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Abstract. Using whitening keys is a well understood mean of increasing
the key-length of any given cipher. Especially as it is known ever since
Grover’s seminal work that the effective key-length is reduced by a factor
of two when considering quantum adversaries, it seems tempting to
use this simple and elegant way of extending the key-length of a given
cipher to increase the resistance against quantum adversaries. However,
as we show in this work, using whitening keys does not increase the
security in the quantum-CPA setting significantly. For this we present
a quantum algorithm that breaks the construction with whitening keys
in essentially the same time complexity as Grover’s original algorithm
breaks the underlying block cipher. Technically this result is based on
the combination of the quantum algorithms of Grover and Simon for the
first time in the cryptographic setting.
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1 Introduction

The existence of sufficiently large quantum computers has a major impact on
the security of many cryptographic schemes we are using today. In particular
the seminal work of Shor [24] showed that such computers would allow to factor
numbers and compute discrete logs in abelian groups in polynomial time. As
almost all public key schemes currently in use are build upon the assumption
that those problems are intractable, the existence of quantum computers would
seriously compromise the security of most of our digital communication.

This situation has triggered a whole new line of research, namely post-quantum
cryptography (or quantum-resistant cryptography), that aims at developing
new cryptographic primitives that would (hopefully) withstand even attackers
that are equipped with quantum computers. Recently, NIST has announced a
competition to eventually standardize one or several quantum-resistant public-key
cryptographic algorithms [22], underlining the importance of the problem. Indeed,
as NIST points out in their call for candidates, the roll out of new cryptographic
schemes is a long time process and it is therefore important to start this switch



to quantum resistant cryptography well before quantum computers are actually
available.1

In the case of symmetric cryptography, the situation seems less critical – but
is also significantly less studied. For almost 20 years time, it was believed, that
the only advantage an attacker would have by using a quantum computer when
attacking symmetric cryptography is due to Grover’s algorithm [11] for speeding
up brute force search. Indeed, Grover’s algorithm reduces the effective key-length
of any cryptographic scheme, and thus in particular of any block-cipher, by a
factor of two.

m Ek c

Given an m bit key, Grover’s algorithm allows to recover the key using O(2m/2)
quantum steps.

To counter that attack, it seems to be sufficient to just double the key-length
of the block cipher to achieve the same security against quantum attackers. For
doing so, the two main generic options are using either whitening keys or using
multiple encryptions.

More recently, starting with the initial works by Kuwakado and Morii [17,18]
and followed by the work by Kaplan, Leurent, Leverrier, Naya-Plasencia [13], it
was stressed that Grover’s algorithm might not be the only threat for symmetric
cryptography. In particular, Kuwakado and Morii showed that the so-called
Even-Mansour construction can be broken in polynomial time in the quantum
CPA-setting. In this setting, the attacker is allowed to make quantum queries,
that is queries to the encryption function in quantum superposition. The quantum
CPA setting was first defined by Boneh, Zhandry in [5], and further intensively
discussed in Kaplan et al. [13] and Anand, Targhi, Tabia, Unruh [4].

The Even-Mansour construction [10] consists of a public permutation P on n
bits and two secret keys k1 and k2 that are used as pre- (resp. post-) whitening
keys for the encryption EncEM (m) of some message m.

m

k1

P

k2

c

In a nutshell, Even and Mansour proved that, in an ideal world, where P is
randomly chosen amongst all possible permutations, an attacker’s advantage of
distinguishing between the encryption and a random permutation is bounded
by q2/2n where q is the number of queries to P or to the encryption/decryption

1 Note that NIST states that it is “primarily concerned with attacks that use clas-
sical (rather than quantum) queries to the decryption oracle or other private-key
functionality.”
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oracle. However, in the quantum CPA-model the scheme is completely insecure.
The main idea of [18] was to consider the function

f(x) := EncEM (x) + P (x) = P (x+ k1) + k2 + P (x),

where + is the bitwise XOR.

As this function fulfills f(x) = f(x + k1) for all x, one can use Simon’s
quantum algorithm [7, 25], that allows to compute the unknown period k1 of
function f in linear time. Once k1 is computed, computing k2 is trivial even on a
classical computer. It should be pointed out that Kaplan et al. [13] and Santoli,
Schaffner [23] solved the technical issue of dealing with a function that does not
fulfill Simon’s promise, namely that f(x) = f(y) iff y ∈ {x, x+ k1}, see Section 2
for more details.

The same idea was then used by Kaplan et al. [13] (and independently in [23])
to construct polynomial time quantum-CPA attacks on many modes of operations.
Kaplan et al. further showed how slide attacks can profit from using a quantum
computer.

The natural question that arises from the attacks on a generic cipher using
Grover’s algorithm and the attack on the Even-Mansour scheme using Simon’s
algorithm is the following: How secure is the FX construction against quantum
adversaries?

This construction, proposed by Killian and Rogaway in [15, 16], is an elegant
way of extending the key-length of a given block cipher and is the natural
combination of the Even-Mansour construction and a generic cipher. For this, we
assume we are given a (secure) block cipher E, encrypting n bit messages under
an m bit key k0, and we introduce two more n bit keys k1 and k2 as pre- and
post-whitening keys. The new block cipher is given as

Enc(x) = Ek0(x+ k1) + k2.

m

k1

Ek0

k2

c

From an efficiency point of view, the overhead of this modification is negligible.
Moreover, in an idealized model, one can prove that (using classical computers)
in order to attack the FX construction scheme, the success probability of an

attacker is bounded by q2

2n+m , where q is the number of queries to the encryption
scheme and to the underlying block cipher.

