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Abstract. We describe a new reconciliation method for Ring-LWE that
has a significantly smaller failure rate than previous proposals while re-
ducing ciphertext size and the amount of randomness required. It is
based on a simple, deterministic variant of Peikert’s reconciliation that
works with our new “safe bits” selection and constant-time error correc-
tion techniques. The new method does not need randomized smoothing
to achieve non-biased secrets. When used with the very efficient “New
Hope” Ring-LWE parametrization we achieve a decryption failure rate
well below 2−128 (compared to 2−60 of the original), making the scheme
suitable for public key encryption in addition to key exchange protocols;
the reconciliation approach saves about 40% in ciphertext size when com-
pared to the common LP11 Ring-LWE encryption scheme. We perform a
combinatorial failure analysis using full probability convolutions, leading
to a precise understanding of decryption failure conditions on bit level.
Even with additional implementation security and safety measures the
new scheme is still essentially as fast as the New Hope but has slightly
shorter messages. The new techniques have been instantiated and im-
plemented as a Key Encapsulation Mechanism (KEM) and public key
encryption scheme designed to meet the requirements of NIST’s Post-
Quantum Cryptography effort at very high security level.

Keywords: Ring-LWE, Reconciliation, Post-Quantum Encryption, New Hope.

1 Introduction

Some classes of encrypted data must remain confidential for a long period of time
– often at least few decades in national security applications. Therefore high-
security cryptography should be resistant to attacks even with projected future
technologies. As there are no physical or theoretical barriers preventing progres-
sive development of quantum computing technologies capable of breaking current
RSA- and Elliptic Curve based cryptographic standards (using polynomial-time
quantum algorithms already known [35,41]), a need for such quantum-resistant
algorithms in national security applications has been identified [31].

In December 2016 NIST issued a standardization call for quantum-resistant
public key algorithms, together with requirements and evaluation criteria [30].
This has made “Post-Quantum Cryptography” (PQC) central to cryptographic
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engineers who must now design concrete proposals for standardization. Practi-
cal issues such as performance, reliability, message and key sizes, implementation
and side-channel security, and compatibility with existing and anticipated ap-
plications, protocols, and standards are as relevant as mere theoretical security
and asymptotic feasibility when evaluating these proposals.

Ring-LWE lattice primitives offer some of the best performance and key size
characteristics among quantum-resistant candidates [15]. These algorithms rely
on “random noise” for security and always have some risk of decryption failure.
This reliability issue can pose problems when used in non-interactive applications
which are not designed to tolerate errors. The issue of decryption failure can be
addressed via reconciliation methods, which is the focus of present work.

Structure of this paper and our contributions. Section 2 provides a prac-
tical introduction to Ring-LWE Key Exchange and prior work on reconciliation.
Section 3 introduces our new reconciliation techniques, together with detailed
analysis. Section 4 discusses design, analysis, and implementation of XE5, a sim-
ple constant-time error correction code suitable for Ring-LWE. Section 5 contains
the specification and implementation benchmarks for our instantiation HILA5,
designed to meet the NIST PQC criteria at high security level. We conclude in
Section 6. Additional algorithmic listings are provided in Appendix A.

2 Ring-LWE Key Exchange and Key Encapsulation

Notation and Basic Properties. Reduction x mod q puts a number in
positive range 0 ≤ x < q. We write the rounding function as bxe = bx+ 1

2c.
LetR be a ring with elements v ∈ Znq . Its coefficients vi ∈ [0, q−1] (0 ≤ i < n)

can be interpreted as a polynomial via v(x) =
∑n−1
i=0 vix

i, or as a zero-indexed
vector. Addition, subtraction, and scaling (scalar multiplication with c) follow
the basic rules for polynomials or vectors with coefficients in Zq.

For multiplication in R we use cyclotomic polynomial basis Zq[x]/(xn + 1).
Products are reduced modulo q and xn+1 and results are bound by degree n−1
since xn ≡ q − 1 in R. We may write a direct wrap-around multiplication rule:

h = f ∗ g mod (xn + 1) ⇐⇒ hi =

i∑
j=0

fjg(i−j) −
n−1∑
j=i+1

fjg(n+i−j). (1)

Algorithmically the multiplication rule of Equation 1 requires O(n2) elementary
operations. However, there is an O(n log n) method using the Number Theoretic
Transform (NTT), originally from Nussbaumer [32]. For efficient NTT imple-
mentation n should be a power of two and q a small prime, with 2n | q − 1.

Definition 1 (Informal). With all distributions and computations in ring R,
let s, e be elements randomly chosen from some non-uniform distribution χ, and
g be a uniformly random public value. Determining s from (g,g∗s+e) in ring R
is the (Normal Form Search) Ring Learning With Errors (RLWER,χ) problem.
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Typically, χ is chosen so that each coefficient is a Discrete Gaussian or from
some other “Bell-Shaped” distribution that is relatively tightly concentrated
around zero. The hardness of the problem is a function of n, q, and χ. 1

2.1 Noisy Diffie-Hellman in a Ring

A key exchange method analogous to Diffie-Hellman can be constructed in R in

a straightforward manner, as first described in [1,33]. Let g
$← R be a uniformly

random common parameter (“generator”), and χ a non-uniform distribution.

