Strengthening Access Control Encryption

Christian Badertscher, Christian Matt, and Ueli Maurer
Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland.
\{badi, mattc, maurer\}@inf.ethz.ch

Abstract

Access control encryption (ACE) was proposed by Damgård et al. to enable the control of information flow between several parties according to a given policy specifying which parties are, or are not, allowed to communicate. By involving a special party, called the sanitizer, policy-compliant communication is enabled while policy-violating communication is prevented, even if sender and receiver are dishonest. To allow outsourcing of the sanitizer, the secrecy of the message contents and the anonymity of the involved communication partners is guaranteed.

This paper shows that in order to be resilient against realistic attacks, the security definition of ACE must be considerably strengthened in several ways. A new, substantially stronger security definition is proposed, and an ACE scheme is constructed which provably satisfies the strong definition under standard assumptions.

Three aspects in which the security of ACE is strengthened are as follows. First, CCA security (rather than only CPA security) is guaranteed, which is important since senders can be dishonest in the considered setting. Second, the revealing of an (unsanitized) ciphertext (e.g., by a faulty sanitizer) cannot be exploited to communicate more in a policyviolating manner than the information contained in the ciphertext. We illustrate that this is not only a definitional subtlety by showing how in known ACE schemes, a single leaked unsanitized ciphertext allows for an arbitrary amount of policy-violating communication. Third, it is enforced that parties specified to receive a message according to the policy cannot be excluded from receiving it, even by a dishonest sender.

1 Introduction

1.1 Access Control Encryption - Model and Security Requirements

The concept of access control encryption (ACE) was proposed by Damgård, Haagh, and Orlandi [DHO16] in order to enforce information flow using cryptographic tools rather than a standard access control mechanism (e.g., a reference monitor) within an information system. If the encryption scheme provides certain operations (e.g., ciphertext sanitization) and satisfies an adequate security definition, then the reference monitor can be outsourced, as a component called the sanitizer, to an only partially trusted service provider. The goal of ACE is that the sanitizer learns nothing not intrinsically necessary. Security must also be guaranteed against dishonest users, whether senders or receivers of information, and against certain types of sanitizer misbehavior.

The information flow problem addressed by ACE is defined in a context with a set \mathcal{R} of roles corresponding, for example, to different security clearances. Each user in a system can be assigned several roles. For example the users are employees of a company collaborating on a sensitive
project, and they need to collaborate and exchange information by sending messages. Since the information is sensitive, which information a party can see must be restricted (hence the term access control), even if some parties are dishonest. In the most general form, the specification of which role may send to which other role corresponds to a relation (a subset of $\mathcal{R} \times \mathcal{R}$) or, equivalently, to a predicate $P: \mathcal{R} \times \mathcal{R} \rightarrow\{0,1\}$, where $s \in \mathcal{R}$ is allowed to communicate to $r \in \mathcal{R}$ if and only if $P(s, r)=1$. The predicate P can be called the security policy. Typical examples of such policies arise from the Bell-LaPadula [BL73] model where roles are (partially) ordered, and the so-called "no-write-down" rule specifies that it is forbidden for a user to send information to another user with a lower role. Note that for this specific example, the relation is transitive, but ACE also allows to capture non-transitive security policies.

ACE was designed to work in the following setting. Users can communicate anonymously with a sanitizer. If a user wants to send a message, it is encrypted under a key corresponding to the sender's role. Then the ciphertext is sent (anonymously) to the sanitizer who applies a certain sanitization operation and writes the sanitized ciphertext on a publicly readable bulletin board providing anonymous read-access to the users (receivers). Users who are supposed to receive the message according to the policy (and only those users) can decrypt the sanitized ciphertext.

To ensure security in the described setting, the ACE scheme must at least provide the following guarantees:

1. The encryption must assure privacy and anonymity against dishonest receivers as well as the sanitizer, i.e., neither the sanitizer nor dishonest receivers without access allowed by the policy should be able to obtain information about messages or the sender role.
2. A dishonest sender must be unable to communicate with a dishonest receiver, unless this is allowed according to the policy. In other words, the system must not provide covert channels allowing for policy-violating communication.

