the
set Π is performed.
A two player protocol may
make use of these chosen
closed permutation actions as
well as the other actions turn,
perm and result.
Uniform closed Mizuki–
Shizuya (MS) protocols are a
large natural subset of proto-
cols as formalized by Mizuki
and Shizuya. Our main result
is that for any such protocol
there is a two player protocol
computing the same function
that is actively secure if the
original protocol is secure.
This security-respecting im-
plementation replaces each
uniform closed shuffle with
two corresponding chosen
closed permutations.
Active security is bought with
helping cards needed in sev-
eral places; intuitively to
prove the legitimacy of Alice’s
actions to Bob.

Fig. 1: Overview of the content of this paper. The images of Alice of Bob are
adapted from xkcd (by Randall Munroe), which is licensed as CC-BY-NC-2.5.

5

https://creativecommons.org/licenses/by-nc/2.5/

immediately turn the card(s) face-down again. Unions of multisets are denoted by
∪, disjoint unions are denoted by +, e.g. J♦,♠,♠K∪J♦,♥,♠,♣K = J♦,♥,♠,♠,♣K
whereas J♦,♠,♠K + J♦,♥,♠,♣K = J♦,♦,♥,♠,♠,♠,♣K.

3 Implementing Cuts and Pile Cuts with Choice

A set Π ⊆ Sn of permutations has an actively secure implementation with choice,
or is implemented for short, if there is a procedure that allows Alice to apply a
π ∈ Π of her choosing to a sequence of face-down cards, such that Bob learns
nothing about her choice, but is certain that Alice did not choose π 6∈ Π. Also,
no player learns anything about the face-down cards if the other player is honest.

Example: Bisection Cut with Envelopes. Mizuki and Sone [MS09] make
use of the following procedure on six cards: The cards in positions 1, 2 and 3 are
stacked and put in one envelope and the cards in position 4, 5 and 6 are put into
another. Behind her back, Alice then swaps the envelopes or leaves them as they
are – her choice. Unpacking yields either the original sequence or the sequence
4, 5, 6, 1, 2, 3. The bisection cut Π = {id, (1 4)(2 5)(3 6)} is therefore implemented
(with active security and choice) using two indistinguishable envelopes.

The role of the envelopes is to ensure that the two groups of cards stay
together and the ordering within a group is preserved. The idea is that opening
the envelopes behind her back would be impractical and noisy, so even if Alice is
malicious, she is limited to the intended options. For a model of secure envelopes,
cf. [MN06a; MN10].

Example: Unequal division shuffle. A bisection cut on n cards can be
interpreted as “either do nothing or rotate the sequence by n/2 positions”.
Generalizing this, we now want to “either do nothing or rotate the sequence by l
positions” for some 0 < l < n, i.e. implement Πl = {id, (1 2 . . . n)l}. Nishimura
et al. [NNH+15; NNH+17] describe a corresponding mechanism using two card
cases with sliding covers. The card cases behave like envelopes but are heavy
enough to mask inequalities in weight caused by different numbers of cards, and
support joining the content of two card cases – for details refer to their paper (or
Appendix B).

While we are very fond of creative ideas such as these, we shall make it our
mission to implement card based protocols using only one tool: additional cards.

3.1 Cutting the Cards

By the cut on n cards we mean the permutation set Π = 〈(1 . . . n)〉 and,
ordinarily, Alice would cut a pile of n cards by taking the top-most k cards (for
some 0 ≤ k < n) from the top of the pile and setting them aside and then placing
the remaining n − k cards on top. In this form, Alice can only approximately
pick k while allowing Bob to approximately observe k. Implementing Π requires
fixing both problems.

6

Uniform Cut. As an intermediate goal we implement a uniform cut on n cards,
i.e. we perform a permutation (1 2 . . . n)k for 0 ≤ k < n chosen uniformly at
random and unknown to the players. As proposed in [dBoe89], this is done by
repeatedly cutting the pile in quick succession until both players lost track of
what happened. More formally, under reasonable assumptions, the state of the
pile is described by a Markov chain that converges quickly to the uniform stable
distribution, yielding an almost uniform distribution after a finite number of
steps.

Arguably, if the pile is too small, say two cards, the number of cards taken
during each cut is perfectly observable. In that case, we put a sufficiently large
number c of cards with different backs behind each card, repeatedly cut this
larger pile and remove the auxiliary cards afterwards. Note that [UNH+16] found
it to work well in practice even for n = 2 and c = 3.2 We shall not explore this
further and use uniform cuts as a primitive in our protocols.

Uniform Cut with alternating backs. Later we apply the uniform cut
procedure to piles of n · (` + 1) cards with n cards of red back, each preceded
by ` cards of blue back. From a “uniform cut” on such a pile, we expect a cut
by 0 ≤ k < n · (`+ 1) where bk/(`+ 1)c is uniformly distributed in {0, ..., n− 1}
and independent of the observable part k (mod `+ 1). We leave it to the reader
to verify that the iterated cuts still work under the same assumptions.

Chosen Cut. We now show how to implement Π = 〈(1 . . . n)〉 with active
security and choice. Say Alice wants to rotate the pile of n cards by exactly k
positions for a secret 0 ≤ k < n. We propose the process illustrated in Fig. 2.

Alice is handed the helping deck J♠, (n−1) · ♦K with red backs and secretly
rearranges these cards in her hand (unobserved by Bob), putting ♠ in position k.
The helping cards are put face-down on the table and interleaved with the pile to
be cut (each blue card followed by a red card). The ♠ is now to the right of the
card that was the k-th card in the beginning. To obscure Alice’s choice of k, we
perform a uniform cut on all cards as described previously. The red helping cards
are then turned over. Rotating the sequence so as to put ♠ in front, and removing
the helping cards afterward leaves the cards in the desired configuration. Bob
is clueless about k since he can merely observe the position of ♠ after the cut,
which is independent of the position of ♠ before the cut (which encodes k).

Chosen Pile Cut. Chosen cuts can be generalized in an interesting way. Given
n piles of ` cards each and 0 ≤ k < n, Alice wants to rotate the sequence of piles
by exactly k positions, meaning the i-th pile will end up where pile i + k has
been (modulo n). Again, k must remain hidden from Bob and he, on the other
hand, wants to be certain that Alice does not tamper with the piles in any other
2 If not satisfied, the reader may be more inclined to accept some variant of Berry’s
turntable as described by Verhoeff [Ver14, Sect. 3]. There, cards are attached to a
wheel-of-fortune-esque device.

7

Example (n = 5, k = 4) General Description

c1 c2 c3 c4 c5

c1 ♦ c2 ♦ c3 ♦ c4 ♠ c5 ♦

y

Alice inserts helping cards, puts ♠ right of ck.

♦ c4 ♠ c5 ♦ c1 ♦ c2 ♦ c3

y

A uniform cut is performed.

♦ ♠ ♦ ♦ ♦
c4 c5 c1 c2 c3

y

The helping cards are revealed.

♠ ♦ ♦ ♦ ♦
c5 c1 c2 c3 c4

y

The ♠ is rotated to the front.

c5 c1 c2 c3 c4

y

The helping cards are discarded.

Fig. 2: Alice cuts a pile of n cards, here (c1, . . . , c5), with back at position k
with a helping deck of n helping cards J♠, 4 · ♦K with back . In this illustration
we annotated face-down cards with the symbol they contain.