Alice Bob

a
$← χ private keys b

$← χ

e
$← χ noise e′

$← χ
A = g ∗ a + e public keys B = g ∗ b + e′

A−−−→
B←−−−

x = B ∗ a shared secret y = A ∗ b

We see that that the way messages A,B are generated makes the security of the
scheme equivalent to Definition 1. This commutative scheme “almost” works
like Diffie-Hellman because the shared secrets only approximately agree; x ≈ y.
Since the ring R is commutative, substituting A and B gives

x = (g ∗ b + e′) ∗ a = g ∗ a ∗ b + e′ ∗ a (2)

y = (g ∗ a + e) ∗ b = g ∗ a ∗ b + e ∗ b. (3)

The distance ∆ therefore consists only of products of “noise” parameters:

∆ = x− y = e′ ∗ a− e ∗ b. (4)

We observe that each of {a,b, e, e′} in ∆ are picked independently from χ, which
should be relatively “small’ and zero-centered. The coefficients of both x and y
are dominated by common, uniformly distributed factor g ∗ a ∗ b ≈ x ≈ y.
Up to n shared bits can be decoded from coefficients of x and y by a simple
binary classifier such as b 2xi

q c ≈ b
2yi
q c. This type of generation will generate some

disagreeing bits due to error ∆, however. Furthermore, the output of the classifier
is slightly biased when q is odd. This is why additional steps are required.

1 References and Notes on RLWE. The Learning With Errors (LWE) problem in
cryptography originates with Regev [36] who showed its connection to fundamental
lattice problems in a quantum setting. Regev also showed equivalence of search and
decision variants [37]. These ideas were extended to ring setting (RLWE) starting
with [27]. The connection between a uniform secret s and a secret chosen from χ is
provided by Applebaum et al. [7] for LWE case, and for the ring setting in [28]. Due to
these reductions, the informal problem of Definition 1 can be understood to describe
“RLWE”. Best known methods for solving the problem expand an RLWE instance
to the general (lattice) LWE, and therefore RLWE falls under “lattice cryptography”
umbrella. For a recent review of its concrete hardness, see [2].
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2.2 Reconciliation

Let x ≈ y be two vectors in Znq with a relatively small difference in each coef-
ficient; the distribution of the distance δi = xi − yi is strongly centered around
zero. In reconciliation, we wish the holders of x and y (Alice and Bob, respec-
tively) to be able to arrive at exactly the same shared secret (key) k with a small
amount of communication c. However, single-message reconciliation can also be
described simply as a part of an encryption algorithm (not a protocol). 2

Peikert’s Reconciliation and BCNS Instantiation. In Peikert’s reconcilia-
tion for odd modulus [34], Bob first generates a randomization vector e such that
each ei ∈ {0,±1} is uniform modulo two. Bob can then determine the public
reconciliation c and shared secret k via

ci =

⌊
2(2yi − ei)

q

⌋
mod 2 ki =

⌊
2yi − ei

q

⌉
mod 2. (5)

We define disjoint helper sets I0 = [0, b q2c] and I1 = [−b q2c,−1] and E = [− q4 ,
q
4 ).

Alice uses x to arrive at the shared secret k′ = k via

k′i =

{
0, if 2xi ∈ Ici + E mod 2q
1, otherwise.

(6)

This mechanism is illustrated in Figure 1. Peikert’s reconciliation was adopted
for the Internet-oriented “BCNS” instantiation [13], which has a vanishingly
small failure probability; Pr(k′ 6= k) < 2−16384.

New Hope Variants. “New Hope” is a prominent, more recent instantiation
of Peikert’s key exchange scheme [4]. New Hope is parametrized at n = 1024,
yet produces a 256-bit secret key k. This allowed the designers to develop a
relatively complex reconciliation mechanism that uses 1024

256 = 4 coefficients of x
and 2 ∗ 4 = 8 bits of reconciliation information to reach < 2−60 failure rate.

In a follow-up paper [3] the New Hope authors let Bob unilaterally choose
the secret key, and significantly simplified their approach. This version also uses
four coefficients, but requires 3 ∗ 4 = 12 bits of reconciliation (or “ciphertext”)
information per key bit. The total failure probability is the same < 2−60.

Security Level and Failure Probability. Note that despite having a higher
failure probability, the security level of New Hope (Section 2.2) is higher than
that of BCNS (Section 2.2). Security of RLWE is closely related to the entropy

2 References and Notes on Reconciliation. The term “reconciliation” comes from
Quantum Cryptography. Standard Quantum Key Distribution (QKD) protocols such
as BB84 [9] result in approximately agreeing shared secrets, which must be reconciled
over a public channel with the help of classical information theory and cryptography
[10,14]. Ding et al. describe functionally similar (but mathematically very different)
“Robust Extractors” in later versions of [20] and patent application [19].
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Fig. 1. Simplified view of Peikert’s original reconciliation mechanism [34], ignoring
randomized rounding. Alice and Bob have points x ≈ y ∈ Zq that are close to each
other. Bob uses y to choose k and c as shown on left, and transmits c to Alice. Alice
can use x, c to always arrive at the same shared bit k′ if |x − y| < q

8
, as shown on

right. Without randomized smoothing the two halves k = 0 and k = 1 have an area of
unequal size (when q is an odd prime) and the resulting key will be slightly biased.

and deviation of noise distribution χ in relation to modulus q. Higher noise ratio
increases security against attacks, but also increases failure probability [2]. This
is a fundamental trade-off in all Ring-LWE schemes.

2.3 Formalization as a KEM

Following the NIST call [30] and Peikert [34], such a scheme can be formalized
as a Key Encapsulation Mechanism (KEM), which consists of three algorithms:

– (PK,SK)← KeyGen(). Generate a public key PK and a secret key SK (pair).
– (CT,K)← Encaps(PK). Encapsulate a (random) key K in ciphertext CT.
– K← Decaps(SK,CT). Decapsulate shared key K from CT with SK.

