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Abstract

Access control encryption (ACE) was proposed by Damgård et al. to enable the control
of information flow between several parties according to a given policy specifying which
parties are, or are not, allowed to communicate. By involving a special party, called the
sanitizer, policy-compliant communication is enabled while policy-violating communication is
prevented, even if sender and receiver are dishonest. To allow outsourcing of the sanitizer, the
secrecy of the message contents and the anonymity of the involved communication partners
is guaranteed.

This paper shows that in order to be resilient against realistic attacks, the security
definition of ACE must be considerably strengthened in several ways. A new, substantially
stronger security definition is proposed, and an ACE scheme is constructed which provably
satisfies the strong definition under standard assumptions.

Three aspects in which the security of ACE is strengthened are as follows. First,
CCA security (rather than only CPA security) is guaranteed, which is important since
senders can be dishonest in the considered setting. Second, the revealing of an (unsanitized)
ciphertext (e.g., by a faulty sanitizer) cannot be exploited to communicate more in a policy-
violating manner than the information contained in the ciphertext. We illustrate that this
is not only a definitional subtlety by showing how in known ACE schemes, a single leaked
unsanitized ciphertext allows for an arbitrary amount of policy-violating communication.
Third, it is enforced that parties specified to receive a message according to the policy cannot
be excluded from receiving it, even by a dishonest sender.

1 Introduction

1.1 Access Control Encryption – Model and Security Requirements

The concept of access control encryption (ACE) was proposed by Damgård, Haagh, and Or-
landi [DHO16

.

] in order to enforce information flow using cryptographic tools rather than a
standard access control mechanism (e.g., a reference monitor) within an information system. If
the encryption scheme provides certain operations (e.g., ciphertext sanitization) and satisfies
an adequate security definition, then the reference monitor can be outsourced, as a component
called the sanitizer, to an only partially trusted service provider. The goal of ACE is that the
sanitizer learns nothing not intrinsically necessary. Security must also be guaranteed against
dishonest users, whether senders or receivers of information, and against certain types of sanitizer
misbehavior.

The information flow problem addressed by ACE is defined in a context with a set R of roles
corresponding, for example, to different security clearances. Each user in a system can be assigned
several roles. For example the users are employees of a company collaborating on a sensitive
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project, and they need to collaborate and exchange information by sending messages. Since the
information is sensitive, which information a party can see must be restricted (hence the term
access control), even if some parties are dishonest. In the most general form, the specification
of which role may send to which other role corresponds to a relation (a subset of R ×R) or,
equivalently, to a predicate P : R×R → {0, 1}, where s ∈ R is allowed to communicate to r ∈ R
if and only if P (s, r) = 1. The predicate P can be called the security policy. Typical examples of
such policies arise from the Bell-LaPadula [BL73

.

] model where roles are (partially) ordered, and
the so-called “no-write-down” rule specifies that it is forbidden for a user to send information to
another user with a lower role. Note that for this specific example, the relation is transitive, but
ACE also allows to capture non-transitive security policies.

ACE was designed to work in the following setting. Users can communicate anonymously
with a sanitizer. If a user wants to send a message, it is encrypted under a key corresponding
to the sender’s role. Then the ciphertext is sent (anonymously) to the sanitizer who applies a
certain sanitization operation and writes the sanitized ciphertext on a publicly readable bulletin
board providing anonymous read-access to the users (receivers). Users who are supposed to
receive the message according to the policy (and only those users) can decrypt the sanitized
ciphertext.

To ensure security in the described setting, the ACE scheme must at least provide the
following guarantees:

1. The encryption must assure privacy and anonymity against dishonest receivers as well as
the sanitizer, i.e., neither the sanitizer nor dishonest receivers without access allowed by
the policy should be able to obtain information about messages or the sender role.

2. A dishonest sender must be unable to communicate with a dishonest receiver, unless this
is allowed according to the policy. In other words, the system must not provide covert
channels allowing for policy-violating communication.

As usual in a context with dishonest senders, the first goal requires security against chosen-
ciphertext attacks (CCA) because dishonest users can send a ciphertext for which they do
not know the contained message and by observing the effects the received message has on
the environment, potentially obtain information about the message. This corresponds to the
availability of a decryption oracle, as in the CCA-security definition.

Note that the second goal is only achievable if users cannot directly write to the repository or
communicate by other means bypassing the sanitizer, and if the sanitizer is not actively dishonest
because a dishonest sanitizer can directly write any information received from a dishonest sender
to the repository. The assumption that a user cannot bypass the sanitizer and communicate to
another party outside of the system can for example be justified by assuming that users, even if
dishonest, want to avoid being caught communicating illegitimately, or if only a user’s system
(not the user) is corrupted, and the system can technically only send message to the sanitizer.

Since the sanitizer is not fully trusted in our setting, one should consider the possibility
that an unsanitized ciphertext is leaked (intentionally or unintentionally) to a dishonest party.
This scenario can be called (unsanitized) ciphertext-revealing attack. Obviously, all information
contained in this ciphertext gets leaked to that party. While this cannot be avoided, such attack
should not enable dishonest parties to violate the security requirements beyond that.

We point out that previously proposed encryption techniques (before ACE), such as attribute-
based encryption [SW05

.

; GPSW06

.

] and functional encryption [BSW11

.

], enable the design of
schemes where a sender can encrypt messages such that only designated receivers (who possess the
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required key) can read the message. This captures the access control aspects of read permissions,
but it does not allow to capture the control of write/send permissions. In other words, such
schemes only achieve the first goal listed above, not the second one.

1.2 Contributions of This Paper

While the proposal of the ACE-concept and of efficient ACE-schemes were important first steps
towards outsourcing access control, the existing security definition turns out to be insufficient
for several realistic attack scenarios. The main contributions of this paper consist of uncovering
issues with existing definitions and schemes, fixing these issues by proposing stronger security
notions, and constructing a scheme satisfying our stronger notions.

Issues with existing definitions and schemes. As argued above, chosen-ciphertext attacks
should be considered since the use case for ACE includes dishonest senders. Existing definitions,
however, do not take this into account, i.e., the adversary does not have access to a decryption
oracle in the security games.

Furthermore, existing notions do not consider ciphertext-revealing attacks. Technically
speaking, the security game that is supposed to prevent dishonest senders from transmitting
information to dishonest receivers (called no-write game), gives the adversary only access to
an encryption oracle that sanitizes ciphertexts before returning them. This means that the
adversary has no access to unsanitized ciphertexts. This is not only a definitional subtlety, but
can completely break down any security guarantees. We demonstrate that existing ACE schemes
allow the following attack: Assume there are three users A, M , and E in the system, where
A is honest and by the policy allowed to send information to E, and M and E are dishonest
and not allowed to communicate. If A sends an (innocent) message to E and the corresponding
unsanitized ciphertext is leaked to M , malleability of the ciphertext can be exploited by M
to subsequently communicate an arbitrary number of arbitrary messages chosen by M to E.
Note that while this attack crucially exploits malleability of ciphertexts, it is not excluded by
CCA security for two reasons: first, CCA security does not prevent an adversary from producing
valid ciphertexts for unrelated messages, and second, the integrity should still hold if the adversary
has the decryption key (but not the encryption key).

Finally, existing security definitions focus on preventing dishonest parties from communicating
if disallowed by the policy, but they do not enforce information flow. For example, if user A only
has a role such that according to the policy, users B and C can read what A sends, existing
schemes do not prevent A from sending a message that can be read by B but not by C, or
sending a message such that B and C receive different messages. This is not as problematic
as the two issues above, and one can argue that A could anyway achieve something similar by
additionally encrypting the message with another encryption scheme. Nevertheless, for some use
cases, actually precisely enforcing the policy can be required (consider, e.g., a logging system),
and one might intuitively expect that ACE schemes achieve this.

New security definitions. We propose new, stronger security definitions for ACE that exclude
all issues mentioned above. First, we give the adversary access to a decryption oracle. More
precisely, the oracle first sanitizes the given ciphertext and then decrypts it, since this is what
happens in the application if a dishonest party sends a ciphertext to the sanitizer. Second, we
incorporate ciphertext-revealing attacks by giving the adversary access to an encryption oracle
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that returns unsanitized ciphertexts for arbitrary roles. Finally, we introduce a new security
game in which an adversary can obtain encryption keys and decryption keys from an oracle and
has to output a ciphertext such that one of the following events occur: either the set of roles
that can successfully decrypt the ciphertext (to an arbitrary message) is inconsistent with the
policy for all sender roles for which the adversary has an encryption key (in this case, we say
the adversary is not role-respecting); or the ciphertext can be successfully decrypted with two
keys such that two different messages are obtained (in this case, we say the uniform-decryption
property is violated).

Construction of an ACE scheme for our stronger notions. Our construction proceeds
in three steps and follows the general structure of the generic construction by Fuchsbauer et
al. [FGKO17

.

]. Since we require much stronger security notions in all three steps, our constructions
and proofs are consequently more involved than existing ones. First, we construct a scheme
for a primitive we call enhanced sanitizable public-key encryption (sPKE). Second, we use an
sPKE scheme to construct an ACE scheme satisfying our strong security notion for the equality
policy, i.e., for the policy that allows s to send to r if and only if r = s. Third, we show how to
lift an ACE scheme for the equality policy to an ACE scheme for the disjunction of equalities
policy. This policy encodes roles as vectors x = (x1, . . . , x`) and allows role x to send to role y if
and only if x1 = y1 ∨ . . . ∨ x` = y`. As shown by Fuchsbauer et al. [FGKO17

.

], useful policies
including the inequality predicate corresponding to the Bell-LaPadula model can efficiently be
implemented using this policy by encoding the roles appropriately.

Enhanced sanitizable PKE. An sPKE scheme resembles publicy-key encryption with an
additional setup algorithm that outputs sanitization parameters and a master secret key. The
master secret key is needed to generate a public/private key pair and the sanitization parameters
can be used to sanitize a ciphertext. A sanitized ciphertext cannot be linked to the original
ciphertext without the decryption key. We require the scheme to be CCA secure (with respect to
a sanitize-then-decrypt oracle) and anonymous. Sanitization resembles rerandomization [Gro04

.

;
PR07

.

], also called universal re-encryption [GJJS04

.

], but we allow sanitized ciphertexts to be
syntactically different form unsanitized ciphertexts. This allows us to achieve full CCA security,
which is needed for our ACE construction and unachievable for rerandomizable encryption.

Our scheme is based on ElGamal encryption [Elg85

.

], which can easily be rerandomized and
is anonymous. We obtain CCA security using the technique of Naor and Yung [NY90

.

], i.e.,
encrypting the message under two independent keys and proving in zero-knowledge that the
ciphertexts are encryptions of the same message, which was shown to achieve full CCA security
if the zero-knowledge proof is simulation-sound by Sahai [Sah99

.

]. A technical issue is that if
the verification of the NIZK proof was done by the decrypt algorithm, the sanitization would
also need to sanitize the proof. Instead, we let the sanitizer perform the verification. Since we
want to preserve anonymity, this needs to be done without knowing under which public keys the
message was encrypted. Therefore, the public keys are part of the witness in the NIZK proof.
Now the adversary could encrypt the same message under two different public keys that were
not produced together by the key-generation, which would break the reduction. To prevent
this, the pair of public keys output by the key-generation is signed using a signature key that is
contained in the master secret key and the corresponding verification key is contained in the
sanitizer parameters.
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ACE for equality. The basic idea of our ACE scheme for the equality policy is to use for each
role, encryption and decryption keys of an sPKE scheme as the encryption and decryption keys of
the ACE scheme, respectively. Since we need to prevent dishonest senders without an encryption
key for some role from producing valid ciphertexts for that role even after seeing encryptions of
other messages for this role and obtaining encryption keys for other roles, we add a signature
key to the encryption key, sign this pair using a separate signing key, where the corresponding
verification key is part of the sanitization parameters, and let senders sign their ciphertexts. To
preserver anonymity, this signature cannot be part of the ciphertext. Instead, senders prove in
zero-knowledge that they know such a signature and that the encryption was performed properly.

ACE for disjunction of equalities. The first step of our lifting is identical to the lifting
described by Fuchsbauer et al. [FGKO17

.

]: for each component of the role-vector, the encryption
and decryption keys contain corresponding keys of an ACE scheme for the equality policy. To
encrypt a message, this message is encrypted under each of the key-components. In a second
step, we enforce role-respecting security with the same trick we used in our ACE scheme for
equality; that is, we sign encryption key-vectors together with a signing key for that role, and
senders prove in zero-knowledge that they have used a valid key combination to encrypt and
that they know a signature of the ciphertext vector.

1.3 Related Work

The concept of access control encryption has been introduced by Damgård et al. [DHO16

.

]. They
provided the original security definitions and first schemes. Subsequent work by Fuchsbauer et
al. [FGKO17

.

] and by Tan et al. [TZMT17

.

] focused on new schemes that are more efficient and
based on different assumptions, respectively. In contrast to our work, they did not attempt to
strengthen the security guarantees provided by ACE.

2 Preliminaries

2.1 Notation

We write x← y for assigning the value y to the variable x. For a finite set X, x� X denotes
assigning to x a uniformly random value in X. For n ∈ N, We use the convention

[n] := {1, . . . , n}.

The probability of an event A in an experiment E is denoted by PrE [A], e.g., Prx�{0,1}[x = 0] = 1
2 .

If the experiment is clear from the context, we omit the superscript. For a probabilistic algorithmA
and r ∈ {0, 1}∗, we denote by A(x; r) the execution of A on input x with randomness r. For
algorithms A and O, AO(·)(x) denotes the execution of A on input x, where A has oracle access
to O.

2.2 Security Definitions and Advantages

We define the security of a scheme via a random experiment (or game) involving an adversary
algorithm A. For a given scheme E and adversary A, we define the advantage of A, which is a
function of the security parameter κ. To simplify the notation, we omit the security parameter
when writing the advantage, e.g., we write AdvSig-EUF-CMA

E,A instead of AdvSig-EUF-CMA
E,A (κ) for the
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advantage of A in the existential unforgeability game for the signature scheme E . One can
say that a scheme satisfies this notion if all efficient adversaries only have negligible advantage.
Following a concrete security treatment, we will, however, only define the advantages and in the
security proofs give reductions that relate advantages for different games, without referring to
efficiency or negligibility.

2.3 Access Control Encryption

We recall the definition of access control encryption by Damgård et al. [DHO16

.

]. For definitions
of other cryptographic primitives used in this paper, see Appendix A

.

. Following Fuchsbauer et
al. [FGKO17

.

], we do not have sanitizer keys and require Gen to be deterministic. The set of roles
is assumed to be R = [n].

Definition 2.1. An access control encryption (ACE) scheme E consists of the following five
PPT algorithms:

Setup: The algorithm Setup on input a security parameter 1κ and a policy P : [n]× [n]→ {0, 1},
outputs a master secret key msk and sanitizer parameters sp. We implicitly assume that
all keys include the finite message space M and the ciphertext spaces C, C′.

Key Generation: The algorithm Gen is deterministic and on input a master secret key msk , a
role i ∈ [n], and the type sen, outputs an encryption key ek i; on input msk , j ∈ [n], and
the type rec, outputs a decryption key dk j .

Encrypt: The algorithm Enc on input an encryption key ek i and a message m ∈M, outputs a
ciphertext c ∈ C.

Sanitizer: The algorithm San on input sanitizer parameters sp and a ciphertext c ∈ C, outputs
a sanitized ciphertext c′ ∈ C′ ∪ {⊥}.

Decrypt: The algorithm Dec on input a decryption key dk j and a sanitized ciphertext c′ ∈ C′,
outputs a message m ∈M∪ {⊥}; on input dk j and ⊥, it outputs ⊥.

For a probabilistic algorithm A, consider the experiment ExpACE-corr
E,A that given a security

parameter 1κ and a policy P , executes (sp,msk) ← Setup(1κ, P ), (m, i, j) ← A(sp,msk),
ek i ← Gen(msk , i, sen), and dk j ← Gen(msk , j, rec). We define the correctness advantage of A
(for security parameter κ and policy P ) as

AdvACE-corr
E,A := Pr

[
P (i, j) = 1 ∧ Dec

(
dk j , San(sp,Enc(ek i,m))

)
6= m

]
,

where the probability is over the randomness in ExpACE-corr
E,A and the random coins of Enc, San,

and Dec.1

.

Remark. Correctness of an encryption scheme is typically not defined via a game with an
adversary, but by requiring that decryption of an encryption of m yields m with probability 1.
This perfect correctness requirement is difficult to achieve for ACE schemes and not necessary for
applications because it is sufficient if a decryption error only occurs with negligible probability in
any execution of the scheme. Damgård et al. [DHO16

.

] define correctness by requiring that for
all m, i, and j with P (i, j) = 1, the probability that a decryption fails is negligible, where the

1The scheme E can be called correct if AdvACE-corrE,A is negligible for all efficient A. As mentioned in Section 2.2

.

,
we do not state this as part of the definition since we follow a concrete security treatment.
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probability is over setup, key generation, encrypt, sanitize, and decrypt. While this definition
is simpler than ours, it does not guarantee that decryption errors only occur with negligible
probability in any execution of the scheme. For example, a scheme could on setup choose a
random message m and embed it into all keys such that decryption always fails for encryptions of
this particular message. This does not violate the definition by Damgård et al. since for any fixed
message, the probability that this message is samples during setup is negligible (if the message
space is large). Nevertheless, an adversary can always provoke a decryption error by sending
that particular message m, which is not desirable. The above example might at first sight seem
somewhat artificial, and typically, schemes do not have such a structure. However, capturing
correctness via an experiment is important when thinking of composition, since we expect that
the correctness guarantee still holds when the ACE scheme is run as part of a larger system. In
order to meet this expectation, and to exclude the above issue, we formalize correctness via an
experiment.

2.4 Existing Security Definitions

Existing notions for ACE specify two core properties: the so-called no-read rule and the no-
write rule. The no-read rule formalizes privacy and anonymity: roughly, an honestly generated
ciphertext should not leak anything about the message, except possibly about its length. The
ciphertext should in addition not reveal the role of the sender. The security game allows an
adversary to interact with a key-generation oracle (to obtain encryption and decryption keys
for selected roles), and an encryption oracle to obtain encryptions of chosen messages and roles
for which the adversary does not posses the encryption key. This attack model reflects that
an adversary cannot obtain useful information by observing the ciphertexts that are sent to
the sanitizer. To exclude trivial attacks, it is not considered a privacy breach if the adversary
knows a decryption key that allows to decrypt the challenge ciphertext according to the policy.
Similarly, it is not considered an anonymity breach if the encrypted messages are different. We
state the definition of the no-read rule.2

.

Definition 2.2. Let E = (Setup,Gen,Enc, San,Dec) be an ACE scheme and let A be a proba-
bilistic algorithm. Consider the experiment ExpACE-no-read

E,A in Figure 1

.

and let J be the set of all j
such that A issued the query (j, rec) to the oracle Gen(msk , ·, ·). The payload-privacy advantage
and the sender-anonymity advantage of A are defined as

AdvACE-no-read,priv
E,A := 2 · Pr

[
b′ = b ∧ |m0| = |m1| ∧ ∀j ∈ J P (i0, j) = P (i1, j) = 0

]
− 1,

AdvACE-no-read,anon
E,A := 2 · Pr

[
b′ = b ∧ m0 = m1 ∧ ∀j ∈ J P (i0, j) = P (i1, j)

]
− 1,

respectively, where the probabilities are over the randomness of all algorithms in ExpACE-no-read
E,A .

The no-write rule of ACE is the core property to capture access control: in a nutshell, if the
policy specifies that role i is not allowed to send to role j, then the adversary should not be
able to create a ciphertext which, after being sanitized, allows role j to receive any information.
To exclude trivial attacks, it is not considered a security breach if the adversary knows the
encryption key of a different role i′ which is allowed to send information to j. Technically, in
the respective security game, the adversary is given a key-generation oracle as above, and in

2For anonymity, we adopt here the definition of [DHO16

.

], which is stronger than the one used by Fuchsbauer
et al. [FGKO17

.

] since there, anonymity is not guaranteed against parties who can decrypt.
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Experiment ExpACE-no-read
E,A

Input: 1κ, P
(sp,msk)← Setup(1κ, P )

(m0,m1, i0, i1, st)← AOG1
(·,·),OE(·,·)(sp)

b� {0, 1}
ek ib ← Gen(msk , ib, sen)
c← Enc(ek ib ,mb)

b′ ← AOG2
(·,·),OE(·,·)(st , c)

Experiment ExpACE-no-write
E,A

Input: 1κ, P
(sp,msk)← Setup(1κ, P )

(c0, i′, st)← AOG1
(·,·),OE(·,·)(sp)

b� {0, 1}
m′ �M
c1 ← Enc(Gen(msk , i′, sen),m′)

b′ ← AOG2
(·,·),OES(·,·)(st , San(sp, cb))

Figure 1: The no-read and no-write experiments for an ACE scheme E and an algorithm A.
The oracles in ExpACE-no-write

E,A are defined as OG1(·, ·) := OG2(·, ·) := Gen(msk , ·, ·), OE(·, ·) :=
Enc(Gen(msk , ·, sen), ·), and OES(·, ·) := San(sp,Enc(Gen(msk , ·, sen), ·)).

addition an oracle to obtain sanitized ciphertexts for selected messages and roles. This attack
model corresponds to a setting where an adversary only sees the outputs of a sanitizer, but
not its inputs, and in particular no ciphertexts generated for roles for which he does not posses
the encryption key. The adversary wins, if he manages to distinguish the sanitized version of a
ciphertext of his choice from a sanitized version of a freshly generated ciphertext to a random
message, and if he does not obtain the encryption for any role i, and the decryption key of any
role j for which P (i, j) = 1, as this would trivially allow him to distinguish.

Definition 2.3. Let E = (Setup,Gen,Enc, San,Dec) be an ACE scheme and let A be a proba-
bilistic algorithm. Consider the experiment ExpACE-no-write

E,A in Figure 1

.

, let I1 be the set of all i
such that A issued the query (i, sen) to OG1 , and let J be the set of all j such that A issued the
query (j, rec) to OG1 or OG2 . We define the no-write advantage of A as

AdvACE-no-write
E,A := 2 ·Pr

[
b′ = b ∧ i ∈ I1∪{0} ∧ ∀i ∈ I1 ∀j ∈ J P (i, j) = 0 ∧ San(sp, c0) 6= ⊥

]
−1,

where the probability is over the randomness of all algorithms in ExpACE-no-write
E,A .

3 Ciphertext-Revealing Attacks Against Existing Schemes

We describe a fundamental practical issue of schemes which meet the above no-read and no-write
definitions and show why the guarantees expected from an ACE scheme need to be strengthened.
We show that schemes fulfilling the definition can suffer from what we call a malleability-attack.
This attack effectively bypasses the given policy and allows communication that should be
forbidden by the policy. The attack does not abuse any peculiarities of existing models and in fact
only requires that the semi-honest sanitizer shares its inputs and outputs with colluding parties,
which is arguably possible when the sanitizer is outsourced. In particular, security against such a
sanitizer is desirable from a practical point of view.

We first give a high-level explanation of the attack, formalize it as a second step, and show
that several existing schemes are vulnerable.