Initially, when considering Grover’s algorithm only, this scheme seems to
provide significantly more resistance against quantum computers, since now
(k0, k1, k2) ∈ Fm+2n

2 define the key space. Moreover, Simon’s algorithm does not
apply either, as the function Enc(x) +Ek(x) is periodic only for the correct guess
of k = k0.
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Our Contribution

As the main result of our paper, we show that the FX construction as described
above can be broken in the quantum-CPA model in basically the same time as
the scheme without whitening keys, namely in O(m+ n) · 2m/2 quantum steps.
Thus, using whitening keys does not help at all against quantum-CPA attackers.

Technically we have to combine the quantum algorithms of Simon and Grover
for this attack. Thus, in contrast to most of the other works mentioned above,
we actually have to define a new quantum algorithm, rather than applying
known ones to new problems. While merging Simon and Grover might seem
straight-forward on a high level, the main technical obstacle is that in its original
form, Simon’s algorithm extracts information on the secret period bit by bit
while Grover’s algorithm, or more generally quantum amplitude amplification [7]
inherently requires all the information to be available at once. We solve this issue
by running several instances of Simon’s quantum circuit in parallel, which in
turn comes at the price of a linear growth of the size of the quantum computer.
Furthermore, we postpone the measurements in Simon’s algorithm to the very
end of our entire quantum algorithm using the general deferred measurement
principle of quantum computation.

DESX, PRINCE and PRIDE. To illustrate our results on actual ciphers,
we like to mention that our work implies, among others, heuristic key recovery
attacks on DESX, proposed by Rivest in 1984 and formally treated in [15] as well
as on PRINCE [6] and PRIDE [2]. DESX, using a 56 bit internal key and two
64 bit whitening keys, can thus be attacked in the quantum-CPA model with
complexity roughly 228, while PRINCE and PRIDE, both using a 64 bit internal
key and two 64 bit whitening keys, can be attacked in the quantum-CPA model
with complexity roughly 232.

We like to point out that, in the analysis of the success probabilities for our
attack, we actually assume that the underlying functions are random functions,
which is clearly not the case for the mentioned ciphers. However, it would be
very surprising if this heuristic would fail for any reasonable block cipher.

Related Work

Besides the works on Simon’s algorithm already mentioned above, we like to
highlight in particular the work of Kaplan [12] who shows that multiple encryption
is significantly weaker in the quantum setting than in the classical setting. This
work is based on quantum random walks (cf e.g. [3]).

Together with our result presented here this implies that the two most common
methods for extending the key-length are far from being optimal in a quantum-
CPA setting. Finally, a very recent work [1] at EUROCRYPT 2017 already
explores other means of mixing the key into the state that are (potentially) more
resistant against quantum attacks. It remains to be seen if our idea of combining
Grover with Simon, or related algorithms, allow to attack those recent proposals
as well.
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Another interesting approach is to use quantum computers to improve classical
attacks on block ciphers, such as linear or differential cryptanalysis. This approach
has been treated for the first time in [14].

Organization of the Paper

Before we formulate and prove our main theorem (Theorem 2) in Section 3 in all
technical details, we outline the high level idea in Section 2. The latter section
also contains some technical lemmata that are needed in the proof of our main
result. We conclude by discussing some topics for future work in Section 4.

2 Main Ideas of our Quantum Algorithm

Throughout the paper, we assume that the reader is familiar with the basics
of quantum algorithms, although this section is supposed to be comprehensible
without deeper quantum knowledge. For a comprehensive introduction into
quantum algorithms we recommend the textbooks of Mermin [20] and Lipton,
Regan [19].

Recall that we are attacking the FX-construction Enc(x) = Ek0(x+ k1) + k2.
Let us look at the function

f(k, x) = Enc(x) + Ek(x) = Ek0(x+ k1) + k2 + Ek(x).

For the correct key k = k0, we have f(k, x) = f(k, x + k1) for all x, and thus
f(k0, ·) has period k1 in its second argument. However, for k 6= k0 the function
f(k, ·) is not periodic with high probability.

Main Idea. We define a Grover search over k ∈ Fm2 , where we test for every f(k, ·)
periodicity via Simon’s algorithm. Thus, we have Grover as an outer loop with
running time roughly 2

m
2 , and Simon as an inner loop with polynomial complexity.

Classically, we could define an outer loop that guesses k = k0 correctly with
probability p = 2−m. This would require an expected 1

p = 2m number of iterations
until we hit the correct key. Hence, each iteration roughly increases the success
probability linearly by an amount of 1

p . By contrast, in a quantum setting each
iteration roughly increases the amplitude of success by a constant. Since the
probabilities are the square of their respective amplitudes, we only have to repeat

approximately
√

1
p = 2

m
2 times.

This process is called amplitude amplification and can be seen as a natural
generalization of the original Grover search [11]. The results of amplitude am-
plification are more accurately captured in the following theorem by Brassard,
Hoyer, Mosca and Tapp [8, Theorem 2].