As usual in a context with dishonest senders, the first goal requires security against chosenciphertext attacks (CCA) because dishonest users can send a ciphertext for which they do not know the contained message and by observing the effects the received message has on the environment, potentially obtain information about the message. This corresponds to the availability of a decryption oracle, as in the CCA-security definition.

Note that the second goal is only achievable if users cannot directly write to the repository or communicate by other means bypassing the sanitizer, and if the sanitizer is not actively dishonest because a dishonest sanitizer can directly write any information received from a dishonest sender to the repository. The assumption that a user cannot bypass the sanitizer and communicate to another party outside of the system can for example be justified by assuming that users, even if dishonest, want to avoid being caught communicating illegitimately, or if only a user's system (not the user) is corrupted, and the system can technically only send message to the sanitizer.

Since the sanitizer is not fully trusted in our setting, one should consider the possibility that an unsanitized ciphertext is leaked (intentionally or unintentionally) to a dishonest party. This scenario can be called (unsanitized) ciphertext-revealing attack. Obviously, all information contained in this ciphertext gets leaked to that party. While this cannot be avoided, such attack should not enable dishonest parties to violate the security requirements beyond that.

We point out that previously proposed encryption techniques (before ACE), such as attributebased encryption [SW05; GPSW06] and functional encryption [BSW11], enable the design of schemes where a sender can encrypt messages such that only designated receivers (who possess the
required key) can read the message. This captures the access control aspects of read permissions, but it does not allow to capture the control of write/send permissions. In other words, such schemes only achieve the first goal listed above, not the second one.

1.2 Contributions of This Paper

While the proposal of the ACE-concept and of efficient ACE-schemes were important first steps towards outsourcing access control, the existing security definition turns out to be insufficient for several realistic attack scenarios. The main contributions of this paper consist of uncovering issues with existing definitions and schemes, fixing these issues by proposing stronger security notions, and constructing a scheme satisfying our stronger notions.

Issues with existing definitions and schemes. As argued above, chosen-ciphertext attacks should be considered since the use case for ACE includes dishonest senders. Existing definitions, however, do not take this into account, i.e., the adversary does not have access to a decryption oracle in the security games.

Furthermore, existing notions do not consider ciphertext-revealing attacks. Technically speaking, the security game that is supposed to prevent dishonest senders from transmitting information to dishonest receivers (called no-write game), gives the adversary only access to an encryption oracle that sanitizes ciphertexts before returning them. This means that the adversary has no access to unsanitized ciphertexts. This is not only a definitional subtlety, but can completely break down any security guarantees. We demonstrate that existing ACE schemes allow the following attack: Assume there are three users A, M, and E in the system, where A is honest and by the policy allowed to send information to E, and M and E are dishonest and not allowed to communicate. If A sends an (innocent) message to E and the corresponding unsanitized ciphertext is leaked to M, malleability of the ciphertext can be exploited by M to subsequently communicate an arbitrary number of arbitrary messages chosen by M to E. Note that while this attack crucially exploits malleability of ciphertexts, it is not excluded by CCA security for two reasons: first, CCA security does not prevent an adversary from producing valid ciphertexts for unrelated messages, and second, the integrity should still hold if the adversary has the decryption key (but not the encryption key).

Finally, existing security definitions focus on preventing dishonest parties from communicating if disallowed by the policy, but they do not enforce information flow. For example, if user A only has a role such that according to the policy, users B and C can read what A sends, existing schemes do not prevent A from sending a message that can be read by B but not by C, or sending a message such that B and C receive different messages. This is not as problematic as the two issues above, and one can argue that A could anyway achieve something similar by additionally encrypting the message with another encryption scheme. Nevertheless, for some use cases, actually precisely enforcing the policy can be required (consider, e.g., a logging system), and one might intuitively expect that ACE schemes achieve this.