Assume there are three parties, Alice, Bob, and Charlie, each having a different role assigned.
We denote by A, B, and C the associated roles. In our example, Alice and Charlie are always
honest. Alice is allowed to communicate with Bob and Charlie. Bob is dishonest and forbidden
to send messages to Charlie (and to Alice). The attack now proceeds as follows: when Alice
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sends her first message, Bob requests the corresponding siphertext and the sanitized ciphertext
from the semi-honest sanitizer. He then decrypts the sanitized ciphertext and thus receives the
message Alice has sent. With the knowledge of this message, as we show below, he is able to
create a valid ciphertext for a chosen message m′, which will be correctly sanitized and later
decrypted by Charlie, hence allowing unrestricted communication from Bob to Charlie. Details
follow.

Assume a policy matrix defined by

P (i, j) :=

{
1, if i = A

0, otherwise.

For sake of presentation, we assume that the scheme E under consideration enjoys perfect
correctness. Also, we assume that a setup-phase has completed and the three parties thus
possess the encryption and decryption keys, ek i and dk i, respectively. Now, imagine that the
ACE scheme admits an efficient function maulE(c,m,m

′) (later we show how to implement this
function for some existing schemes). We require the following: For all messages m and m′, any
role i, and sanitizer parameters sp in the range of Setup, and for any fixed randomness r, it holds
that

maulE(Enc(ek i,m; r), sp,m,m′)) = Enc(ek i,m
′; r). (1)

If such a malleability function exists, then the following situation allows Bob to bypass the
communication policy:

1. Alice encrypts a message: c← Enc(ekA,m) and the sanitizer sanitizes, i.e., he computes
c′ ← San(sp, c) and sends c and c′ to Bob.

2. Bob computes m← Dec(dkB, c
′) and creates a new ciphertext ĉ← maulE(c, sp,m,m

′) and
sends it to the sanitizer.

3. The ciphertext is sanitized ĉ′ ← San(sp, ĉ) and subsequently sent to Charlie. By the
(perfect) correctness of the assumed ACE scheme and by our assumption on maulE(·), ĉ′
is a valid ciphertext (under the encryption key of Alice) and Charlie is able to decrypt
m′ ← Dec(dkC, ĉ

′), effectively receiving Bob’s message m′.

We now show that several existing ACE schemes E admit an efficient function maulE(·).

DHO Scheme based on El Gamal. We briefly discuss the El Gamal based ACE scheme for
a single identity. In this case, the public parameters of the scheme contain the description of
a finite cyclic group G = 〈g〉 and its group order q, and additionally an element h = gx for a
uniform random x ∈ Zq.

The encryption key for A is a random value ek ∈ Zq, and the decryption key is −x. We briefly
recall how the encryption process for a single identity and show that it is subject to malleability.

Encrypt: The algorithm Enc on input an encryption key ek i and a message m ∈M, outputs
as ciphertext the tuple (c0, c1, c2, c3) := (gr1 , hr1gek i , gr2 ,mhr2).

Malleability: maulDHO1((c0, c1, c2, c3), sp,m,m′) := (c0, c1, c2, c3 ·m−1 ·m′). Since the group
order q is part of sp, this function is efficiently computable.
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For c3 = mhr2 , we thus get a new fourth component c′3 = m′hr2 and equation (1)

.

is satisfied.
The malleability for more than one identity (and in particular in our scenario described above)
follows since the scheme for several identities is composed of independent instances of the basic
single-identity scheme.

FGKO scheme based on El Gamal. The public parameters roughly consist of a verification
key vkSig of a signature scheme Sig, the common-reference string crs of a NIZK proof system
NIZK (for the language defined below), and additional parameters including the description of a
finite cyclic group G = 〈g〉 including the group order and which forms the basis of (a variant of)
the El Gamal encryption scheme.

The encryption and decryption keys for A, as specified by the key-generation process, are
given by ek := (gx, σ), dk := x, and accompanied by a signature σ on the encryption key, i.e.,
Sig.Ver(vkSig, gx, σ) = 1.

We now briefly recap the encryption process and then show that this can be subject to a
malleability attack.

Encrypt: To encrypt a message m, first compute the ciphertext c′ := (c0, c1, c2, c3) := (gr, ek r,
gs, eks ·m), then compute π ← NIZK.Prove(crs, (vkSig, c′), (gx, σ,m, r)), where the NIZK
language is defined as L := {x | ∃w : (x,w) ∈ R1}, where R1 is defined as follows: for
x = (vkSig, c′) and witness w = (gx, σ,m, (r, s)), R(x,w) = 1 if and only if

Sig.Ver(vkSig, gx, σ) = 1 ∧ c′ = PKE.Enc(gx,m; (r, s)).

The output to the sanitizer is the pair (c′, π).

Malleability: maulFGKO(((c0, c1, c2, c3), π), sp,m,m′) := ((c0, c1, c2, c3 ·m−1 ·m′), π). Since the
group order q is part of sp, this function is efficient.

Equation (1)

.

is satisfied if, for example, the non-interactive zero-knowledge proof is
independent of the last component of the ciphertext c′.3

.

Hence, to see that malleability is
possible here, we have to show that such a NIZK exists without violating the properties
assumed in [FGKO17

.

]. Assume a NIZK proof system NIZK′ for language L′ := {x |
∃w (x,w) ∈ R′}, where the relation R′ is defined as follows: for x = (vkSig, (c0, c1, c2)) and
w = (gx, σ,m, (r, s)), (x,w) ∈ R′ if and only if: Sig.Ver(vkSig, gx, σ) = 1 ∧ c0 = gr ∧ c1 =
gr·x ∧ c2 = gs. For sake of the argument, we assume that this scheme satisfies all the
desired properties perfectly, i.e., correctness, soundness, zero-knowledge, and knowledge
extraction.

We now construct a NIZK proof system NIZK for the above language L as follows:

NIZK.Gen′(1κ) := NIZK′.Gen(1κ),

NIZK.Prove(crs, (vkSig, (c0, c1, c2, c3)), (gx, σ,m, (r, s))) :=

NIZK′.Prove(crs, (vkSig, (c0, c1, c2)), (gx, σ, (r, s))),

NIZK.Ver(crs, (vkSig, (c0, c1, c2, c3)), π) := NIZK′.Ver(crs, (vkSig, (c0, c1, c2)), π).

Correctness and zero-knowledge of NIZK follow straightforwardly from the underlying
scheme NIZK′. For knowledge-extraction, consider that the underlying NIZK is capable of ex-
tracting the valid witness (gx, σ, (r, s)) given a valid proof for an instance (vkSig, (c0, c1, c2)).

3Note that this is possible if the NIZK proof does not satisfy simulation soundness.
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Thus, by computing m := (gx·s)−1 · c3 we get a valid message encoded in c3. Finally, for
soundness, note that if (vkSig, (c0, c1, c2)) ∈ L′, this implies that any group element c3 ∈ G
is a valid last component i.e., (vkSig, (c0, c1, c2, c3)) ∈ L for any c3 ∈ G, since there exists
the message m := (gx·s)−1 · c3, and thus a valid witness w = (gx, σ,m, (r, s)).

Our claim on the malleability of the ACE scheme hence follows now due to the existence of
a NIZK proof system which is independent of the last component of the ciphertext.

4 A Stronger Notion of ACE

4.1 ACE with Modification Detection

In this section, we introduce our new security definitions, which exclude the issues we have
discovered. To be resilient against the ciphertext-revealing attacks described in Section 3

.

, the
sanitizer should ideally only sanitize fresh encryptions and block ciphertexts that are either
replays or obtained by modifying previous ciphertexts. Therefore, we introduce an additional
algorithm for detecting modified ciphertexts. If the sanitizer receives a ciphertext that is detected
to be a modification of a previously received one, this ciphertext is blocked. Since such ciphertexts
will not be stored in the repository and consequently not be decrypted, we define the chosen-
ciphertext security with respect to a decryption oracle that does not return a decryption if the
received ciphertext is detected to be a modification of the challenge ciphertext. Our definitions
can therefore be seen as a variant of publicly-detectable replayable-CCA security, which was
introduced by Canetti et al. [CKN03

.

] for public key encryption. Before defining the security, we
define the syntax of ACE schemes with this additional algorithm.

Definition 4.1. An access control encryption with modification detection scheme is an ACE
scheme E together with a PPT algorithm DMod that on input sanitizer parameters sp and two
ciphertexts c, c̃ ∈ C, outputs a bit b (where b = 1 means that c̃ was obtained via modifying c).

Except for Section 4.3

.

, where we show that our new definitions imply the existing ones, we
will in this paper only consider ACE schemes with modification detection and thus often refer to
them simply as ACE schemes.

The algorithm DMod should output 1 if c̃ is an adversarial modification of c, and 0 otherwise.
We have the following intuitive requirements on DMod:

1. All ciphertexts c̃ an adversary can produce given ciphertexts c1, . . . , cl and no encryption key,
are either invalid (i.e., sanitize to ⊥) or we have DMod(sp, ci, c̃) = 1 for some i ∈ {1, . . . , n}.

2. Given encryption and decryption keys, an adversary is unable to produce a ciphertext
that is detected to be in relation with a ciphertext produced by Enc for a message of the
adversary’s choice. In particular, independent encryptions of messages collide only with
negligible probability.

The first requirement is captured by role-respecting security as defined in Definition 4.5

.

, the
second one by ciphertext unpredictability defined in Definition 4.4

.

.

Remark. Canetti et al. (translated to our setting) also require that if DMod(sp, c, c̃) = 1, then c
and c̃ decrypt to the same message [CKN03

.

]. For our purpose, this is not needed. This means
that we do not want to detect replays in the sense that the same message is replayed, but more
generally, whether the given ciphertext was obtain via some modification of another ciphertext.
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4.2 Security Definitions

Privacy and anonymity. We now define (payload) privacy and sender-anonymity. The former
guarantees that encryptions of different messages under the same encryption key cannot be
distinguished as long as the adversary has no decryption key that allows to decrypt. We also
require this for messages of different length, i.e., schemes satisfying our definition do not leak
the length of the encrypted message, which means that the message space has to be bounded.
Anonymity guarantees that encryptions of the same message under different keys cannot be
distinguished. We distinguish a weak and a strong variant of anonymity, where the weak one
provides no guarantees if the adversary can decrypt the ciphertext, and the strong one guarantees
that even if the adversary has decryption keys, nothing is leaked about the sender role beyond
which of the adversary’s decryption keys can be used to decrypt.

We formalize chosen-ciphertext attacks by giving the adversary access to an oracle OSD
that first sanitizes a given ciphertext and then decrypts the result. One could also consider
chosen-sanitized-ciphertext attacks by providing the adversary access to an oracle OD that only
decrypts. This is potentially stronger since the adversary can emulate the oracle OSD by first
sanitizing the ciphertexts and then giving the result to OD, but given OSD, it is not necessarily
possible to emulate OD. Since in the application, uses can only send ciphertexts to the sanitizer
but not directly write ciphertexts to the repository such that they are decrypted without being
sanitized, the weaker notion is sufficient.

Definition 4.2. Let E = (Setup,Gen,Enc,San,Dec,DMod), be an ACE with modification detec-
tion scheme and let A = (A1,A2) be a pair of probabilistic algorithms. Consider the experiment
ExpACE-privAnon-CCA

E,A in Figure 2

.

and let J be the set of all j such that A1 or A2 issued the
query (j, rec) to the oracle OG. We define the privacy advantage and the sender-anonymity
advantage of A as

AdvACE-priv-CCA
E,A := 2 · Pr

[
b′ = b ∧ i0 = i1 ∧ ∀j ∈ J P (i0, j) = 0

]
− 1,

AdvACE-wAnon-CCA
E,A := 2 · Pr

[
b′ = b ∧ m0 = m1 ∧ ∀j ∈ J P (i0, j) = P (i1, j) = 0

]
− 1,

AdvACE-sAnon-CCA
E,A := 2 · Pr

[
b′ = b ∧ m0 = m1 ∧ ∀j ∈ J P (i0, j) = P (i1, j)

]
− 1,

respectively, where the probabilities are over the randomness in ExpACE-privAnon-CCA
E,A .

Remark. Weak anonymity corresponds to the anonymity considered by Fuchsbauer et al. [FGKO17

.

]
and strong anonymity to the one considered by Damgård et al. [DHO16

.

]. We state both definitions
because weak anonymity is easier to achieve but strong anonymity might be required by some
applications. If anonymity is only required against the sanitizer or if all messages are anyway
signed by the sender, weak anonymity is sufficient. Strong anonymity is required in settings
where senders also want to retain as much anonymity as possible against legitimate receivers.

Sanitization security. We next define sanitization security, which excludes that dishonest
parties can communicate via the ciphertexts. We formalize this by requiring that the output
of the sanitizer for two different ciphertexts cannot be distinguished, as long as both sanitized
ciphertexts are not ⊥ and the adversary has no decryption key that decrypts one of the ciphertexts.
We do not need to guarantee any security if the adversary can decrypt the ciphertexts since in
this case, the parties can directly communicate via the messages. Since the adversary provides
the two ciphertexts that are sanitized, we do not know to which roles they correspond; they

12



Experiment ExpACE-privAnon-CCA
E,A

Input: (1κ, P ), κ ∈ N, P : [n]× [n]→ {0, 1}
(sp,msk)← Setup(1κ, P )

(m0,m1, i0, i1, st)← AOG(·,·),OSD(·,·)
1 (sp)

b� {0, 1}
ek ib ← Gen(msk , ib, sen)
c∗ ← Enc(ek ib ,mb)

b′ ← AOG(·,·),OSD∗ (·,·)
2 (st , c∗)

Experiment ExpACE-san-CCA
E,A

Input: (1κ, P ), κ ∈ N, P : [n]× [n]→ {0, 1}
(sp,msk)← Setup(1κ, P )

(c0, c1, st)← AOG(·,·),OSD(·,·)
1 (sp)

c′0 ← San(sp, c0); c′1 ← San(sp, c1)
b� {0, 1}
b′ ← AOG(·,·),OSD(·,·)

2 (st , c′b)
for j ∈ [n] do

m0,j ← Dec
(
Gen(msk , j, rec), c′0

)
m1,j ← Dec

(
Gen(msk , j, rec), c′1

)

Experiment ExpACE-ctxt-unpred
E,A

Input: (1κ, P ), κ ∈ N, P : [n]× [n]→ {0, 1}
(sp,msk)← Setup(1κ, P )
(m, i, c)← AOG(·,·)(sp)
ek i ← Gen(msk , i, sen)
c∗ ← Enc(ek i,m)
b← DMod(sp, c∗, c)

Experiment ExpACE-URR
E,A

Input: (1κ, P ), κ ∈ N, P : [n]× [n]→ {0, 1}
(sp,msk)← Setup(1κ, P )
c← AOG(·,·),OE(·,·)(sp)
dct← false

for c̃ ∈ CO do . CO = set of answers from OE
dct← dct ∨ DMod(sp, c̃, c) = 1

c′ ← San(sp, c)
for j ∈ [n] do

mj ← Dec
(
Gen(msk , j, rec), c′

)

Definitions of oracles

OG(i, t) := Gen(msk , i, t)

OE(i,m) := Enc
(
Gen(msk , i, sen),m

)
OSD(j, c) := Dec

(
Gen(msk , j, rec), San(sp, c)

)
OSD∗ (j, c) :=

{
Dec

(
Gen(msk , j, rec), San(sp, c)

)
, DMod(sp, c∗, c) = 0

test, else

Figure 2: Security experiments for an ACE with modification detection scheme E and an
adversary A, where A = (A1,A2) in the first two experiments.

could even be particularly crafted without belonging to an existing role. Hence, we cannot state
the requirement that the adversary should not be able to decrypt by only considering the policy
and the obtained decryption keys. Instead, we require that the decryption algorithm returns ⊥
for all decryption keys the adversary possesses. For this to provide the intended security, we
need that the decrypt algorithm returns ⊥ whenever the receiver role corresponding to the used
key is not supposed to read the message. This is guaranteed by role-respecting security which is
defined later.

Definition 4.3. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with modification detec-
tion scheme and let A = (A1,A2) be a pair of probabilistic algorithms. Consider the experiment
ExpACE-san-CCA

E,A in Figure 2

.

and let J be the set of all j such that A1 or A2 issued the query (j, rec)
to the oracle OG. We define the sanitization advantage of A as

AdvACE-san-CCA
E,A := 2 · Pr

[
b′ = b ∧ c′0 6= ⊥ 6= c′1 ∧ ∀j ∈ J m0,j = m1,j = ⊥

]
− 1,
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where the probability is over the randomness in ExpACE-san-CCA
E,A .

Ciphertext unpredictability. In the intended way of using a scheme satisfying our notions,
the sanitizer only adds sanitized ciphertexts to the repository if the given ciphertext is not
detected to be a modification of a previously received ciphertext. This means that if an adversary
can find a ciphertext c such that another ciphertext c∗ that is later honestly generated is detected
as a modification of c, the delivery of the message at that later point can be prevented by sending
the ciphertext c to the sanitizer earlier. We exclude this by the following definition, which can
be seen as an extended correctness requirement.

Definition 4.4. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with modification detec-
tion scheme and let A be a probabilistic algorithm. Consider the experiment ExpACE-ctxt-unpred

E,A in
Figure 2

.

. We define the ciphertext unpredictability advantage of A as

AdvACE-ctxt-unpred
E,A := Pr

[
b = 1

]
,

where the probability is over the randomness in ExpACE-ctxt-unpred
E,A .

Role-respecting and uniform-decryption security. We finally define role-respecting and
uniform-decryption security. The former means that an adversary cannot produce a ciphertext
for which the pattern of roles that can decrypt does not correspond to a role for which the
adversary has an encryption key. For example, if the adversary has only an encryption key for
the role i such that roles j0 and j1 are the only roles j with P (i, j) = 1, all ciphertexts produced
by the adversary are either invalid (i.e., sanitized to ⊥ or detected as a modification) or decrypt
to a message different from ⊥ precisely under the decryption keys for j0 and j1. On the one
hand, this means that receivers who are not allowed to receive the message get ⊥ and hence
know that the message is not for them. On the other hand, it also guarantees that the adversary
cannot prevent receivers with role j1 from receiving a message that is sent to receivers with
role j0. Furthermore, uniform decryption guarantees for all ciphertexts c output by an adversary
that if c decrypts to a message different from ⊥ for different decryption keys, it always decrypts
to the same message. In the example above, this means that j0 and j1 not only both receive
some message, but they both receive the same one.

Definition 4.5. Let E = (Setup,Gen,Enc, San,Dec,DMod), be an ACE with modification de-
tection scheme and let A be a probabilistic algorithm. Consider the experiment ExpACE-URR

E,A
in Figure 2

.

and let I and J be the sets of all i and j such that A issued the query (i, sen)
and (j, rec) to the oracle OG, respectively. We define the role-respecting advantage and the
uniform-decryption advantage of A as

AdvACE-RR
E,A := Pr

[
c′ 6= ⊥ ∧ dct = false ∧ ¬

(
∃i ∈ I ∀j ∈ J (mj 6= ⊥ ↔ P (i, j) = 1)

)]
,

AdvACE-uDec
E,A := Pr

[
∃j, j′ ∈ J mj 6= ⊥ 6= mj′ ∧ mj 6= mj′

]
,

respectively, where the probabilities are over the randomness in ExpACE-URR
E,A .

Remark. Note that in Definition 4.5

.

, we only check the decryptions for receiver roles for which A
has requested the corresponding decryption key. This means that an adversary in addition to
producing a ciphertext that causes an inconsistency, also has to find a receiver role for which
this inconsistency manifests. If the total number of roles n is small (say polynomial in the
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security parameter), A can simply query OG on all receiver keys, but for large n this condition
is nontrivial. For example, we consider a scheme secure if an adversary can efficiently produce
a ciphertext such that there is a receiver role that can decrypt it even though the policy does
not allow it, as long as this receiver role is hard to find. The rationale is that in this case, the
inconsistency cannot be exploited and will only be observed with negligible probability in an
execution of the protocol.

4.3 Relation to the Original Security Notions

In this section, we show that our notions imply the original security definitions (see Section 2.4

.

).
We first show that the no-read and no-write rules are implied by our new security definitions.

Theorem 4.6. Let E ′ = (Setup,Gen,Enc, San,Dec,DMod) be an ACE with modification detec-
tion scheme and let E = (Setup,Gen,Enc,San,Dec) be the corresponding ACE scheme. For
adversaries A, B, C for the security games of ACE, where we assume that adversary A makes
at most q queries to its encryption oracle, we derive adversaries Ai, Bi, and Ci such that the
following inequalities hold:

AdvACE-no-write
E,A ≤ AdvACE-san-CCA

E,A1
+ 2 · AdvACE-RR

E,A2

+ 2q ·
(
AdvACE-san-CCA

E,A3
+ AdvACE-ctxt-unpred

E,A4

)
+ 2 · AdvACE-corr

E,A5
,

AdvACE-no-read,priv
E,B ≤ AdvACE-priv-CCA

E,B1 + AdvACE-sAnon-CCA
E,B2 ,

AdvACE-no-read,anon
E,C ≤ AdvACE-sAnon-CCA

E,C1 .

Proof. We distinguish the above three cases.

No-write advantage. We start with the first reduction. Assume there is an adversary A that
plays the security game ExpACE-no-write

E,A . We construct the adversary A1 = (A1,1,A1,2) that
plays the security game ExpACE-san-CCA

E,A′ and relate their advantages. When invoked on
input sp, A1,1 internally emulates a (black-box) execution of A on input sp. In particular,
the only oracle queries that A asks are queries to generate keys and to produce sanitized
ciphertexts for a given message m and role j. These are emulated by A1,1 as follows:

OGi(·, ·): On query (i, sen) or (i, rec), A1,1 queries (i, sen), respectively (i, rec), to its
own oracle OG and returns the answer to A.

OES(·, ·): On query
(
j,m

)
, A1,1 queries (j, sen) to its oracle OG to receive the encryption

key ek j .4

.

It then computes c′ ← San(sp,Enc(ek j ,m)) and outputs c′ to A.

When A outputs its challenge (c0, i
′, st), A1,1 chooses a uniformly random message m←M,

queries (i′, sen) to its oracle OG to receive the encryption key ek i′ . It then computes
c1 ← Enc(ek i′ ,m). Finally, A1,1 outputs (c0, c1, st) as its challenge.

When A1,2 is invoked with the sanitized version of one of its challenge ciphertexts and the
state, i.e., on input (c′, st), it invokes A on the same input and emulates the oracles the
same way as A1,2 does above. When A outputs its decision bit b′, A1,2 outputs b′ as its
own guess and terminates.

4Looking ahead, we note that obtaining encryption keys is not problematic in the sanitization game, since the
winning condition is not restricted regarding the obtained encryption keys.
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We observe that the view A1 emulates towards A in the experiment ExpACE-san-CCA
E,A1

is
identical to the view that A has in the experiment ExpACE-no-write

E,A . In particular, if b = 0,
A receives sanitized ciphertext which was part of the challenge, and if b = 1 it receives the
sanitized ciphertext of an encryption to a random message. We can thus conclude that
the probability of the event b = b′ is the same. What remains to prove is that the winning
conditions required from Definition 2.3

.

, and the emulation strategy above, lead to valid
winning conditions according to Definition 4.3

.

.

To see this, observe that the winning event for A is

WnoW := [b = b′ ∧ i′ ∈ I1 ∪ {0} ∧ ∀i ∈ I1 ∀j ∈ J P (i, j) = 0 ∧ San(sp, c0) 6= ⊥]

and the winning event for A1 is

Wsan := [b′ = b ∧ c′0 6= ⊥ 6= c′1 ∧ ∀j ∈ J m0,j = m1,j = ⊥].