Theorem 1 (Brassard, Hoyer, Mosca and Tapp). Let A be any quantum
algorithm on q qubits that uses no measurement. Let B : Fq2 → {0, 1} be a function
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that classifies outcomes of A as good or bad. Let p > 0 be the initial success
probability that a measurement of A|0〉 is good. Set k = d π4θ e, where θ is defined

via sin2(θ) = p. Moreover, define the unitary operator Q = −AS0A−1SB, where
the operator SB changes the sign of the good state

|x〉 7→

{
−|x〉 if B(x) = 1

|x〉 if B(x) = 0
,

while S0 changes the sign of the amplitude only for the zero state |0〉.
Then after the computation of QkA|0〉, a measurement yields good with

probability at least max{1− p, p}.

Let us describe in a high-level fashion the process of amplitude amplification
behind Theorem 1. The classifier B partitions the Hilbert space H of our quantum
system in a direct sum of two orthogonal subspaces, the good subspace and the
bad subspace. The good one is the subspace defined by all basis states |x〉 with
B(x) = 1, the bad one is its orthogonal complement in H.

Let |ψ〉 = A|0〉 be the initial vector, and denote by |ψ1〉, |ψ0〉 its projection
on the good and the bad subspace, respectively. Now look at the two-dimensional
plane Hψ spanned by |ψ1〉, |ψ0〉. In Hψ, the state |ψ〉 = A|0〉 has angle θ (defined
by sin2(θ) = p) with the bad subspace. Each iteration via Q increases this angle
by 2θ via the two reflections S0 and SB. Thus, after k iterations we have angle
(2k + 1)θ. If this angle roughly equals π

2 , then the resulting state is almost
co-linear with the good subspace, and thus a measurement yields a good vector
with high probability. This explains the choice of the number of iterations k ≈ π

4θ
in Theorem 1.

Let us now assume that p = 2−m is the probability of guessing the correct
key in the FX-construction. Then θ = arcsin(2−

m
2 ) ≈ 2−

m
2 , since arcsin(x) ≈ x

for small x. This implies k = Θ(2−
m
2 ), as desired. Moreover, by Theorem 1 we

obtain overwhelming success probability 1− 2−m.
Ideally, we would choose A as Simon’s algorithm and directly apply Theorem 1

for our setting. Although Theorem 1 excludes the use of measurements, while
Simon’s algorithm uses measurements to extract information about the period,
this slight technical problem can be easily resolved by the quantum principle of
deferred measurement that postpones all measurements until the very end of the
computation.

However, we still have to resolve the following problems for an application of
Theorem 1.

1. Classifier. We need to define some classifier B that identifies states as good
iff they correspond to the correct key k = k0. However, we do not see any way
of efficiently checking correctness of k0 without the knowledge of k1. Simon’s
algorithm iteratively computes information about the period k1 in a bit-wise
fashion, where we need a complete candidate k′1 for the period in order to
classify states as good or bad.

2. Simon’s promise. Simon’s algorithm is originally defined for periodic func-
tions with the promise f(x) = f(x+ k1) for all x, i.e., f is a (2 : 1)-mapping.
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However, our function f(k0, ·) does not fulfill the promise, since some function
values might have more than two preimages.

3. Success probability. Assume that we are able to define a suitable classifier
B, then we might still only be capable of lower bounding the initial success
probability p (which is the case for our algorithm), instead of exactly deter-
mining it. This causes problems in properly setting the number of iterations
k.

Let us briefly give an outlook how we address these problems.

Classifier. In Simon’s algorithm one computes a period k1 ∈ Fn2 bit by bit.
Namely, each iteration gives a random vector ui from the subspace U = {u ∈
Fn2 | 〈u, k1〉 = 0} of all vectors orthogonal to k1. Thus, in each iteration we obtain
a linear relation 〈ui, k1〉 = 0. After O(n) iterations, we can compute the unique
solution k1.

However, there is no need to compute the ui sequentially. In our algorithm,
we compute u1, . . . , u` for some sufficiently large ` in parallel. We choose ` such
that for the periodic function f(k0, ·) the linear span 〈u1, . . . , u`〉 is identical to
U with high probability.

Where Simon’s algorithm requires O(n) input bits, our parallel version of
Simon’s algorithm A requires O(n2) many qubits. We leave it as an open problem
whether this quadratic blowup can be avoided.

Our classifier B(x) should now identify states |x〉 with k = k0 as good. We
know that f(k0, ·) is periodic. Thus we compute for any f(k, ·) sufficiently many
ui’s with our parallel version A of Simon’s algorithm.

Then B does the classical post-processing for Simon’s algorithm. Namely, we
compute from the ui’s some candidate period k′1. If B(x) fails in any step, we
classify state |x〉 as bad.

Otherwise B succeeds in computing some candidate values (k, k′1) for (k0, k1).
This allows us to check via sufficiently many plaintext/ciphertext pairs (mi, ci),
(m′i, c

′
i), whether for all i the following identity holds

ci + c′i = Enc(m) + Enc(m′) = Ek0(mi + k1) + Ek0(m′i + k1)
?
= Ek(mi + k′1) + Ek(m′i + k′1).