π : τ :

Fig. 3: Rotating a sequence of four piles of three cards each by one position (left)
is described by a permutation π with three cycles of length 4. Alternatively, we
can think of π as π = τ3 where τ is the cyclic permutation of length 12 (right).

than the stated way. Note that this is equivalent to cutting a pile of n` cards
where only cutting by multiples of ` is allowed, see Fig. 3. In that interpretation,
the i-th pile is made up of the cards in positions (i− 1)`+ 1, . . . , i`.

We apply the same procedure as before with n helping cards, except this
time, instead of a single blue card we have ` blue cards (a pile) before each of
the n gaps that Alice may fill with her red deck J♠, (n−1) · ♦K. Now the special
♠-card marks the end of the k-th pile and is (after a uniform cut) rotated to the
beginning of the sequence, ensuring that after removing the helping cards again
we end up having rotated the n · ` cards by a multiple of ` as desired. Note that,
uniform (non-chosen) pile cuts have been proposed in [ICM15] as “pile-scramble
shuffles”, with an implementation using rubber bands, clips or envelopes.

Summary. If Π = 〈(1 2 . . . n · `)`〉 for n, ` ∈ N , then Π is implemented with
active security and choice using the helping deck J♠, (n−1) · ♦K. For ` = 1 it is
called a cut, for ` > 1 a pile cut. We use the same name for conjugates of Π, i.e.
if cards are relabeled. Any subset ∅ 6= Π ′ ⊂ Π of a (pile) cut is also implemented:

8

In that case, let Alice place the ♠ only in some positions, the others are publicly
filled with ♦.

4 Permutation Protocols for Arbitrary Groups

We introduce a formal concept that allows to compose simple procedures in order
to implement more complicated permutation sets.

Definition 1. A permutation protocol P = (n,H, Γ, A) is given by a number
n of object cards, a deck of helping cards H with initial arrangement Γ : {n+
1, . . . , n+ |H|} → H, and a sequence A of actions where each action can be either

– (privatePerm, Π) for Π ⊆ Sn+|H| implemented with active security and choice,
and respecting {1, . . . , n} (i.e. ∀π ∈ Π : π({1, . . . , n}) = {1, . . . , n}), or

– (check, p, s) for a position p of a helping card (i.e. n < p ≤ n+ |H|) and a
expected outcome s ∈ H.

We are interested in the set comp(P) ⊆ Sn+|H| of permutations compatible
with P. If there are k privatePerm actions with permutations sets Π1, . . . ,Πk

and πi ∈ Πi, then πk ◦ . . . ◦π1 is compatible with P if each check succeeds,
meaning if (check, p, s) happens after the i-th privatePerm action (and before the
i+ 1st, if i < k) then Γ [(πi ◦ . . . ◦π1)−1(p)] = s. We argue that this implements
Π ′ = comp(P)|{1,...,n} using H (and, possibly, helping cards to implement Πi).

Indeed, consider the following procedure: We start with n object cards lying
on a table (positions 1, . . . , n). We place the sequence Γ next to it, at positions
n + 1, . . . , n + |H|, and go through the actions of P. Whenever the action
(privatePerm, Πi) is encountered, we use the procedure Pi implementing Πi to let
Alice apply a permutation on the current sequence. When an action (check, p, s)
is encountered, the p-th card is revealed. If its symbol is s, Bob continues,
otherwise he aborts, declaring Alice as dishonest. In the end, the helping cards
are removed, yielding a permuted sequence of object cards. (All permutations
respect {1, . . . , n}, hence, the helping and the object cards remain separated).

Alice can freely pick any π′ ∈ Π ′; using an appropriate decomposition, all
checks will succeed. In this case, Bob knows that the performed permutation is
from Π ′. No player learns anything about the object cards (only helping cards
are turned) and conditioned on Alice being honest, the outcome of the checks is
determined, so Bob learns nothing about π′.

Coupled Rotations. Let ϕ = (1 2 . . . s) and ψ = (s+1 s+2 . . . s+t), assume
s < t. For π = ψ ◦ϕ = ϕ ◦ψ we call Π = {πk | 0 ≤ k < s} the coupled rotation
with parameters s and t. Note that Π is not a group since πs 6∈ Π. We aim to
implement Π. We make use of a helping deck J♠, (t−1) · ♦K available in positions
H = {h0, h1, . . . , ht−1} with ♠ at position h0. Then define ϕ̂ := ϕ ◦(h0 . . . hs−1)
and ψ̂ := ψ ◦(h0 . . . ht−1)−1 and consider the permutation protocol P in
Fig. 5(a), and Fig. 4 for illustration. The idea here is that Alice may choose k
and k′ and perform ϕ̂k and ψ̂k′ to the sequence. However, k is “recorded” in the

9

Example (s = 3, t = 8, k = k′ = 2) General Description

A: a1 a2 a3

H: ♦ ♦ ♦ ♦ ♦H: ♠ ♦ ♦

B: b1 b2 b3 b4 b5 b6 b7 b8

The sequences A and H (first s
cards) are rotated to the right by
the same value k ∈ {0, 1, . . . , s− 1}
chosen by Alice.

(This is a pile cut.)
A: a2 a3 a1

H: ♦ ♦ ♦ ♦ ♦H: ♦ ♦ ♠

B: b1 b2 b3 b4 b5 b6 b7 b8 H is rearranged so as to represent
−k (mod t).

A: a2 a3 a1

H: ♦ ♦ ♦ ♦ ♦ ♦ ♠ ♦

B: b1 b2 b3 b4 b5 b6 b7 b8

H and B are rotated to the right
by k′ ∈ {0, 1, . . . , t − 1} chosen by
Alice. If Alice is honest she must
choose k = k′.

(This is a pile cut.)
A: a2 a3 a1

H: ♠ ♦ ♦ ♦ ♦ ♦ ♦ ♦

B: b7 b8 b1 b2 b3 b4 b5 b6

The first card of H is revealed. A
♠ occurs iff Alice was honest.

Fig. 4: The sequence A of length s and B of length t are to be rotated by the same
value k chosen privately by Alice. A helping sequence ensures that the same value
is used. All cards are face-down, except for the highlighted card in the last step.
The dotted lines indicate that cards are belonging to the same pile in a pile cut,
i.e. they maintain their relative position during the cut. The rearrangement of
the helping cards is useful in this visualization (so that H and B can be rotated
in the same direction) but is not reflected in the formal description.

configuration of a helping sequence and −k′ is “added” on top. A check ensures
that the helping sequence is in its original configuration, implying k = k′ as
required. Note that 〈ϕ̂〉 and 〈ψ̂〉 are pile cuts, which we already know how to
implement. In total, we implemented

comp(P) = {ψ̂k
′
◦ ϕ̂k | 0 ≤ k < s, 0 ≤ k′ < t, Γ [(ψ̂k

′
◦ ϕ̂k)−1(h0)] = ♠}|{1,...,n}

= {ψ̂k
′
◦ ϕ̂k | 0 ≤ k < s, 0 ≤ k′ < t, k′ = k}|{1,...,n}

= {ψk ◦ϕk | 0 ≤ k < s}|{1,...,n} = Π.

Products, conjugates and syntactic sugar. The protocol in Fig. 5(b) im-
plements Π2 ◦Π1 using Π1 and Π2, showing that if Π1 is implemented us-
ing H1 and Π2 is implemented using H2, then Π2 ◦Π1 is implemented using

10

privatePerm, 〈ϕ̂〉

privatePerm, 〈ψ̂〉

check, h0,♠
(a)

privatePerm,Π1

privatePerm,Π2

(b)

perm, π

privatePerm,Π

perm, π−1

(c)

Fig. 5: Protocols implementing a coupled rotation (a), the product of two permu-
tation sets (b) and the conjugation of a permutation set (c).