By correctness of the assumed ACE scheme, we have San(sp, c1) 6= ⊥ (except with probabil-
ity p) in the above emulation. Furthermore, the winning conditions of Definition 4.3

.

do not
restrict the sets of requested keys, but requires that for all decryption keys requested, the
decrypted ciphertexts yield the same message. Define the event E1 in the above emulation,
if ∀i ∈ I1 ∀j ∈ J P (i, j) = 0 ∧ ∃j : Dec

(
Gen(msk , j, rec), c′i

)
6= ⊥. We see that if event

E1 does not occur and correctness is not violated then the winning condition of A implies
the winning condition of A1. Thus

PrExp
ACE-san-CCA
E,A1 [Wsan] ≥ PrExp

ACE-no-write
E,A [WnoW ∧ ¬E1]− p.

Note that if we violate the correctness property with probability p, we can define a
straightforward reduction to obtain another adversary such that p ≤ AdvACE-corr

E,A5
.

To cover the remaining cases, let us introduce a hybrid process HybE,A, which is identical to
ExpACE-no-write

E,A , but where we introduce the additional steps. Hyb evaluates DMod(sp, c̃, c0)
for all ciphertexts c̃ which are generated by OES before being sanitized. We define the
event D which occurs iff at least one of these evaluations yields output 1. Note that the
hybrid process has the same input-output behavior as the original experiment.

We partition the probability space accordingly to design the remaining reductions.

2nd Reduction, Role-Respecting: When invoked on input sp, A2 internally emulates
a (black-box) execution of A on input sp and emulates the oracles as above. When A
outputs its challenge (c, i′, st), A2 chooses a uniformly random message m←M, queries
(i′,m) to its oracle OE to receive the corresponding ciphertext c1. Finally, A2 outputs as
its challenge either c0 or c1, each with probability one-half. The winning condition of the
role-respecting game says

WRR := [c′ 6= ⊥ ∧ dct = false ∧ ¬
(
∃i ∈ I ∀j ∈ J (mj 6= ⊥ ↔ P (i, j) = 1)

)
].

Observing that adversary A2 perfectly emulates the experiment Hyb towards A (where the
event D of Hyb is represented by the event dtc = 1 in the emulation), we conclude that

PrExp
ACE-URR
E,A2 [WRR] =

1

2
PrHybE,A [WnoW ∧ E1 ∧ ¬D].
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3rd Reduction, Sanitization: Assume there is an adversary A that plays the security
game ExpACE-no-write

E,A . We construct the adversary A3 = (A3,1,A3,2) against the sanitization
game. When invoked on input sp, A3,1, first chooses q0 ← {1 . . . q} uniformly at random,
sets k ← 1 and internally emulates a (black-box) execution of A on input sp. In particular,
the oracle queries that A asks are queries to generate keys and to produce sanitized
ciphertexts for a given message m and role j. These are emulated by A3,1 as follows:

OGi(·, ·): On query (i, sen) or (i, rec), A3,1 queries (i, sen), respectively (i, rec), to its
own oracle OG and returns the answer to A.

OES(·, ·): On query
(
j,m

)
, if k 6= q0, it queries (j, sen) to its oracle OG to receive the

encryption key ek j , then computes c′ ← San(sp,Enc(ek j ,m)) and outputs c′ to A.
Finally, set k ← k + 1.
If k = q0, then A3,1 queries (j, sen) to its oracle OG to receive the encryption
key ek j . It then creates two independent encryptions of m by computing c̃′0 ←
San(sp,Enc(ek j ,m)) and c̃′1 ← San(sp,Enc(ek j ,m)), set k ← k + 1, and outputs
((sp, st , k, c̃0, c̃0), c̃0, c̃1), where st denotes the current state of the emulation of A1.
This ends phase 1 of the experiment.

When A3,2 is invoked with ((sp, st , k, c̃0, c̃1), c̃b) (where b is the bit chosen by the game),
then it continues executing A (using state st) and emulates the oracles as above. If A1

terminates, outputting a challenge ciphertext c0, A3,2 evaluates d0 ← DMod(sp, c̃i, c0) and
d1 ← DMod(sp, c̃i, c0). Given challenge c0, let C denote the event that DMod(sp, c̃0, c̃1) = 1
or DMod(sp, c̃1−b, c) = 1 and let us denote its probability by ε.5

.

Let further Dq0 be the
event that the output c0 from adversary A detects with c̃i for exactly one i ∈ {0, 1}.
Assuming occurrence of D, this happens with probability at least 1

q . We further see that if
Dq0 occurs, but not C, then the adversary A3 can correctly distinguish c̃0 and c̃1. Details
follow. To decide on its output bit, A3,2 proceeds as follows: if event (E1 ∧Dq0 ∧D ∧ ¬C)
does not occur, output a uniform random bit b′. Else, if d0 = 1, then output b′ = 0, and if
d1 = 1, then output b′ = 1. We get

PrExp
ACE-san-CCA
E,A3 [Wsan] = PrHybE,A [E1 ∧ Dq0 ∧ D ∧ ¬C]

+
1

2
(1− PrHyb

′
E,A [E1 ∧ Dq0 ∧ D ∧ ¬C])

=
1

2
PrHyb

′
E,A [E1 ∧ Dq0 ∧ D ∧ ¬C] +

1

2
≥ 1− ε

2q
PrHyb

′
E,A [E1 ∧ D] +

1

2
.

Overall, we conclude

PrExp
ACE-no-write
E,A [winnoW] = PrHybE,A [winnoW]

= PrHybE,A [winnoW ∧ ¬E1]︸ ︷︷ ︸
≤ Pr

ExpACE-san-CCAE,A1 [Wsan]+p

+ PrHybE,A [winnoW ∧ E1 ∧ ¬D]︸ ︷︷ ︸
≤ 2 Pr

ExpACE-URRE,A2 [WRR]

+ PrHybE,A [winnoW ∧ E1 ∧ D]︸ ︷︷ ︸
≤ 2q·(Pr

ExpACE-san-CCAE,A3 [Wsan]− 1
2

+ε)

.

5This probability is bounded by the ciphertext-unpredictability advantage.
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We observe that the occurrence of event C violates the ciphertext unpredictability re-
quirement and it is straightforward to construct an adversary A4 against that game with
advantage at least ε. Therefore,

AdvACE-no-write
E,A = 2 · PrExp

ACE-no-write
E,A [winnoW]− 1

≤ AdvACE-san-CCA
E,A1

+ 2 · AdvACE-RR
E,A2

+ 2 · AdvACE-corr
E,A′ + 2q · (AdvACE-san-CCA

E,A3
+ AdvACE-ctxt-unpred

E,A4
).

No-read, privacy advantage. Assume there is an adversary B that plays the security game
ExpACE-no-read

E,B . We construct the adversary B1 = (B1,1,B1,2) that plays the security game
ExpACE-privAnon-CCA

E,B1 and relate their advantages. When invoked on input sp, B1,1 internally
emulates a (black-box) execution of B on input sp. In particular, the only oracle queries
that B asks are queries to generate keys, which are emulated by B1,1 as follows:

OG(·, ·): On query (i, sen) or (i, rec), B1,1 queries (i, sen), respectively (i, rec), to its own
oracle OG and returns the answer to B.

OE(·, ·): On query
(
j,m

)
, B1,1 queries (j, sen) to its oracle OG to receive the encryption

key ek j .6

.

It then computes c← Enc(ek j ,m) and outputs c to B.

When B outputs its challenge (m0,m1, i0, i1, st), B1,1 outputs the challenge (m0,m1, i0, i0, st).
When invoked (in the second phase of the experiment, B1,2 invokes B on input (st , c) and
emulates oracle OG exactly the way B1,1 did in the first phase. When adversary B terminates
with output b, B1,2 outputs b as its own guess and terminates.

Consider the experiment ExpACE-privAnon-CCA
E,B1 : we observe that

Pr
ExpACE-privAnon-CCAE,B1 [b′ = 0 | b = 0] = PrExp

ACE-no-read
E,B [b′ = 0 | b = 0].

Let us further consider a hybrid process HybE,B which is identical to ExpACE-no-read
E,B except

that the output (m0,m1, i0, i1, st) of B gets overwritten by (m0,m1, i0, i0, st). We thus
have

Pr
ExpACE-privAnon-CCAE,B1 [b′ = | b = 1] = PrHyb[b′ = 1 | b = 1]

= PrExp
ACE-no-read
E,B [b′ = 1 | b = 1]− δ,

where the difference δ can be bounded by AdvACE-sAnon-CCA
E,B2 for an adversary B2 = (B2,1,B2,2)

against the anonymity of the ACE scheme:

When invoked on input sp, B2,1 internally emulates a (black-box) execution of B on
input sp. In particular, the only oracle queries that B asks are queries to generate keys,
which are emulated the same way as done by B1,1 before. When B outputs its challenge
(m0,m1, i0, i1, st), B2,1 outputs the challenge (m1,m1, i0, i1, st). When invoked (in the
second phase of the experiment, B2,2 invokes B on input (st , c) and emulates oracle OG as

6Looking ahead, we note that obtaining encryption keys is not problematic in the privacy game since the
winning condition is not restricted regarding the obtained encryption keys.
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before. When adversary B terminates with output b, B2,2 outputs b as its own guess and
terminates. For this adversary, we have

Pr
ExpACE-privAnon-CCAE,B2

[
b′ = b] =

1

2
PrExp

ACE-no-read
E,B [b′ = 1 | b = 1] +

1

2
(1− PrHybE,B [b′ = 1 | b = 1])

=
1

2
+
δ

2
.

The proof is concluded by observing that if B satisfies the condition ∀j ∈ J P (i0, j) =
P (i1, j) = 0, this implies the respective necessary winning conditions ∀j ∈ J P (i0, j) = 0
(for the privacy adversary B1) and in addition ∀j ∈ J P (i0, j) = P (i1, j) (for the anonymity
adversary B2) as required by Definition 4.2

.

.

No-read, anonymity advantage. Assume there is an adversary C that plays the security game
ExpACE-no-read

E,C . We construct the adversary C1 = (C1,1, C1,2) that plays the security game
ExpACE-privAnon-CCA

E,C1 and relate their advantages. When invoked on input sp, C1,1 internally
emulates a (black-box) execution of C on input sp. In particular, the only oracle queries
that C asks are queries to generate keys, which are emulated by C1,1 as follows:

OG(·, ·): On query (i, sen) or (i, rec), C1,1 queries (i, sen), respectively (i, rec), to its own
oracle OG and returns the answer to C.

OE(·, ·): On query
(
j,m

)
, C1, 1 queries (j, sen) to its oracle OG to receive the encryption

key ek j . It then computes c← Enc(ek j ,m) and outputs c to C.

When C outputs its challenge (m0,m1, i0, i1, st), C1,1 outputs the challenge (m0,m1, i0, i1, st).
When invoked (in the second phase of the experiment, C1,2 invokes C on input (st , c) and em-
ulates oracle OG exactly the way C1, 1 did in the first phase. When adversary C terminates
with output b, C1,2 outputs b as its own guess and terminates.

We observe that the view C1 emulates towards C in the experiment ExpACE-privAnon-CCA
E,C1 is

identical to the view that C has in the experiment ExpACE-no-read
E,C . In particular, if b = 0, C

receives the encryption of m0 relative to encryption key ek i0 and if b = 1, C receives the
encryption of m1 relative to encryption key ek i1 . We thus conclude that

Pr
ExpACE-privAnon-CCAE,C1

[
b′ = b ∧ m0 = m1 ∧ ∀j ∈ J P (i0, j) = P (i1, j)

]
= PrExp

ACE-no-read
E,C

[
b′ = b ∧ m0 = m1 ∧ ∀j ∈ J P (i0, j) = P (i1, j)

]
.

This concludes the third case and the proof of the theorem.

5 Enhanced Sanitizable Public-Key Encryption

5.1 Definitions

As a stepping stone toward ACE schemes satisfying our new security definitions, we introduce
enhanced sanitizable public-key encryption. Sanitizable public-key encryption has been considered
by Damgård et al. [DHO16

.

] and Fuchsbauer et al. [FGKO17

.

] as a relaxation of universal re-
encryption [GJJS04

.

] and rerandomizable encryption [Gro04

.

; PR07

.

]. It allows to sanitize a
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ciphertext to obtain a sanitized ciphertext that cannot be linked to the original ciphertext except
that it decrypts to the correct message. In contrast to rerandomizable encryption, sanitized
ciphertexts can have a different syntax than ciphertexts, i.e., it is not required that a sanitized
ciphertext is indistinguishable from a fresh encryption. We introduce an enhanced variant with a
different syntax and stronger security guarantees.

Definition 5.1. An enhanced sanitizable public-key encryption (sPKE) scheme consists of the
following five PPT algorithms:

Setup: The algorithm Setup on input a security parameter 1κ, outputs public parameters sp,
which contain a message space M and a ciphertext space C, and a secret parameter msk .

Key Generation: The algorithm Gen private parameters msk , outputs an encryption key ek
and a decryption key Dec.

Encrypt: The algorithm Enc on input an encryption key ek and a message m ∈M, outputs a
ciphertext c ∈ C.

Sanitizer: The algorithm San on input public parameters sp and a ciphertext c ∈ C, outputs a
sanitized ciphertext c′ ∈ C′ ∪ {⊥}.

Decrypt: The algorithm Dec on input a decryption key dk and a sanitized ciphertext c′ ∈ C′,
outputs a message m ∈M∪ {⊥}; on input dk and ⊥, it outputs ⊥.

For correctness, we require for all (sp,msk) in the range of Setup, all (ek , dk) in the range of
Gen(msk), and all m ∈M that

Dec
(
dk , San

(
sp,Enc(ek ,m)

))
= m

with probability 1.

We require robustness in the sense that no ciphertext decrypts to a message different from ⊥
for two different decryption keys (except with small probability). This is similar to the detectability
defined by Fuchsbauer et al., but we allow the adversary to directly output a ciphertext, instead of
a message, which is then honestly encrypted. Our notion therefore closely resembles unrestricted
strong robustness (USROB), introduced by Farshim et al. [FLPQ13

.

] for public-key encryption,
which also allows the adversary to choose a ciphertext and, in contrast to strong robustness by
Abdalla et al. [ABN10

.

], gives the adversary access to decryption keys.

Definition 5.2. Let E = (Setup,Gen,Enc, San,Dec) be an sPKE scheme. Let A be a probabilistic
algorithm that on input sanitizer parameters sp and two key-pairs (ek0, dk0) and (ek1, dk1),
returns a ciphertext c. We define the experiment ExpsPKE-USROB

E,A that computes (sp,msk) ←
Setup(1κ), generates two (independently sampled) key-pairs (ek i, dk i)← Gen(msk), i ∈ {0, 1},
and then then invokes A on input (sp, ek0, dk0, ek1, dk1) to obtain c. We define the robustness
advantage of A as

AdvsPKE-USROB
E,A := Pr

[
Dec

(
dk0,San(sp, c)

)
6= ⊥ 6= Dec

(
dk1,San(sp, c)

)]
,

where the probability is over the randomness in ExpsPKE-USROB
E,A and the random coins of San and

Dec (both executed independently twice).
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Experiment ExpsPKE-IND-CCA
E,A

Input: 1κ

(sp,msk)← Setup(1κ)
(ek , dk)← Gen(msk)

(m0,m1, st)← AOG(·),OSD(·)
1 (sp, ek)

b� {0, 1}
c∗ ← Enc(ek ,mb)

b′ ← AOG(·),OSD(·)
2 (st , c∗)

Experiment AdvsPKE-ctxt-unpred
E,A

Input: 1κ

(sp,msk)← Setup(1κ)
(ek , dk)← Gen(msk)
(m, c)← AOG(·)(sp, ek , dk)
c∗ ← Enc(ek ,m)

Experiment ExpsPKE-IK-CCA
E,A

Input: 1κ

(sp,msk)← Setup(1κ)
(ek0, dk0)← Gen(msk)
(ek1, dk1)← Gen(msk)

(m, st)← A
OG(·),OSD0

(·),OSD1
(·)

1 (sp, ek0, ek1)
b� {0, 1}
c∗ ← Enc(ekb,m)

b′ ← A
OG(·),OSD0

(·),OSD1
(·)

2 (st , c∗)

Experiment ExpsPKE-san-CCA
E,A

Input: 1κ

(sp,msk)← Setup(1κ)
(ek0, dk0)← Gen(msk)
(ek1, dk1)← Gen(msk)

(c0, c1, st)← A
OG(·),OSD0

(·),OSD1
(·)

1 (sp, ek0, ek1)
c′0 ← San(sp, c0); c′1 ← San(sp, c1)
m0,0 ← Dec(dk0, c′0); m0,1 ← Dec(dk1, c′0)
m1,0 ← Dec(dk0, c′1); m1,1 ← Dec(dk1, c′1)
b� {0, 1}
b′ ← A

OG(·),OSD0
(·),OSD1

(·)
2 (st , c′b)

Figure 3: Security experiments for an sPKE scheme E and an adversary A, where A = (A1,A2)
in the experiments ExpsPKE-IND-CCA

E,A , ExpsPKE-IK-CCA
E,A , and ExpsPKE-san-CCA

E,A . The oracle OSD is
defined as OSD(c) = Dec(dk ,San(sp, c)) and the oracle OSDj as OSDj (c) = Dec(dk j ,San(sp, c)).
Moreover, the oracle OG on input getNew, outputs a fresh key-pair (ek , dk)← Gen(msk).

We next define IND-CCA security analogous to the definition for ordinary public-key encryp-
tion. In contrast to the usual definition, we do not require the adversary to output two message
of equal length, which implies that schemes satisfying our definition do not leak the length of the
encrypted message.

Definition 5.3. Let E = (Setup,Gen,Enc, San,Dec) be an sPKE scheme and let A = (A1,A2)
be a pair of probabilistic algorithms. Consider the experiment ExpsPKE-IND-CCA

E,A in Figure 3

.

and
let CA2 be the set of all ciphertexts that A2 queried to the oracle OSD. We define the ciphertext
indistinguishability under chosen-ciphertext attacks advantage of A as

AdvsPKE-IND-CCA
E,A := 2 · Pr

[
b′ = b ∧ c∗ /∈ CA2

]
− 1,

where the probability is over the randomness in ExpsPKE-IND-CCA
E,A .

We also need that it is hard to predict a ciphertext generated by Enc from a message of
the adversary’s choice given encryption and decryption keys. Note that this is not implied by
IND-CCA security since the adversary obtains the decryption key.

Definition 5.4. Let E = (Setup,Gen,Enc,San,Dec) be an sPKE scheme and let A be a proba-
bilistic algorithm. Consider the experiment ExpsPKE-ctxt-unpred

E,A in Figure 3

.

. We define the ciphertext
unpredictability advantage of A as

AdvsPKE-ctxt-unpred
E,A := Pr

[
c = c∗],
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where the probability is over the randomness in ExpsPKE-ctxt-unpred
E,A .

We further define anonymity or indistinguishability of keys following Bellare et al. [BBDP01

.

].

Definition 5.5. Let E = (Setup,Gen,Enc, San,Dec) be an sPKE scheme and let A = (A1,A2)
be a pair of probabilistic algorithms. Consider the experiment ExpsPKE-IK-CCA

E,A in Figure 3

.

and let
CA2 be the set of all ciphertexts that A2 queried to the oracle OSD0 or OSD1 . We define the
indistinguishability of keys under chosen-ciphertext attacks advantage of A as

AdvsPKE-IK-CCA
E,A := 2 · Pr

[
b′ = b ∧ c∗ /∈ CA2

]
− 1,

where the probability is over the randomness in ExpsPKE-IK-CCA
E,A .

Sanitization security formalizes that given certain public keys and a sanitized ciphertext, it
is hard to tell which of two adversarially chosen ciphertexts was actually sanitized. To exclude
trivial attacks, we require that both ciphertexts decrypt are encryptions relative to the two
challenge public keys ek0 and ek1.

Definition 5.6. Let E = (Setup,Gen,Enc, San,Dec) be an sPKE scheme and let A = (A1,A2)
be a pair of probabilistic algorithms. Consider the experiment ExpsPKE-san-CCA

E,A in Figure 3

.

. We
define the sanitization under chosen-ciphertext attacks advantage of A as

AdvsPKE-san-CCA
E,A := 2 · Pr

[
b′ = b ∧ ∃j, j′ ∈ {0, 1} m0,j 6= ⊥ 6= m1,j′

]
− 1,

where the probability is over the randomness in ExpsPKE-IK-CCA
E,A .

We finally define the probability that two independent executions of the key-generation
algorithm produce the same encryption key. This probability has to be small for all IND-CCA-
secure schemes because an attacker can otherwise generate a new key-pair himself and if the
obtained encryption key matches the one with which the challenge ciphertext is generated, the
attacker can decrypt and win the IND-CCA game. We anyway explicitly define this probability
to simplify our reductions later.

Definition 5.7. Let E = (Setup,Gen,Enc,San,Dec) be an sPKE scheme. We define the
encryption-key collision probability ColekE as the maximum over all (sp,msk) in the range of
Setup(1κ) of

Pr(ek0,dk0)←Gen(msk); (ek1,dk1)←Gen(msk)[ek0 = ek1].

5.2 Constructing an sPKE Scheme

We next construct an sPKE scheme satisfying our security definitions. Our construction resembles
the weakly sanitizable PKE scheme by Fuchsbauer et al. [FGKO17

.

]. We obtain security against
chosen-ciphertext attacks using the technique of Naor and Yung [NY90

.

], i.e., encrypting the
message under two independent keys and proving in zero-knowledge that the ciphertexts are
encryptions of the same message, which was shown to achieve full IND-CCA security if the
zero-knowledge proof is simulation-sound by Sahai [Sah99

.

].
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Setup: The setup algorithm first generates a key pair (ekPKE, dkPKE) ← PKE.Gen of a (IND-
CPA secure) public-key encryption scheme, and a key pair (vkSig, skSig) ← Sig.Gen of a
(EU-CMA-secure) signature scheme. Additionally, it samples a uniformly random common-
reference string for the non-interactive zero-knowledge proof system NIZK for language
L = {x | ∃w : (x,w) ∈ R}, where the relation R is defined as follows: for x = (c1, c2, cσ)
and w = (m, gx, gy; r1, s1, r2, s2;σ, r), R(x,w) = 1 if and only if

c1 = (gr1 , gx·r1 , gs1 , gx·s1 ·m) ∧ c2 = (gr2 , gy·r2 , gs2 , gy·s2 ·m)}
∧ Ver(vkSig, (gx, gy), σ) ∧ cσ = PKE.Enc(ekPKE, (gx, gy, σ); r).

The public parameters sp contains a description of a finite cyclic group G with prime order,
a generator g (i.e., G = 〈g〉), the order q of G, the message spaceM ⊂ G of size n, and
the verification key vkSig, the public key ekPKE, and the CRS crs . We assume that q > 2κ,
and that n/q ≤ 2−κ,
The private parameters msk consist of the signing key skSig and a decryption key dkPKE

and the public parameter.
Key Generation: The algorithm Gen on input parameters sp, and msk , samples two elements

dk1, dk2 ∈ Zq and compute ek1 := gdk1 , ek2 := gdk2 , as well as σ ← Sig.Sign(skSig, (ek1, ek2)).
Finally, it outputs ek := (ek1, ek2, σ) and dk := (dk1, dk2).