New security definitions. We propose new, stronger security definitions for ACE that exclude all issues mentioned above. First, we give the adversary access to a decryption oracle. More precisely, the oracle first sanitizes the given ciphertext and then decrypts it, since this is what happens in the application if a dishonest party sends a ciphertext to the sanitizer. Second, we incorporate ciphertext-revealing attacks by giving the adversary access to an encryption oracle
that returns unsanitized ciphertexts for arbitrary roles. Finally, we introduce a new security game in which an adversary can obtain encryption keys and decryption keys from an oracle and has to output a ciphertext such that one of the following events occur: either the set of roles that can successfully decrypt the ciphertext (to an arbitrary message) is inconsistent with the policy for all sender roles for which the adversary has an encryption key (in this case, we say the adversary is not role-respecting); or the ciphertext can be successfully decrypted with two keys such that two different messages are obtained (in this case, we say the uniform-decryption property is violated).

Construction of an ACE scheme for our stronger notions. Our construction proceeds in three steps and follows the general structure of the generic construction by Fuchsbauer et al. [FGKO17]. Since we require much stronger security notions in all three steps, our constructions and proofs are consequently more involved than existing ones. First, we construct a scheme for a primitive we call enhanced sanitizable public-key encryption ($s P K E$). Second, we use an sPKE scheme to construct an ACE scheme satisfying our strong security notion for the equality policy, i.e., for the policy that allows s to send to r if and only if $r=s$. Third, we show how to lift an ACE scheme for the equality policy to an ACE scheme for the disjunction of equalities policy. This policy encodes roles as vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{\ell}\right)$ and allows role \mathbf{x} to send to role \mathbf{y} if and only if $x_{1}=y_{1} \vee \ldots \vee x_{\ell}=y_{\ell}$. As shown by Fuchsbauer et al. [FGKO17], useful policies including the inequality predicate corresponding to the Bell-LaPadula model can efficiently be implemented using this policy by encoding the roles appropriately.

Enhanced sanitizable PKE. An sPKE scheme resembles publicy-key encryption with an additional setup algorithm that outputs sanitization parameters and a master secret key. The master secret key is needed to generate a public/private key pair and the sanitization parameters can be used to sanitize a ciphertext. A sanitized ciphertext cannot be linked to the original ciphertext without the decryption key. We require the scheme to be CCA secure (with respect to a sanitize-then-decrypt oracle) and anonymous. Sanitization resembles rerandomization [Gro04; PR07], also called universal re-encryption [GJJS04], but we allow sanitized ciphertexts to be syntactically different form unsanitized ciphertexts. This allows us to achieve full CCA security, which is needed for our ACE construction and unachievable for rerandomizable encryption.

Our scheme is based on ElGamal encryption [Elg85], which can easily be rerandomized and is anonymous. We obtain CCA security using the technique of Naor and Yung [NY90], i.e., encrypting the message under two independent keys and proving in zero-knowledge that the ciphertexts are encryptions of the same message, which was shown to achieve full CCA security if the zero-knowledge proof is simulation-sound by Sahai [Sah99]. A technical issue is that if the verification of the NIZK proof was done by the decrypt algorithm, the sanitization would also need to sanitize the proof. Instead, we let the sanitizer perform the verification. Since we want to preserve anonymity, this needs to be done without knowing under which public keys the message was encrypted. Therefore, the public keys are part of the witness in the NIZK proof. Now the adversary could encrypt the same message under two different public keys that were not produced together by the key-generation, which would break the reduction. To prevent this, the pair of public keys output by the key-generation is signed using a signature key that is contained in the master secret key and the corresponding verification key is contained in the sanitizer parameters.