H1 ∪H2. As a corollary, if Π is implemented using H then so is any conjugate
Π ′ = {π−1} ◦Π ◦{π}. Figure 5(c) uses (perm, π) instead of (privatePerm, {π}) to
emphasize that such deterministic actions can be carried out publicly.

Generalized Coupled Rotations. We generalize the idea of a coupled rotation
to more than two sequences. Let π ∈ Sn with cycle decomposition π = ϕ0 ◦ . . . ϕ`
for ` ≥ 2 and increasingly ordered cycle lengths t0 ≤ t1 ≤ t2 ≤ . . . ≤ t`. We aim
to implement Π = {πk | 0 ≤ k < t0} using t` + 2 · t0 helping cards, originally
available in the following positions which we label as shown.

♠
m0

♦
m1

♦
mt`−1

♠
x0

♦
x1

♦
xt0−1

♠
s0

♦
s1

♦
st0−1

. . .

. . .

. . .

. . .

. . .

. . .

main temp store

We think of the three areas as “registers” containing values indicated by the
position of ♠ (initially 0). The registers have associated rotations:

ψtemp := (x0 . . . xt0−1), ψstore := (s0 . . . st0−1), ψi := (m0 . . . mti−1).

The idea behind the protocol is that Alice performs ϕk0
0 ◦ . . . ◦ϕ

k`

` where checks
will ensure k1 = k2 = . . . = k`. To this end, k0 is recorded in the store register
(we use 〈ϕ0 ◦ψstore〉). Then, for each round i ∈ {1, 2 . . . , ` − 1} the value k0 is
cloned into the main register by first swapping it to the temp register and then
moving it to the store and main register using ψcopy := ψ−1

temp ◦ψstore ◦ψ0. The
cloned copy of k0 in main is consumed when forcing Alice to do ϕ̂ik0 where
ϕ̂i := ϕi ◦ψ−1

i . The last round is similar. Using the following two swappings, the
protocol is formally given in Fig. 6.

πstore↔tmp := (s0 x0) . . . (st0−1 xt0−1), πstore↔main := (s0 m0) . . . (st0−1 mt0−1).

We now check that this implements the generalized coupled rotation Π using the
helping cards J3 · ♠, (t`+2t0−3) · ♦K. The main ingredient is the loop invariant:

11

ch
o
o
se

k
clo

n
e
sav

ed
k

i-th
cy
cle

la
st

cy
cle

privatePerm, 〈ϕ0 ◦ψstore〉

perm, πstore↔tmp

privatePerm, 〈ψcopy〉

check, x0,♠

privatePerm, 〈ϕ̂i〉

check,m0,♠

perm, πstore↔main

privatePerm, 〈ϕ̂`〉

check,m0,♠

fo
r
i
∈
{1
,.
..
,`
−

1}

Fig. 6: Protocol to implement a generalized coupled rotation with `+ 1 cycles of
length t0, t1, . . . , t`. Notation is explained in the text.

If π ∈ Sn+2t0+t` is compatible with the actions until after the i-th ex-
ecution of the loop and S is the starting sequence then there exists
k ∈ {0, . . . , t0 − 1} such that:
– π|{1,...,n} = ϕki ◦ . . . ◦ϕk1 ◦ϕk0 ,
– in π(S) all registers contain 0 except for store, which contains k.

This invariant can be proved by induction:

i = 0. The protocol starts with all registers containing the value 0. In the
first action, Alice picks 0 ≤ k < t0 and performs π = ϕk0 ◦ψkstore. Clearly,
π|{1,...,n} = ϕk0 and in π(S) the store register contains k with both other
registers containing 0. This establishes the invariant for i = 0, i.e. before the
first execution of the loop.

i→ i+ 1. Assume the loop invariant holds for i. In the beginning of the i+1st
loop, the contents of store and temp are swapped, which leads to temp contain-
ing k, while the other registers contain 0. The permutation ψcopy decrements
the value of the temp register while simultaneously incrementing the value of
store and main (each modulo t0). Since the operation (check, x0,♠) expects
the value of temp to be 0, the only power of ψcopy that will allow the check
to pass is k. Assuming this happens, temp and main both contain k, while
temp contains 0. Similar to before, ϕ̂i decrements main modulo ti and since
the operation (check, x0,♠) expects main to contain 0, the only power of ϕ̂i

12

that allows the check to succeed is k. Afterwards, the current iteration of the
loop permuted the object cards by ϕki and left store containing k while the
other registers contain 0. This establishes the loop invariant.

The three actions following the loop are essentially the `-th iteration of the
loop without the copying step so it is straightforward to verify that π ∈ Sn is
compatible with the protocol, iff π|{1,...,n} = ϕk` ◦ . . . ◦ϕk0 for some 0 ≤ k < t0.

We remark that by introducing additional check-operations, any subset of a
generalized coupled rotation can be implemented as well.

Subgroups of Sn. Generalized coupled rotations are sufficient to show:

Proposition 1. Any subgroup Π of Sn can be implemented with active security
and choice using only the helping deck J3 · ♠, (n− 3) · ♦K for (generalized) coupled
rotations and the helping deck J♠, (n−1) · ♦K for (pile) cuts.

Proof. Note thatΠ =
∏
π∈Π〈π〉, i.e.Π can be written as the product of cyclic sub-

groups. Moreover, any cyclic subgroup can be written as 〈π〉 = {π0, . . . , πk−1}`,
where k is the length of the shortest cycle in the cycle decomposition of π and
` = ord(π)/k. Hence, Π can be written as the product of rotations and (general-
ized) coupled rotations, each of which are implemented with the required helping
decks. Using the implementation of products (see page 10), we are done. ut

A simple decomposition of Π into products of previously implemented permu-
tation sets is desirable to keep the resulting permutation protocol simple. We
do not deal with this here and merely state that |Π| is an upper bound on the
number of terms required.

5 Computational Model with Two Players

In the following, two players jointly manipulate a sequence of cards to compute
a randomized function, i.e. they transform an input sequence into an output
sequence. Both have incomplete information about the execution and the goal is
to compute with no player learning anything about input or output3.

Two player protocols. A two player protocol is a tuple (D, U,Q,A) where D is
a deck, U is a set of input sequences, Q is a (possibly infinite, computable) rooted
tree with labels on some edges, and A : V (Q)→ Action is an action function that
assigns to each vertex an action which can be perm, turn, result, and privatePerm,
with parameters as explained below. All input sequences have the same length n
and are formed by cards from D.

Vertices with a perm or privatePerm action have exactly one child, vertices
with a result action have no children, and those with a turn action have one child
3 An explanation of our security notions follows in Section 6.

13

privatePerm, 1, {id, (1 2)(3 4)},U(·)

privatePerm, 2, {id, (1 2)(3 4)},U(·)

turn, {1, 2}turn, {1, 2}

result, 3 result, 4

♣♥♥♣

v1:

v2:

v3:

v4: v5:

D = J3 · ♣, 2 · ♥K,

U = {(♣,♥,♣,♣),
(♣,♥,♥,♣),
(♥,♣,♣,♣),
(♥,♣,♥,♣)},

Q,A : as shown on the left

Fig. 7: A protocol example in the two player model, with possible execution trace:
(I = (♥,♣,♥,♣), O = (♥), T1 = (id), T2 = ((1 2)(3 4)),W = (v1, v2, v3, v5)). This
is an actively secure implementation of the AND protocol in [Miz16, Sect. 3.2].
The first two cards encode an input a as (♣,♥) =̂ 0, (♥,♣) =̂ 1, the third card
encodes an input b as ♣ =̂ 0, ♥ =̂ 1. This encoding is also used for output a ∧ b.

for each possible sequence of symbols the turned cards might conceal, and the
edge to that child is annotated with that sequence.