In this model, reconciliation data is a part of ciphertext produced by Encaps.
The three KEM algorithms constitute a natural single-roundtrip key exchange:

Alice Bob
(PK,SK)← KeyGen() PK−−−→

CT←−−− (CT,K)← Encaps(PK)

K← Decaps(SK,CT)

Even though a KEM cannot encrypt per se, a hybrid set-up that uses a KEM
to determine random shared keys for message payload confidentiality (symmetric
encryption) and integrity (via a message authentication code) is usually prefer-
able to using asymmetric encryption directly on payload [17].

NIST requires at least IND-CPA [8] security from such a scheme. For a KEM
without “plaintext”, this essentially means that valid (PK,CT,K) triplets are
computationally indistinguishable from (PK,CT,K′), where K′ is random.
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Fig. 2. We use k = b 2y
2
c (k = 1 on left half) instead of signed rounding k = b 2y

2
+ εe

(k = 1 in lower half) of Peikert (Figure 1). Illustration on the left gives intuition
for the simple key bit selection and SafeBits without reconciliation. Bob uses window
parameter b to select “safe” bits d = 1 which are farthest away from the negative
(k = 1) / positive (k = 0) threshold. The bit selection d is sent to Alice, who then
chooses the same bits as part of the shared secret k′. On right, safe bit selection when
reconciliation bits c are used; this doubles the SafeBits “area”. Each section constitutes
a fraction 2b+1

q
, so bits are unbiased. However the number of shared bits is not constant.

3 New Reconciliation Method

We define a simpler, deterministic key and reconciliation bit generation rule from
Bob’s share y to be

ki =

⌊
2yi
q

⌋
and ci =

⌊
4yi
q

⌋
mod 2. (7)

Input yi can be assumed to be uniform in range [0, q − 1]. If taken in this plain
form, the generator is slightly biased towards zero, since the interval for ki = 0,
[0, b q2c] is 1 larger than the interval [d q2e, q − 1] for ki = 1 when q is odd.

Intuition: Selecting safe bits (without reconciliation). Let’s assume that
we don’t need all n bits given by the ring dimension. There is a straight-forward
strategy for Bob to select m indexes in y that are most likely to agree. These
safe coefficients are those that are closest to center points of k = 0 and k = 1
ranges, which in this case are q

4 and 3q
4 , respectively. Bob may choose a boundary

window b, which defines shared bits to be used, and then communicate his binary
selection vector d to Alice:

di =

{
1 if yi ∈

[
b q4e − b, b

q
4e+ b

]
or yi ∈

[
b 3q4 e − b, b

3q
4 e+ b

]
0 otherwise.

(8)

This simple case is illustrated on left side of Figure 2.
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Since y is uniform in Znq , the Hamming weight of d = SafeBits(y) satisfies

Wt(d) =
∑n−1
i=1 di ≈

4b+2
q n. Note that if not enough bits for the required payload

can be obtained with bound b, Bob should re-randomize y rather than raising
b as that can have an unexpected effect on failure rate. If there are too many
selection bits for desired payload, one can just ignore them.

Importantly, both partitions are of equal size 2b+1 and therefore k is unbiased
if there are no bit failures. If Alice also uses the simple rule k′i = b 2xi

q c to derive

key bits (without ci), the distance between shares must be at least |xi−yi| > q
4−b

for a bit error to occur.

3.1 Even safer bits via Peikert’s reconciliation

Let Bob use Equation 7 to determine his private key bits ki and reconciliation
bits ci. Bob also uses a new d = SafeBits(y, b) function that accounts for Peikert-
style reconciliation via

di =

{
1 if |(yi mod b q4e)− b

q
8c| ≤ b

0 otherwise.
(9)

Note that there are now four “safe zones” (Figure 2, right side). Bob sends his bit
selection vector d to Alice, along with reconciliation bits ci at selected positions
with di = 1. Alice can then get corresponding k′i using ci via

k′i =

⌊
2

q

(
xi − ci

⌊q
4

⌉
+
⌊q

8

⌉
mod q

)⌋
. (10)

Both parties derive a final key of length m ≤ Wt(d) bits by concatenating the
selected bits. Since y is uniform, each partition is still of size 2b + 1, and the
expected weight is now Wt(d) =

∑n−1
i=1 di ≈

8b+4
q n, allowing the selection to be

made essentially twice as tight while producing unbiased output.
Note that when selection mechanism is used, one needs to “pack” keys to

payload size m by removing ki and k′i at positions where di = 0. Algorithms 5
and 6 in Appendix A implement Equations 9 and 10 with packing.

3.2 Instantiation and Failure Analysis

We adopt the well-analyzed and optimized external ring parameters (q = 12289,
n = 1024, and χ = Ψ16) from New Hope [3,4] in our instantiation.

Definition 2. Let Ψk be a binomial distribution source

Ψk =

k∑
i=0

bi − b′i where bi, b
′
i

$← {0, 1}. (11)

For random variable X from Ψk we have P (X = i) = 2−2k
(

2k
k+i

)
. Furthermore,

Ψnk is a source of R elements where each one of n coefficients is independently
chosen from Ψk. Since scheme is uses k = 16, a typical sampler implementation
just computes the Hamming weight of a 32-bit random word and subtracts 16.

7



Lemma 1. Let ε, ε′ be vectors of length 2n from Ψ2n
k . Individual coefficients

δ = ∆i of distance Equation 4 will have distribution equivalent to

δ =

2n∑
i=1

εiε
′
i. (12)

Proof. When we investigate the multiplication rule of Equation 1, we see that
each coefficient of independent polynomials {a,b, e, e′} (or its inverse) in ∆
is used in computation of each ∆i = δ exactly once. One may equivalently
pick coefficients of ε, ε′ from {±e,±e′,±sA,±sB}, without repetition. Therefore
coefficients of εi, ε

′
i are independent and have distribution Ψk. ut

Independence Assumption. Even though all of the variables in the sum of
individual element δ = ∆i are independent in Equation 12, they are reused in
other sums for ∆j , i 6= j. Therefore, while the average-case distribution of each
one of the n coefficients of ∆ is the same and precisely analyzable, they are not
fully independent. In this work we perform error analysis on a single coefficient
and then simply expand it to the whole vector. This independence assumption is
analogous to our extension of LWE security properties to Ring-LWE with more
structure and less independent variables.