Encrypt: The algorithm Enc on input an encryption key ek and a message m ∈M, computes
the following: choose randomness (r1, s1) and (r2, s2) (each component from set Z∗q) and
compute two ElGamal ciphertexts

c1 := (gr1 , ek r11 , g
s1 , eks11 ·m),

c2 := (gr2 , ek r22 , g
s2 , eks22 ·m),

and the ciphertext cσ := PKE.Enc(ekPKE, (ek1, ek2, σ); r), and finally π := NIZK.Prove(crs,
x = (c1, c2, cσ), w = (m, ek1, ek2; r1, s1, r2, s2;σ, r). The output of the encryption function
is the ciphertext c := (c1, c2, cσ, π).

Sanitizer: The algorithm San on input public parameters sp and a ciphertext c ∈ C, computes
a sanitized ciphertext c′ as follows: First verify the NIZK proofs by evaluating f :=
Ver(crs, x = (c1, c2, cσ), π). If f = 1, then sanitize the ElGamal ciphertext c1 = (a, b, c, d) =
(gr1 , ek r11 , g

s1 , eks11 ·m) as follows: if a 6= 1 6= b, choose a random t ∈ Z∗q and output the
following value:

c′ := (at · c, bt · d) = (gr1·t+s1 , ek r1·t+s11 ·m).

In case f = 0 or a = 1 or b = 1, then output ⊥.
Decrypt: The algorithm Dec on input a decryption key dk and a sanitized ciphertext c′ = (a, b),

computes the message m := b · (adk1)−1. It outputs m if m ∈M, and otherwise it outputs
⊥; on input dk and ⊥, it outputs ⊥.

The main result of this section is the security of the scheme, summarized as follows.

Theorem 5.8 (Informal). The above sPKE scheme is secure, i.e., all efficient adversaries have
only negligible advantage in breaking the privacy, anonymity, or sanitization property, if the
DDH problem is hard in group G, the underlying encryption scheme is CPA secure, the signature
scheme is unforgeable, and if the proof system is correct and provides simulation-soundness and
zero-knowledge. The scheme is further correct and robust, has unpredictable ciphertexts, and a
negligible encryption-key collision-probability.

23



5.3 Security Proof

5.3.1 Proof Intuition

The basic motivation behind our scheme is the same as for the original idea to lift CPA security
to CCA security. The general idea is to preserve the desirable properties that (this particular
version of) ElGamal encryption has in a “CPA” world. More technically, we would like to reduce
the required properties in Definitions 5.3

.

to 5.6

.

to the respective properties of ElGamal that
hold in a world where no decryption oracle is available. The proof intuition (for example for
the anonymity or privacy game) is closely related to the standard result in [Sah99

.

]: the basic
idea of the above construction is that it is actually enough to decrypt a ciphertext with one
decryption key. Since the NIZK proof can be verified by anyone, and since it assures that both are
valid ElGamal encryption to the same message, it does not matter which of the two ciphertexts
(corresponding decryption key) is used to decrypt. In a reduction, where we assume an adversary
A against the desired properties stated above and would like to attack the corresponding CPA
properties of ElGamal, we need only get one public key and no decryption oracle. In order to
emulate the view towards A, the reduction chooses an additional public key and a CRS for
the NIZK scheme. Since the reduction thus knows one of the secret keys, it can now emulate
a decryption oracle. A subtle point here is that the verification can be done without knowing
which public keys are used - to resolve this, the key generation process signs valid key pairs, and
the verifier only needs to know that the key pair (which is not revealed to the verifier) was signed
by the key generation process.

To generate a challenge ciphertext, the reduction will obtain one challenge ciphertext from
its CPA-Game, and encrypt another, arbitrary message to obtain a second ciphertext. The
reduction uses the NIZK simulator to obtain an accepting proof that is indistinguishable from a
“real proof”, even if the underlying statement is not true. A crucial point here is that the NIZK
scheme has to be what is known as 1-proof simulation sound. Even if the adversary sees one
simulated (accepting) proof, even of a wrong statement, it is still not capable of producing an
accepting proofs of wrong statements (except by reproducing the exact proof it obtained within
the challenge, but which A is not allow to ask by the CCA definition). The fundamental result
of [Sah99

.

] is that the above strategy successfully simulates a complete CCA attack towards A.
While the intuition seems to match for our versions of IK-CCA and IND-CCA, it is unclear for
the sanitization game and hence proven first.

5.3.2 Correctness, Robustness, Unpredictability, and Key Collision

The correctness of the scheme follows directly from the correctness of the underlying cryptographic
primitives. Since we base our scheme on the ElGamal encryption scheme (and consists of two
independent encryptions of which each contains two randomly chosen group elements), we have
AdvsPKE-ctxt-unpred

E,A ≤ 1/q4 (where q is the order of the group and of exponential size in the
parameter κ). Also, since the encryption key contains a pair of random group elements, we also
have that ColekE ≤ 1/q2.

Finally, for robustness, let us denote the generated keys of the experiment by ek i = (ek i,1, ek i,1)
and dk i = (dk i,1, dk i,1) (recall that each key consists of two parts for the respective ElGamal
encryption). We observe that as long as ek0,1 6= ek1,1, we also have dk0,1 6= dk1,1. Assume we are
given an arbitrary ciphertext c̃ := (c1, c2, cσ, π), let c1 = (ga, gb, gc, gd), and assume it is sanitized,
then this yields

c′ := (gat+c, gbt+d)
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and hence is decrypted to m̄0 := gbt+d−dk0,1(at+c)). Similarly, m̄1 := gbt
′+d−dk1,1(at′+c)) would

be the result of a second sanitization followed by a decryption using dk1,1. Thus, the fraction
m̄0
m̄1

= gt(b−a·dk0,1)+t′(a·dk1,1−b)+c(dk1,1−dk0,1) is a random group element, because t and t′ are chosen
at random and not both depending terms can be canceled (since computation in the exponent is
done in the field Zq). Hence, AdvsPKE-USROB

E,A ≤ 2−(κ−1) for all A due to the assumed restriction
on the size of the message spaceM relative to the size of the group G.

5.3.3 Sanitization

To clarify the syntax, note that an adversary in the experiment ExpsPKE-san-CCA
E,A obtains two

independent encryption keys of the scheme. This means, in our particular case of the above
ElGamal scheme, that the adversary obtains, for i ∈ {0, 1}, ek i = (ek i,1, ek i,2, σi), where ek i,j
are (independent) instances of ElGamal public keys as defined above.

Let us define the following hybrid experiments Exp0
A to Exp4

A: they behave as the experiment
ExpsPKE-san-CCA

E,A , except as follows: after the values mi,j have been calculated, then

• Exp0
A is the real experiment.

• Exp1
A, if m0,0 = ⊥, replaces c′0 by two uniformly random group elements (gb, gc).

• Exp2
A, does the above replacement, but if m0,0 = ⊥, replaces c′0 by two uniformly at random

chosen group elements (gb, gc) if m0,1 6= ⊥.

• Exp3
A does the above replacements, and in addition replaces c′1 by two uniformly at random

chosen group elements (gb, gc) if m1,0 6= ⊥.

• Exp4
A does the above replacement, but if m1,0 = ⊥, it replaces c′1 by two uniformly at

random chosen group elements (gb, gc) if m1,1 6= ⊥.

We observe that PrExp
4
A [Wsan] ≤ 1

2 for all adversaries, since the outputs are independent of
bit b chosen by the experiment.

Lemma 5.9. Let A be an adversary in the experiment ExpiA. Let BAD1 be the event that A
queries at least one of its decryption oracles OSDi with a valid but improper ciphertext (c1, c2, π),
i.e., (c1, c2, cσ) /∈ L, but where π is an accepting proof, i.e., NIZK.Ver(crs, (c1, c2, cσ), π) = 1).
We construct an adversary A′ such that PrExp

i
A [BAD1] ≤ AdvNIZK-snd

NIZK,A′ .

Proof. The claim follows from the soundness property of the assumed NIZK scheme: upon
receiving a CRS crs ′ (from its own challenger), A′ defines crs ← crs ′ and emulates towards
A all further steps of his experiment ExpiA. This is in particular possible when possessing all
secret keys. Whenever A submits a query to a decryption oracle, A′ verifies the NIZK proof,
and additionally checks that decryption is possible relative to the specified keys and that the
signature is valid (these values are part of cσ which the A′ is able to decrypt7

.

). If any check fails,
i.e., if BAD1 occurs, then it holds that a valid forgery against the challenged NIZK scheme (with
CRS crs) occurred and that A′ can present this forgery to its challenger.

Lemma 5.10. Let A be an adversary in the experiment ExpiA. Let BAD2 be the event that A
queries at least one of its decryption oracles OSDi with a valid and proper ciphertext (c1, c2, cσ, π)

7Note that we assume that the underlying PKE scheme has no decryption error.
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(i.e., (c1, c2, cσ) ∈ L and π is accepting), but where cσ is the encryption of a triple (ek1, ek2, σ),
such that the pair (ek1, ek2) has never been output by the experiment or the oracle OG. We
construct an adversary A′ such that PrExp

i
A [BAD2] ≤ AdvSig-EUF-CMA

Sig,A′

Proof. We construct an adversary A′ which produces a valid forgery in the signature experiment
ExpSig-EUF-CMA

Sig,A′ as follows: A′ receives the signature verification key vkSig from the experiment. It
sets up the experiment ExpiA, where it generates all necessary keys, except for the signature key
pair, where it chooses defines vkSig as the verification key. Upon queries to the the key generation
oracles, A′ selects the key pair (ek1, ek2) as ExpS,jA , but lets it sign using its own oracle Sign(sk , ·).
The rest of the emulation, in particular the decryption oracle, can be done with the knowledge
of the remaining keys (no signing key is required). Furthermore, whenever A submits a valid
query to the decryption oracle, A′ decrypts cσ to extract a pair (ek ′1, ek

′
1) and a signature σ′,

and if the pair has never been queried to its own signing oracle, but the signature is valid, then
it outputs ((ek ′1, ek

′
1), σ′) as its forgery.

Recall that the winning condition of an assumed adversary A in the sanitization game is

Wsan := [b′ = b ∧ ∃j, j′ ∈ {0, 1} m0,j 6= ⊥ 6= m1,j′
]
.

We further observe, that we can construct from an adversary A against hybrid Exp5
A, an

adversary with success probability at least 1
2 − (q2 + 4) · 2−κ, where q is an upper bound on the

number of key pairs obtained by A. To see this, let A′ be the adversary that runs A = (A1,A2)
as subroutine and relays back and forth oracle queries and answers to and from A. When A1

outputs its challenge (c0, c1), A′ asks both of its oracles to decrypt to compute mi,j . If the
winning condition Wsan is not already violated, then A′ outputs the received challenge as its own
challenge. Otherwise, A′ encrypts twice the same message using one of the public key, say ek0

and outputs a uniform random bit. The proof follows by observing that all outputs of this last
hybrid are independent of b, and that the probability of a wrong prediction is upper bounded by
the probability that the first part of a public key collides with the first part of another public
key (and hence robustness says that the outcome is ⊥ except with probability 2−κ) and taking
the union bound.

Lemma 5.11. For any adversary A, we have that

PrExp
sPKE-IK-CCA
E,A [Wsan] = PrExp

5
A [Wsan]︸ ︷︷ ︸

≥ 1
2
−(q2+4)·2−κ

+
3∑
i=0

PrExp
i
A [Wsan]− PrExp

i+1
A [Wsan]︸ ︷︷ ︸

≤ AdvDDH
Bi

+ pfail

.

where algorithms Bi are described in the proof below.

Proof. Let c0 and c1 be the challenge ciphertexts of A1. Each ci in particular contains two
candidate ElGamal encryptions. Recall the sanitizer first checks the validity of the proof and, if
successful, only the first ElGamal ciphertext is processed.

Let us denote by c1
0 and c1

1, the respective first ElGamal encryption.

c1
0 = (d0, d1, e0, e1),

c1
1 = (d′0, d

′
1, e
′
0, e
′
1).
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If ¬BAD1, then each ci consists of two valid ElGamal encryptions to the same message m0

and m1, respectively. We are thus guaranteed in this case that there exist values ri and si such
that

c1
0 = (gr0 , gr0·dk

′
0,1 , gs0 , gs0·dk

′
0,1m0),

c1
1 = (gr1 , gr1·dk

′
1,1 , gs1 , gs1·dk

′
1,1m1).

If ¬BAD2, then both keys gdk
′
i,1 have been generated either via a call to the key generation

oracle, or they correspond to the respective challenge keys output by the experiment. Let us
denote the set of such generated keys by K.

Additionally, and without loss of generality, we assume that di 6= ⊥ 6= d′i for all i ∈ {0, 1} as
otherwise, the sanitization algorithm return ⊥ and the game cannot be won (since decryption
of ⊥ yields ⊥). We now show that, given the above conditions, that the difference between
PrExp

i+1
A [Wsan] and PrExp

i
A [Wsan] is a lower bound on the advantage of a DDH adversary B0 in

distinguishing triples of the form (ga, gb, gc) and (ga, gb, gab) for uniformly at random chosen
exponents a, b, c.

We discuss the case i = 0, the other cases are similar: The adversary B0 is defined as follows:
on input at DDH triple (ga, gb, gc

′
), where c′ is either the product of a and b or a uniformly

random exponent, B0 defines ek0,0 := ga. All remaining keys are generated by B0 (and thus,
only the decryption key of ek0,0 is actually missing). It then emulates the experiment Exp0

A (by
internally running A and performing the operations of the experiment). The only crucial point is
how to emulate the decryption oracle ODS0 towards A: B0 verifies the NIZK proof π of each
queried ciphertext, and, if valid, sanitizes and decrypts the second ElGamal encryption c2

0 of the
received ciphertext using dk0,2 (here is where we use the Sahai-trick). The remaining oracles are
straightforward to emulate.

When A outputs its challenge (c0, c1), both are processed as in experiment Exp, except that
in order to sanitize c0, B0 first computes mi,j as the experiment does, and, if m0,0 6= ⊥, and
defines c′0 := gb, gc

′ ·m0,0. Finally, when A terminates, B0 outputs 1 if condition Wsan occurs
(i.e, if the guess b′ of A is equal to the emulated bit b of the experiment) and 0 otherwise.

We state the sufficient conditions under which the emulation of oracle OSD0 is perfect: assume
¬BAD1 and ¬BAD2 hold and that none of the first parts ekk,1 of all keys generated by the
experiment or the oracles collide. Then, it holds that decrypting c1

0 with (unknown) decryption
key a would yield the same result as decrypting c2

0 with dk0,2, except with probability 2 · 2−κ. In
particular, since any valid ciphertext is proper and keys are unique under the above assumption,
if c2

0 is an encryption relative to public key gdk0,2 , then also c0
1 decrypts under a with probability

1 due to correctness. On the contrary, due to the robustness of the scheme in this case, if c2
0 is not

an encryption relative to gdk0,2 then c1
0 is not an encryption relative to ga, and thus, except with

probability 1− 2 · 2−κ (by robustness), both ciphertexts do not decrypt in this case. By taking
the union bound over all these undesirable events, we see that the probability of an incorrect
emulation is bounded by

pfail := 2 · q2 · 2−κ + PrExp
i
A [BAD1] + PrExp

i
A [BAD2]

≤ 2 · q2 · 2−κ + AdvNIZK-snd
NIZK,A′ + AdvSig-EUF-CMA

Sig,A′′ ,

where q is an upper bound on the number of queries that A asks to his oracles.
Furthermore, if c′ = a · b, then c′0 := gb, ga·b · m0,0 is identically distributed to a normal

sanitization of c1
0, since b is a random exponent, just as r0 · t+ s0 is for t chosen at random (and
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computation takes place in the field Zq). Hence, we emulate the experiment Exp0
A. In the other

case, i.e., if c′ is a random element, then c1
0 is a pair of uniformly random group elements - just

as in experiment Exp1
A.

This concludes in the following theorem.

Theorem 5.12. The above enhanced sPKE scheme E satisfies

AdvsPKE-san-CCA
E,A ≤ 8 · (AdvDDH

B̄ + AdvNIZK-snd
NIZK,A′ + AdvSig-EUF-CMA

Sig,A′′ + 2 · q2 · 2−κ),

where the adversaries are described in the respective lemmata. In particular, adversary B̄ is
defined as being a mixture of adversaries B0 up to B3 of Lemma 5.11

.

, i.e., B̄ samples a random
number i between 0 and 3 and executes adversary Bi.

The theorem implies in particular, that if the underlying cryptographic primitives are secure,
then the scheme E has a secure sanitization procedure.

5.3.4 Privacy

For this case, we consider a hybrid experiment ExpS,b1,b2A : Let ExpS,b1,b2A be as ExpsPKE-IND-CCA
E,A , but

where the common reference string crs is obtained via evaluation (crs, τNIZK)← SNIZK
1 (instead

via an invocation of NIZK.Gen). Also, when computing the challenge ciphertext c∗ = (c1, c2, cσ, π),
π is generated by an invocation of S2(crs, τNIZK, (c1, c2, cσ)). The following versions of this hybrid
system exist:

• Upon receiving the challenge (m0,m1), then compute c1 as the encryption of mb1 and c2 as
the encryption of mb2 , and compute cσ as in the real experiment (namely as the encryption
of the two ElGamal public keys plus the accompanying signature). Simulate the proof
π ← S2(crs, τNIZK, (c1, c2, cσ)) and output c∗ := (c1, c2, cσ, π).

Lemma 5.13. Let A be an adversary in the experiment ExpS,b1,b2A . Let BAD1 be the event
that A queries its decryption oracle OSD with a valid but improper ciphertext (c1, c2, cσ, π),
i.e., (c1, c2, cσ) /∈ L, but where π is an accepting proof, i.e., NIZK.Ver(crs, (c1, c2, cσ), π) =
1), and which is not the equal to the challenge c∗. We construct an adversary B0 such that
PrExp

S,b0,b1
A [BAD1] ≤ AdvNIZK-sim-snd

NIZK,A′ .

Proof. The claim follows from the simulation soundness property of the assumed NIZK scheme:
upon receiving a CRS crs ′ (from its own challenger), A′ defines crs ← crs ′ and emulates all
further steps of the experiment ExpS,b0,b1A . This is in particular possible when possessing all secret
keys. In particular, simulate the challenge ciphertext using the prove-oracle of its challenger.
Note further that without loss of generality the assumed adversary never asks to decrypt the
challenge query c∗. If BAD1 occurs, then it holds that a valid forgery against the challenged
NIZK scheme (with CRS crs) occurred.

Lemma 5.14. Let A be an adversary in the experiment ExpS,b0,b1A . Let BAD2 be the event that A
queries its decryption oracle OSD with a valid and proper ciphertext (not equal to the challenge)
(c1, c2, cσ, π) (i.e., (c1, c2, cσ) ∈ L and π is accepting), but where cσ is the encryption of a triple
(ek1, ek2, σ), such that the pair (ek1, ek2) has never been output by the experiment or the oracle
OG. We construct an adversary A′ such that PrExp

S,b0,b1
A [BAD2] ≤ AdvSig-EUF-CMA

Sig,A′
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Proof. Follows analogously to the previous paragraph.

Recall that the winning condition of an assumed adversary A in the IND-CCA game is

Wpr := [b′ = b ∧ c∗ /∈ CA2

]
.

We assume without loss of generality that the assumed adversary A against the privacy
game does not query the challenge c∗ to its decryption oracle since one can construct, from an
adversary that does so, a new adversary that simply guesses the bit once it observes that a
violation of the condition c∗ /∈ CA2 would happen.

Lemma 5.15. For any adversary A, we have that

PrExp
sPKE-IND-CCA
E,A [Wpr] =

1

2
· PrExp

sPKE-IND-CCA
E,A [b′ = 0 | b = 0] +

1

2
PrExp

sPKE-IND-CCA
E,A [b′ = 1 | b = 1]

=
1

2
+

1

2
(PrExp

sPKE-IND-CCA
E,A [b′ = 1 | b = 1]− PrExp

sPKE-IND-CCA
E,A [b′ = 1 | b = 0])

=
1

2
+

1

2
((PrExp

sPKE-IND-CCA
E,A [b′ = 1 | b = 1]− PrExp

S,1,1
A [b′ = 1])︸ ︷︷ ︸

(1)

≤ AdvNIZK-ZK
NIZK,S,B1

+ (PrExp
S,1,1
A [b′ = 1]− PrExp

S,1,0
A [b′ = 1])︸ ︷︷ ︸

(2)

≤ 2·AdvDDH
B2

+ pfail

+ (PrExp
S,1,0
A [b′ = 1]− PrExp

S,0,0
A [b′ = 1])︸ ︷︷ ︸

(3)

≤ 2·AdvDDH
B3

+ pfail

+ (PrExp
S,0,0
A [b′ = 1]− PrExp

sPKE-IND-CCA
E,A [b′ = 1 | b = 0])︸ ︷︷ ︸

(4)

≤ AdvNIZK-ZK
NIZK,S,B1

).

where the respective adversaries Bi are derived in the proof below.

Proof. The proof closely follows the proof proposed by Lindell [Lin06

.

]. In particular, (1) and
(4) follow by a straightforward reduction to the underlying zero-knowledge property. Consider
(1) and define the following adversary B1 which receives a crs from its own challenger. Then, it
emulates towards A the experiment ExpS,1,1A . This can be done, when possessing all the decryption
keys generated in the experiment. Furthermore, when generating the challenge c∗ = (c1, c2, cσ),
which is the correct decryption of m1 in this case, B1 asks its proving oracle to obtain a valid
proof to this correct statement. We observe that if the CRS and the proofs are real, then this
is equivalent to the experiment ExpsPKE-IND-CCA

E,A when b = 1, and if the CRS and the proofs are
simulated, then this is equivalent to ExpS,1,1A and (1) follows.

Also, equations (2) and (3) follow along the lines of the proof in [Lin06

.

]: consider (2) and
define the adversary B2 as follows. B2 receives a candidate DDH triple (ga, gb, gc) and declares
ga to be the encryption key ek2. It further generates all the remaining keys of the experiment
(and thus lacks only the decryption key dk2 = a). In particular, B2 chooses the bit b of the game
and key pair (ek1, dk1) and defines the public key ek := (ek1, ek2, σ) (where the signature can
be generated by B2). When receiving the challenge (m0,m1) of A, B2 generates one ElGamal
encryption of mb as follows:

c2 := ((gb)r̄, (gc)r̄, gb, gc ·mb).
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It further defines c1 as an ElGamal encryption of m1, encrypts both keys and the signature to
obtain cσ, and simulates a NIZK proof π. We note that if the candidate triple is a DDH triple
then c2 = (gb·r̄, (ga)b·r̄, gb, (ga)b ·mb) = (gb·r̄, (ek2)b·r̄, gb, (ek2)b ·mb) and thus corresponds to a
correctly distributed ElGamal encryption.

When A2 outputs its decision bit b′, B2 outputs d = 1 if b = b′ and d = 0 otherwise. Assume
that none of the above defined bad events happen. Then, if (ga, gb, gc) is a random triple, B2

outputs a uniform bit since the challenge ciphertext is independent of b. If the candidate triple
is indeed a DDH triple (ga, gb, gab), then B2 emulates either the experiment ExpS,1,0A or the
experiment ExpS,1,1A , each with probability one-half. The output of B2 is thus

PrDDHrand
B2 [d = 1] =

1

2
and

PrDDHreal
B2 [d = 1] =

1

2
· PrExp

S,1,1
A [b′ = 1] +

1

2
· PrExp

S,1,0
A [b′ = 0]

=
1

2
· PrExp

S,1,1
A [b′ = 1] +

1

2
· (1− PrExp

S,1,0
A [b′ = 1])

=
1

2
+

1

2
· (PrExp

S,1,1
A [b′ = 1]− PrExp

S,1,0
A [b′ = 1]).

and therefore AdvDDH
B2 = 1

2 · (PrExp
S,1,1
A [b′ = 1]− PrExp

S,1,0
A [b′ = 1]).