When a protocol is executed on an input sequence I ∈ U , we start with the
face-down sequence Γ = I at the root of Q and empty permutation traces T1
and T2. Execution proceeds along a descending path in Q and for each vertex v
that is encountered, the action A(v) is executed on the current sequence of cards:

(perm, π) for a permutation π ∈ Sn. This replaces the current sequence Γ by
the permuted sequence π(Γ). Execution proceeds at the unique child of v.

(turn, T) for some set T ⊆ {1, . . . , n}. If T = {t1 < t2 < . . . < tk}, the cards
Γ [t1], . . . , Γ [tk] are turned face-up, revealing their symbols. The vertex v
must have an outgoing edge labeled (Γ [t1], . . . , Γ [tk]). Execution proceeds at
the corresponding child after the cards are all turned face-down again.

(privatePerm, p,Π,F(·)) for a player p ∈ {1, 2}, a permutation set Π ⊆ Sn
and F being a parameterized distribution on Π. Formally, F is a function
that maps the current permutation trace Tp of player p to a distribution
F(Tp) on Π. If F(Tp) is the uniform distribution on Π for each Tp we denote
this as U(·). Player p picks a permutation π ∈ Π. The current sequence Γ is
replaced by the permuted sequence π(Γ) and π is appended to the player’s
permutation trace Tp. If player p is honest she picks π according to F(Tp).
Execution proceeds at the unique child of v.

(result, p1, . . ., pk) for distinct positions p1, . . . , pk ∈ {1, . . . , n}. Execution ter-
minates with the output O = (Γ [p1], . . . , Γ [pk]) encoded by face-down cards.

The execution yields an execution trace (I,O, T1, T2,W), containing the input,
output, permutation traces of the players and the descending path W in Q that
was taken, see Fig. 7 for an example. The output of non-terminating protocols is
O = ⊥.

Note that we will use permutation protocols from Section 4 in the privatePerm
steps, however we use them as black boxes. In particular, the actions specific to
permutation protocols (e.g. check) are not part of two player protocols. We say

14

P is implemented using a helping deck H if each permutation set occurring in a
privatePerm action is implemented using H (in the sense of Section 3).

The way we define it, existence, implementability and security of a protocol
are separate issues. Security is discussed next.

6 Passive and Active Security

Intuitively, an implemented protocol is (information-theoretically) secure if no
player can derive any statistical information about input or output from the
choices and observations they make during the execution of the protocol. So the
first question is, what information does a player obtain, say Alice, that could
potentially be relevant? At first we consider the setting where both players are
honest.

Surely, Alice knows the public information W , i.e. the execution path of the
protocol run, in which the sequence of encountered actions and their parameters
are implicit. For each action along W she may have obtained additional informa-
tion during its execution. To get a complete picture, we carefully go through all
types of actions.

– turn actions reveal the symbol of some cards. However, as each outcome cor-
responds to a unique child vertex where execution continues, this information
is already implicit in W .

– perm actions are deterministic and reveal no information. The same is true
for result actions. Note that they only indicate the position of the output,
not reveal it.

– For privatePerm actions, the observations that can be made depend on the
implementation. If the protocols are implemented in our sense (see Section 3)
and Alice is the active player then Alice learns nothing of relevance except
her own choice of permutation (which is recorded in her permutation trace)
and, since Alice is honest, Bob learns nothing at all.

So the only potentially relevant information player p has with regards to input
and output is W and Tp. Therefore it is adequate to define:

Definition 2 (Passive Security). A two player protocol P = (D, U,Q,A) is
secure against passive attackers if for any random variable I ∈ U the following
holds. If (I,O, T1, T2,W) is the execution trace when executing P with honest
players on input I, then (I,O) is independent of (Tp,W) for both p ∈ {1, 2}.

Delegated Computation. Passive security implies that if a player has no
prior knowledge about input or output, executing the protocol leaves her in this
oblivious state. In particular, by following the protocol the players implement
what can be called an oblivious delegated computation where the computation
is performed on secret data provided by a third party, and the output is not
revealed afterwards to the executers.

15

Note that this setting differs from the standard MPC setting, where players
provide part of the input and usually the output is sent to the players in non-
committed (non-hiding) form, i.e. learned by the players. In this case, security
then means that the players learn nothing except what can be deduced from
the facts they are permitted to know. It is important to understand that our
definition is still adequate for such cases, in the sense that any protocol that is
secure in the delegated computation setting is also secure if players have (partial)
information about input and output. The formal reason is the basic fact that for
any event E relating only to (I,O), i.e., E is independent of (Tp,W), conditioning
the probability space on E will retain the independence of (I,O) and (Tp,W).

The converse is clearly not true, i.e., there are protocols that are not secure
in the delegated computation setting but become secure when both players have
prior knowledge about input or output, as this just means that some aspects of
(I,O) do not actually constitute sensitive information for one or both players.

Hence, we choose to protect the output, because it is the natural setting for
card-based cryptography, as all committed-format protocols in the literature
achieve this notion, it ensures that the protocols can be used in larger protocols,
and it is stronger than the other notions, because we are in the information-
theoretic setting.

The above definition of passive security is sufficient if players can be trusted
to properly execute the protocol. In that case any playerPerm action can directly
be performed by the specified player while the other player looks away. Of course,
our main concern in this paper is the situation where looking away is not an
option.

Permutation security and active security. To argue about security in the
presence of a malicious player, we must first discuss what such a player may
do. Doing this rigorously would require to closely model the physical world,
which allows for different threats than in the usual cryptographic settings. We
certainly have to assume physical restrictions, as otherwise we cannot achieve
anything.4 For example, as our security relies on the possibility of keeping face-
down cards, we must assume that an attacker does not resort to certain radical
means that immediately and unambiguously identify her as an attacker. She does
not interfere with the correct execution of perm and turn actions, nor does she,
in open violation of the protocol, spontaneously seize or turn over some of the
cards or mark them in any way.

On the other hand we can plausibly argue that certain mechanisms are
sufficient to counter attacks other than those that our paper is concerned with.
We may argue that the cards could be put into envelopes, and any attempt to
reveal its contents contrary to the protocol will be countered by the cautious
other players jumping in to physically abort the protocol in that case.

4 We do not get ultimately strong guarantees for the physical actions such as in
quantum cryptography, where, if (a subset of) quantum theory is true, no adversary
can predict a randomness source, no matter what she does physically.

16

Concerning an operation (privatePerm,Alice, Π,F(·)) with implemented Π,
there is by definition of implemented permutation set no possibility for Alice to
perform a permutation π 6∈ Π. If she causes a permutation protocol to fail, Bob
can abort execution before any sensitive information is revealed. Otherwise, Alice
is limited to disrespecting F(·). This is captured in the following definition:

Definition 3. Let P = (D, U,Q,A) be a two player protocol.

(i) A permutation attack ξ on P as player p ∈ {1, 2} specifies for each vertex
v ∈ V (Q) with an action of the form A(v) = (privatePerm, p,Π,F(·)), a
permutation ξ(v) ∈ Π. Replacing such F(·) with the (point) distributions
that always choose ξ(v), yields the attacked protocol Pξ.