The assumption is supported by our strictly bound error distribution Ψk
(when using discrete Gaussian distributions, which are infinite up to a tail bound,
a few highly anomalous values would be more likely to cause multiple errors)
and the structure of convolutions of signed random vectors (Equation 1). Our
error estimate has a significant safety margin, however.

Estimation via Central Limit Theorem. The distribution of the product
from two random variables from Ψk in 12 is no longer binomial. Clearly its
range is [−k2, k2], but not all values are possible; for example, primes p > k
cannot occur in the product. However, it is easy to verify that the product is
zero-centered and its standard deviation is exactly

σ =

√√√√ k∑
i=−k

k∑
j=−k

(
2k
k+i

)(
2k
k+j

)
24k

(ij)2 =
k

2
. (13)

Hence, we may estimate δ of Equation 12 using the Central Limit Theorem as
a Gaussian distribution with deviation

σ =
k

2

√
2n (14)

With our parameter selection this yields σ ≈ 362.0386 (variance σ2 = 217).
Figure 3 illustrates this error distribution.
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Fig. 3. The error distribution E of δ = xi−yi (which we compute with high precision)
is bell-shaped with variance σ2 = 217. Its statistical distance to corresponding discrete
Gaussian (with same σ) is ≈ 2−12.6, which has a significant effect on the bit failure
rate. This is why we compute the discrete distributions numerically.

More precise computation via convolutions. The distribution of X = εiε
′
i

in Equation 12 is far from being “Bell-shaped” – its (total variation) statistical
distance to a discrete Gaussian (with the same σ = 8) is ≈ 0.307988.

We observe that since our domain Zq is finite, we may always perform full
convolutions between statistical distributions of independent random variablesX
and Y to arrive at the distribution of X+Y . The distributions can be represented
as vectors of q real numbers (which are non-negative and add up to 1).

In order to get the exact shape of the error distribution we start with X,
which is a “square” of Ψ16 and can be computed via binomial coefficients, as is
done in Equation 13. The error distribution (Equation 12) is a sum X + X +
· · ·+X of 2n independent variables from that distribution. Using the convolution
summing rule we can create a general “scalar multiplication algorithm” (analo-
gous to square-and-multiply exponentiation) to quickly arrive at E = 2048×X.

We implemented finite distribution evaluation arithmetic in 256-bit floating
point precision using the GNU MPFR library3. From these computations we
know that the statistical distance of E to a discrete Gaussian with (same) σ2 =
217 is approximately 0.0001603 or 2−12.6.

Proposition 1. Bit selection mechanism of Section 3.1 yields unbiased shared
secret bits k = k′ if y is uniform. Discrete failure rate for individual bits k 6= k′

can be computed with high precision in our instance.

Proof. Consider Bob’s k value from in Equation 7, Bob’s c and Alice’s k′ from
Equation 10, and the four equiv-probable SafeBits ranges in Equation 9. With
our q = 12289 instantiation the four possible k 6= k′ error conditions are:

3 The GNU MPFR is a widely available, free C library for multiple-precision floating-
point computations with correct rounding: http://www.mpfr.org/
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Failure Case Bob’s yi range for Y Alice’s Failing xi
k = 0, c = 0, k′ = 1 [1536− b, 1536 + b] [4609, 10752]
k = 0, c = 1, k′ = 1 [4608− b, 4608 + b] [0, 1535] ∪ [7681, 12288]
k = 1, c = 0, k′ = 0 [7680− b, 7680 + b] [0, 4608] ∪ [10753, 12288]
k = 1, c = 1, k′ = 0 [10752− b, 10752 + b] [1536, 7680]

We examine each case separately (See Figure 2). Since the four non-overlapping
yi ranges are of the same size 2b+ 1 and together constitute all selectable points
di = 1 (Equation 9), the distribution of k = k′ is uniform. Furthermore, bit fail
probability k 6= k′ is the average of these four cases. For each case, compute
distribution Y which is uniform in the range of yi. Then convolute it with error
distribution to obtain X = Y + E, the distribution of xi. The probability of
failure is the sum of probabilities in X in the corresponding xi failure range. ut

Parameter Selection for Instantiation. As can be seen in Figure 4, the
relationship between window size b and bit failure rate is almost exponential.

Some representative window sizes and payloads are given in Table 1, which
also puts our selection b = 799 in context. Five-error correction (Section 4)
lowers the message failure probability to roughly (2−27)5 ≈ 2−135 or even lower
as 99% of six-bit errors are also corrected. We therefore meet the 2−128 message
failure requirement with some safety margin.

Table 1. Potential window b sizes for safe bit selection (Equation 9) for different
payload sizes. We target a payload of 496 bits, of which 256 are actual key bits and
240 bits are used to encrypt a five-error correcting code from XE5.

Payload
bits∗

Selection
Window

Selection
Ratio

Bit fail
Probability

Payload
Failure

m ≈ r × n b r = 4(2b+1)
q

p 1− (1− p)m

128 191 0.124664 2−51.4715 2−44.4715

256 383 0.249654 2−46.5521 2−38.5521

384 575 0.374644 2−41.5811 2−32.9962

496† 799 0.520465 2−36.0359 2−27.0818

512 767 0.499634 2−36.8063 2−27.8063

768 1151 0.749613 2−28.1151 2−18.5302

1024 1535 0.999593 2−20.7259 2−10.7263

∗ This is the minimum number of payload bits you get with 50% probability. The actual
number is binomially distributed with density f(k) =

(
n
k

)
rk(1 − r)n−k. Probability of

at least m bits is therefore
∑n

k=m f(k).
† The payload could be 533 bits with 50% probability. We get 496 bits with 99%
probability – this safety margin was chosen to minimize repetition rate (to ≈ 1

100
).
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Fig. 4. Relationship between individual bit failure rate and the selection window b.
Dotted line is the rate derived from Gaussian approximation – it’s up to 2× lower.