The proof is concluded by the observation that the oracle OSD can be emulated perfectly,
even without knowledge of dk0,1 = a, except with probability at most pfail derived the same way
as in the previous paragraph (except that we need here simulation soundness as opposed to
ordinary soundness). Equation (3) follows similarly.

This concludes in the following theorem.

Theorem 5.16. The above enhanced sPKE scheme E satisfies

AdvsPKE-IND-CCA
E,A ≤ 4 · AdvDDH

B̄ + 2 · AdvNIZK-ZK
NIZK,S,B1+

2 · (AdvNIZK-sim-snd
NIZK,A′ + AdvSig-EUF-CMA

Sig,A′′ + 2 · q2 · 2−κ),

where the adversaries are defined in the respective lemmata and adversary B̄ is the mixture
of adversaries B2 and B3 of Lemma 5.15

.

, i.e., B̄ samples a random coin and either executes
adversary B2 or B3.

The theorem implies in particular, that if the underlying cryptographic primitives are secure,
then the scheme E is IND-CCA secure.

5.3.5 Anonymity

For this case, we consider the hybrid experiment ExpS,iA : Let ExpS,iA be basically as ExpsPKE-IK-CCA
E,A ,

but where, for all of them, the common reference string crs is obtained via evaluation (crs, τNIZK)←
SNIZK

1 (instead via an invocation of NIZK.Gen). Also, when computing the challenge ciphertext
c∗ = (c1, c2, cσ, π), π is generated by an invocation of S2(crs, τNIZK, (c1, c2, cσ)). The following
versions of this hybrid system exist:

• For i = 0, upon receiving the challengem, then compute c1
b as the encryption ofm under key

ek b,1 and c2
b as the encryption of m under ek b,2, and compute cσ as in the real experiment

(namely as the encryption of the two ElGamal public keys plus the accompanying signature).
Simulate the proof π ← S2(crs, τNIZK, (c1

b , c
2
b , cσ)) and output c∗ := (c1

b , c
2
b , cσ, π).
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• For i = 1, the hybrid system acts as above, but upon receiving the challenge m, instead of
computing cσ as an encryption of (ek b,1, ek b,2, σ), encrypt the message 0n, for an appropriate
length n that matches the length of (an appropriate encoding of) the triple (ek b,1, ek b,2, σ).
The rest is done as for the previous hybrid.

• For i = 2, the hybrid acts as above, but in addition, when receiving the challenge m, instead
of computing c1

0 as the encryption of m under key ek0,1, choose a new encryption key gx,
for a uniformly random exponent x. If b = 0 in the game, then the first ciphertext c1

0 would
be an encryption under “key” gx. The remaining steps are as usual.

• For i = 3, in addition to all the steps above, here upon a challenge, we also compute c2
0

relative to a freshly chosen public key gx′ .

• For i = 4, in addition to all the steps above, here upon a challenge, we also compute c1
1

relative to a freshly chosen public key gx′′ instead of as an encryption under ek1,1.

• For i = 5, in addition to all the steps above, here upon a challenge, we also compute c2
1

relative to a freshly chosen public key gx′′′ .

We observe that in the final hybrid experiment ExpS,5A , the advantage in guessing b is at
most 1

2 , since all outputs given to the adversary are independent of the actual keys ek0 or ek1

and hence of the bit b chosen by the game.
As in the analysis above, we have the analogous lemmata:

Lemma 5.17. Let A be an adversary in the experiment ExpS,iA . Let BAD1 be the event that A
queries at least one of its decryption oracles OSDj with a valid but improper ciphertext (c1, c2, cσ, π)
(which is not the challenge c∗), i.e., (c1, c2, cσ) /∈ L, but where π is an accepting proof, i.e.,
NIZK.Ver(crs, (c1, c2, cσ), π) = 1). We construct an adversary A′ such that PrExp

S,1
A [BAD1] ≤

AdvNIZK-sim-snd
NIZK,A′ .

Proof. The claim follows from the simulation soundness property of the assumed NIZK scheme
similar to the statements in the previous paragraph.

Lemma 5.18. Let A be an adversary in the experiment ExpS,iA . Let BAD2 be the event that A
queries at least one of its decryption oracles OSDj with a valid and proper ciphertext (which is not
the challenge) (c1, c2, cσ, π) (i.e., (c1, c2, cσ) ∈ L and π is accepting), but where cσ is the encryption
of a triple (ek1, ek2, σ), such that the pair (ek1, ek2) has never been output by the experiment or
the oracle OG. We construct an adversary A′ such that PrExp

S,i
A [BAD2] ≤ AdvSig-EUF-CMA

Sig,A′

Proof. Follows analogously to the previous paragraph.

Recall that the winning condition of an assumed adversary A in the IK-CCA game is

Wik := [b′ = b ∧ c∗ /∈ CA2

]
.

We assume without loss of generality that the assumed adversary A against the anonymity
game does not query the challenge c∗ to its decryption oracle since one can construct, from an
adversary that does so, a new adversary that simply guesses the bit once it observes that a
violation of the condition c∗ /∈ CA2 would happen.
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Lemma 5.19. For any adversary A, we have that

PrExp
sPKE-IK-CCA
E,A [Wik] = PrExp

S,5
A [Wik]︸ ︷︷ ︸

= 1
2

+
4∑
i=1

PrExp
S,i
A [Wik]− PrExp

S,i+1
A [Wik]︸ ︷︷ ︸

(1)

≤ AdvDDH
Bi+1

+ pfail

+ PrExp
S,0
A [Wik]− PrExp

S,1
A [Wik]︸ ︷︷ ︸

(2)

≤ 2·AdvPKE-IND-CPA
PKE,B1

+ PrExp
S,0
A [Wik]− PrExp

sPKE-IK-CCA
E,A [Wik]︸ ︷︷ ︸

(3)

≤ AdvNIZK-ZK
NIZK,S,B0

.

where the respective adversaries Bi are derived in the proof below.

Proof sketch. The proof closely follows along the lines of the previous proofs. In particular, (3)
is again a straightforward reduction to the zero-knowledge property of the underlying NIZK
scheme. (2) Follows from the CPA security of the assumed PKE scheme: consider the adversary
B1 that obtains a public key ek from its CPA challenger. B1 generates all remaining keys himself
to be able to emulate the steps of the experiment ExpS,1 towards the (assumed) adversary
A = (A1,A2). Note that when B1 never needs to decrypt any of the ciphertexts cσ in the
experiment (and thus, no decryption key is needed). When A1 outputs his challenge, B1 first
asks the challenge (m0 = (ek b,1, ek b,2, σ),m1 = 0n) to its own challenger and obtains a ciphertext
cσ. If the challenger outputs an encryption of 0n, then this is equivalent to experiment ExpS,1A ,
and if the challenger returns an encryption of (ek b,1, ek b,2, σ), then this is equivalent to ExpS,0A .
Hence, if B1 returns 1 in case the guess b′ of A2 is correct (i.e., is equal to the bit b that B1

emulated) and 0 otherwise, then this is a biased bit with bias half the difference between the two
experiments in question. Equation (2) hence follows from an analogous computation as done, for
example, in the proof of Lemma 5.15

.

.
Finally, we consider equation (1) and describe adversary B1 (the remaining cases are analogous).

Adversary B1 works as follows. It receives a candidate DDH triple (ga, gb, gc) and declares ga

to be the encryption key ek0,1. It further generates all the remaining keys of the experiment
(and thus lacks only the decryption key dk0,1 = a). In particular, B1 chooses the bit b of the
game and the remaining key pairs, which includes (ek0,2, dk0,2) (to be able to emulate the oracle
OSD0) and defines the public key ek0 := (ek0,1, ek0,2, σ) (where the signature can be generated
by B1). When receiving the challenge (m) of A = (A1,A2), generate one ElGamal encryption of
m as follows:

c1
0 := ((gb)r̄, (gc)r̄, gb, gc ·m).

It further defines the other parts ckj as the experiment does (including encrypting the zero-
string and simulating a proof). We note that if the candidate triple is a DDH triple then
c2 = (gb·r̄, (ga)b·r̄, gb, (ga)b · mb) = (gb·r̄, (ek2)b·r̄, gb, (ek2)b · mb) and thus corresponds to a
correctly distributed ElGamal encryption as in the experiment ExpS,1A . However, if (ga, gb, gc)
then the encryption c1

0 is distributed identically to a fresh encryption of m relative to a random
public key gx, just as it is done in experiment ExpS,2A . Hence when A2 outputs its decision bit b′,
B2 outputs d = 1 if b = b′ and d = 0 otherwise and constitutes a distinguihser of DDH triples
and random triples with advantage the same as the difference in probabilities of winning the
respective experiments.

This concludes in the following theorem.
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Theorem 5.20. The above enhanced sPKE scheme E satisfies

AdvsPKE-IK-CCA
E,A ≤ 8 · AdvDDH

B̄ + 4 · AdvPKE-IND-CPA
PKE,B1 + 2 · AdvNIZK-ZK

NIZK,S,B0

+ 8 · (AdvNIZK-sim-snd
NIZK,A′ + AdvSig-EUF-CMA

Sig,A′′ + 2 · q2 · 2−κ),

where the adversaries are defined in the respective lemmata, and B̄ is a mixture of the adversaries
Bi of Lemma 5.19

.

.

The theorem implies in particular, that if the underlying cryptographic primitives are secure,
then the scheme E is IK-CCA secure.

6 Construction of an ACE Scheme

6.1 Construction for Equality

Following Fuchsbauer et al. [FGKO17

.

], we first construct an ACE scheme for the equality policy,
i.e., P (i, j) = 1⇔ i = j, and then use such a scheme in another construction for richer policies.

Let sPKE be a sanitizable public-key encryption scheme, let Sig be a signature scheme, and
let F be a PRF. Further let NIZK be a NIZK proof of knowledge system for the language
L := {x | ∃w (x,w) ∈ R}, where the relation R is defined as follows: for x =

(
vkSig, c̃

)
and

w =
(
ek sPKEi ,m, r, vkSigi , σSigi , σSigc

)
, (x,w) ∈ R if and only if

c̃ = sPKE.Enc
(
ek sPKEi ,m; r

)
∧ Sig.Ver

(
vkSig,

[
ek sPKEi , vkSigi

]
, σSigi

)
= 1

∧ Sig.Ver
(
vkSigi , c̃, σSigc

)
= 1.

We define an ACE with modification detection scheme ACE as follows:

Setup: On input a security parameter 1κ and a policy P : [n]× [n]→ {0, 1} with P (i, j) = 1⇔
i = j, the algorithm ACE.Setup picks a random PRF key K for a PRF F , and runs(

spsPKE,msk sPKE
)
← sPKE.Setup(1κ),(

vkSig, skSig
)
← Sig.Gen(1κ),

crsNIZK ← NIZK.Gen(1κ).

It outputs the master secret key mskACE :=
(
K,msk sPKE, vkSig, skSig, crsNIZK

)
and the

sanitizer parameters spACE :=
(
spsPKE, vkSig, crsNIZK

)
.

Key Generation: The algorithm ACE.Gen on input a master secret keymskACE =
(
K,msk sPKE,

vkSig, skSig, crsNIZK
)
, a role i ∈ [n], and a type t ∈ {sen, rec}, computes(
ek sPKEi , dk sPKEi

)
← sPKE.Gen

(
msk sPKE;FK([i, 0])

)
.

If t = sen, it further computes(
vkSigi , skSigi

)
← Sig.Gen

(
1κ;FK([i, 1])

)
,

σSigi ← Sig.Sign
(
skSig,

[
ek sPKEi , vkSigi

]
;FK([i, 2])

)
.

If t = sen, it outputs the encryption key ekACEi :=
(
vkSig, ek sPKEi , vkSigi , skSigi , σSigi , crsNIZK

)
;

if t = rec, it outputs the decryption key dkACEi := dk sPKEi .
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Encrypt: On input an encryption key ekACEi =
(
vkSig, ek sPKEi , vkSigi , skSigi , σSigi , crsNIZK

)
and a

message m ∈MACE, the algorithm ACE.Enc samples randomness r and computes

c̃← sPKE.Enc
(
ek sPKEi ,m; r

)
,

σSigc ← Sig.Sign
(
skSigi , c̃

)
,

πNIZK ← NIZK.Prove
(
crsNIZK, x :=

(
vkSig, c̃

)
, w :=

(
ek sPKEi ,m, r, vkSigi , σSigi , σSigc

))
.

It outputs the ciphertext c :=
(
c̃, πNIZK

)
.

Sanitizer: On input sanitizer parameters spACE =
(
spsPKE, vkSig, crsNIZK

)
and a ciphertext c =(

c̃, πNIZK
)
, the algorithm ACE.San outputs the sanitized ciphertext c′ ← sPKE.San

(
spsPKE, c̃

)
if NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1; otherwise, it outputs ⊥.

Decrypt: The algorithm ACE.Dec on input a decryption key dkACEj and a sanitized ciphertext c′,
outputs the message m← sPKE.Dec(dkACEj , c′).

Modification detection: The algorithm ACE.DMod on input spACE, c1 =
(
c̃1, π

NIZK
1

)
, and

c2 =
(
c̃2, π

NIZK
2

)
, outputs 1 if c̃1 = c̃2, and 0 otherwise.

Our scheme enjoys perfect correctness since the underlying sPKE and signature schemes are
perfectly correct and the NIZK is perfectly complete, i.e.,

AdvACE-corr
ACE,A = 0

for all A.
In the following, we prove the security of our scheme.

Theorem 6.1 (Informal). The above ACE scheme for equality is secure, i.e., all efficient
adversaries have only negligible advantage in breaking the privacy, (strong) anoymity, sanitization,
role-respecting, uniform-decryption, or ciphertext-unpredictability properties, if the underlying
sPKE scheme is secure, the signature scheme is unforgeable, the proof system provides zero-
knowledge and extractability, and if the function F is pseudo-random.

We first show that our scheme satisfies the privacy definition from Definition 4.2

.

if the
underlying sanitizable public-key encryption scheme is IND-CCA secure, the PRF is secure, and
the NIZK is zero knowledge.

Theorem 6.2. Let ACE, be the scheme from above, let A = (A1,A2) be an attacker on the
privacy such that A1 makes at most qS queries of the form (·, sen) to the oracle OG, and at most
qD queries to OSD. Then, there exist probabilistic algorithms APRF, AZK, and AsPKE (which are
all roughly as efficient as emulating an execution of ExpACE-privAnon-CCA

ACE,A ) such that

AdvACE-priv-CCA
ACE,A = 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ZK
NIZK,AZK

+ (qS + qD + 1) · AdvsPKE-IND-CCA
sPKE,AsPKE

.

Proof. We assume without loss of generality that A ensures i0 = i1 and P (i0, j) = 0 for all j ∈ J ,
since doing otherwise can only decrease the advantage. Let H0 := ExpACE-privAnon-CCA

ACE,A and H1 be
as H0 where FK is replaced by a truly uniform random function U .

Claim 1. There exists a probabilistic algorithm AO(·)
PRF such that

PrH0(b′ = b)− PrH1(b′ = b) = AdvPRFF,APRF
.
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Proof of claim. Consider AO(·)
PRF that emulates an execution of ExpACE-privAnon-CCA

ACE,A , where all
invocations of FK(·) are replaced by a call to the oracle O(·). When A2 returns b′ such that
b′ = b, APRF outputs 1, and 0 otherwise. In case O(·) corresponds to FK(·), APRF perfectly
emulates H0, if it corresponds to U(·), it perfectly emulates H1. Hence,

PrH0(b′ = b)− PrH1(b′ = b) = Pr
(
AFK(·)

PRF (1κ) = 1
)
− Pr

(
AU(·)

PRF(1κ) = 1
)

= AdvPRFF,APRF
. ♦

Now let H2 be as H1, where we replace crsNIZK ← NIZK.Gen(1κ) by
(
crsNIZK, τNIZK

)
←

SNIZK
1 (1κ) in ACE.Setup, and for the generation of the challenge ciphertext c∗, we replace
πNIZK ← NIZK.Prove

(
crsNIZK, x, w

)
in ACE.Enc by πNIZK ← SNIZK

2

(
crsNIZK, τNIZK, x

)
.

Claim 2. There exists a probabilistic algorithm AO(·,·)
ZK such that

PrH1(b′ = b)− PrH2(b′ = b) = AdvNIZK-ZK
NIZK,AZK

.

Proof of claim. The algorithm AO(·,·)
ZK on input crsNIZK proceeds as follows. It emulates an

execution of H1, where in ACE.Setup, crsNIZK is used instead of generating it, and for the
generation of c∗, NIZK.Prove

(
crsNIZK, x, w

)
in ACE.Enc is replaced by the oracle query (x,w).

Finally, AO(·,·)
ZK outputs b̃ = 1 if A2 returns b′ = b, and b̃ = 0 otherwise. Note that if crsNIZK

is generated by NIZK.Gen and O(·, ·) corresponds to NIZK.Prove
(
crsNIZK, ·, ·

)
, AO(·,·)

ZK perfectly
emulates H1. Moreover, if crsNIZK is generated together with τNIZK by SNIZK

1 and O(x,w) returns
SNIZK

2

(
crsNIZK, τNIZK, x

)
, AO(·,·)

ZK perfectly emulates H2. Thus, the claim follows. ♦

We finally show how to transform any winner A for H2 to a winner AsPKE for the IND-CCA
game for the scheme sPKE. The strategy of our reduction is to guess which oracle queries of
A1 are for the role i0, use the key from the sPKE-scheme for these queries, and generate all
other keys as H2. Details follow. On input (spsPKE, ek sPKE), AsPKE initializes iq0 ← ⊥, kq ← 1,
chooses q0 � {0, . . . , qS + qD} uniformly at random, runs

(
vkSig, skSig

)
← Sig.Gen(1κ), and(

crsNIZK, τNIZK
)
← SNIZK

1 (1κ), and gives spACE :=
(
spsPKE, vkSig, crsNIZK

)
to A1. It emulates the

oracles for A1 as follows.

OG(·, ·): On query (i, sen), if kq 6= q0 and i 6= iq0 , then generate an encryption key ekACEi :=(
vkSig, ek sPKEi , vkSigi , skSigi , σSigi , crsNIZK

)
as H2 does, where

(
ek sPKEi , dk sPKEi

)
is obtained via

OG and remembered for future queries. If kq = q0 or i = iq0 , replace ek sPKEi by ek sPKE

and set iq0 ← i. In both cases, set kq ← kq + 1 at the end. On query (j, rec), obtain a
decryption key via OG.

OSD(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, if kq 6= q0 and j 6= iq0 , run c′ ← ACE.San(spACE, c),

generate a decryption key dkACEj as above, decrypt c′ using dkACEj , and return the resulting
message. If kq = q0 or j = iq0 , set iq0 ← j and use the oracle OSD of the IND-CCA
experiment to obtain a decryption m of c̃. If NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1,

return m, otherwise, return ⊥. In all cases, set kq ← kq + 1 at the end.

When A1 returns (m0,m1, i0, i1, st), output (m0,m1) to the challenger of the IND-CCA
experiment to obtain a challenge ciphertext c̃∗. Then run πNIZK ← SNIZK

2

(
crsNIZK, τNIZK, x :=(

vkSig, c̃∗
))
, and give st and the ciphertext c∗ :=

(
c̃∗, πNIZK

)
to A2. Emulate the oracles for A2

as follows.
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OG(·, ·): On query (i, sen), if i 6= i0, then generate an encryption key ekACEi :=
(
vkSig, ek sPKEi ,

vkSigi , skSigi , σSigi , crsNIZK
)
as H2 does, where

(
ek sPKEi , dk sPKEi

)
is obtained via OG and re-

membered for future queries. If i = i0, replace ek sPKEi by ek sPKE. On query (j, rec), obtain
a decryption key from OG.

OSD∗(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, run ACE.DMod(spACE, c∗, c). If the output is 1, return

test. Otherwise, if j 6= i0, run c′ ← ACE.San(spACE, c), generate a decryption key
dkACEj as above, decrypt c′ using dkACEj , and return the resulting message. If j = i0,
use the oracle OSD of the IND-CCA experiment to obtain a decryption m of c̃. If
NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1, return m, otherwise, return ⊥.

Note that we never query the decryption oracle of the IND-CCA experiment on c̃∗ because
we return test whenever this would be necessary. Denote by Q the event that either iq0 = i0,
or q0 = 0 and A1 does not make the query (i0, sen) to OG and no queries for role i0 to OSD.
When A2 returns a bit b′ and Q holds, AsPKE returns the same bit b′′ ← b′, if ¬Q, AsPKE returns
a uniform bit b′′ � {0, 1}.

Let b̃ be the bit chosen by the IND-CCA challenger. Note that by our assumption on A,
i0 = i1 and A does not query (i0, rec) to OG, i.e., i0 /∈ J , since P (i0, i0) = 1. Hence, if Q occurs,
the view of A is identical to the one in H2 with b = b̃. This implies

Pr
ExpsPKE-IND-CCA

sPKE,AsPKE

(
b′′ = b̃

∣∣ Q) = PrH2
(
b′ = b

)
,

and therefore

Pr
ExpsPKE-IND-CCA

sPKE,AsPKE

(
b′′ = b̃

)
= Pr

ExpsPKE-IND-CCA
sPKE,AsPKE

(
b′′ = b̃

∣∣ Q) · Pr
ExpsPKE-IND-CCA

sPKE,AsPKE (Q)

+ Pr
ExpsPKE-IND-CCA

sPKE,AsPKE

(
b′′ = b̃

∣∣ ¬Q) · Pr
ExpsPKE-IND-CCA

sPKE,AsPKE (¬Q)

= PrH2
(
b′ = b

)
· Pr

ExpsPKE-IND-CCA
sPKE,AsPKE (Q) +

1

2
Pr

ExpsPKE-IND-CCA
sPKE,AsPKE (¬Q).

Using that the probability of Q is 1/(qS + qD + 1), this yields

PrH2
(
b′ = b

)
=

1

Pr
ExpsPKE-IND-CCA

sPKE,AsPKE (Q)
·
(

Pr
ExpsPKE-IND-CCA

sPKE,AsPKE

(
b′′ = b̃

)
− 1

2
·
(

1− Pr
ExpsPKE-IND-CCA

sPKE,AsPKE (Q)
))

= (qS + qD + 1) ·
(

Pr
ExpsPKE-IND-CCA

sPKE,AsPKE

(
b′′ = b̃

)
− 1

2

)
+

1

2
.

Combining this with Claims 1

.

and 2

.

, we can conclude

AdvACE-priv-CCA
ACE,A

= 2 · PrH0(b′ = b)− 1

= 2 ·
(

PrH0(b′ = b)− PrH1(b′ = b) + PrH1(b′ = b)− PrH2(b′ = b) + PrH2(b′ = b)
)
− 1

= 2 ·
[
AdvPRFF,APRF

+ AdvNIZK-ZK
NIZK,AZK

+ (qS + qD + 1)

[
Pr

ExpsPKE-IND-CCA
sPKE,AsPKE

(
b′′ = b̃

)
− 1

2

]
+

1

2

]
− 1

= 2 · AdvPRFF,APRF
+ 2 · AdvNIZK-ZK

NIZK,AZK
+ (qS + qD + 1) · AdvsPKE-IND-CCA

sPKE,AsPKE
.
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We next consider anonymity, which can be shown similarly. We provide a proof for strong
anonymity. Note, however, that for the equality policy, strong anonymity does not provide more
guarantees than weak anonymity because anyone who can decrypt directly learns that the sender
role is equal to the receiver role.