(ii) An attack ξ is unsuccessful if the following holds. Whenever I ∈ U is a random
variable denoting an input and (I,O, T1, T2,W) and (I,Oξ, T ξ1 , T

ξ
2 ,W

ξ) are
the resulting execution traces of P and Pξ, then for any values i, o, w:

Pr[W ξ=w] > 0 =⇒ Pr[(I,Oξ)=(i, o) |W ξ=w] = Pr[(I,O)=(i, o)]. (?)

(iii) We say P is secure against permutation attacks if each permutation attack
on P is unsuccessful.

In light of our discussion above we finally define:

Definition 4. A two player protocol P = (D, U,Q,A) has an actively secure
implementation if each permutation set Π occuring in a privatePerm action is
implemented and P is secure against permutation attacks.

Intuitively, a protocol has permutation security if: No matter what permutations
a player chooses (∀ξ), and no matter what the turn actions end up revealing
(∀W ξ), the best guess for the in- and output (distribution of (I,Oξ), given W ξ)
is no different from what he would have said, had he not been involved in the
computation at all (distribution of (I,O)). We make a few remarks.

– Passively secure protocols terminate almost surely, otherwise O = ⊥ can
be recognized from an infinite path W . For similar reasons, a permutation
attacker can never cause a protocol with permutation security to run forever.5

– In our definition, permutation attackers are deterministic without loss of
generality. Intuitively, if an attacker learns nothing no matter what ξ she
chooses, then choosing ξ randomly is just a fancy way of determining in what
way she is going to learn nothing.

– For similar reasons, permutation security implies passive security, since
playing honestly is just a weighted mixture of “pure” permutation attacks.

– We cannot say anything if both players are dishonest or if they share their
execution traces with one another. We also cannot guarantee that player p
learns nothing if player 3− p is dishonest.

5 Protocols that almost surely output ⊥ are a pathological exception.

17

Permutation security from passive security. There is an important special
case in which the powers of a permutation attacker turn out to be ineffective,
namely if the distributions F(Tp) never assign zero probability to a permutation.

Proposition 2. Let P = (D, U,Q,A) be a passively secure protocol where for
each action of the form (privatePerm, p,Π,F(·)) and each permutation trace Tp
of player p, F(Tp) has support Π6. If for each attack ξ the attacked protocol Pξ
terminates with probability 17, then P is secure against permutation attacks.

Proof. Consider an attack ξ on P as player p ∈ {1, 2}, let I ∈ U be any random
variable denoting an input and (I,O, T1, T2,W) and (I,Oξ, T ξ1 , T

ξ
2 ,W

ξ) be the
execution traces of P and Pξ.

Let w be any path in Q with Pr[W ξ = w] > 0 and t the permutation trace
that ξ prescribes for player p along w (whenever W ξ = w, then T ξp = t). For any
i, o we have:

Pr[(I,Oξ) = (i, o) |W ξ = w] = Pr[(I,Oξ) = (i, o) | (T ξp ,W ξ) = (t, w)]
= Pr[(I,O) = (i, o) | (Tp ,W) = (t, w)]
= Pr[(I,O) = (i, o)].

From the first to the second line, note that firstly, since w is finite, the sequence
t of choices is finite as well, so, using the assumption that supp(F(Tp)) = Π in
all cases, there is some positive probability that an honest player behaves exactly
like the attacker with respect to this finite sequence of choices. Therefore, the
conditional probability in the second line is well defined. Secondly, the attacked
protocol and the original protocol behave alike once we fix the behavior of player
p so we have the stated equality. From the second to the third line we use the
passive security of P. ut

In P a permutation attacker can only choose permutations that an honest player
may have chosen randomly, so non-trivial information she obtains about in-
and output is also available to a passive attacker with positive probability. The
protocol from Fig. 7 has active security precisely for this reason.

7 Implementing Restricted Mizuki–Shizuya Protocols

In [MS14a], Mizuki and Shizuya’s self-proclaimed goal was to define a “compu-
tational model which captures what can possibly be done with playing cards”.
Hence, any secure real-world procedure to compute something with playing cards
can be formalized as a secure protocol in their model.8 The other direction is not
6 Otherwise, active attackers may pick π ∈ Π which honest players never choose.
7 this excludes a pathological case
8 Excluding the use case of non-committed input protocols from [MWS15] and [NTM+16],
where the input is provided by a choice of privatePerm operations by a player, requiring
input awareness/knowledge.

18

so clear. Given a secure protocol in the model, can it be implemented in the real
world? We believe the answer is probably “no” (or, at least, not clearly “yes”).
However, our work of identifying implementable actions in the two player model
implies that a very natural subset of actions in Mizuki and Shizuya’s model is
implementable, even in an actively secure fashion: uniform closed shuffles (defined
below). Note that these shuffles already allow for securely computing any circuit
[MS09].

Mizuki–Shizuya Protocols. We will state a modified version of Mizuki and
Shizuya’s model, in that instead of state machine semantics we stick to a tree of
actions as in the two player model. This is an equivalent way of defining protocols,
cf. [KKW+17, Sections 3 and 4].

A Mizuki–Shizuya protocol is a tuple P = (D, U,Q,A) similar to a two player
protocol. The actions perm, result and turn are available as before, but instead of
privatePerm actions there are shuffle actions of the form (shuffle, Π,F) where Π
is a set of permutations and F is a probability distribution on Π. Executing a
protocol works as before, but there are no separate permutation traces for players
(there are no players at all), instead there is a single permutation trace T . The
actions perm, turn and result work as before. When an operation (shuffle, Π,F) is
encountered, a permutation π ∈ Π is chosen according to F (independent from
any previous choices). This permutation π is applied to the current sequence of
cards without anyone learning π and appended to the permutation trace T .

For any input I ∈ U , an execution is described by the execution trace
(I,O, T ,W) where O is the output (O = ⊥ if the protocol did not terminate),
T the resulting permutation trace and W the path of the execution in Q. It is
assumed that only W can be observed, suggesting the following security notion:

Definition 5 (Security of Mizuki–Shizuya Protocols). A Mizuki–Shizuya
protocol P is secure if for each random variable I ∈ U and resulting execution
trace (I,O, T ,W) of the protocol, (I,O) is independent from W .

Implementing Uniform Closed Mizuki–Shizuya Protocols. A shuffle
(shuffe, Π,F) is uniform if F is the uniform distribution on Π, and it is closed if
Π is a group. We call a Mizuki–Shizuya protocol uniform closed if each of its
shuffle actions is uniform and closed. We are ready to state our main theorem.

Main Theorem. Let P = (D, U,Q,A) be a secure uniform closed Mizuki–
Shizuya protocol. Then there is a two player protocol P̂ = (D, U, Q̂, Â) with
actively secure implementation computing the same function as P.

Moreover, the implementation of P̂ uses as helping deck only J3 ·♠, (n−3) ·♦K
for (generalized) coupled rotations and J♠, (n−1) ·♦K for chosen (pile) cuts. Here,
n is the length of the input sequences.

We sketch the proof here and give the formal proof below. Each uniform closed
shuffle (shuffle, Π,U) of P is replaced by two actions (privatePerm, p,Π,U) for
p ∈ {1, 2}. For π2 ◦π1 to be uniformly random in Π, it suffices if π1 or π2 is

19

chosen uniformly random in Π (while the other is fixed/known). Therefore, the
joint permutation applied to the sequence after both privatePerm actions looks
uniformly random to both players. Hence, they learn nothing from the execution
of P̂ that they would not have also learned from executing P . Since P is secure, P̂
is passively secure and by Proposition 2 also secure against permutation attacks.
Moreover, by Proposition 1 all Π are implemented using the stated decks of
helping cards so P̂ has an actively secure implementation.