Checking this identity for sufficiently many plaintext/ciphertext pairs allows us
to classify all incorrect states with (k, k′1) 6= (k0, k1) as bad.

Simon’s promise. It was shown recently by Kaplan et al. [13] and Santoli,
Schaffner [23] that Simon’s promise can be weakened at the cost of computing
more ui. We will use yet another technique for dealing with general functions.
Namely, under the mild assumption that f(k0, x) behaves as a random periodic
function with period k1, we show that any function value f(k0, x) has only two
preimages with probability at least 1

2 . We then only argue about these proper
function values f(k0, x).

This provides a simple and clean way to use only a limited number ` of ui.
For comparison, ` = 2(n +

√
n) is sufficient for our purpose, whereas a direct
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application of the techniques of Kaplan et al. [13] requires ` > 3n.

Success probability. We define some B that classifies states with k 6= k0 as
bad with overwhelming probability. However, for states |x〉 with k = k0 our B
classifies |x〉 as good only with a probability that is lower bounded by some
constant.

Still, we choose the number k of iterations analogous to Theorem 1, basically
assuming that we would classify all states with k = k0 as good. This in turn im-
plies that our choice of k might be too small to fully rotate towards the subspace
of good states. Nevertheless, by adapting the analysis of Brassard, Hoyer, Mosca,
Tapp [8] we are still able to show that we succeed in our case with probability at
least 2

5 .

The following two basic lemmata will be frequently used in our further analysis.
The first one shows, that any n − 1 vectors obtained from Simon’s algorithm
form a basis of the n− 1-dimensional vector space U with probability at least 1

4 .
The second one shows that this basis allows us to compute its unique orthogonal
complement, and therefore the period in Simon’s algorithm, in polynomial time.

Lemma 1. Let U ⊂ Fn2 be an (n− 1)-dimensional subspace. Suppose we obtain
u1, . . . ,un−1 ∈ U drawn independently at uniform from U . Then u1, . . . ,un−1
are linearly independent and form a basis of U with probability greater than 1

4 .

Proof. Let Ei, 0 ≤ i < n be the event that the first i vectors u1, . . . ,ui form an
i-dimensional space. Define Pr[E0] := 1.

Let p1 = Pr[E1] and pi = Pr[Ei | Ei−1] for 2 ≤ i < n. Then p1 = 1 − 1
2n−1 ,

since we only have to exclude u1 = 0n ∈ U . Moreover for 1 < i < n, we have

pi = 1− 2i−1

2n−1
,

since ui should not lie in the (i− 1)-dimensional span 〈u1, . . . ,ui−1〉. We obtain

Pr[En−1] = Pr[En−1 | En−2] · Pr[En−2] = . . . =

n−1∏
i=1

Pr[Ei | Ei−1]

=

n−1∏
i=1

pi =

n−1∏
i=1

1− 2i−n =

n−1∏
i=1

1− 2−i.

Since Pr[En−1] ≥ limn→∞
∏n−1
i=1 1− 2−i ≥ 0.288, the claim follows. �

Lemma 2. Let u1, . . . ,un−1 ∈ Fn2 be linearly independent. Then one can com-
pute in time O(n3) the unique vector v ∈ Fn2 \ {0} such that 〈v,ui〉 = 0 for all
i = 1, . . . , n− 1.

Proof. Define the matrix U ∈ F(n−1)×n
2 , whose rows consist of the vectors ui.

Transform U via Gaussian elimination into

U ′ = (In−1|v̄) for some column vector v̄ ∈ Fn−12 .
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This costs time O(n3). Notice that we have span(U) = span(U ′), since we only
applied elementary row operations.

Let v = (v̄t|1) ∈ Fn2 \ {0}. Let ei denote the i-th (n − 1)-dimensional unit
vector. Then the i-th basis vector u′i = (ei|v̄i) of U ′ satisfies

〈v,u′i〉 = 〈(v̄t|1), (ei, v̄i)〉 = v̄i + v̄i = 0 for i = 1, . . . , n− 1.

Since v is orthogonal to all u′i, it is also orthogonal to all ui. �

3 Combining the Algorithms of Grover and Simon

Let us now proof our main theorem, whose statement is formulated in a slightly
more general fashion than in Section 2 to make it useful also outside the FX
construction context. In the FX construction, fk0,k1,k2(x) is Enc(x), and g(k, x)
is Ek(x).

Theorem 2. Let f : Fm2 × F3n
2 → Fn2 with

(k0, k1, k2, x) 7→ g(k0, x+ k1) + k2,

where g : Fm2 × Fn2 → Fn2 and g(k, ·) is a random function Fn2 → Fn2 for any
fixed k ∈ Fm2 . Given quantum oracle access to fk0,k1,k2(·) and g(·, ·), the tuple
(k0, k1, k2) can be computed with success probability at least 2

5 using m+4n(n+
√
n)

qubits and

2
m
2 · O(m+ n) oracle queries.

Proof. Let us define the function f ′ : Fm2 × Fn2 → Fn2 with

(k, x) 7→ fk0,k1,k2(x) + g(k, x).

Notice that
f ′(k0, x) = g(k0, x+ k1) + k2 + g(k0, x).