ACE for equality. The basic idea of our ACE scheme for the equality policy is to use for each role, encryption and decryption keys of an sPKE scheme as the encryption and decryption keys of the ACE scheme, respectively. Since we need to prevent dishonest senders without an encryption key for some role from producing valid ciphertexts for that role even after seeing encryptions of other messages for this role and obtaining encryption keys for other roles, we add a signature key to the encryption key, sign this pair using a separate signing key, where the corresponding verification key is part of the sanitization parameters, and let senders sign their ciphertexts. To preserver anonymity, this signature cannot be part of the ciphertext. Instead, senders prove in zero-knowledge that they know such a signature and that the encryption was performed properly.

ACE for disjunction of equalities. The first step of our lifting is identical to the lifting described by Fuchsbauer et al. [FGKO17]: for each component of the role-vector, the encryption and decryption keys contain corresponding keys of an ACE scheme for the equality policy. To encrypt a message, this message is encrypted under each of the key-components. In a second step, we enforce role-respecting security with the same trick we used in our ACE scheme for equality; that is, we sign encryption key-vectors together with a signing key for that role, and senders prove in zero-knowledge that they have used a valid key combination to encrypt and that they know a signature of the ciphertext vector.

1.3 Related Work

The concept of access control encryption has been introduced by Damgård et al. [DHO16]. They provided the original security definitions and first schemes. Subsequent work by Fuchsbauer et al. [FGKO17] and by Tan et al. [TZMT17] focused on new schemes that are more efficient and based on different assumptions, respectively. In contrast to our work, they did not attempt to strengthen the security guarantees provided by ACE.

2 Preliminaries

2.1 Notation

We write $x \leftarrow y$ for assigning the value y to the variable x. For a finite set $X, x \nleftarrow X$ denotes assigning to x a uniformly random value in X. For $n \in \mathbb{N}$, We use the convention

$$
[n]:=\{1, \ldots, n\} .
$$

The probability of an event A in an experiment E is denoted by $\operatorname{Pr}^{E}[A]$, e.g., $\operatorname{Pr}^{x \leftarrow\{0,1\}}[x=0]=\frac{1}{2}$. If the experiment is clear from the context, we omit the superscript. The conditional probability of A given B is denoted by $\operatorname{Pr}[A \mid B]$ and the complement of A is denoted by $\neg A$. For a probabilistic algorithm \mathcal{A} and $r \in\{0,1\}^{*}$, we denote by $\mathcal{A}(x ; r)$ the execution of \mathcal{A} on input x with randomness r. For algorithms \mathcal{A} and $\mathcal{O}, \mathcal{A}^{\mathcal{O}(\cdot)}(x)$ denotes the execution of \mathcal{A} on input x, where \mathcal{A} has oracle access to \mathcal{O}.

2.2 Security Definitions and Advantages

We define the security of a scheme via a random experiment (or game) involving an adversary algorithm \mathcal{A}. For a given scheme \mathcal{E} and adversary \mathcal{A}, we define the advantage of \mathcal{A}, which is a function of the security parameter κ. To simplify the notation, we omit the security parameter
when writing the advantage, e.g., we write $\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\text {Sig-EUF-CMA }}$ instead of $\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{Sig}-E U F-C M A}(\kappa)$ for the advantage of \mathcal{A} in the existential unforgeability game for the signature scheme \mathcal{E}. One can say that a scheme satisfies this notion if all efficient adversaries only have negligible advantage. Following a concrete security treatment, we will, however, only define the advantages and in the security proofs give reductions that relate advantages for different games, without referring to efficiency or negligibility.

2.3 Access Control Encryption

We recall the definition of access control encryption by Damgård et al. [DHO16]. For definitions of other cryptographic primitives used in this paper, see Appendix A. Following Fuchsbauer et al. [FGKO17], we do not have sanitizer keys and require Gen to be deterministic. The set of roles is assumed to be $\mathcal{R}=[n]$.