Proof (Main Theorem). As already mentioned, we obtain P̂ by replacing each
shuffle action in P by two privatePerm actions. More precisely, let (v1, v2, . . .) be
the sequence of those vertices in Q with shuffle actions. Then for each i we have
A(vi) = (shuffle, Πi,Ui), where Πi is some group and Ui the uniform distribution
on Πi. The tree Q̂ is obtained from Q by replacing each vi with two vertices v(1)

i

and v
(2)
i with Â(v(p)

i) = (privatePerm, p,Πi,Ui), where v(2)
i is the child of v(1)

i

and p ∈ {1, 2}. All other vertices remain unchanged.

Permutation schemes. To simplify the following argument we shall pick all
relevant permutations a priori instead of producing them on-demand: A
permutation scheme is a sequence (π1, π2, . . .) of permutations with πi ∈ Πi.
We shall imagine that P is executed by first choosing a permutation scheme
T = (π1, π2, . . .) uniformly at random (each πi uniformly at random from
Πi and independent of the rest) and then executing the protocol as usual,
except that we are already determined in our choice of permutations. When
reaching a shuffle action in vertex vi we are already determined to use πi.
Clearly, this does not affect the execution of P in the following sense. If I is a
random input then the tuple (I,O,W, T W) of input, output, execution path
and permutation trace, resulting from this new way of executing P has the
same distribution as the ordinary permutation trace of P. By T W we mean
the projection of the scheme T to those components used in the execution,
i.e. those on vertices occurring in W (in descending order).
In the same way we think of the execution of P̂, having players 1 and 2
pick permutation schemes T1 = (π1, π2, . . .) and T2 = (τ1, τ2, . . .) in advance
and having player 1 use πi if vertex v(1)

i is encountered and player 2 use τi
if vertex v(2)

i is encountered. Then the tuple (I, Ô, Ŵ , T Ŵ1 , T Ŵ2) of input,
output, execution path and permutation traces obtained from this new way
of executing P̂ has the same distribution as the ordinary execution trace of
P̂. We use these modified execution traces in the following.

Computing the same function. In the following we shall make heavy use of
the fact that X ⊥ Y implies f(X) ⊥ g(Y) whenever X and Y are (vectors of)
random variables, f and g deterministic functions and⊥ denotes independence
of random variables.
Note that O is determined by (I, T), meaning there is a deterministic function
f with O = f(I, T). By construction, any permutation done by player 1 in
P̂ is immediately followed by a corresponding permutation done by player 2
and we see Ô = f(I, T2 ◦ T1). Clearly, the folded permutation scheme T2 ◦ T1
has the same distribution as T , so Ô has the same distribution as O. Since

20

we made no assumptions on I, we conclude that P and P̂ compute the same
randomized function.

Passive Security. Note that W is determined by (I, T), meaning there is a
deterministic function g with W = g(I, T). If ext is the function acting
on paths by replacing occurrences vi with the two vertices v(1)

i and v
(2)
i

then we have by construction Ŵ = (ext ◦ g)(I, T2 ◦ T1). We now see that
(I,O,W) = (I, f(I, T), g(I, T)) has exactly the same distribution as

(I, Ô, ext−1(Ŵ)) = (I, f(I, T2 ◦ T1), g(I, T2 ◦ T1)).

Therefore, the passive security of P reflected in (I,O) ⊥W translates into
(I, Ô) ⊥ ext−1(Ŵ) which implies (I, Ô) ⊥ Ŵ . This is the crucial step in the
following chain of reasoning:

Tp ⊥ T2 ◦ T1 Players choice masked by other players choice
⇒Tp ⊥ (I, T2 ◦ T1) Schemes are chosen a priori, independent of I
⇒Tp ⊥ (I, T2 ◦ T1, Ô, Ŵ) Since Ô = f(I, T2 ◦ T1), Ŵ = (ext ◦ g)(I, T2 ◦ T1)
⇒Tp ⊥ (I, Ô, Ŵ) Projection
⇒(Tp, Ŵ) ⊥ (I, Ô) Using Ŵ ⊥ (I, Ô)

⇒(T Ŵp , Ŵ) ⊥ (I, Ô) T Ŵp is a function of Tp and Ŵ .

This also shows the corresponding independence for the ordinary execution
trace, proving passive security of P̂.

Permutation Security. This follows immediately from passive security and
Proposition 2.

Implementation. By Proposition 1, each group Πi is implemented with active
security and choice using the stated helping decks.

Active Security. The last two points constitute an actively secure implementa-
tion by Definition 4. ut

8 Conclusion

Central to our notion of active security is the concept of a permutation set
implemented with active security and choice, indicating that a player Alice can
choose to perform a permutation from the set while Bob can know that Alice
did not cheat, but nothing else. We argued that cuts and pile cuts have such an
implementation and we used permutation protocols to build more sophisticated
procedures handling any group of permutations.

Moreover, we defined security for Mizuki–Shizuya protocols, active and passive
security for our own two player protocols and showed how secure Mizuki–Shizuya
protocols using only uniform closed shuffles can be transformed into actively secure
two player protocols. This is a solid foundation for actively secure card-based
cryptography.

21

Open Problems. The current card-minimal committed format protocols, namely
the four- and five-card AND protocols and the general k-ary boolean function
protocol of [KWH15] and the copy protocol of [NNH+15], use non-closed or
non-uniform shuffles. As we have determined that uniform closed shuffles are a
natural class of actions which can be done actively secure, it is interesting to
find card-minimal protocols for these functions using only uniform closed shuffles.
This has only partially been answered in [KKW+17].

Another natural problem is to implement more general shuffles, and even to
characterize the shuffles which are possible with (a linear number of) helping
cards, and the assumption of the security of a uniform random cut. To give one
non-trivial example, we show in Appendix B how any subset of a cut can be
implemented as a shuffle.

Moreover, it is interesting which functionalities are realizable – at all or more
efficiently – in the two player setting compared to the computational model of
[MS14a], possibly by composing privatePerm operations in more sophisticated
ways than done in Section 7. For example, the three-card AND protocol in
[MWS15, Sect. 3.2], which is not in committed format, is naturally formalized in
our two player model.

References

[BMR07] J. Bohli, J. Müller-Quade, and S. Röhrich. “Bingo Voting: Secure and
Coercion-Free Voting Using a Trusted Random Number Generator”.
In: VOTE-ID 2007. Ed. by A. Alkassar and M. Volkamer. LNCS 4896.
Springer, 2007, pp. 111–124. doi: 10.1007/978-3-540-77493-8 10.

[CHL13] E. Cheung, C. Hawthorne, and P. Lee. “CS 758 Project: Secure Com-
putation with Playing Cards”. 2013. url: https://csclub.uwaterloo.ca/
~cdchawth/files/papers/secure playing cards.pdf (visited on 02/10/2015).

[CK93] C. Crépeau and J. Kilian. “Discreet Solitary Games”. In: CRYPTO
’93. Ed. by D. R. Stinson. LNCS 773. Springer, 1993, pp. 319–330.
doi: 10.1007/3-540-48329-2 27.

[dBoe89] B. den Boer. “More Efficient Match-Making and Satisfiability: The
Five Card Trick”. In: EUROCRYPT ’89. Ed. by J. Quisquater and
J. Vandewalle. LNCS 434. Springer, 1989, pp. 208–217. doi: 10.1007/
3-540-46885-4 23.

[ICM15] R. Ishikawa, E. Chida, and T. Mizuki. “Efficient Card-Based Proto-
cols for Generating a Hidden Random Permutation Without Fixed
Points”. In: UCNC 2015. Ed. by C. S. Calude and M. J. Dinneen.
LNCS 9252. Springer, 2015, pp. 215–226. doi: 10.1007/978-3-319-
21819-9 16.