4 Constant-Time Error Correction

We note that in our application the error correction mechanism operates on
secret data. As with all other components of the scheme it is highly desirable
that decoding can be implemented with an algorithm that requires constant
processing time regardless of number of errors present. We are not aware of
satisfactory constant-time decoding algorithms for BCH, Reed-Solomon, or other
standard block multiple-error correcting codes [29,45].

We chose to design a linear block code specifically for our application. The
design methodology is general, and a similar approach was used by Saarinen in
the Trunc8 Ring-LWE lightweight authentication scheme [40]. However, that
work did not provide a detailed justification for the error correction code.

Definition 3. XE5 has a block size of 496 bits, out of which 256 bits are payload
bits p = (p0, p1, · · · , p255) and 240 provide redundancy r. Redundancy is divided
into ten subcodewords r0, r1, · · · , r9 of varying bit length |ri| = Li with

(L0, L1, · · · , L9) = (16, 16, 17, 31, 19, 29, 23, 25, 27, 37). (15)

Bits in each ri are indexed r(i,0), r(i,1), · · · , r(i,Li−1). Each bit k ∈ [0, L0 − 1] in
first subcodeword r0 satisfies the parity equation

r0,k =

15∑
j=0

p(16k+j) (mod 2) (16)
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and bits in r1, r2, · · · , r9 satisfy the parity congruence

ri,k =
∑

j−k | Li

pj (mod 2). (17)

We see that r0,k in Equation 16 is the parity of k + 1:th block of 16 bits, while
the ri,k in Equation 17 is parity of all pj at congruent positions j ≡ k ( mod Li).

Definition 4. For each payload bit position pi we can assign corresponding in-
teger “weight” wi ∈ [0, 10] as a sum

wi = r(0,bi/16c) +

9∑
j=1

r(j,i mod Lj). (18)

Lemma 2. If message payload p only has a single nonzero bit pe, then we = 10
and wi ≤ 1 for all i 6= e.

Proof. Since each Li ≥
√
|p| and all Li≥1 are coprime (each is a prime power)

it follows from the Chinese Remainder Theorem that any nonzero i 6= j pair can
satisfy both ri,a mod Li

= 1 and rj,a mod Lj
= 1 only at a = e. Similar argument

can be made for pairing r0,a with ri≥1. Since the residues can be true pairwise
only at e, weight wa cannot be 2 or above when a 6= e. The we = 10 case follows
directly from the Definition 3. ut

Definition 5. Given XE5 input block p | r, we deliver a redundancy check r′

from p via Equations 16 and 17. Furthermore we have distance r∆ = r ⊕ r′.
Payload distance weight vector w∆ is derived from r∆ via Equation 18.

Since the code is entirely linear, Lemma 2 implies a direct way to correct a
single error in p using Definition 5 – just flip bit px at position x where w∆x = 10.
In fact any two redundancy subcodewords ri and rj would be sufficient to correct
a single error in the payload; it’s where w∆i ≥ 2. It’s easy to see if the single error
would be in the redundancy part (ri or rj) instead of the payload, this would
not have problem since in that case w∆x ≤ 1 for all x. This type of reasoning
leads to our main error correction strategy that is valid for up to five errors:

Theorem 1. Let b | r be an XE5 message block as in Definition 5. Changing
each bit pi when w∆i ≥ 6 will correct a total of five bit errors in the block.

Proof. We first note that if all five errors are in the redundancy part r, then
w∆i ≤ 5 and no modifications in payload are done. If there are 4 errors in r and
one in payload we still have w∆x ≥ 6 at the payload error position px, etc. For
each payload error px, each of ten subcodeword ri will contribute one to weight
w∆x unless there is another congruent error py – i.e. we have bx/16c = by/16c
for r0 or x ≡ y (mod Li) for ri≥1. Four errors cannot generate more than four
such congruences (due to properties shown in the proof of Lemma 2), leaving
fifth correctable via remaining six subcodewords (w∆i ≥ 6). ut

In order to verify the correctness of our implementation, we also performed
a full exhaustive test (search space

∑5
i=0

496!
i!(496−i)! ≈ 237.8). Experimentally XE5

corrects 99.4% of random 6-bit errors and 97.0% of random 7-bit errors.
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Efficient constant-time implementation. The code generation and error
correcting schemes can be implemented in bit-sliced fashion, without conditional
clauses or table-lookups on secret data. Algorithm listings 2 and 3 in Appendix
A provide an implementation and demonstrate the basic techniques for this.

The block is encoded simply as a 496-bit concatenation p | r. The reason
for the ordering of Li in Equation 15 is so that they can be packed into byte
boundaries: 17 + 31 = 48, 19 + 29 = 48, 23 + 25 = 48 and 27 + 37 = 64.

5 Instantiation and Implementation

Our instantiation – codenamed HILA54 – shares core Ring-LWE parameters
with various “New Hope” variants, but uses an entirely different error manage-
ment strategy. Algorithm 1 contains a pseudocode overview of the entire HILA5
Key Encapsulation (and Key Exchange) process, using a number of auxiliary
primitives and functions.