Theorem 6.3. Let ACE be the scheme from above, let A = (A1,A2) be an attacker on the
anonymity such that A1 makes at most qS queries of the form (·, sen) to the oracle OG, and
at most qD queries to OSD. Then, there exist probabilistic algorithms APRF, AZK, and AsPKE

(which are all roughly as efficient as emulating an execution of ExpACE-privAnon-CCA
ACE,A ) such that

AdvACE-sAnon-CCA
ACE,A = 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ZK
NIZK,AZK

+ (qS + qD + 1)2 · AdvsPKE-IK-CCA
sPKE,AsPKE

.

Proof. We assume without loss of generality thatA ensuresm0 = m1 and P (i0, j) = P (i1, j) for all
j ∈ J , since doing otherwise can only decrease the advantage. Since we have P (i, j) = 1⇔ i = j,
the latter condition implies that if i0 ∈ J or i1 ∈ J , then i0 = i1. In case i0 = i1 and m0 = m1,
A cannot have positive advantage. Hence, we can further assume without loss of generality
that i0 /∈ J and i1 /∈ J . As in the proof of Theorem 6.2

.

, let H0 := ExpACE-privAnon-CCA
ACE,A , let H1

be as H0 where FK is replaced by a truly uniform random function U , and let H2 be as H1,
where crsNIZK ← NIZK.Gen(1κ) in ACE.Setup is replaced by

(
crsNIZK, τNIZK

)
← SNIZK

1 (1κ) and
for the generation of the challenge ciphertext c∗, πNIZK ← NIZK.Prove

(
crsNIZK, x, w

)
in ACE.Enc

is replaced by πNIZK ← SNIZK
2

(
crsNIZK, τNIZK, x

)
. An identical proof as the one in the proof of

Theorem 6.2

.

shows that there exist APRF and AZK such that

PrH0(b′ = b)− PrH2(b′ = b) = AdvPRFF,APRF
+ AdvNIZK-ZK

NIZK,AZK
.

We now transform A to a winner AsPKE for the anonymity game for the scheme sPKE. The
reduction is similar to the on in the proof of Theorem 6.2

.

, but AsPKE has to guess both i0 and i1,
which is why we loose the quadratic factor (qS + qD + 1)2. On input (spsPKE, ek sPKE0 , ek sPKE1 ),
AsPKE initializes iq0 , iq1 ← ⊥, kq ← 1, chooses q0, q1 � {0, . . . , qS + qD} uniformly at ran-
dom, runs

(
vkSig, skSig

)
← Sig.Gen(1κ), and

(
crsNIZK, τNIZK

)
← SNIZK

1 (1κ), and gives spACE :=(
spsPKE, vkSig, crsNIZK

)
to A1. It emulates the oracles for A1 as follows.

OG(·, ·): On query (i, sen), if kq /∈ {q0, q1} and i /∈ {iq0 , iq1}, then generate an encryption
key ekACEi :=

(
vkSig, ek sPKEi , vkSigi , skSigi , σSigi , crsNIZK

)
as H2 does, where

(
ek sPKEi , dk sPKEi

)
is obtained via OG and remembered for future queries. If kq = ql or i = iql for some
l ∈ {0, 1}, replace ek sPKEi by ek sPKEl (by ek sPKE0 if q0 = q1) and set iql ← i. In both cases,
set kq ← kq + 1 at the end. On query (j, rec), obtain a decryption key from OG and
remember it for later.

OSD(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, if kq /∈ {q0, q1} and j /∈ {iq0 , iq1}, then execute c′ ←

ACE.San(spACE, c), generate a decryption key dkACEj as above, decrypt c′ using dkACEj ,
and return the resulting message. If kq = ql or j = iql for some l ∈ {0, 1}, set iql ← j
and use the oracle OSDl of the IK-CCA experiment to obtain a decryption m of c̃. If
NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1, return m, otherwise, return ⊥. In all cases,

set kq ← kq + 1 at the end.

When A1 returns (m0,m1, i0, i1, st), AsPKE outputs m0 to the challenger of the anonymity ex-
periment to obtain a challenge ciphertext c̃∗. It then runs SNIZK

2

(
crsNIZK, τNIZK, x :=

(
vkSig, c̃∗

))
,

and gives st and the ciphertext c∗ :=
(
c̃∗, πNIZK

)
to A2. It emulates the oracles for A2 as follows:
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OG(·, ·): On query (i, sen), if i /∈ {i0, i1}, then generate an encryption key ekACEi :=
(
vkSig,

ek sPKEi , vkSigi , skSigi , σSigi , crsNIZK
)
as H2 does, where

(
ek sPKEi , dk sPKEi

)
is obtained via OG

and remembered for future queries. If i = iql for some l ∈ {0, 1}, replace ek sPKEi by ek sPKEl .
On query (j, rec), obtain a decryption key as before.

OSD∗(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, run ACE.DMod(spACE, c∗, c). If the output is 1, return

test. Otherwise, if j /∈ {i0, i1}, run c′ ← ACE.San(spACE, c), generate a decryption key
dkACEj as above, decrypt c′ using dkACEj , and return the resulting message. If j = iql for
some l ∈ {0, 1}, use the oracle OSDl of the IK-CCA experiment to obtain a decryption m
of c̃. If NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1, return m, otherwise, return ⊥.

Note that AsPKE never queries any of the decryption oracles of the IK-CCA experiment on c̃∗

because we return test whenever this would be necessary. Denote by Q the event that for all
l ∈ {0, 1} we have either iql = il, or ql = 0 and A1 does not make the query (il, sen) to OG and
no queries for role il to OSD. When A2 returns a bit b′ and Q holds, AsPKE returns the same
bit b′′ ← b′, if ¬Q, AsPKE returns a uniform bit b′′ � {0, 1}.

Let b̃ be the bit chosen by the IK-CCA experiment. Note that if Q occurs, the view of A is
identical to the one in H2 with b = b̃. This implies

Pr
ExpsPKE-IK-CCA

sPKE,AsPKE

(
b′′ = b̃

∣∣ Q) = PrH2
(
b′ = b

)
.

Using that the probability of Q is 1/(qS + qD + 1)2, it follows as in the proof of Theorem 6.2

.

that

AdvACE-sAnon-CCA
ACE,A = 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ZK
NIZK,AZK

+ (qS + qD + 1)2 · AdvsPKE-IK-CCA
sPKE,AsPKE

.

We next prove the sanitization security of our scheme.

Theorem 6.4. Let ACE be the scheme from above, let A = (A1,A2) be an attacker on the
sanitization security such that A1 makes at most qS1 queries of the form (·, sen) and at most qR1

queries of the form (·, rec) to the oracle OG, and at most qD1 queries to OSD, and A2 makes at
most qR2 queries of the form (·, rec) to the oracle OG. Then, there exist probabilistic algorithms
APRF, AZK1, AZK2, ASig, AsPKE, and Arob (which are all roughly as efficient as emulating an
execution of ExpACE-san-CCA

ACE,A ) such that

AdvACE-san-CCA
ACE,A ≤ 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ext1
NIZK,AZK1

+ 4 · AdvNIZK-ext2
NIZK,AZK2

+ 4 · AdvSig-EUF-CMA
Sig,ASig

+ (qS1 + qR1 + qD1)2 · AdvsPKE-san-CCA
sPKE,AsPKE

+ 4(qR1 + qR2) · AdvsPKE-USROB
sPKE,Arob

.

Proof. Let H0 := ExpACE-san-CCA
ACE,A , let H1 be as H0 where FK is replaced by a truly uniform random

function U , and let H2 be as H1, where crsNIZK ← NIZK.Gen(1κ) in ACE.Setup is replaced by(
crsNIZK, ξNIZK

)
← ENIZK

1 (1κ). Let WACE denote the event that A wins, i.e.,

WACE :=
[
b′ = b ∧ c′0 6= ⊥ 6= c′1 ∧ ∀j ∈ J m0,j = m1,j

]
.

Similarly as in the proof of Theorem 6.2

.

, it can be shown that there exist APRF and AZK1 such
that

PrH0(WACE)− PrH2(WACE) = AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
. (2)

Let H3 be identical to H2 except that after A1 returns
(
c0 =

(
c̃0, π

NIZK
0

)
, c1 =

(
c̃1, π

NIZK
1

)
, st
)
,

H3 executes for b̃ ∈ {0, 1}

wb̃ :=
(
ek sPKEib̃

,mb̃, rb̃, vk
Sig
ib̃
, σSigib̃

, σSigcb̃

)
← ENIZK

2

(
crsNIZK, ξNIZK, xb̃ :=

(
vkSig, c̃b̃

)
, πNIZK
b̃

)
.

38



We clearly have
PrH3(WACE) = PrH2(WACE). (3)

Let Vb̃ :=
[
NIZK.Ver

(
crsNIZK, xb̃, π

NIZK
b̃

)
= 1
]
and let BE be the event that (at least) one of the

extractions fail, i.e.,

BE :=
[
(V0 ∧ (x0, w0) /∈ R) ∨ (V1 ∧ (x1, w1) /∈ R)

]
.

If BE occurs, the knowledge extraction of NIZK is broken. To prove this, we define AZK2 as
follows. On input crsNIZK, it emulates an execution of H3, where in ACE.Setup, crsNIZK is used
instead of generating it. When A1 returns (c0, c1, st), AZK2 flips a coin b̃� {0, 1} and returns(
xb̃, π

NIZK
b̃

)
. If the b̃’s extraction fails, AZK2 wins the extraction game. Hence,

PrH3(BE) ≤ 2 · AdvNIZK-ext2
NIZK,AZK2

. (4)

For b̃ ∈ {0, 1}, let BS,b̃ be the event that (xb̃, wb̃) ∈ R and ek sPKEib̃
is not contained in an answer

from OG to A1, and let BS be the union of BS,0 and BS,1. We next show that if BS occurs, the
adversary found a forgery for the signature scheme.

Claim 1. There exists a probabilistic algorithm ASig such that

PrH3(BS) ≤ 2 · AdvSig-EUF-CMA
Sig,ASig

. (5)

Proof of claim. On input vkSig, ASig emulate an execution of H3, where vkSig is used in mskACE

and spACE. Queries (i, sen) by A1 to the oracle OG are answered by executing ACE.Gen (with
FK replaced by U) where σSigi is generated using the signing oracle of ExpSig-EUF-CMA

E,A . After

extracting w0 and w1, ASig flips a coin b̃ � {0, 1} and returns
([

ek sPKEib̃
, vkSigib̃

]
, σSigib̃

)
. If BS,b̃

occurs,
[
ek sPKEib̃

, vkSigib̃

]
was not queried to the signing oracle and (xb̃, wb̃) ∈ R. The latter implies

that σSigib̃ is a valid signature and hence ASig successfully forged a signature. We conclude

PrH3(BS) ≤ 2 ·
(

1

2
PrH3(BS,0) +

1

2
PrH3(BS,1)

)
= 2 · AdvSig-EUF-CMA

Sig,ASig
. ♦

Let H4 be identical to H3 with the difference that we replace for k ∈ {0, 1} and j ∈ J ,
mk,j ← ACE.Dec

(
ACE.Gen(msk , j, rec), c′k

)
by

mk,j ←

{
mk, ek sPKEj = ek sPKEik

for
(
ek sPKEj , dk sPKEj

)
= sPKE.Gen

(
msk sPKE;U([j, 0])

)
,

⊥, else,
(6)

where ek sPKEik
are the extracted keys. Note that if Vk, ¬BE , and ¬BS occur, we have c′k =

San(spsPKE, c̃k), c̃k = sPKE.Enc
(
ek sPKEik

,mk; rk
)
, and ek sPKEik

was generated by OG. Hence,
for j ∈ J with ek sPKEj = ek sPKEik

, we have by the correctness of the sPKE scheme that
ACE.Dec

(
ACE.Gen(msk , j, rec), c′k

)
= mk, i.e., mk,j = mk in both H3 and H4. For other

j ∈ J , decryption only yields a message different from ⊥ if robustness of the sPKE scheme is
violated. Since |J | ≤ qR1 + qR2 , this implies for V := V0 ∩ V1,

PrH3 [WACE | V ∩¬BE∩¬BS ]−PrH4 [WACE | V ∩¬BE∩¬BS ] ≤ 2(qR1 +qR2)AdvsPKE-USROB
sPKE,Arob

, (7)
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where Arob emulates the experiment and outputs one uniformly chosen ciphertext of the ones
decrypted here.8

.

We finally construct an adversary AsPKE against the sanitization security of sPKE. On
input (spsPKE, ek sPKE0 , ek sPKE1 ), AsPKE initializes iq0 , iq1 ← ⊥, kq ← 1, chooses distinct q0, q1 �
{1, . . . , qS1 +qR1 +qD1} uniformly at random, executes

(
vkSig, skSig

)
← Sig.Gen(1κ), and

(
crsNIZK,

ξNIZK
)
← ENIZK

1 (1κ), and gives spACE :=
(
spsPKE, vkSig, crsNIZK

)
to A1. It emulates the oracles

for A1 as follows.

OG(·, ·): On query (i, sen), if kq /∈ {q0, q1} and i /∈ {iq0 , iq1}, generate an encryption key(
vkSig, ek sPKEi , skSigi , σSigi , crsNIZK

)
as H4, where

(
ek sPKEi , dk sPKEi

)
is obtained via OG and

remembered for future queries. If kq = ql or i = iql for some l ∈ {0, 1}, replace ek sPKEi by
ek sPKEl and set iql ← i. In both cases, set kq ← kq + 1 at the end.

On query (j, rec), if kq /∈ {q0, q1} and j /∈ {iq0 , iq1}, obtain a decryption key from OG,
remember it, and set kq ← kq + 1. If kq = ql or j = iql for some l ∈ {0, 1}, then return ⊥
and set kq ← kq + 1.

OSD(·, ·): On query
(
j, c =

(
c̃, πNIZK

))
, if kq /∈ {q0, q1} and j /∈ {iq0 , iq1}, then execute c′ ←

ACE.San(spACE, c), generate a decryption key dkACEj as above, decrypt c′ using dkACEj , and
return the resulting message. If kq = ql or j = iql for some l ∈ {0, 1}, set iql ← j, if
NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 0, return ⊥, otherwise, use the oracle OSDl of

the sPKE-sanitization experiment to obtain a decryption of c̃ and return it. In all cases,
set kq ← kq + 1 at the end.

When A1 returns
(
c0 =

(
c̃0, π

NIZK
0

)
, c1 =

(
c̃1, π

NIZK
1

)
, st
)
, AsPKE verifies the proofs πNIZK0 and

πNIZK
1 and extracts the witnesses to check the events V , BE , and BS . Denote by Q the event that

ek sPKEi0 , ek sPKEi1 ∈ {ek sPKE0 , ek sPKE1 }, where ek sPKEi0 , ek sPKEi1 are the extracted keys. Note that if V ,
¬BE , and ¬BS occur, both ek sPKEi0 and ek sPKEi1 have been returned by OG to A1. This implies

Pr
ExpsPKE-san-CCAsPKE,AsPKE [Q | V ∩ ¬BE ∩ ¬BS ] ≥ 1/(qS1 + qR1 + qD1)2. (8)

If Q, V , ¬BE , and ¬BS occur, AsPKE returns (c̃0, c̃1) to the challenger of the sPKE-sanitization
experiment to obtain the sanitized ciphertext c′

b̃
. It then gives

(
st , c′

b̃

)
to A2 and emulates the

oracles as above. After A2 returned the bit b′, AsPKE returns b′′ ← b′. If Q∩V ∩¬BE ∩¬BS does
not occur, AsPKE runs c̄← sPKE.Enc(ek sPKE0 , m̄) for an arbitrary fixed message m̄ and returns
(c0 := c̄, c1 := c̄) to the challenger. After receiving back a sanitized ciphertext c′

b̃
, it returns a

uniform bit b′′ � {0, 1}.
Let WsPKE be the event that AsPKE wins, i.e.,

WsPKE :=
[
b′′ = b̃ ∧ ∃j, j′ ∈ {0, 1} msPKE

0,j 6= ⊥ 6= msPKE
1,j′ )

)]
,

where the messages refer to the ones generated by ExpsPKE-san-CCA
sPKE,AsPKE

. Note that if Q∩V ∩¬BE∩¬BS
does not occur, we have msPKE

0,0 = msPKE
1,0 = m̄ 6= ⊥ by the correctness of sPKE, and thus

Pr
ExpsPKE-san-CCAsPKE,AsPKE [WsPKE | ¬(Q ∩ V ∩ ¬BE ∩ ¬BS)] =

1

2
. (9)

8Note that robustness is only defined for encryption and decryption keys generated by sPKE.Gen. Hence, it is
important to also condition on ¬BS .
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Next consider the case that Q∩V ∩¬BE ∩¬BS occurs. In this case, the view of A is identical to
the one in H4 with b = b̃, as long as the emulated OG never returns ⊥. Moreover, if A wins, we
have mH4

0,j = mH4
1,j = ⊥ for all j ∈ JH4 , where the messages here refer to the ones in H4, generated

according to (6

.

), and JH4 is the set of all j such that A1 or A2 issued the query (j, rec) to
the oracle OG. Therefore, OG is never gets a query for which it returns ⊥ in this case. The
event Q∩V ∩¬BE implies that the ciphertexts are encryptions of some message under ek sPKE0 or
ek sPKE1 . Correctness of sPKE now implies that msPKE

0,0 6= ⊥ 6= msPKE
1,0 , i.e., the winning condition

for AsPKE is satisfied. We can conclude that

Pr
ExpsPKE-san-CCAsPKE,AsPKE [WsPKE | Q ∩ V ∩ ¬BE ∩ ¬BS ] ≥ PrH4 [WACE | V ∩ ¬BE ∩ ¬BS ]. (10)

Let
pG := Pr

ExpsPKE-san-CCAsPKE,AsPKE [Q ∩ V ∩ ¬BE ∩ ¬BS ].

Putting our results together, we obtain

Pr
ExpsPKE-san-CCAsPKE,AsPKE [WsPKE] = Pr

ExpsPKE-san-CCAsPKE,AsPKE [WsPKE | Q ∩ V ∩ ¬BE ∩ ¬BS ] · pG

+ Pr
ExpsPKE-san-CCAsPKE,AsPKE [WsPKE | ¬(Q ∩ V ∩ ¬BE ∩ ¬BS)] · (1− pG)

(9

.

)
= Pr

ExpsPKE-san-CCAsPKE,AsPKE [WsPKE | Q ∩ V ∩ ¬BE ∩ ¬BS ] · pG +
1

2
(1− pG).

This implies

Pr
ExpsPKE-san-CCAsPKE,AsPKE [WsPKE | Q ∩ V ∩ ¬BE ∩ ¬BS ] =

1

pG

[
Pr

ExpsPKE-san-CCAsPKE,AsPKE [WsPKE]− 1

2
(1− pG)

]
=

1

2 pG
· AdvsPKE-san-CCA

sPKE,AsPKE
+

1

2
.

(11)

Furthermore,

AdvACE-san-CCA
ACE,A = 2 · PrH0 [WACE]− 1

(2

.

),(3

.

)
= 2 ·

(
AdvPRFF,APRF

+ AdvNIZK-ext1
NIZK,AZK1

+ PrH3 [WACE]
)
− 1.

Since BE , ¬BE ∩BS , and ¬BE ∩ ¬BS partition the sample space, the law of total probability
implies

PrH3 [WACE] = PrH3 [WACE ∩BE ] + PrH3 [WACE ∩ ¬BE ∩BS ]

+ PrH3 [WACE ∩ ¬BE ∩ ¬BS ]

≤ PrH3 [BE ] + PrH3 [BS ] + PrH3 [WACE ∩ ¬BE ∩ ¬BS ]

(4

.

),(5

.

)
≤ 2 · AdvNIZK-ext2

NIZK,AZK2
+ 2 · AdvSig-EUF-CMA

Sig,ASig
+ PrH3 [WACE ∩ ¬BE ∩ ¬BS ].

Note that WACE implies c′0 6= ⊥ 6= c′1 and thus also V because if the verification fails, ACE.San
returns ⊥. Hence,

PrH3 [WACE ∩ ¬BE ∩ ¬BS ] = PrH3 [WACE ∩ V ∩ ¬BE ∩ ¬BS ]

= PrH3 [WACE | V ∩ ¬BE ∩ ¬BS ] · PrH3 [V ∩ ¬BE ∩ ¬BS ]

(7

.

)
≤
(

PrH4 [WACE | V ∩ ¬BE ∩ ¬BS ]︸ ︷︷ ︸
(10

.

)
≤ Pr

ExpsPKE-san-CCA
sPKE,AsPKE [WsPKE|Q∩V ∩¬BE∩¬BS ]

+ 2(qR1 + qR2) · AdvsPKE-USROB
sPKE,Arob

)
· PrH3 [V ∩ ¬BE ∩ ¬BS ]

(11

.

)
≤
(

1

2 pG
· AdvsPKE-san-CCA

sPKE,AsPKE
+

1

2
+ 2(qR1 + qR2) · AdvsPKE-USROB

sPKE,Arob

)
· PrH3 [V ∩ ¬BE ∩ ¬BS ].
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Since PrH3 [V ∩ ¬BE ∩ ¬BS ] = Pr
ExpsPKE-san-CCAsPKE,AsPKE [V ∩ ¬BE ∩ ¬BS ], we have

PrH3 [V ∩ ¬BE ∩ ¬BS ]

pG
=

Pr
ExpsPKE-san-CCAsPKE,AsPKE [V ∩ ¬BE ∩ ¬BS ]

Pr
ExpsPKE-san-CCAsPKE,AsPKE [Q ∩ V ∩ ¬BE ∩ ¬BS ]

= 1/
(

Pr
ExpsPKE-san-CCAsPKE,AsPKE [Q | V ∩ ¬BE ∩ ¬BS ]

)
(8

.

)
≤ (qS1 + qR1 + qD1)2.

Therefore,

PrH3 [WACE∩¬BE∩¬BS ] ≤ 1

2
·(qS1+qR1+qD1)2·AdvsPKE-san-CCA

sPKE,AsPKE
+

1

2
+2(qR1+qR2)·AdvsPKE-USROB

sPKE,Arob
.

This implies

AdvACE-san-CCA
ACE,A ≤ 2 · AdvPRFF,APRF

+ 2 · AdvNIZK-ext1
NIZK,AZK1

+ 4 · AdvNIZK-ext2
NIZK,AZK2

+ 4 · AdvSig-EUF-CMA
Sig,ASig

+ (qS1 + qR1 + qD1)2 · AdvsPKE-san-CCA
sPKE,AsPKE

+ 4(qR1 + qR2) · AdvsPKE-USROB
sPKE,Arob

and concludes the proof.

We next prove ciphertext unpredictability, which directly follows from ciphertext unpre-
dictability of the underlying sPKE scheme.

Theorem 6.5. Let ACE be the scheme from above and let A be an attacker on the ciphertext
unpredictability that makes at most q queries to the oracle OG. Then, there exist probabilistic
algorithms APRF and AsPKE (which are both roughly as efficient as emulating an execution of
ExpACE-ctxt-unpred

ACE,A ) such that

AdvACE-ctxt-unpred
ACE,A ≤ AdvPRFF,APRF

+ (q + 1) · AdvsPKE-ctxt-unpred
sPKE,AsPKE

.

Proof. Let H0 := ExpACE-ctxt-unpred
ACE,A and H1 be as H0 where FK is replaced by a truly uniform

random function U . As in the proof of Theorem 6.2

.