[KKW+17] J. Kastner, A. Koch, S. Walzer, D. Miyahara, Y.-i. Hayashi, T.
Mizuki, and H. Sone. “The Minimum Number of Cards in Practical
Card-based Protocols”. In: ASIACRYPT 2017, Proceedings, Part
III. Ed. by T. Takagi and T. Peyrin. LNCS 10626. Springer, 2017,
pp. 126–155. doi: 10.1007/978-3-319-70700-6 5.

22

http://dx.doi.org/10.1007/978-3-540-77493-8_10
https://csclub.uwaterloo.ca/~cdchawth/files/papers/secure_playing_cards.pdf
https://csclub.uwaterloo.ca/~cdchawth/files/papers/secure_playing_cards.pdf
http://dx.doi.org/10.1007/3-540-48329-2_27
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/978-3-319-21819-9_16
http://dx.doi.org/10.1007/978-3-319-21819-9_16
http://dx.doi.org/10.1007/978-3-319-70700-6_5

[KWH15] A. Koch, S. Walzer, and K. Härtel. “Card-based Cryptographic
Protocols Using a Minimal Number of Cards”. In: ASIACRYPT
2015, Part I. Ed. by T. Iwata and J. H. Cheon. LNCS 9452. Springer,
2015, pp. 783–807. doi: 10.1007/978-3-662-48797-6 32.

[MAS13] T. Mizuki, I. K. Asiedu, and H. Sone. “Voting with a Logarithmic
Number of Cards”. In: UCNC 2013. Ed. by G. M. et al. LNCS 7956.
Springer, 2013, pp. 162–173. doi: 10.1007/978-3-642-39074-6 16.

[Miz16] T. Mizuki. “Card-based protocols for securely computing the con-
junction of multiple variables”. In: Theoretical Computer Science
622 (2016), pp. 34–44. doi: 10.1016/j.tcs.2016.01.039.

[MKS12] T. Mizuki, M. Kumamoto, and H. Sone. “The Five-Card Trick
Can Be Done with Four Cards”. In: ASIACRYPT 2012. Ed. by X.
Wang and K. Sako. LNCS 7658. Springer, 2012, pp. 598–606. doi:
10.1007/978-3-642-34961-4 36.

[MN06a] T. Moran and M. Naor. “Polling with Physical Envelopes: A Rigorous
Analysis of a Human-Centric Protocol”. In: EUROCRYPT 2006.
Ed. by S. Vaudenay. LNCS 4004. Springer, 2006, pp. 88–108. doi:
10.1007/11761679 7.

[MN06b] T. Moran and M. Naor. “Receipt-Free Universally-Verifiable Voting
with Everlasting Privacy”. In: CRYPTO 2006. Ed. by C. Dwork.
LNCS 4117. Springer, 2006, pp. 373–392. doi: 10.1007/11818175 22.

[MN10] T. Moran and M. Naor. “Basing cryptographic protocols on tamper-
evident seals”. In: Theoretical Computer Science 411.10 (2010),
pp. 1283–1310. doi: 10.1016/j.tcs.2009.10.023.

[MS09] T. Mizuki and H. Sone. “Six-Card Secure AND and Four-Card
Secure XOR”. In: FAW 2009. Ed. by X. Deng, J. E. Hopcroft, and
J. Xue. LNCS 5598. Springer, 2009, pp. 358–369. doi: 10.1007/978-
3-642-02270-8 36.

[MS14a] T. Mizuki and H. Shizuya. “A formalization of card-based crypto-
graphic protocols via abstract machine”. In: International Journal
of Information Security 13.1 (2014), pp. 15–23. doi: 10.1007/s10207-
013-0219-4.

[MS14b] T. Mizuki and H. Shizuya. “Practical Card-Based Cryptography”. In:
FUN 2014. Ed. by A. Ferro, F. Luccio, and P. Widmayer. LNCS 8496.
Springer, 2014, pp. 313–324. doi: 10.1007/978-3-319-07890-8 27.

[MWS15] A. Marcedone, Z. Wen, and E. Shi. Secure Dating with Four or
Fewer Cards. 2015. Cryptology ePrint Archive, Report 2015/1031.

[NHMS15] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone. “Card-Based Pro-
tocols for Any Boolean Function”. In: TAMC 2015. Ed. by R. Jain,
S. Jain, and F. Stephan. LNCS 9076. Springer, 2015, pp. 110–121.
doi: 10.1007/978-3-319-17142-5 11.

[NHMS16] A. Nishimura, Y.-i. Hayashi, T. Mizuki, and H. Sone. “An Imple-
mentation of Non-Uniform Shuffle for Secure Multi-Party Computa-
tion”. In: Workshop on ASIA Public-Key Cryptography, Proceedings.

23

http://dx.doi.org/10.1007/978-3-662-48797-6_32
http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1016/j.tcs.2016.01.039
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/11761679_7
http://dx.doi.org/10.1007/11818175_22
http://dx.doi.org/10.1016/j.tcs.2009.10.023
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/978-3-319-07890-8_27
https://eprint.iacr.org/2015/1031
http://dx.doi.org/10.1007/978-3-319-17142-5_11

AsiaPKC ’16. New York, NY, USA: ACM, 2016, pp. 49–55. doi:
10.1145/2898420.2898425.

[NNH+15] A. Nishimura, T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone.
“Five-Card Secure Computations Using Unequal Division Shuffle”.
In: TPNC 2015. Ed. by A. H. Dediu, L. Magdalena, and C. Martín-
Vide. LNCS 9477. Springer, 2015, pp. 109–120. doi: 10.1007/978-3-
319-26841-5 9.

[NNH+17] A. Nishimura, T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone. Card-
Based Protocols Using Unequal Division Shuffle. 2017. Cryptology
ePrint Archive, Report 2017/425.

[NR98] V. Niemi and A. Renvall. “Secure Multiparty Computations With-
out Computers”. In: Theoretical Computer Science 191.1-2 (1998),
pp. 173–183. doi: 10.1016/S0304-3975(97)00107-2.

[NSIO17] T. Nakai, S. Shirouchi, M. Iwamoto, and K. Ohta. “Four Cards Are
Sufficient for a Card-Based Three-Input Voting Protocol Utilizing
Private Permutations”. In: ICITS 2017. Ed. by J. Shikata. LNCS
10681. Springer, 2017, pp. 153–165. doi: 10.1007/978-3-319-72089-
0 9.

[NTM+16] T. Nakai, Y. Tokushige, Y. Misawa, M. Iwamoto, and K. Ohta. “Effi-
cient Card-Based Cryptographic Protocols for Millionaires’ Problem
Utilizing Private Permutations”. In: CANS 2016. Ed. by S. Foresti
and G. Persiano. LNCS 10052. 2016, pp. 500–517. doi: 10.1007/978-
3-319-48965-0 30.

[PH10] S. Popoveniuc and B. Hosp. “An Introduction to PunchScan”. In:
Towards Trustworthy Elections. Ed. by D. C. et al. LNCS 6000.
Springer, 2010, pp. 242–259. doi: 10.1007/978-3-642-12980-3 15.

[SMS+15] K. Shinagawa, T. Mizuki, J. C. N. Schuldt, K. Nuida, N. Kanayama,
T. Nishide, G. Hanaoka, and E. Okamoto. “Secure Multi-Party
Computation Using Polarizing Cards”. In: IWSEC 2015. Ed. by K.
Tanaka and Y. Suga. LNCS 9241. Springer, 2015, pp. 281–297. doi:
10.1007/978-3-319-22425-1 17.