Notation and auxiliary functions. We represent elements of R in two dif-
ferent domains; the normal polynomial representation v and Number Theo-
retic Transform representation v̂. Convolution (polynomial multiplication) in
the NTT domain is a linear-complexity operation, written x̂ ~ ŷ. Addition and
subtraction work as in normal representation. The transform and its inverse are
denoted NTT(v) = v̂ and NTT−1(v̂) = v, respectively. The transform algorithm
is adopted from Longa and Naehrig [26], and not detailed here.

Appendix A contains pseudocode algorithm listings for auxiliary functions.
The XE5 error correction functions r = XE5 Cod(p) and p′ = XE5 Fix(r⊕r′)⊕p
are defined in Section 4 and Algorithms 2 and 3. Here we have “error key”
k = p | r with the payload key p ∈ {0, 1}256 and redundancy r ∈ {0, 1}240.

Function Parse() (Algorithm 4) deterministically samples a uniform ĝ ∈ R
based on arbitrary seed s using SHA3’s XOF mode SHAKE-256 [23]. While New
Hope uses the slightly faster SHAKE-128 for this purpose, we consistently use
SHAKE-256 or SHA3-256 in all parts of HILA5. For sampling modulo q we use
the 5q trick suggested by Gueron and Schlieker in [24]. Binomial distribution
values Ψ16 can be computed directly from 32 random bits per Definition 2.

Bob’s reconciliation function SafeBits() (Algorithm 5) captures Equations 7
and 9 from Section 3. Conversely Alice’s reconciliation function Select() (Algo-
rithm 6) captures Equation 10.

Encoding – shorter messages Ring elements, whether or not in NTT domain,
are encoded into |R| = dlog2 qen bits = 1, 792 bytes. This is the private key size.

Alice’s public key PK with a 256-bit seed s and Â is 1, 824 bytes. Ciphertext CT
is |R| + n + m + |r| bits or 2, 012 bytes; 36 bytes less than New Hope [4], 196
bytes less than the variant of [3], and 1, 572 bytes less than LP11 [25].

4 Hila is Finnish for a lattice. HILA5 – especially when written as “Hila V” – also refers
to hilavitkutin, a nonsensical placeholder name usually meaning an unidentified,
incomprehensibly complicated apparatus or gizmo.
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Algorithm 1 The HILA5 KEM Components and (key exchange) protocol flow.

Alice Bob
(PK, SK)← KeyGen()

s
$← {0, 1}256 Public random seed.

ĝ ← Parse(s) Expand to “generator” in NTT domain.

a
$← ψn

16 Randomize Alice’s secret key.
â ← NTT(a) Transform it.

e
$← ψn

16 Generate masking noise.

Â ← ĝ ~ â + NTT(e) Compute Alice’s public key in NTT domain.

→ Send PK = s | Â PK−−−−→
↓ Keep SK = â (CT,K)← Encaps(PK)

Randomize Bob’s ephemeral secret key. b
$← ψn

16

Transform it. b̂ ← NTT(b)

Bob’s version of shared secret. y ← NTT−1(Â~ b̂)
Get payload and reconciliation values. (d,k, c)← SafeBits(y)

(Fail hard after more than a dozen restarts.) If k = FAIL restart Encaps()
Split to payload and redundancy “keystream”. p | z = k

Error correction code, encrypt it. r ← XE5 Cod(p)⊕ z
Get “generator” from Alice’s seed. ĝ ← Parse(s)

Generate masking noise. e′
$← ψn

16

Compute Bob’s one-time public value. B̂ ← ĝ ~ b̂ + NTT(e′)
Final hash of the shared key. ↓ Keep K = SHA3− 256(p)

CT←−−− ← Send CT = B̂ | d | c | r
K← Decaps(SK,CT)

x ← NTT−1(B̂~ â) Alice’s version of the shared secret.
k′ ← Select(x,d, c) Get payload with the help of reconciliation.
p′ | z′ = k′ Split to payload and redundancy “keystream”.
r′ ← XE5 Cod(p′) Get error correction code from Alice’s version.
p′′ ← XE5 Fix(r⊕ z′ ⊕ r′)⊕ p′ Decrypt and apply Bob’s error correction.
↓ Keep K = SHA3− 256(p′′) Final hash of the shared key.

5.1 Encryption: From noisy Diffie-Hellman to noisy ElGamal

Modification of the scheme for public-key encryption is straightforward. Com-
pared to the more usual “LP11” Ring-LWE Public Key Encryption construction
[25] our reconciliation approach saves about 44 % in ciphertext size.

For minimal ciphertext expansion with only passive security, one may replace
SHA3 at the end of Encaps() and Decaps() with SHAKE-256 and use the output
K as keystream to XOR with plaintext to produce ciphertext or vice versa.

However, for active security we suggest that K is used as keying material for
an AEAD (Authenticated Encryption with Associated Data) [38] scheme such
as AES256-GCM [21,22] or Keyak [11] in order to protect message integrity. In

the AEAD operation the CT = B̂ | d | c | r ciphertext portion should also be
authenticated (as unencrypted associated data) to protect against chosen cipher-
text attacks. See Section 5 of [34] for details of the formal security argument.
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5.2 Security

In Algorithm 1 the error correction data r is transmitted encrypted with shared
secret bits z, and therefore does not leak entropy about the actual key data p,
also derived from the shared secret. Shared secret bits are unbiased.

Our reconciliation mechanism has no effect effect on the security against
(quantum) lattice attacks, so estimates in [4] are applicable (2255 quantum se-
curity, with 2199 attacks plausible). Pre-image security is expected from SHA3
and SHAKE-256 in HILA5. Breaking the construction via these algorithms, if
possible, would require approximately 2166 logical-qubit-cycles [6,18,44].