Hence f ′(k0, x) = f ′(k0, x+ k1), and therefore f ′(k0, ·) is periodic with period
k1 in its second component. We use amplitude amplification to search for k0. A
generalized version of Simon’s algorithm then tells us which f ′(k, ·) is periodic.

However notice that we have a non-trivial period only if k1 6= 0n. For k1 = 0n

we obtain a constant function with f ′(k0, ·) = k2 for all inputs x. In the case
of k 6= k0, by the randomness of g(k, ·) the function f ′(k, ·) is almost balanced
in each output bit. This implies that we could use a generalized version of
Deutsch-Josza’s algorithm [9] to decide which f ′(k, ·) is constant.

For simplicity, we will instead describe a basic Grover search for k0. Notice
that once k0 is found, we can compute k2 = fk0,k1,k2(x) + g(k0, x) for some
arbitrary value of x.

Lemma 3. Let k1 = 0n. Then one can determine k0, k2 with probability at least
1− 2−m using 2

m
2 · O(m) oracle queries and m+ 1 qubits.
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Proof. In the case k1 = 0n, we have

f ′(k0, x) = fk0,0n,k2(x) + g(k0, x) = g(k0, x) + k2 + g(k0, x) = k2 for any x.

Thus, f ′(k0, ·) is a constant function. Let us define a test, which checks whether
fk0,0n,k2(x) + g(k, x) is constant to decide if k = k0.

By evaluating fk0,0n,k2(·), we compute for 1 + 2dmn e random xi ∈R Fn2 the
function values

yi = fk0,0n,k2(xi) = g(k0, xi) + k2.

Moreover, we define the classical test h : Fm2 → F2 that takes as input a value
k ∈ Fm2 . We map k to 1 iff

yi + g(k, xi) = yi+1 + g(k, xi+1) for all 1 ≤ i ≤ 2dm
n
e.

For k = k0 we have yi + g(k, xi) = k2, and therefore all identities are satisfied
with probability 1. In the case k 6= k0 by the randomness of g(k, ·) any identity
is fulfilled with probability 2−n. Hence, all 2dmn e identities are simultaneously
fulfilled with probability at most 2−2m.

Therefore, the probability that there is an incorrect k 6= k0 that passes the
test by h is at most (2m − 1)2−2m < 2−m.

Altogether, we can use the quantum embedding of h on m + 1 qubits as a
Grover oracle B from Theorem 1 that takes value 1 iff k = k0 (with overwhelming
probability) using O(m) oracle queries to fk0,k1,k2(·) and g(·, ·). Define A from
Theorem 1 as the m-fold Hadamard transform

H⊗m : H → H that maps |x〉 7→ 1

2m/2

∑
k∈Fm

2

(−1)xk|k〉. (1)

By Theorem 1, we start with A|0〉 = H⊗m|0m〉 = 2−m/2
∑
k∈Fm

2
|k〉, the uniform

superposition of all keys k ∈ Fm2 . Then we have initial success probability p = 2−m

to measure the good key |k0〉. After k = d π
4 arcsin(

√
p)e ≤ 2

m
2 Grover iterations we

measure |k0〉 with probability at least 1− 2−m.
Finally, we compute k2 = fk0,0n,k2(x) + g(k0, x) for some arbitrary value

of x. ut

For the remainder of the proof of Theorem 2, let us now assume k1 6= 0n.
Let ` = 2(n +

√
n). The following function h evaluates f ′ in parallel on `

arguments in the second component. Let h : Fm2 × (Fn2 )` 7→ (Fn2 )` with

(k, x1, . . . x`) 7→ f ′(k, x1)||f ′(k, x2)|| . . . ||f ′(k, x`).

Let Uh be the universal bijective quantum embedding of h on m+ 2n` qubits,
i.e. we map

|k, x1, . . . x`,0, . . . ,0〉 7→ |k, x1, . . . x`, h(k, x1, . . . , x`)〉.
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Since we have quantum access to fk0,k1,k2(·) and g(·, ·), we can realize f ′ with
two function queries and therefore also Uh with 2` queries.

We now describe a quantum process A, which is a parallel version of Simon’s
algorithm, that succeeds with initial probability p ≥ 1

5 · 2
−m using 2` = O(n)

queries and m + 2n` = m + 4n(n +
√
n) qubits. Afterwards, we amplify A’s

success probability to at least 2
5 using roughly 2

m
2 iterations, where each iteration

consumes O(m+ n) oracle queries.

Quantum algorithm A on input |0〉

1. Prepare the initial m+ 2n`-qubit state |0〉.
2. Apply Hadamard H⊗m+n`, as defined in Eq. (1), on the first m+ n` qubits

resulting in ∑
k∈Fm

2 , x1,...,x`∈Fn
2

|k〉|x1〉..|x`〉|0〉,

where we omit the amplitudes 2−(m+n`)/2 for ease of exposition.
3. An application of Uh yields∑

k∈Fm
2 , x1,...,x`∈Fn

2

|k〉|x1〉..|x`〉|h(k, x1, . . . , x`)〉

4. We now apply Hadamard on the qubits in position m+ 1 . . .m+ n` (i.e. for
|x1〉..|x`〉), which results in

|ψ〉 =
∑

k∈Fm2 , u1,...,u`∈F
n
2 ,

x1,...,x`∈F
n
2

|k〉(−1)〈u1,x1〉|u1〉 . . . (−1)〈u`,x`〉|un−1〉|h(k, x1, . . . , x`)〉. (2)

Assume that we would measure the last n` qubits of state |ψ〉 from step 4. Then
these qubits would collapse into

|h(k, x1, . . . , x`)〉 = |f ′(k, x1)||f ′(k, x2)|| . . . ||f ′(k, x`)〉,

for some fixed values of k, x1, . . . , x` ∈ Fn2 . Assume further that k = k0.
Let us look at an arbitrary n-qubit state |zi〉 = (−1)〈ui,xi〉|ui〉 from |ψ〉 that

is entangled with |f ′(k0, xi)〉. Hence, |zi〉 collapses into a superposition that is
consistent with the measured f ′(k0, xi).