[Sti01] A. Stiglic. “Computations with a deck of cards”. In: Theoretical
Computer Science 259.1-2 (2001), pp. 671–678. doi: 10.1016/S0304-
3975(00)00409-6.

[UNH+16] I. Ueda, A. Nishimura, Y.-i. Hayashi, T. Mizuki, and H. Sone. “How
to Implement a Random Bisection Cut”. In: Theory and Practice
of Natural Computing, TPNC 2016, Proceedings. Ed. by C. Martín-
Vide, T. Mizuki, and M. A. Vega-Rodríguez. Springer International
Publishing, 2016, pp. 58–69. doi: 10.1007/978-3-319-49001-4 5.

[Ver14] T. Verhoeff. “The Zero-Knowledge Match Maker”. 2014. url: https:
//www . win . tue . nl/~wstomv/publications/liber - AMiCorum - arjeh -
bijdrage-van-tom-verhoeff.pdf.

24

http://dx.doi.org/10.1145/2898420.2898425
http://dx.doi.org/10.1007/978-3-319-26841-5_9
http://dx.doi.org/10.1007/978-3-319-26841-5_9
https://eprint.iacr.org/2017/425
http://dx.doi.org/10.1016/S0304-3975(97)00107-2
http://dx.doi.org/10.1007/978-3-319-72089-0_9
http://dx.doi.org/10.1007/978-3-319-72089-0_9
http://dx.doi.org/10.1007/978-3-319-48965-0_30
http://dx.doi.org/10.1007/978-3-319-48965-0_30
http://dx.doi.org/10.1007/978-3-642-12980-3_15
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1016/S0304-3975(00)00409-6
http://dx.doi.org/10.1016/S0304-3975(00)00409-6
http://dx.doi.org/10.1007/978-3-319-49001-4_5
https://www.win.tue.nl/~wstomv/publications/liber-AMiCorum-arjeh-bijdrage-van-tom-verhoeff.pdf
https://www.win.tue.nl/~wstomv/publications/liber-AMiCorum-arjeh-bijdrage-van-tom-verhoeff.pdf
https://www.win.tue.nl/~wstomv/publications/liber-AMiCorum-arjeh-bijdrage-van-tom-verhoeff.pdf

A The Issue of Reusing Helping Cards

Assume we already implemented some permutation protocols P1 and P2 for
permutation sets Π1 and Π2 using some helping decks H1 and H2. Now we
design another permutation protocol P3 implementing Π3 and using its own deck
of helping cards H3. Assume some privatePerm actions of P3 involve Π1 and Π2
and we intend use P1 and P2 as “subroutines”. It is hence interesting to ask,
what helping deck do we need for P3 in total.

Within P3 the deck H3 is in use, potentially encoding important information,
so unless we make further assumptions, subroutines must treat those cards as
object cards. If, however, the subroutines P1 and P2 are used sequentially, they
may share resources. So all in all, we need (H1 ∪H2) +H3.

This assumes that the required helping cards from H1 can be re-used in P2
after they were used in P1. In particular, they need to be turned, which assumes
that the arrangement of H1 after use does not contain sensitive information any
more. This is reasonable: Not only do all of our own protocols end with the
helping cards in canonical order, it would also be easy to destroy any information
encoded in them by shuffling them after use, e.g. by using repeated uniform cuts.

B Implementing a Non-closed Shuffle Operation

Our focus on uniform closed shuffle operations has its reasons, but this should
not distract from the fact that many other shuffle operations are both important
and implementable. Let us take a special case of (shuffle, {id, (1 2 3 4 5)3},U). It
was for instance put to use in [CHL13], albeit without further elaboration on its
security or implementation.

Note that Π has an implementation with active security and choice (by
virtue of being the subset of a cut), but performing (playerPerm, p,Π,U(·)) for
p ∈ {1, 2} one after the other as we do for closed permutation sets could result
in the permutation (1 2 3 4 5)6. However, we can use a similar idea as we did
when implementing cuts. We propose the procedure shown in Fig. 8 which is a
“protocol implementing a shuffle”.

shuffle, {id, (h0 h2)},U

shuffle, 〈ϕ̂〉,U

turn, {h0, . . . , h4}

perm, id

♠♦♦♦♦

perm, ϕ̂

♦♦♦♦♠

perm, ϕ̂2

♦♦♦♠♦

perm, ϕ̂3

♦♦♠♦♦

perm, ϕ̂4

♦♠♦♦♦

Fig. 8: Protocol implementing (shuffle, Π = {id, (1 2 3 4 5)3},U) with five helping
cards (details explained in the text).

25

We assume that we initially have five object cards in positions 1 through 5
and a helping deck H = J♠, 4·♦K originally lying in positions h0 through h4 (say
hi = i+ 6). The ♠ starts at position h0, but after the first shuffle operation will
end up at a position hs, where s can be 0 or 2 with equal probability. We now
perform some power of ϕ̂ = (1 2 3 4 5) ◦(h0 h1 h2 h3 h4) which rotates both the
helping sequence and the object cards by some uniformly random 0 ≤ k < 5,
leaving ♠ in position hs+k (mod 5).

The turn step reveals the helping cards and thereby s + k (mod 5). Now
ϕ̂−s−k (mod 5) is performed, leaving the helping sequence in its original state and
the object cards rotated by k − s− k = −s. Since −s is with equal probability 0
or 3 (mod 5) a uniformly random permutation from Π happened as desired. The
only information that was revealed is s + k which is independent of −s. Note
that the two involved shuffle operations are uniform closed and may therefore
be implemented as in Section 7. With this, we implement the non-closed shuffle
with more basic shuffle operations.

We are confident that a clean formalization and generalization of this concept
is possible and excited about future research that explores what other shuffle
operations can be implemented in this sense.

C Achieving Input Integrity

Mizuki and Shizuya [MS14b] consider malicious players disrespecting the input
format, in their case by giving ♣♣ or ♥♥ as an input, even though only ♥♣ and
♣♥ are permitted. Note that we leave this problem aside when assuming that
inputs are already lying on the table when the protocol starts.

It is beneficial for composability/modularity to not assume knowledge about
the inputs from the players running the protocol, as they might work with hidden
intermediate results of the surrounding protocol.

We can think of two strategies to integrate a player input procedure into
our model, encompassing input security. In both approaches sketched below, we
assume a unique starting sequence s, which does not yet encode any inputs, and
both players p ∈ {1, 2} have their input Ip in mind. Distributions in playerPerm
actions may depend on Ip.

Strategy 1. Introduce a separate input phase before the computation phase of
the protocol. In this phase, the sequence s is transformed into a sequence that
reflects the input of both players. We require that no player learns anything
about the input of the other player and after this phase, the sequence of
cards is an admissible input sequence reflecting the honest player’s choices
accurately, even when one player is malicious. In the case of committed
format protocols where both players independently provide a sequence of
input bits, it is easy to see that privatePerm-actions, where players perform
chosen transpositions, are sufficient.

Strategy 2. The input phase and the computation phase are arbitrarily inter-
leaved. This may allow to save cards if not all bits are needed at the same
time. However, the notions of passive and active security would need to be

26

updated, since now the output of the protocol is not necessarily independent
of the permutation trace of a player. In the case of passive security we would
want only that the input of the other player and the output conditioned on
Ip are protected. For active security the notion is more tricky still.

27

	Foundations for Actively Secure Card-based Cryptography