This leads us to claim that the HILA5 meets NIST’s “Category 5” post-
quantum security requirement ([30], Section 4.A.5): Compromising key K in a
passive attack requires computational resources comparable to or greater than
those required for key search on a block cipher with a 256-bit key (e.g. AES 256).
The scheme can also be made secure against active attacks with an appropriate
AEAD mechanism, as discussed in Section 5.1.

The scheme has been designed from ground-up to be resistant against tim-
ing and side-channel attacks. The sampler Ψ16 is constant-time, as is our error
correction code XE5. Ring arithmetic can also be implemented in constant time,
but leakage can be further minimized via blinding [39] (Section 6).

5.3 Performance

Our main contribution, a new reconciliation mechanism, has a minor effect on
performance of the scheme, but a significant impact on failure probability.

We chose to recycle “New Hope” NTT (n, q) and sampler (q, Ψ16) parameters
as they have been extensively vetted for security against lattice attacks and
originally selected for performance. A significant effort has subsequently been
dedicated (by several research groups) for the optimization of NTT and Sampler
components. There already exists a number of permissively licensed open source
implementations and a body of publications detailing specific optimizations or
these particular NTT and sampler parameters.

There are at least two very fast AVX2 Intel optimized versions of the NTT
core and Ψ16 sampler – the original [4] and one by Longa and Naehrig with
special reduction techniques for q = 12289 [26]. Further sampler optimizations
have been suggested in [24]. Implementations have also reported for low-end
ARM Cortex-M [5] and high-end ARM NEON [43].

New Hope has also been integrated in TLS stacks and cryptographic toolkits
in 2016-17 by Google (BoringSSL), the Open Quantum Safe project, Microsoft
(MS Lattice Library), ISARA Corporation, and possibly others.

Our prototype implementation was integrated into a branch of the Open
Quantum Safe (OQS) framework5 where it was benchmarked against other
quantum-resistant KEM schemes [42]. Table 2 summarizes the performance of
our implementation. It is essentially the same as New Hope C implementation
variants, with slightly smaller message size.

5 Open Quantum Safe homepage: https://openquantumsafe.org/
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Table 2. Performance of HILA5 within the Open Quantum Safe test bench C imple-
mentations [42]. The slight (under 4%) performance difference to New Hope is princi-
pally due to our use of error correction and SHAKE-256. Testing was performed on an
Ubuntu 17.04 workstation with Core i7-6700 @ 3.40 GHz. For reference and scale we
are also including RSA numbers with OpenSSL 1.0.2 (system default) on this target.
A single Elliptic Curve DH operation requires 45.4µs for the NIST P-256 curve (highly
optimized implementation), and 331.7µs for NIST P-521.

Init Public Private Key Ex. Data
Scheme KeyGen() Encaps() Decaps() Total Tot. xfer

RLWE New Hope [4] 60.7µs 92.3µs 16.2µs 169.2µs 3,872 B
RLWE Hila5 [This work] 68.7µs 89.9µs 16.9µs 175.4µs 3,836 B

RLWE BCNS15 [13] 951.6µs 1546µs 196.9µs 2.694ms 8,320 B
LWE Frodo [12] 2.839ms 3.144ms 84.9µs 6.068ms 22,568 B

SIDH CLN16 [16] 10.3ms 22.9ms 9.853ms 43.1ms 1,152 B

RSA-2048 [OpenSSL] 60ms 15.9µs 559.9µs N/A N/A
RSA-4096 [OpenSSL] 400ms 55.7µs 3.687ms N/A N/A

6 Conclusions

With NIST’s ongoing post-quantum standardization effort, the practical perfor-
mance, implementation security, and reliability of Ring-LWE public key encryp-
tion and key exchange implementations have emerged as major research area.

We have described an improved general reconciliation scheme for Ring-LWE.
Our SafeBits selection technique avoids randomized “blurring” of previous Peik-
ert’s, Ding’s, and New Hope reconciliation schemes to achieve unbiased secret
bits, therefore needing less randomness. We have given detailed, precise argu-
ments for its effectiveness.

The failure probability can also be addressed using error correcting codes.
For this purpose we described a class of linear forward-error correcting block
codes that can bed implemented without branches or table lookups on secret
data, guarding against side-channel attacks.

We instantiate the new techniques in “HILA5” with well-studied and efficient
“New Hope” Ring-LWE parameters. The new reconciliation methods are shown
to have minimal negative performance impact, while significantly improving the
failure probability. The failure probability, which is shown to be under 2−128,
allows the KEM to be used for actively secure public key encryption in addition
to interactive key exchange protocols. Furthermore the message sizes are shorter
than with previous proposals, especially when used for public key encryption.

We claim that the HILA5 instantiation meets “Category 5” NIST PQC se-
curity requirements as a KEM and public key encryption scheme. Furthermore,
it has been explicitly designed to be robust against side-channel attacks.
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A Algorithmic Definitions

Algorithm 2 Constant time bit-slicing techniques for r = XE5 Cod(p).