We call the state |zi〉 proper if xi and xi + k1 are the only preimages of
f ′(k0, xi). Notice that a proper |zi〉 collapses into the superposition(

(−1)〈ui,xi〉 + (−1)〈ui,xi+k1〉
)
|ui〉 = (−1)〈ui,xi〉

(
1 + (−1)〈ui,k1〉

)
|ui〉. (3)

As one can see from the right-hand side of Eq. (3), the qubits |ui〉 have a
non-vanishing amplitude iff 〈ui, k1〉 = 0. Therefore, a measurement of a proper
state yields some uniformly random ui ∈ U , where U = {u ∈ F2 | 〈u, k1〉 = 0}.

Notice, that in general one can have more than two preimages of f ′(k0, xi),
which results in ui ∈ Fn2 that are with a certain probability chosen from some
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subset of U . Although such ui usually still provide useful information about k1 –
whenever the subset is not too small – their probability distribution is somewhat
cumbersome to deal with.

For ease of exposition, we want to work with proper states |zi〉 only. In the
following lemma, we show that any |zi〉 is proper with probability at least 1

2 . This
in turn means that on expectation a set of vectors S = {u1, . . . , u2(n−1)} derived
from measuring 2(n− 1) states contains at least n− 1 vectors ui1 , . . . , uin−1

that
are chosen independently uniformly at random from U . Notice that a priori we
are not able to identify these n− 1, since we are not able to tell which state is
proper. Nevertheless, we can easily compute from S a maximal set of independent
vectors. Since ui1 , . . . , uin−1

∈ S, by Lemma 1 these vectors form a basis of U
with probability greater than 1

4 .
Moreover, if we increase the cardinality of S from 2(n− 1) to ` = 2(n+

√
n),

as it is done in algorithm A, then the above does not only hold on expectation,
but with constant probability.

Lemma 4. Any state |zi〉 = (−1)〈ui,xi〉|ui〉 is proper with probability at least 1
2 .

Any set of ` = 2(n+
√
n) states contains at least n−1 proper states with probability

greater than 4
5 .

Proof. Recall that |zi〉 is proper if f ′(k0, xi) has only two preimages. By definition
of f ′, we have

f ′(k0, xi) = g(k0, xi + k1) + k2 + g(k0, xi).

Let us denote by Si = i × {0, 1}n−1 for i = 0, 1 the set of all n-dimensional
vectors that start with bit i. Since k1 6= 0n, assume wlog that the first bit of k1
is 1, i.e., k1 ∈ S1.

Since f ′(k0, ·) is periodic with k1 in its second argument, the values of f ′(k0, x)
with x ∈ S0 already determine the values of f ′(k0, x+ k1) with x+ k1 ∈ S1.

Let us fix some x ∈ S0 and thus also f ′(k0, x). The state |z〉 = (−1)〈u,x〉|u〉 is
proper if there is no other x′ ∈ S0 \ {x} that collides with x under f ′(k0, ·). By
the randomness of g(k0, ·) this happens with probability

Pr[|z〉 is proper ] = 1− Pr[∃x′ ∈ S0 \ {x} with f ′(k0, x
′) = f ′(k0, x)]

≥ 1− 2n−1 − 1

2n
≥ 1

2
,

where the first inequality follows from a union bound.
It remains to count the number of proper states within a set of ` = 2(n+

√
n)

states. Let Xi be an indicator variable that takes value 1 iff |zi〉 is proper. Let
X = X1+. . . X2(n+

√
n). Furthermore, define µ := n+

√
n, which implies E[X] ≥ µ.

Now we apply the following Chernoff bound (see [21], Corollary 4.9 and Exercise
4.7)

Pr[X ≤ µ− a] ≤ e
−2a2

n for all a < µ.

This implies in our case

Pr[X ≥ n− 1] = 1− Pr[X ≤ n] = 1− Pr[X ≤ µ−
√
n] ≥ 1− e−2 ≥ 4

5
. �
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Let us now go back to the quantum superposition |ψ〉 of qubits in positions
1, . . . ,m+ n` (i.e. for the qubits |k〉|u1〉 . . . |un−1〉) after applying algorithm A,
i.e. without measurement. Assume we had a classifier B : Fm+n`

2 → {0, 1} that
partitions |ψ〉 in a good subspace and a bad subspace, where the good subspace
is spanned by the set of basis states |x〉 for which B(x) = 1. We split

|ψ〉 = |ψ1〉+ |ψ0〉,

where |ψ1〉 and |ψ0〉 denotes the projection onto the good and onto the bad
subspace, respectively.