, one can show that there exists APRF such
that

PrH0 [b = 1]− PrH1 [b = 1] = AdvPRFF,APRF
.

The adversary AsPKE on input
(
spsPKE, ek sPKE, dk sPKE

)
, sets iq0 ← ⊥, kq ← 1, chooses q0 �

{0, . . . , q} uniformly at random, runs
(
vkSig, skSig

)
← Sig.Gen(1κ), crsNIZK ← NIZK.Gen(1κ),

and gives spACE :=
(
spsPKE, vkSig, crsNIZK

)
to A. It emulates the oracle OG for A1 as fol-

lows. On query (i, t), if kq 6= q0 and i 6= iq0 , then generate an encryption key ekACEi :=(
vkSig, ek sPKEi , vkSigi , skSigi , σSigi , crsNIZK

)
and a decryption key dkACEi := dk sPKEi as H1 does, where(

ek sPKEi , dk sPKEi

)
is obtained via OG and remembered for future queries. Return ekACEi if t = sen,

and dkACEi if t = rec. If kq = q0 or i = iq0 , replace ek sPKEi and dk sPKEi by ek sPKE and dk sPKE,
respectively, and set iq0 ← i. In both cases, set kq ← kq + 1 at the end. When A returns(
m, i, c =

(
c̃, πNIZK

))
, AsPKE returns

(
m, c̃

)
.

Let Q be the event that iq0 = i, or q0 = 0 and A does not make the query (i, sen) or (i, rec)
to OG. Note that the probability of Q is 1/(q + 1) and since b = ACE.DMod

(
spACE,

(
c̃∗, πNIZK

∗)
,(

c̃, πNIZK
))

= 1 if and only if c̃∗ = c̃, we have

Pr
ExpsPKE-ctxt-unpredsPKE,AsPKE [c = c∗ | Q] = PrH1 [b = 1].
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Hence, we can conclude

AdvACE-ctxt-unpred
ACE,A = PrH0

[
b = 1

]
= AdvPRFF,APRF

+ PrH1 [b = 1]

= AdvPRFF,APRF
+ Pr

ExpsPKE-ctxt-unpredsPKE,AsPKE [c = c∗ | Q]

≤ AdvPRFF,APRF
+ (q + 1) · Pr

ExpsPKE-ctxt-unpredsPKE,AsPKE [c = c∗]

= AdvPRFF,APRF
+ (q + 1) · AdvsPKE-ctxt-unpred

sPKE,AsPKE
.

We finally prove the uniform decryption and role-respecting properties.

Theorem 6.6. Let ACE be the scheme from above and let A be an attacker on the uniform-
decryption security that makes at most qR queries of the form (·, rec) to the oracle OG. Then,
there exist probabilistic algorithms APRF, AZK1, AZK2, ASig, and Arob (which are all roughly as
efficient as emulating an execution of ExpACE-URR

ACE,A ) such that

AdvACE-uDec
ACE,A ≤ AdvPRFF,APRF

+ AdvNIZK-ext1
NIZK,AZK1

+ AdvNIZK-ext2
NIZK,AZK2

+ AdvSig-EUF-CMA
Sig,ASig

+ qR · AdvsPKE-USROB
sPKE,Arob

.

Proof. Note that we can assume without loss of generality that A does not use the oracle OE
since obtaining encryption keys from OG does not decrease the advantage. Let H0 := ExpACE-URR

ACE,A
and let WUDec be the event that A wins the uniform-decryption game:

WUDec :=
[
∃j, j′ ∈ J mj 6= ⊥ 6= mj′ ∧ mj 6= mj′

]
.

As in the proof of Theorem 6.4

.

, let H1 be asH0 with FK replaced by a uniform random function U ,
let H2 be as H1 with crsNIZK being generated by ENIZK

1 , and let H3 be as H2, but after A returns
c =

(
c̃, πNIZK

)
, a witness

w :=
(
ek sPKEiw ,mw, rw, vk

Sig
iw
, σSigiw , σ

Sig
c,w

)
for the statement x :=

(
vkSig, c̃

)
is extracted from the proof πNIZK by ENIZK

2 . We define the
events V :=

[
NIZK.Ver

(
crsNIZK, x, πNIZK

)
= 1

]
, BE :=

[
V ∧ (x,w) /∈ R

]
, and BS as the event

that (x,w) ∈ R and ek sPKEiw is not contained in an answer from OG to A. Is can be shown as in
the proof of Theorem 6.4

.

that there exist APRF, AZK1 , AZK2 , and ASig such that

PrH0 [WUDec]− PrH3 [WUDec] = AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
,

PrH3 [BE ] ≤ AdvNIZK-ext2
NIZK,AZK2

,

PrH3 [BS ] ≤ AdvSig-EUF-CMA
Sig,ASig

,

where the last inequality uses that A does not query the oracle OE . Now let H4 be as H3 where
for j ∈ J , mj ← ACE.Dec

(
ACE.Gen(msk , j, rec), c′

)
is replaced by

mj ←

{
mw, ek sPKEj = ek sPKEiw for

(
ek sPKEj , dk sPKEj

)
= sPKE.Gen

(
msk sPKE;U([j, 0])

)
,

⊥, else.

One can show as in the proof of Theorem 6.4

.

that there exists a probabilistic algorithm Arob

such that

PrH3 [WUDec | V ∩ ¬BE ∩ ¬BS ]− PrH4 [WUDec | V ∩ ¬BE ∩ ¬BS ] ≤ qR · AdvsPKE-USROB
sPKE,Arob

.
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Note that A cannot win in H4 since if mj 6= ⊥ 6= mj′ , then mj = mw = mj′ . This implies that
PrH3 [WUDec | V ∩¬BE ∩¬BS ] ≤ qR AdvsPKE-USROB

sPKE,Arob
. Note that A can only win in H3 if V occurs

since otherwise c′ = ⊥ and consequently mj = ⊥ for all j ∈ J . We therefore obtain

PrH3 [WUDec] = PrH3 [WUDec ∩ V ∩BE ] + PrH3 [WUDec ∩ V ∩ ¬BE ∩BS ]

+ PrH3 [WUDec ∩ V ∩ ¬BE ∩ ¬BS ]

≤ PrH3 [BE ] + PrH3 [BS ] + PrH3 [WUDec | V ∩ ¬BE ∩ ¬BS ]

≤ AdvNIZK-ext2
NIZK,AZK2

+ AdvSig-EUF-CMA
Sig,ASig

+ qR · AdvsPKE-USROB
sPKE,Arob

.

Together with PrH0 [WUDec] − PrH3 [WUDec] = AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
, this concludes the

proof.

Theorem 6.7. Let ACE be the scheme from above and let A be an attacker on the role-respecting
security that makes at most qS queries of the form (·, sen) and at most qR queries of the form
(·, rec) to the oracle OG, and at most qE queries to the oracle OE. Then, there exist probabilistic
algorithms APRF, AZK1 , AZK2 , ASig, and Arob (which are all roughly as efficient as emulating an
execution of ExpACE-URR

ACE,A ) such that

AdvACE-RR
ACE,A ≤ AdvPRFF,APRF

+ AdvNIZK-ext1
NIZK,AZK1

+ AdvNIZK-ext2
NIZK,AZK2

+ (qE + 1) · AdvSig-EUF-CMA
Sig,ASig

+ qR · AdvsPKE-USROB
sPKE,Arob

+ (qS + qR + qE)2 · ColeksPKE.

Proof. Let H0, . . . ,H4, V :=
[
NIZK.Ver

(
crsNIZK, x, πNIZK

)
= 1
]
, and BE :=

[
V ∧ (x,w) /∈ R

]
for

the statement x :=
(
vkSig, c̃

)
and the extracted witness w :=

(
ek sPKEiw ,mw, rw, vk

Sig
iw
, σSigiw , σ

Sig
c,w

)
be

defined as in the proof of Theorem 6.6

.

, and let WRR be the event that A wins the role-respecting
game:

WRR :=
[
c′ 6= ⊥ ∧ dct = false ∧ ¬

(
∃i ∈ I ∀j ∈ J (mj 6= ⊥ ↔ P (i, j) = 1)

)]
.

As in that proof, there exist APRF, AZK1 , and AZK2 such that

PrH0 [WRR]− PrH3 [WRR] = AdvPRFF,APRF
+ AdvNIZK-ext1

NIZK,AZK1
, (12)

and
PrH3 [BE ] ≤ AdvNIZK-ext2

NIZK,AZK2
. (13)

Let EG be the event that the extracted key ek sPKEiw is contained in an answer from OG to A. One
can show similarly as in the proof of Theorem 6.4

.

that there exists an algorithm Arob such that

PrH3 [WRR ∩ V ∩ ¬BE ∩ EG]− PrH4 [WRR ∩ V ∩ ¬BE ∩ EG] ≤ qR · AdvsPKE-USROB
sPKE,Arob

. (14)

We first show that if V , ¬BE , and EG occur in H4, A can only win if two encryption keys
generated by sPKE.Gen are equal, which happens only with small probability.

Claim 1. We have

PrH4 [WRR ∩ V ∩ ¬BE ∩ EG] ≤ (qS + qR + qE)2 · ColeksPKE.
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Proof of claim. If V , ¬BE , and EG occur, then there is an i0 ∈ I such that ek sPKEi0 = ek sPKEiw for(
ek sPKEi0 , dk sPKEi0

)
= sPKE.Gen

(
msk sPKE;U([i0, 0])

)
. Using P (i, j) = 1 ↔ i = j, we have that A

only wins if there exists j ∈ J\{i0} such thatmj 6= ⊥ or if i0 ∈ J andmi0 = ⊥. Because inH4,mj

for j ∈ J is equal to mw if ek sPKEj = ek sPKEiw for
(
ek sPKEj , dk sPKEj

)
= sPKE.Gen

(
msk sPKE;U([j, 0])

)
,

and ⊥ otherwise, we have mi0 6= ⊥ if i0 ∈ J . Moreover, for i0 6= j ∈ J , we have mj = ⊥ unless
ek sPKEj = ek sPKEi0 . This means that A can only win if sPKE.Gen generates the same encryption key
for the randomness values U([i0, 0] and U([j, 0] for some i0 6= j ∈ J . Since at most qS + qR + qE
key pairs are generated in the experiment, there are at most (qS + qR + qE)2 pairs of encryption
keys that could collide. For each such pair, the collision probability is bounded by ColeksPKE
because for i 6= i′, U([i, 0]) and U([i′, 0]) are independent and uniformly distributed. Hence, the
claim follows. ♦

Now let EE be the event that A made a query (i, ·) to OE such that ek sPKEi = ek sPKEiw

and vkSigi = vkSigiw for
(
ek sPKEi , dk sPKEi

)
= sPKE.Gen

(
msk sPKE;U([i, 0])

)
and

(
vkSigi , skSigi

)
=

Sig.Gen
(
1κ;U([i, 1])

)
. We next show that if A wins and V ∩ ¬BE ∩ ¬EG ∩ EE occurs, A forged

a signature on c̃.

Claim 2. There exists a probabilistic algorithm ASig1 such that

PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG ∩ EE ] ≤ qE · AdvSig-EUF-CMA
Sig,ASig1

.

Proof of claim. The algorithm ASig1 on input vkSig∗, initializes iq0 ← ⊥, kq ← 1, chooses q0 �
{1, . . . , qE} uniformly at random, generates

(
spsPKE,msk sPKE

)
← sPKE.Setup(1κ),

(
vkSig, skSig

)
←

Sig.Gen(1κ), and
(
crsNIZK, ξNIZK

)
← ENIZK

1 (1κ) as H3, and gives spACE :=
(
spsPKE, vkSig, crsNIZK

)
to A. It emulates the oracles for A as follows.

OG(·, ·): Generate the requested key exactly as H3 does and return it.

OE(·, ·): On query
(
i,m

)
, if kq 6= q0 and i 6= iq0 , generate an encryption key ekACEi as H3, encrypt

m using ekACEi , and return the resulting ciphertext. If kq = q0 or i = iq0 , set iq0 ← i, execute(
ek sPKEi , dk sPKEi

)
← sPKE.Gen

(
msk sPKE;U([i, 0])

)
, σSigi ← Sig.Sign

(
skSig,

[
ek sPKEi , vkSigi

]
;

U([i, 2])
)
, and set vkSigi := vkSig

∗. Then, sample randomness r and compute c̃ ←
sPKE.Enc

(
ek sPKEi ,m; r

)
, query the signing oracle on c̃ to obtain a signature σSigc , and

run

πNIZK ← NIZK.Prove
(
crsNIZK, x :=

(
vkSig, c̃

)
, w :=

(
ek sPKEi ,m, r, vkSigi , σSigi , σSigc

))
.

Finally, return the ciphertext c :=
(
c̃, πNIZK

)
. In all cases, set kq ← kq + 1 at the end.

When A returns c =
(
c̃, πNIZK

)
, ASig1 extracts a witness

w :=
(
ek sPKEiw ,mw, rw, vk

Sig
iw
, σSigiw , σ

Sig
c,w

)
← ENIZK

2

(
crsNIZK, ξNIZK, x :=

(
vkSig, c̃

)
, πNIZK

)
.

It finally returns the forgery attempt
(
c̃, σSigc,w

)
.

Note that if A wins the role-respecting game, ACE.DMod
(
spACE, ĉ, c

)
= 0 for all ĉ that OE

has returned. Since ACE.DMod checks for equality of sPKE ciphertexts, this means that ASig1
has not issued the query c̃ to its signing oracle. Furthermore, if the extraction and verification
succeed, σSigc,w is a valid signature for c̃. Let Q be the event that ek sPKEiq0

= ek sPKEiw and vkSigiq0
= vkSigiw .
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If Q and V ∩ ¬BE ∩ ¬EG ∩ EE occur, A has not requested ekACEiq0
from OG and hence ASig1

perfectly emulates H3. This implies

Pr
ExpSig-EUF-CMA

Sig,ASig1 [WSig | V ∩ ¬BE ∩ ¬EG ∩ EE ∩Q] ≥ PrH3 [WRR | V ∩ ¬BE ∩ ¬EG ∩ EE ],

where WSig denotes the event that ASig1 wins in the signature forgery game. We further have

Pr
ExpSig-EUF-CMA

Sig,ASig1 [Q | V ∩ ¬BE ∩ ¬EG ∩ EE ] = 1/qE .

This implies for pG := Pr
ExpSig-EUF-CMA

Sig,ASig1 [V ∩ ¬BE ∩ ¬EG ∩ EE ∩Q],

AdvSig-EUF-CMA
Sig,ASig1

= Pr
ExpSig-EUF-CMA

Sig,ASig1 [WSig] ≥ Pr
ExpSig-EUF-CMA

Sig,ASig1 [WSig | V ∩ ¬BE ∩ ¬EG ∩ EE ∩Q] · pG

≥ PrH3 [WRR | V ∩ ¬BE ∩ ¬EG ∩ EE ] · pG
= PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG ∩ EE ] · pG

PrH3 [V ∩ ¬BE ∩ ¬EG ∩ EE ]
.

Since [V ∩ ¬BE ∩ ¬EG ∩ EE ] in H3 has the same probability as in ExpSig-EUF-CMA
Sig,ASig1

, we have

pG

PrH3 [V ∩ ¬BE ∩ ¬EG ∩ EE ]
= Pr

ExpSig-EUF-CMA
Sig,ASig1 [Q | V ∩ ¬BE ∩ ¬EG ∩ EE ] =

1

qE
,

which implies the claim. ♦

Finally, we show that if A wins and V ∩ ¬BE ∩ ¬EG ∩ ¬EE occurs, A forged a signature on[
ek sPKEiw , vkSigiw

]
.

Claim 3. There exists a probabilistic algorithm ASig2 such that

PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG ∩ ¬EE ] ≤ AdvSig-EUF-CMA
Sig,ASig2

.

Proof of claim. The algorithmASig2 on input vkSig∗ executes
(
spsPKE,msk sPKE

)
← sPKE.Setup(1κ)

and
(
crsNIZK, ξNIZK

)
← ENIZK

1 (1κ), and gives spACE :=
(
spsPKE, vkSig

∗
, crsNIZK

)
to A. It emulates

the oracles for A as follows.

OG(·, ·): Generate the requested key as H3, but obtain the signature σSigi via a query to the
signing oracle. Remember the signature and when asked again for the same i, reuse σSigi
instead of issuing another query. This ensures that the oracle behaves as the one in H3

and returns the same key for repeated queries.

OE(·, ·): On query
(
i,m

)
, generate an encryption key as for a query (i, sen) to OG, encrypt m

using that key, and return the resulting ciphertext.

When A returns c =
(
c̃, πNIZK

)
, ASig1 extracts a witness

w :=
(
ek sPKEiw ,mw, rw, vk

Sig
iw
, σSigiw , σ

Sig
c,w

)
← ENIZK

2

(
crsNIZK, ξNIZK, x :=

(
vkSig, c̃

)
, πNIZK

)
.

It finally returns the forgery attempt
([
ek sPKEiw , vkSigiw

]
, σSigiw

)
. Note that if WRR ∩ V ∩ ¬BE ∩

¬EG ∩ ¬EE occurs, σSigiw is a valid signature for
[
ek sPKEiw , vkSigiw

]
and ASig2 has not requested a

signature for this value from the signing oracle. Therefore, ASig2 wins the forgery game and thus
the probability of that event is bounded by AdvSig-EUF-CMA

Sig,ASig2
. ♦
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Combining Claims 2

.

and 3

.

, we obtain

PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG] ≤ qE · AdvSig-EUF-CMA
Sig,ASig1

+ AdvSig-EUF-CMA
Sig,ASig2

.

Let ASig be the algorithm that runs ASig1 with probability qE
qE+1 and ASig2 with probability 1

qE+1 .
We then have

AdvSig-EUF-CMA
Sig,ASig

=
qE

qE + 1
· AdvSig-EUF-CMA

Sig,ASig1
+

1

qE + 1
· AdvSig-EUF-CMA

Sig,ASig2

≥ 1

qE + 1
· PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG].

(15)

Note that WRR implies c′ 6= ⊥ and therefore V , i.e., the events WRR and WRR ∩ V are equal.
Thus,

PrH3 [WRR] = PrH3 [WRR ∩BE ] + PrH3 [WRR ∩ V ∩ ¬BE ∩ EG] + PrH3 [WRR ∩ V ∩ ¬BE ∩ ¬EG]

(13

.

),(14

.

),(15

.

)
≤ AdvNIZK-ext2

NIZK,AZK2
+ qR · AdvsPKE-USROB

sPKE,Arob
+ PrH4 [WRR ∩ V ∩ ¬BE ∩ EG]

+ (qE + 1) · AdvSig-EUF-CMA
Sig,ASig

.

Combined with Claim 1

.

and equation (12)

.

, this concludes the proof.

6.2 Lifting Equality to Disjunction of Equalities

We finally show how an ACE scheme for equality, as the one from Section 6.1

.

, can be used to
construct a scheme for the policy PDEq : D` ×D` → {0, 1} with

PDEq

(
x = (x1, . . . , x`),y = (y1, . . . , y`)

)
= 1 :⇐⇒

∨̀
i=1

xi = yi,

where D is some finite set and ` ∈ N.9

.

This policy can for example be used to implement
the no read-up and now write-down principle (P (i, j) = 1 ⇔ i ≤ j) from the Bell–LaPadula
model [BL73

.

] via an appropriate encoding of the roles [FGKO17

.

].
The intuition of our construction is as follows. A key for a role x = (x1, . . . , x`) contains

one key of the ACE scheme for equality for each component xi of the role vector. To encrypt a
message, this message is encrypted with each of these keys. To decrypt, one tries to decrypt each
ciphertext component with the corresponding key. If at least one component of the sender and
receiver roles match (i.e., if the policy is satisfied), one of the decryptions is successful. So far, the
construction is identical to the one by Fuchsbauer et al. [FGKO17

.

]. This construction is, however,
not role-respecting, since a dishonest sender with keys for more than one role can arbitrarily mix
the components of the keys for the encryption. Moreover, the construction does not guarantee
uniform decryption, because different messages can be encrypted in different components. We fix
these issues using the same techniques we used in our construction of the scheme for equality, i.e.,
we add a signature of the key vector to the encryption keys, sign the ciphertexts, and require a
zero-knowledge proof that a valid key combination was used to encrypt the same message for
each component and that all signatures a valid.

9In this section, we denote roles by x and y instead of i and j. To be compatible with our definitions that
consider policies [n]× [n]→ {0, 1}, one needs to identify elements of D` with numbers in [n]. We will ignore this
technicality to simplify the presentation.
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Our construction. Let ACE= be an ACE with modification detection scheme for the equality
predicate on D× [`], let Sig be a signature scheme, let F be a PRF, and let NIZK be a NIZK proof
of knowledge system for the language L := {x | ∃w (x,w) ∈ R}, where the relation R is defined as
follows: for x =

(
vkSig, c1, . . . , c`

)
and w =

(
ekACE=

(x1,1), . . . , ek
ACE=

(x`,`)
,m, r1, . . . , r`, vk

Sig
x , σSigx , σSigc

)
,

(x,w) ∈ R if and only if

∧̀
i=1

ci = ACE=.Enc
(
ekACE=

(xi,i)
,m; ri

)
∧ Sig.Ver

(
vkSigx , [c1, . . . , c`], σ

Sig
c

)
= 1

∧ Sig.Ver
(
vkSig,

[
ekACE=

(x1,1), . . . , ek
ACE=

(x`,`)
, vkSigx

]
, σSigx

)
= 1

We define an ACE scheme ACEDEq as follows:

Setup: On input a security parameter 1κ and the policy PDEq, the algorithm ACEDEq.Setup
picks a random key K for F and runs(

mskACE= , spACE=
)
← ACE=.Setup(1κ),(

vkSig, skSig
)
← Sig.Gen(1κ),

crsNIZK ← NIZK.Gen(1κ).

It outputs the master secret key mskACEDEq :=
(
K,mskACE= , vkSig, skSig, crsNIZK

)
and the

sanitizer parameters spACEDEq :=
(
spACE= , vkSig, crsNIZK

)
.

Key Generation: The algorithm ACEDEq.Gen on input a master secret key mskACEDEq =(
K,mskACE= , vkSig, skSig, crsNIZK

)
, a role x ∈ D`, and the type sen, generates

ekACE=

(xi,i)
← ACE=.Gen

(
mskACE= , (xi, i), sen

)
(for i ∈ [`]),(

vkSigx , skSigx

)
← Gen(1κ;FK([(x1, 1), 0])),

σSigx ← Sig.Sign
(
skSig,

[
ekACE=

(x1,1), . . . , ek
ACE=

(x`,`)
, vkSigx

]
;FK([(x1, 1), 1])

)
,

and outputs the encryption key ek
ACEDEq
x :=

(
vkSig, ekACE=

(x1,1), . . . , ek
ACE=

(x`,`)
, vkSigx , skSigx , σSigx ,

crsNIZK
)
; on input mskACEDEq , a role y ∈ D`, and the type rec, it generates for i ∈ [`],

dkACE=

(yi,i)
← ACE=.Gen

(
mskACE= , (yi, i), rec

)
,

and outputs the decryption key dk
ACEDEq
y :=

(
dkACE=

(y1,1) , . . . , dk
ACE=

(y`,`)

)
.