1 // Field subcodeword: r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 (end)
2 // lengths. bit offset: 0 16 32 49 80 99 128 151 176 203 240
3 const int xe5_len [10] = { 16, 16, 17, 31, 19, 29, 23, 25, 27, 37 };
4
5 // Compute redundancy r[] (XOR over original) from payload p[]
6
7 void xe5_cod(uint64_t r[4], const uint64_t p[4])
8 {
9 int i, j, l;

10 uint64_t x, t, ri [10];
11
12 for (i = 0; i < 10; i++) // initialize
13 ri[i] = 0;
14
15 for (i = 3; i >= 0; i--) { // four words
16 x = p[i]; // payload
17 for (j = 1; j < 10; j++) {
18 l = xe5_len[j]; // length
19 t = (ri[j] << (64 % l)); // rotate
20 t ^= x; // payload
21 if (l < 32) // extra fold
22 t ^= t >> (2 * l);
23 t ^= t >> l; // fold
24 ri[j] = t & ((1lu << l) - 1); // mask
25 }
26 x ^= x >> 8; // parity of 16
27 x ^= x >> 4;
28 x ^= x >> 2;
29 x ^= x >> 1;
30 x &= 0x0001000100010001; // four parallel
31 x ^= (x >> (16 - 1)) ^ (x >> (32 - 2)) ^ (x >> (48 - 3));
32 ri[0] |= (x & 0xF) << (4 * i);
33 }
34
35 // pack coefficients into 240 bits (note output the XOR)
36 r[0] ^= ri[0] ^ (ri[1] << 16) ^ (ri[2] << 32) ^ (ri[3] << 49);
37 r[1] ^= (ri[3] >> 15) ^ (ri[4] << 16) ^ (ri[5] << 35);
38 r[2] ^= ri[6] ^ (ri[7] << 23) ^ (ri[8] << 48);
39 r[3] ^= (ri[8] >> 16) ^ (ri[9] << 11);
40 }
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Algorithm 3 Constant time bit-slicing techniques for p = XE5 Fix(r⊕ r′)⊕p′.

1 // Fix errors in p[] using redundancy in r[]
2
3 void xe5_fix(uint64_t p[4], const uint64_t r[4])
4 {
5 int i, j, k, l;
6 uint64_t x, t, ri [10];
7
8 ri[0] = r[0]; // unpack
9 ri[1] = r[0] >> 16;

10 ri[2] = r[0] >> 32;
11 ri[3] = (r[0] >> 49) ^ (r[1] << 15);
12 ri[4] = r[1] >> 16;
13 ri[5] = r[1] >> 35;
14 ri[6] = r[2];
15 ri[7] = r[2] >> 23;
16 ri[8] = (r[2] >> 48) ^ (r[3] << 16);
17 ri[9] = r[3] >> 11;
18
19 for (i = 0; i < 4; i++) { // four words
20 for (j = 1; j < 10; j++) {
21 l = xe5_len[j]; // length
22 x = ri[j] & ((1lu << l) - 1); // mask
23 x |= x << l; // expand
24 if (l < 32) // extra unfold
25 x |= (x << (2 * l));
26 ri[j] = x; // store it
27 }
28 x = (ri[0] >> (4 * i)) & 0xF; // parity mask for ri[0]
29 x ^= (x << (16 - 1)) ^ (x << (32 - 2)) ^ (x << (48 - 3));
30 x = 0x0100010001000100 - (x & 0x0001000100010001);
31 x &= 0x00FF00FF00FF00FF;
32 x |= x << 8;
33
34 for (j = 0; j < 4; j++) { // threshold sum
35 t = (x >> j) & 0x1111111111111111;
36 for (k = 1; k < 10; k++)
37 t += (ri[k] >> j) & 0x1111111111111111;
38 // threshold 6 -- add 2 to weight and take bit number 3
39 t = ((t + 0x2222222222222222) >> 3) & 0x1111111111111111;
40 p[i] ^= t << j; // fix bits
41 }
42 if (i < 3) { // rotate if not last
43 for (j = 1; j < 10; j++)
44 ri[j] >>= 64 % xe5_len[j];
45 }
46 }
47 }

Algorithm 4 Parse(s): Deterministic sampling in ring R based on seed s.

Input: Seed value s.

1: z ← SHAKE− 256(s) Absorb the seed s into Keccak state.
2: for i = 0, 1, . . . n− 1 do
3: repeat
4: t← next 16 bits from z z represents the (endless) output of XOF.
5: until t < 5q Acceptance rate is 5q

216
≈ 93.76%.

6: ĝi ← t No further transformation needed.
7: end for

Output: A ring element ĝ which is understood to be in NTT domain.
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Algorithm 5 SafeBits(y): Determine Bob’s key bit, reconciliation, and payload.
HILA5 has n = 1024, q = 12289, selection bound b = 799, and payload m = 496.

Input: Bob’s share y ∈ R.

1: j ← 0, d← 0n, k← 0m, c← 0m Initialize.
2: for i = 0, 1, . . . n− 1 do
3: t← yi mod b q

4
c Position within the quadrant.

4: if t ∈
[
b q
8
c − b, b q

8
c+ b

]
then

5: di ← 1 Mark selection bit.
6: kj ← b2yi/qc Key bit (really just bound comparisons).
7: cj ← b4yi/qc mod 2 Reconciliation bit (also just bounds).
8: j ← j + 1
9: if j = m then

10: return (d,k, c) We have enough bits, done.
11: end if
12: end if
13: end for
14: return FAIL j < m: not enough bits (< 1% probability).

Output: Either three binary vectors d ∈ {0, 1}n, k ∈ {0, 1}m, c ∈ {0, 1}m or FAIL.

Algorithm 6 Select(x,d, c): Determine Alice’s key bits.

Input: Alice’s share x ∈ R.
Input: Bob’s reconciliation vectors d ∈ {0, 1}n and c ∈ {0, 1}m.

1: j ← 0, k← 0m Initialize.
2: for i = 0, 1, . . . n− 1 do
3: if di = 1 then
4: if cj = 1 then
5: t← xi −

⌊
q
8

⌉
Reconciliation 45◦ anticlockwise.

6: else
7: t← xi +

⌊
q
8

⌉
Reconciliation 45◦ clockwise.

8: end if
9: kj =

⌊
2
q
(t mod q)

⌋
Really a conditional.

10: j ← j + 1
11: if j = m then
12: return k Done.
13: end if
14: end if
15: end for
16: return FAIL j < m: not enough bits

Output: Either key bits k ∈ {0, 1}m or FAIL.
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