Ideally we would like to define |ψ1〉 as the sum of those basis states for which
|k〉 = |k0〉. Unfortunately, we cannot check correctness of k0 directly. Instead, with
our classifier B we compute from k, u1, . . . , u` a candidate k′1 for the period k1.

This allows for an easy test (k, k′1)
?
= (k0, k1).

Classifier B (polynomial time computable Boolean function). Let us define the
following classical Boolean function

B : Fm+n`
2 → {0, 1} that maps (k, u1, . . . , u`) 7→ {0, 1}.

In B, we hardwire for d 3m+n`
n e random pairs mi,m

′
i ∈R Fn2 with mi 6= m′i the

values

yi = fk0,k1,k2(mi) + fk0,k1,k2(m′i) = g(k0,mi + k1) + g(k0,m
′
i + k1),

which can be computed via 2d 3m+n`
n e function evaluations of fk0,k1,k2(·). Now

we check the following two steps.

(1) Let Ū = 〈u1, . . . , u`〉 be the linear span of all ui. If dim(Ū) 6= n− 1, output 0.
Otherwise compute a basis of Ū , and use Lemma 2 to compute the unique
vector k′1 ∈ Fn2 \ {0} orthogonal to Ū .

(2) Check via 2d 3m+n`
n e function evaluations of g(·, ·) whether

yi
?
= g(k,mi + k′1) + g(k,m′i + k′1) for all i = 1, . . . ,

⌈3m+ n`

n

⌉
.

If all identities hold, output good. Else output bad.

The following lemma shows that our test B classifies basis states with the
correct k = k0 as good, respectively 1, with probability at least 1

5 . We could
easily boost this into a probability close to 1 by increasing the number of qubits
of A. However, for the ease of description and for minimizing the number of
qubits, we keep it this way, which eventually only slightly lowers the overall
success probability of our algorithm.

More important is that B almost never gives false positives. Namely, whenever
B declares a state as good then indeed k = k0 with overwhelming probability.
This in turn implies that by our choice of parameters we safely sort out all of the
exponentially many incorrect keys k 6= k0.
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Lemma 5. If k = k0 then test B outputs 1 with probability at least 1
5 .

Vice versa, if B outputs 1 then k0 = k with probability at least 1− 1
22m+n`−4 .

Proof. Let us denote by good the event that B outputs 1. We first compute

p0 = Pr[good | k = k0].

If k = k0, then f ′(k, ·) is periodic with k1 in its second argument. Moreover, we
know by Lemma 4 that u1, . . . , u` contain with probability at least 4

5 at least
n−1 vectors that are uniformly at random from the subspace U ⊂ Fn2 orthogonal
to k1. From Lemma 1, these vectors form a basis of U with probability at least 1

4 .
In total, we pass step (1) of B with probability at least 4

5 ·
1
4 = 1

5 . Moreover, in
the case k = k0 we also have k′1 = k1, i.e., B computes the correct k1. Therefore,
we pass all tests in step (2) of B with probability 1. Altogether, we obtain p0 ≥ 1

5 ,
which proves the first claim.

In order to prove the second claim, let us compute a lower bound for the
probability

p1 = Pr[k = k0 | good] =
p0 · Pr[k = k0]

Pr[good]
.

Since Pr[k = k0] = 2−m, it remains to compute

Pr[good] = Pr[k = k0] · Pr[good | k = k0] + Pr[k 6= k0] · Pr[good | k 6= k0]

= 2−m · p0 + (1− 2−m) · Pr[good | k 6= k0]

≤ 2−m · p0 + Pr[good | k 6= k0].

Let us further bound the probability Pr[good | k 6= k0]. This event means that
we pass steps (1) and (2) of B, even though we have the incorrect k. Since we
need an upper bound only, we can assume that we always pass step (1) and
compute some k′1. In step (2), we check the identities

yi
?
= g(k,mi + k′1) + g(k,m′i + k′1) for all i = 1, . . . ,

⌈3m+ n`

n

⌉
.

By our assumption g(k, ·) : Fn2 → Fn2 is random for any fixed k ∈ Fm2 . Thus, each
of these identities holds independently with probability 2−n. Notice that this
probability is even independent of the value of k′1 computed in step (2).

Thus, all the d 3m+n`
n e identities are simultaneously fulfilled with probability

at most 2−3m−n`, which is an upper bound for Pr[good | k 6= k0].
This in turn implies

p1 = Pr[k = k0 | good] =
p0 · Pr[k = k0]

Pr[good]
≥ p0 · 2−m

p0 · 2−m(1 + 2−2m−n`

p0
)

>
1

1 + 23−2m−n`
=

1− 23−2m−n`

1− 22(3−2m−n`)

=
1− 22(3−2m−n`) − (23−2m−n` − 22(3−2m−n`))

1− 22(3−2m−n`)
≥ 1− 1

22m+n`−4 ,

where the last inequality holds for 2m+ n` > 3. This concludes the proof. �
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By Lemma 5 our test B classifies a bad state |k〉|u1〉 . . . |u`〉 with k 6= k0
as good with probability at most 2−2m−n`+4. Notice that there are at most
2m+n` states in any superposition. Therefore, B classifies any bad state in a
superposition as good with probability at most 2m+n` · 2−2m−n`+4 = 2−m+4. We
will have at most 2

m
2 iterations of A. By a union bound, the probability that B

classifies any bad state in a superposition in any of these iterations as good is at
most 2

m
2 · 2−m+4 = 2−

m
2 +4, which is exponentially small.