Encrypt: On input an encryption key ek
ACEDEq
x =

(
vkSig, ekACE=

(x1,1), . . . , ek
ACE=

(x`,`)
, vkSigx , skSigx , σSigx ,

crsNIZK
)
and a message m ∈ MACEDEq , the algorithm ACEDEq.Enc samples randomness

r1, . . . , r` and computes

ci ← ACE=.Enc
(
ekACE=

(xi,i)
,m; ri

)
(for i ∈ [`]),

σSigc ← Sig.Sign
(
skSigx , [c1, . . . , c`]

)
,

πNIZK ← NIZK.Prove
(
crsNIZK, x :=

(
vkSig, c1, . . . , c`

)
,

w :=
(
ekACE=

(x1,1), . . . , ek
ACE=

(x`,`)
,m, r1, . . . , r`, vk

Sig
x , σSigx , σSigc

))
.

It outputs the ciphertext c :=
(
c1, . . . , c`, π

NIZK
)
.
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Sanitizer: On input sanitizer parameters spACEDEq =
(
spACE= , vkSig, crsNIZK

)
and a ciphertext

c =
(
c1, . . . , c`, π

NIZK
)
, the algorithm ACEDEq.San first checks whether NIZK.Ver

(
crsNIZK,

x :=
(
vkSig, c1, . . . , c`

)
, πNIZK

)
= 1. If this is the case, it runs c′i ← ACE=.San

(
ci
)
for

i ∈ [`]. If c′i 6= ⊥ for all i ∈ [`], it outputs the sanitized ciphertext c′ :=
(
c′1, . . . , c

′
`

)
. If the

verification fails or any of the sanitized ciphertexts is ⊥, it outputs ⊥.

Decrypt: On input a decryption key dk
ACEDEq
y =

(
dkACE=

(y1,1) , . . . , dk
ACE=

(y`,`)

)
and a sanitized ci-

phertext c′ :=
(
c′1, . . . , c

′
`

)
, the algorithm ACEDEq.Dec computes for i ∈ [`] the message

mi ← ACE=.Dec
(
dkACE=

i , c′i
)
. If mi 6= ⊥ for some i ∈ [`], ACEDEq.Dec outputs the first

such mi; otherwise it outputs ⊥.
Modification detection: On input sanitizer parameters spACEDEq :=

(
spACE= , vkSig, crsNIZK

)
and two ciphertexts c =

(
c1, . . . , c`, π

NIZK
)
and c̃ :=

(
c̃1, . . . , c̃`, π̃

NIZK
)
, the algorithm

ACEDEq.DMod checks for i ∈ [`] whether ACE=.DMod
(
spACE= , ci, c̃i

)
= 1. If this is the

case for some i ∈ [`], it outputs 1; otherwise, it outputs 0.

Weak and strong anonymity. As we show below, our scheme enjoys weak anonymity. It is
easy to see that it does not have strong anonymity: Given a decryption key for the role (1, 2), one
can decrypt ciphertexts encrypted under a key for the roles (1, 1) and (2, 2). One does, however,
also learn which of the two components decrypted successfully. If it is the first one, the sender
role must be (1, 1), if it is the second one, the sender role must be (2, 2).

A similar construction can be used to achieve strong anonymity for less expressive policies:
If a sender role still corresponds to a vector (x1, . . . , x`) ∈ D` but a receiver role only to one
component (j, y) ∈ [`] × D, one can consider the policy that allows to receive if xj = y. Now,
we do not need several components for the decryption key and the problem sketched above
disappears.

Theorem 6.8 (Informal). The lifted ACE scheme is secure, i.e., all efficient adversaries have
only negligible advantage in breaking the privacy, (weak) anonymity, sanitization, role-respecting,
uniform decryption, or ciphertext-unpredictability properties, if the underlying ACE scheme for
equality is secure, the signature scheme is unforgeable, the proof system provides zero-knowledge
and extractability, and if the function F is pseudo-random.

We first show that privacy and weak anonymity of the scheme follow from the corresponding
properties of the underlying scheme for equality and the zero-knowledge property of the NIZK.
Note that security of the PRF is not needed for this step since it is only used for the signatures,
which are irrelevant here.

Theorem 6.9. Let ACEDEq, be the scheme from above, let A = (A1,A2) be a probabilistic
algorithm. Then, there exist probabilistic algorithms APRF, AZK, AACE, A′PRF, A′ZK, and A′ACE
(which are all roughly as efficient as emulating an execution of ExpACE-privAnon-CCA

ACEDEq,A ) such that

AdvACE-priv-CCA
ACEDEq,A = 2 · AdvNIZK-ZK

NIZK,AZK
+ ` · AdvACE-priv-CCA

ACE=,AACE
,

AdvACE-wAnon-CCA
ACEDEq,A = 2 · AdvNIZK-ZK

NIZK,A′ZK
+ ` · AdvACE-wAnon-CCA

ACE=,A′ACE
.

Proof. We only prove the statement about the privacy advantage. The proof for weak anonymity
is completely analogous. We assume without loss of generality that A ensures x0 = x1
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and P (x0,y) = 0 for all y ∈ J , since doing otherwise can only decrease the privacy ad-
vantage. Let H0 := ExpACE-privAnon-CCA

ACEDEq,A and let H1 be as H0 where we replace crsNIZK ←
NIZK.Gen(1κ) by

(
crsNIZK, τNIZK

)
← SNIZK

1 (1κ) in ACEDEq.Setup, and for the generation of
the challenge ciphertext c∗, we replace πNIZK ← NIZK.Prove

(
crsNIZK, x, w

)
in ACEDEq.Enc by

πNIZK ← SNIZK
2

(
crsNIZK, τNIZK, x

)
. It can be shown as in the proof of Theorem 6.2

.

that there
exist probabilistic algorithms APRF and AZK such that

PrH0(b′ = b)− PrH1(b′ = b) = AdvNIZK-ZK
NIZK,AZK

. (16)

For k ∈ {0, . . . , `}, we define H2,k as follows. It is identical to H1 except that after A returns
(m0,m1,x

0,x1, st), we replace the ciphertext components in c∗

ci ← ACE=.Enc
(
ekACE=

(x0i ,i)
,m0; ri

)
(for 1 ≤ i ≤ k),

ci ← ACE=.Enc
(
ekACE=

(x1i ,i)
,m1; ri

)
(for k < i ≤ `).

Note that H2,0 corresponds to H1 with b = 1 and H2,` corresponds to H1 with b = 0. Now
consider the adversary AACE that on input sp chooses k0 � {1, . . . , `} uniformly at random and
emulates an execution of H1. It emulates the oracle OG by obtaining all the required sub-keys
from its own oracle OG. To emulate the oracle OSD, it first checks the NIZK proof as ACEDEq.San
and if the verification succeeds, it uses its oracle OSD to sanitize and decrypt all ciphertext
components. As ACEDEq.Dec, it outputs the first message different from ⊥, or ⊥ if no such
message exists.

When A returns (m0,m1,x
0,x1, st), AACE generates the challenge ciphertext c∗ by encrypting

m0 under the key ekACE=

(x0i ,i)
to obtain ci for 1 ≤ i < k0, and by encrypting m1 under the key

ekACE=

(x1i ,i)
for k0 < i ≤ `, where these keys can obtain from OG without changing the advantage.

For the k0-th component, it returns
(
m0,m1, x

0
k0
, x1

k0

)
to the challenger and uses the obtained

challenge ciphertext as ck0 . It then proceeds with the emulation of H1. It emulates the oracle
OG as above and the oracle OSD∗ as OSD with the difference that if its own oracle returns test
for any of the components, it returns test as well. Finally, when A2 returns b′, AACE returns
b′′ ← b′. Note that if b = 0 or b = 1, AACE perfectly emulates an execution of H2,k0 or H2,k0−1,
respectively. Further note that since A by assumption does not query OG on a decryption key
for any y with P (x0,y) = 1, AACE also does not ask for a decryption that could decrypt the
challenger ciphertext. Hence, AACE wins if b′′ = b and we have

AdvACE-priv-CCA
ACE=,AACE

= 2 · Pr
ExpACE-privAnon-CCAACE=,AACE [b′′ = b]− 1

= Pr
ExpACE-privAnon-CCAACE=,AACE [b′′ = 1 | b = 1]− Pr

ExpACE-privAnon-CCAACE=,AACE [b′′ = 1 | b = 0]

=
∑̀
k=1

1

`
PrH2,k−1 [b′ = 1]−

∑̀
k=1

1

`
PrH2,k [b′ = 1]

=
(
PrH2,0 [b′ = 1]− PrH2,` [b′ = 1]

)
/`

=
(
PrH1 [b′ = 1 | b = 1]− PrH1 [b′ = 1 | b = 0]

)
/`.

We therefore have that 2 ·PrH1 [b′ = 1]−1 = ` ·AdvACE-priv-CCA
ACE=,AACE

. Combining this with equation (16)

.

concludes the proof.
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Next, we prove sanitization security, which directly follows from the sanitization security of
the underlying scheme for equality.

Theorem 6.10. Let ACEDEq, be the scheme from above and let A = (A1,A2) be an attacker on
the the sanitization security. Then, there exists a probabilistic algorithm A′ (which is roughly as
efficient as emulating an execution of ExpACE-san-CCA

ACEDEq,A ) such that

AdvACE-san-CCA
ACEDEq,A ≤ ` · AdvACE-san-CCA

ACE=,A′ .

Proof. For k ∈ {0, . . . , `}, we define the hybrid Hk as follows. It is identical to ExpACE-san-CCA
ACEDEq,A

until A1 returns c0 =
(
c0

1, . . . , c
0
` , π

NIZK
0

)
, c1 =

(
c1

1, . . . , c
1
` , π

NIZK
1

)
, and st . Then, c′0 and c′1 are

obtained as before by sanitizing the given ciphertexts, but A2 instead of c′b receives
(
c′1, . . . , c

′
`

)
with c′i ← ACE=.San

(
c0
i

)
for 1 ≤ i ≤ k and c′i ← ACE=.San

(
c1
i

)
for k < i ≤ `. Note that H0 is

equal to ExpACE-san-CCA
ACEDEq,A with b = 1 if c′1 6= ⊥, and H` is equal to ExpACE-san-CCA

ACEDEq,A with b = 0 if
c′0 6= ⊥.

Now consider the adversary A′ that on input spACE= chooses k0 � {1, . . . `} uniformly at
random and emulates an execution of ExpACE-san-CCA

ACEDEq,A . The oracle queries by A are answered using
the oracles of A′. It gives the sanitized ciphertext

(
c′1, . . . , c

′
`

)
to A2 where c′i ← ACE=.San

(
c0
i

)
for 1 ≤ i < k0, c′i ← ACE=.San

(
c1
i

)
for k0 < i ≤ `, and c′k0 is obtained from the challenger by

submitting
(
c0
k0
, c1
k0

)
. When A2 returns a bit b′, A′ returns b′′ ← b′. Note that if b = 0, A′

perfectly emulates Hk0 , and if b = 1, A′ perfectly emulates Hk0−1. Further note that if A wins,
then c′0 6= ⊥ 6= c′1 and m0,y = m1,y = ⊥ for all y ∈ J . Since a sanitized ciphertext is only not ⊥
if all components do not sanitize to ⊥, and a message is ⊥ if all components are, this means that
the ciphertext components submitted by A′ also satisfy the winning condition if the ciphertexts
from A do. Hence, we can conclude that AdvACE-san-CCA

ACEDEq,A ≤ ` · AdvACE-san-CCA
ACE=,A′ .

Ciphertext unpredictability directly follows from ciphertext unpredictability of the underlying
ACE scheme.

Theorem 6.11. Let ACEDEq, be the scheme from above and let A be an attacker on the the
ciphertext unpredictability. Then, there exists a probabilistic algorithm A′ (which is roughly as
efficient as emulating an execution of ExpACE-ctxt-unpred

ACEDEq,A ) such that

AdvACE-ctxt-unpred
ACEDEq,A ≤ ` · AdvACE-ctxt-unpred

ACE=,A′ .

Proof. Let A′ emulate an execution of ExpACE-ctxt-unpred
ACEDEq,A , using OG to answer oracle queries from A.

When A returns
(
m,x, c =

(
c1, . . . , c`, π

NIZK
))
, A′ chooses k � {1, . . . , `} uniformly at random,

and returns
(
m, (xk, k), ck

)
. If A wins, c is detected as a modification of a fresh encryption

of m under x. Since encryption and modification detection are defined component-wise, this
means that there exists a component k0 such that ck0 is detected to be a modification of a fresh
encryption of m under (xk0 , k0). Hence, A′ also wins if additionally k = k0, which happens with
probability 1/`.

We finally prove role-respecting and uniform decryption security.

Theorem 6.12. Let ACEDEq, be the scheme from above and let A be a probabilistic algorithm
that makes at most at most qE queries to the oracle OE. Then, there exist probabilistic algorithms
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APRF, AZK1 , AZK2 , ASig, and AACE (which are all roughly as efficient as emulating an execution
of ExpACE-URR

ACEDEq,A) such that

AdvACE-RR
ACEDEq,A + AdvACE-uDec

ACEDEq,A ≤ 2 · AdvPRFF,APRF
+ 2 · AdvNIZK-ext1

NIZK,AZK1
+ 2 · AdvNIZK-ext2

NIZK,AZK2

+ 2(qE + 1) · AdvSig-EUF-CMA
Sig,ASig

+ 2` ·
(
AdvACE-RR

ACE=,AACE
+ AdvACE-uDec

ACE=,AACE

)
.

Proof Sketch. As in the proof of Theorem 6.7

.

, we define hybrids H0 := ExpACE-URR
ACEDEq,A, H1 as H0

where FK is replaced by a uniform random function U , H2 as H1 where crsNIZK is generated
by ENIZK

1 , H3 as H2 where a witness w =
(
ekACE=

(x1,1), . . . , ek
ACE=

(x`,`)
,m, r1, . . . , r`, vk

Sig
x , σSigx , σSigc

)
is

extracted from πNIZK by ENIZK
2 after A returned c :=

(
c1, . . . , c`, π

NIZK
)
. We can bound the

probability that no valid witness is extracted even though πNIZK is a valid proof by the knowledge
extraction advantage of a suitable adversary, and the probability that a valid witness was
extracted and the contained encryption key was not obtained via an oracle call by the signature
forgery advantage of another adversary as in the proof of Theorem 6.7

.

. If these events do not
occur, the ciphertext c is an encryption of the message m under a valid key that was returned by
OG. Hence, A can in this case only win the role-respecting game or the uniform decryption game
if some ciphertext component violates one of these properties. We can construct an adversary
AACE that emulates the execution, guesses this component, and uses the corresponding ciphertext
component to win the game for the underlying scheme for equality.

7 Conclusion and Directions for Future Work

In this paper, we have critically revisited existing notions for access control encryption, proposed
stronger security definitions, and presented a new scheme that provably achieves our strong
requirements. The need for stronger notions is not only a theoretical one as we have shown: In
particular, we have described a practical attack based on the observation that a semi-honest
sanititzer might leak an unsanitized ciphertext to a dishonest party.

An important question is whether all realistic attacks are excluded by our definitions. Further-
more, we would like to understand the fundamental limits of ACE. This includes investigating in
which scenarios it can or cannot be used. To settle these questions, the authors are currently
working on a theoretical model to capture the use case of ACE in a simulation-based framework.
Another interesting research direction is to find more efficient schemes for useful policies.

A Standard Cryptographic Primitives and Games

A.1 Pseudorandom Functions

Definition A.1. For κ ∈ N, let Kκ, Xκ, and Yκ be finite sets and let Fκ : Kκ × Xκ → Yκ be
a function. For K ∈ Kκ, we use the notation FK := Fκ(K, ·). Further let A be a probabilistic
algorithm and consider the experiment in which A outputs a bit after interacting with an oracle
that either corresponds to FK for a uniformly chosen K ∈ Kκ, or to a uniformly chosen function
U : Xκ → Yκ. We define the pseudorandom function advantage of A as

AdvPRFF,A := Pr
[
AFK(·)(1κ) = 1

]
− Pr

[
AU(·)(1κ) = 1

]
,

where the first probability is over the random coins of A and the choice of K, and the second
probability is over the random coins of A and the choice of U .
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Experiment ExpPKE-IND-CPA
E,A

Input: 1κ

(ek , dk)← Gen(1κ)
(m0,m1, st)← A1(ek)
b� {0, 1}
c∗ ← Enc(ek ,mb)
b′ ← A2(st , c∗)

Experiment ExpSig-EUF-CMA
E,A

Input: 1κ

(vk , sk)← Gen(1κ)
(m,σ)← ASign(sk,·)(vk)

Figure 4: Experiments for the security definitions of public-key encryption and digital signature
schemes.

A.2 Decisional Diffie-Hellman

Definition A.2. Let G = 〈g〉 be a prime-order group of order q and let g be its generator. Let A
be an adversary that on input q, g, and three elements X,Y, T ∈ G returns a bit d. Let DDHreal

A,g,q
be the experiment where A is given two random group elements X = ga, Y = gb, and the value
T = gab. Let DDHrand

A,g,q be the experiment where A is given three random group elements X = ga,
Y = gb, and T = gc. We define the decisional Diffie-Hellman (DDH) advantage of A as

AdvDDH
A,g,q := PrDDHreal

A,g,q [d = 1]− PrDDHrand
A,g,q [d = 1].

A.3 Public-Key Encryption

Definition A.3. A public-key encryption (PKE) scheme consist of the following three PPT
algorithms:

Key Generation: The algorithm Gen on input a security parameter 1κ, outputs a public key ek
and a private key dk .

Encryption: The algorithm Enc on input a public key ek and a message m ∈ M, outputs a
ciphertext c.

Decryption: The algorithm Dec on input a private key dk and a ciphertext c, outputs a message
m ∈M∪ {⊥}.

We require for all (ek , dk) in the range of Gen and all m ∈M that

Dec
(
dk ,Enc(ek ,m)

)
= m

with probability 1.

Definition A.4. Let E = (Gen,Enc,Dec) be a PKE scheme and let A = (A1,A2) be a pair of
probabilistic algorithm.s Consider the experiment ExpPKE-IND-CPA

E,A in Figure 4

.

. We define the
ciphertext indistinguishability under chosen-plaintext attacks advantage of A as

AdvPKE-IND-CPA
E,A := 2 · Pr

[
b′ = b ∧ |m0| = |m1|

]
− 1

where the probability is over the randomness in ExpPKE-IND-CPA
E,A .
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A.4 Digital Signature Schemes

Definition A.5. A (digital) signature scheme consist of the following three PPT algorithms:

Key Generation: The algorithm Gen on input a security parameter 1κ, outputs a public key vk
and a private key sk .

Signing: The algorithm Sign on input a private key sk and a message m ∈ M, outputs a
signature σ.

Verification: The algorithm Ver is deterministic and on input a public key vk , a message m,
and a signature σ, outputs a bit b (where b = 1 means “valid” and b = 0 means “invalid”).

We require for all (vk , sk) in the range of Gen and all m ∈M that

Ver
(
vk ,m,Sign(sk ,m)

)
= 1

with probability 1.

Definition A.6. Let E = (Gen, Sign,Ver) be a signature scheme and let A be a probabilistic
algorithm. Consider the experiment ExpSig-EUF-CMA

E,A in Figure 4

.

and let Q be the set of queries
A issued to its oracle. We define the existential unforgeability under adaptive chosen-message
attacks advantage of A as

AdvSig-EUF-CMA
E,A := Pr

[
Ver(vk ,m, σ) = 1 ∧ m /∈ Q

]
,

where the probability is over the randomness in ExpSig-EUF-CMA
E,A .

A.5 Non-Interactive Zero-Knowledge Proofs

We define non-interactive zero-knowledge proofs following Groth [Gro06

.

].

Definition A.7. Let R be an efficiently computable binary relation and consider the language
L := {x | ∃w (x,w) ∈ R}. A non-interactive proof system for L consists of the following three
PPT algorithms:

Key Generation: The algorithm Gen on input a security parameter 1κ, outputs a common
reference string crs.

Proving: The algorithm Prove on input a common reference string crs, a statement x, and a
witness w, outputs a proof π.

Verification: The algorithm Ver on input a common reference string crs , a statement x, and a
proof π, outputs a bit b (where b = 1 means “accept” and b = 0 means “reject”).

We require perfect completeness, i.e., for all crs in the range of Gen and for all (x,w) ∈ R, we
have

Ver
(
crs, x,Prove(crs, x, w)

)
= 1

with probability 1.

Definition A.8 (Soundness). Let E = (Gen,Prove,Ver) be a non-interactive proof system for a
language L and let A be a probabilistic algorithm. We define the soundness advantage of A as

AdvNIZK-snd
E,A := Prcrs←Gen(1κ); (x,π)←A(crs)

[
x /∈ L ∧ Ver(crs, x, π) = 1

]
.
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Experiment ExpNIZK-sim-snd
E,A

Input: 1κ

(crs, τ)← S1(1κ)
(x, π)← AS2(crs,τ,·)(crs)

Experiment ExpNIZK-sim-snd-ext
E,A

Input: 1κ

(crs, τ, ξ)← SE1(1κ)
(x, π)← AS2(crs,τ,·)(crs)
w ← E2(crs, ξ, x, π)

Figure 5: Experiments for the definitions of NIZK simulation soundness and simulation sound
extractability.

Definition A.9 ((Unbounded) computational zero-knowledge). A non-interactive zero-knowledge
(NIZK) proof system for a relation R is a non-interactive proof system E = (Gen,Prove,Ver) for R
together with a pair of PPT algorithms S = (S1, S2), called simulator. Let S′(crs, τ, x, w) =
S2(crs, τ, x) for (x,w) ∈ R, and S′(crs, τ, x, w) = failure for (x,w) /∈ R. We define the
zero-knowledge advantage of a probabilistic algorithm A as

AdvNIZK-ZK
E,S,A := Prcrs←Gen(1κ)

[
AProve(crs,·,·)(crs) = 1

]
− Pr(crs,τ)←S1(1κ)

[
AS′(crs,τ,·,·)(crs) = 1

]
.

Definition A.10 (Knowledge extraction). A non-interactive proof of knowledge system for a
relation R is a non-interactive proof system E = (Gen,Prove,Ver) for R together with a pair of
PPT algorithms E = (E1, E2), called knowledge extractor. We define the knowledge extraction
advantages of a probabilistic algorithm A as

AdvNIZK-ext1
E,E,A := Prcrs←Gen(1κ)

[
A(crs) = 1

]
− Pr(crs,ξ)←E1(1κ)

[
A(crs) = 1

]
,

AdvNIZK-ext2
E,E,A := Pr(crs,ξ)←E1(1κ); (x,π)←A(crs); w←E2(crs,ξ,x,π)

[
Ver(crs, x, π) = 1

∧ (x,w) /∈ R
]
.

Definition A.11 ((Unbounded) simulation soundness). Let E = (Gen,Prove,Ver, S1, S2) be
a NIZK proof system for a language L and let A be a probabilistic algorithm. Consider the
experiment ExpNIZK-sim-snd

E,A in Figure 5

.

and let Q be set of all (x, π) such that A queried x to its
oracle and received π as a response. We define the simulation soundness advantage of A as

AdvNIZK-sim-snd
E,A := Pr

[
(x, π) /∈ Q ∧ x /∈ L ∧ Ver(crs, x, π) = 1

]
.

Note that in the above definition, A is allowed to issue queries x /∈ L to its oracle. This
means that soundness is preserved even if an adversary sees simulated proofs of false statements.
We finally combine simulation soundness and knowledge extraction.
Remark. In Groth’s definition, A in ExpNIZK-sim-snd-ext

E,A also receives ξ as an input [Gro06

.

]. Since
this is not required for our purposes, we here give the weaker definition.
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