Definition 2.1. An access control encryption ($A C E$) scheme \mathcal{E} consists of the following five PPT algorithms:

Setup: The algorithm Setup on input a security parameter 1^{κ} and a policy $P:[n] \times[n] \rightarrow\{0,1\}$, outputs a master secret key msk and sanitizer parameters sp. We implicitly assume that all keys include the finite message space \mathcal{M} and the ciphertext spaces $\mathcal{C}, \mathcal{C}^{\prime}$.

Key Generation: The algorithm Gen is deterministic and on input a master secret key msk, a role $i \in[n]$, and the type sen, outputs an encryption $k e y e k_{i}$; on input $m s k, j \in[n]$, and the type rec, outputs a decryption key $d k_{j}$.

Encrypt: The algorithm Enc on input an encryption key $e k_{i}$ and a message $m \in \mathcal{M}$, outputs a ciphertext $c \in \mathcal{C}$.

Sanitizer: The algorithm San on input sanitizer parameters $s p$ and a ciphertext $c \in \mathcal{C}$, outputs a sanitized ciphertext $c^{\prime} \in \mathcal{C}^{\prime} \cup\{\perp\}$.

Decrypt: The algorithm Dec on input a decryption key $d k_{j}$ and a sanitized ciphertext $c^{\prime} \in \mathcal{C}^{\prime}$, outputs a message $m \in \mathcal{M} \cup\{\perp\}$; on input $d k_{j}$ and \perp, it outputs \perp.

For a probabilistic algorithm \mathcal{A}, consider the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{corr}$ that given a security parameter 1^{κ} and a policy P, executes $(s p, m s k) \leftarrow \operatorname{Setup}\left(1^{\kappa}, P\right),(m, i, j) \leftarrow \mathcal{A}^{\operatorname{Gen}(m s k, \cdot, \cdot)}(s p)$, $e k_{i} \leftarrow \operatorname{Gen}(m s k, i$, sen $)$, and $d k_{j} \leftarrow \operatorname{Gen}(m s k, j$, rec $)$. We define the correctness advantage of \mathcal{A} (for security parameter κ and policy P) as

$$
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}-c o r r}:=\operatorname{Pr}\left[P(i, j)=1 \wedge \operatorname{Dec}\left(d k_{j}, \operatorname{San}\left(s p, \operatorname{Enc}\left(e k_{i}, m\right)\right)\right) \neq m\right]
$$

where the probability is over the randomness in $\operatorname{Exp} A \mathcal{E}, \mathcal{A}-$ corr and the random coins of Enc, San, and Dec. ${ }^{1}$

Remark. Correctness of an encryption scheme is typically not defined via a game with an adversary, but by requiring that decryption of an encryption of m yields m with probability 1 . This perfect correctness requirement is difficult to achieve for ACE schemes and not necessary for applications because it is sufficient if a decryption error only occurs with negligible probability in

[^0]any execution of the scheme. Damgård et al. [DHO16] define correctness by requiring that for all m, i, and j with $P(i, j)=1$, the probability that a decryption fails is negligible, where the probability is over setup, key generation, encrypt, sanitize, and decrypt. While this definition is simpler than ours, it does not guarantee that decryption errors only occur with negligible probability in any execution of the scheme. For example, a scheme could on setup choose a random message m and embed it into all keys such that decryption always fails for encryptions of this particular message. This does not violate the definition by Damgård et al. since for any fixed message, the probability that this message is sampled during setup is negligible (if the message space is large). Nevertheless, an adversary can always provoke a decryption error by sending that particular message m, which is not desirable. The above example might at first sight seem somewhat artificial, and typically, schemes do not have such a structure. However, capturing correctness via an experiment is important when thinking of composition, since we expect that the correctness guarantee still holds when the ACE scheme is run as part of a larger system. In order to meet this expectation, and to exclude the above issue, we formalize correctness via an experiment.

Additionally, Fuchsbauer et al. have defined detectability, which guarantees that decrypting with a wrong key yields \perp with high probability [FGKO17]. This allows receivers to detect whether a message was sent to them. As for correctness, we define it via an experiment. The notion is related to robustness for public-key encryption [ABN10].