This implies that B (almost) never yields false positives. Hence, we classify
a state |k〉|u1〉 . . . |u`〉 as good iff and only if B(k, u1, . . . , u`) = 1. The initial
success probability p of A in producing a good state is by Lemma 5

p = Pr[|k〉|u1〉 . . . |u`〉 is good]

= Pr[k = k0] · Pr[B(k, u1, . . . , u`) = 1 | k = k0] ≥ 1

5
· 2−m. (4)

Our Boolean function B defines a unitary operator SB that conditionally
changes the sign of the amplitudes of the good states

|k〉|u1〉 . . . |u`〉 7→

{
−|k〉|u1〉 . . . |u`〉 if B(k, u1, . . . , u`) = 1

|k〉|u1〉 . . . |u`〉 if B(k, u1, . . . , u`) = 0
.

The complete amplification process is realized by repeatedly applying the unitary
operator Q = −AS0A

−1SB to the initial state |ψ〉 = A|0〉, i.e., we compute
QkA|0〉 and measure the system for some suitable number of iterations k.

Let |ψ1〉, |ψ0〉 be the projection of |ψ〉 onto the good and the bad subspace,
respectively. Denote by Hψ the 2-dimensional subspace spanned by |ψ1〉, |ψ0〉.
Initially, in Hψ the angle between A|0〉 and the bad subspace is θ, where

sin2(θ) = p =
〈
ψ1 | ψ1

〉
.

Thus, θ = arcsin(
√
p) ≥ arcsin(

√
1
5 · 2

−m
2 ), where the lower bound follows

from (4).
Now every Grover iteration by Q increases the angle by 2θ, i.e., to (2k + 1)θ

after k iterations. If this angle is roughly π
2 , then we are almost parallel to |ψ1〉

in Hψ and measure a good state with high probabilty. Therefore, let us choose

k = d π

4 arcsin(2−
m
2 )
e.

After k iterations a final measurement produces a good state with probability
pgood = sin2((2k + 1)θ). Thus, we obtain

pgood ≥ sin2

π
2
·

arcsin
(√

1
5 · 2

−m
2

)
arcsin(2−

m
2 )

 . (5)
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Notice that arcsin(x) ≈ x for small x. So for m sufficiently large, the right hand
side of (5) quickly converges to sin2( π

2
√
5
) ≈ 0.42. Namely, for m ≥ 12 the right

hand side is already larger than 2
5 , which shows that we measure a good state

after amplification with the claimed success probability.
This measurement reveals k0, and an application of B on a good state also

reveals the correct value for k1. We can then easily compute for an arbitrary x
the value

k2 = fk0,k1,k2(x) + g(k0, x+ k1).

This completes the proof of our main theorem. �Theorem 2

3.1 Potential Improvements

As already pointed out, we did not try to optimize all constants in Theorem 2.
Many parameters are chosen in a way that allows for smooth and simple proofs.
Let us comment which parameters might be subject to (small) improvements.

Memory. We use m+ 4n(n+
√
n) many qubits. However, we use only proper

states in our proof, which gives a factor 2 loss for the ui. But states that are not
proper should usually still provide enough information. Hence, roughly m+ 2n2

qubits should be sufficient. An open question is whether this can be lowered to
m+ o(n2).

Notice that one can solely consider the projection of f ′(k0, ·) to one output
bit, which is also periodic. This however still requires m+ n2 input qubits.

Success probability. If we have n+O(1) values ui, then in the periodic case
k = k0 one would expect to obtain a basis of U with probability close to 1, whereas
in the non-periodic case k 6= k0 one would expect to obtain an n-dimensional
basis with probability close to 1. This means that our classifier B works almost
perfect, which in turn implies that our success probability is in fact close to 1.

4 Two Open Problems

Our new quantum algorithm shows that the use of whitening keys in the FX-
construction does not increase security in the quantum-CPA model. This result
raises at least two more natural questions to be investigated in the future.

The first and maybe most important question is the security of key-alternating
ciphers against quantum-CPA attacks. Key-alternating ciphers can be seen as
a multiple round generalization of the Even-Mansour construction and many
popular ciphers, most importantly the AES, follow this general design principle.
It would thus be of great interest to design quantum algorithms that break those
ciphers, or show that this is not possible in general.

The second question is the investigation of sound techniques for extending
the key length of a given cipher in a quantum setting. Of course, it is always
possible to design new key-schedulings (and potentially increase the number of
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rounds slightly) for larger key-sizes. The most well-known example is again the
AES with its different variants of 128, 192 or 256 key bits. However, this requires
an exact understanding of the internal behaviour of the cipher and it is thus of
interest to investigate generic ways of increasing the key length. That is, given
a cipher with an m bit key, how can we extend its key size to obtain a cipher
that achieves m bit security against quantum adversaries, while tolerating only a
minimal performance penalty. Initial ideas along these lines have recently been
presented in [1], where the key-addition in Even-Mansour has been replaced by a
different group operation.
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