Definition 2.2. Let $\mathcal{E}=($ Setup, Gen, Enc, San, Dec) be an ACE scheme and let \mathcal{A} be a probabilistic algorithm. Consider the experiment $\operatorname{Exp} \mathcal{E}_{\mathcal{E}, \mathcal{A}}^{A C E-d t c t}$ that given a security parameter 1^{κ} and a policy P, executes $(s p) \leftarrow \operatorname{Setup}\left(1^{\kappa}, P\right),(m, i, j) \leftarrow \mathcal{A}^{\operatorname{Gen}(m s k, \cdot, \cdot)}(s p, m s k), e k_{i} \leftarrow \operatorname{Gen}(m s k, i$, sen $)$, and $d k_{j} \leftarrow \operatorname{Gen}(m s k, j, \mathrm{rec})$. We define the detectability advantage of \mathcal{A} as

$$
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{dtct}:=\operatorname{Pr}\left[P(i, j)=0 \wedge \operatorname{Dec}\left(d k_{j}, \operatorname{San}\left(s p, \operatorname{Enc}\left(e k_{i}, m\right)\right)\right) \neq \perp\right],
$$

where the probability is over the randomness in $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{A C E-d t c t}$ and the random coins of Enc, San, and Dec.

2.4 Existing Security Definitions

Existing notions for ACE specify two core properties: the so-called no-read rule and the nowrite rule. The no-read rule formalizes privacy and anonymity: roughly, an honestly generated ciphertext should not leak anything about the message, except possibly about its length. The ciphertext should in addition not reveal the role of the sender. The security game allows an adversary to interact with a key-generation oracle (to obtain encryption and decryption keys for selected roles), and an encryption oracle to obtain encryptions of chosen messages and roles for which the adversary does not posses the encryption key. This attack model reflects that an adversary cannot obtain useful information by observing the ciphertexts that are sent to the sanitizer. To exclude trivial attacks, it is not considered a privacy breach if the adversary knows a decryption key that allows to decrypt the challenge ciphertext according to the policy. Similarly, it is not considered an anonymity breach if the encrypted messages are different. We state the definition of the no-read rule. ${ }^{2}$

[^1]
Experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{A C E-n o-r e a d ~}$

```
Input: \(1^{\kappa}, P\)
    \((s p, m s k) \leftarrow \operatorname{Setup}\left(1^{\kappa}, P\right)\)
    \(\left(m_{0}, m_{1}, i_{0}, i_{1}, s t\right) \leftarrow \mathcal{A}^{\mathcal{O}_{G_{1}}(\cdot, \cdot), \mathcal{O}_{E}(\cdot, \cdot)}(s p)\)
    \(b \leftrightarrow\{0,1\}\)
    \(e k_{i_{b}} \leftarrow \operatorname{Gen}\left(m s k, i_{b}\right.\), sen \()\)
    \(c \leftarrow \operatorname{Enc}\left(e k_{i_{b}}, m_{b}\right)\)
    \(b^{\prime} \leftarrow \mathcal{A}^{\mathcal{O}_{G_{2}}(\cdot, \cdot), \mathcal{O}_{E}(\cdot, \cdot)}(s t, c)\)
```


Experiment Exp ACE-Ao-write

Input: $1^{\kappa}, P$

```
    \((s p, m s k) \leftarrow \operatorname{Setup}\left(1^{\kappa}, P\right)\)
```

$\left(c_{0}, i^{\prime}, s t\right) \leftarrow \mathcal{A}^{\mathcal{O}_{G_{1}}(\cdot, \cdot), \mathcal{O}_{E}(\cdot, \cdot)}(s p)$
$b \leftarrow\{0,1\}$
$m^{\prime} \leftrightarrow \mathcal{M}$
$c_{1} \leftarrow \operatorname{Enc}\left(\operatorname{Gen}\left(m s k, i^{\prime}, \operatorname{sen}\right), m^{\prime}\right)$
$b^{\prime} \leftarrow \mathcal{A}^{\mathcal{O}_{G_{2}}(\cdot, \cdot), \mathcal{O}_{E S}(\cdot, \cdot)}\left(s t, \operatorname{San}\left(s p, c_{b}\right)\right)$

Figure 1: The no-read and no-write experiments for an ACE scheme \mathcal{E} and an algorithm \mathcal{A}. The oracles in Exp $\mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{-nowrite}$ are defined as $\mathcal{O}_{G_{1}}(\cdot, \cdot):=\mathcal{O}_{G_{2}}(\cdot, \cdot):=\operatorname{Gen}(m s k, \cdot, \cdot), \mathcal{O}_{E}(\cdot, \cdot):=$ $\operatorname{Enc}(\operatorname{Gen}(m s k, \cdot, \operatorname{sen}), \cdot)$, and $\mathcal{O}_{E S}(\cdot, \cdot):=\operatorname{San}(s p, \operatorname{Enc}(\operatorname{Gen}(m s k, \cdot, \operatorname{sen}), \cdot))$.

Definition 2.3. Let $\mathcal{E}=($ Setup, Gen, Enc, San, Dec) be an ACE scheme and let \mathcal{A} be a probabilistic algorithm. Consider the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{-}$-noread in Figure 1 and let J be the set of all j such that \mathcal{A} issued the query (j, rec) to the oracle $\operatorname{Gen}(m s k, \cdot, \cdot)$. The payload-privacy advantage and the sender-anonymity advantage of \mathcal{A} are defined as

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}} \text {-no-read,priv } & :=2 \cdot \operatorname{Pr}\left[b^{\prime}=b \wedge\left|m_{0}\right|=\left|m_{1}\right| \wedge \forall j \in J P\left(i_{0}, j\right)=P\left(i_{1}, j\right)=0\right]-1, \\
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{~A}-\text {-read,anon } & :=2 \cdot \operatorname{Pr}\left[b^{\prime}=b \wedge m_{0}=m_{1} \wedge \forall j \in J P\left(i_{0}, j\right)=P\left(i_{1}, j\right)\right]-1,
\end{aligned}
$$

respectively, where the probabilities are over the randomness of all algorithms in $\operatorname{Exp} \mathcal{\mathcal { E } , \mathcal { A }} \mathrm{AC}$-no-read .
The no-write rule of ACE is the core property to capture access control: in a nutshell, if the policy specifies that role i is not allowed to send to role j, then the adversary should not be able to create a ciphertext which, after being sanitized, allows role j to receive any information. To exclude trivial attacks, it is not considered a security breach if the adversary knows the encryption key of a different role i^{\prime} which is allowed to send information to j. Technically, in the respective security game, the adversary is given a key-generation oracle as above, and in addition an oracle to obtain sanitized ciphertexts for selected messages and roles. This attack model corresponds to a setting where an adversary only sees the outputs of a sanitizer, but not its inputs, and in particular no ciphertexts generated for roles for which he does not posses the encryption key. The adversary wins, if he manages to distinguish the sanitized version of a ciphertext of his choice from a sanitized version of a freshly generated ciphertext to a random message, and if he does not obtain the encryption for any role i, and the decryption key of any role j for which $P(i, j)=1$, as this would trivially allow him to distinguish.

Definition 2.4. Let $\mathcal{E}=($ Setup, Gen, Enc, San, Dec) be an ACE scheme and let \mathcal{A} be a probabilistic algorithm. Consider the experiment Exp $\mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\mathrm{A} C E-n o-w r i t e}$ in Figure 1, let I_{1} be the set of all i such that \mathcal{A} issued the query (i, sen) to $\mathcal{O}_{G_{1}}$, and let J be the set of all j such that \mathcal{A} issued the query (j, rec) to $\mathcal{O}_{G_{1}}$ or $\mathcal{O}_{G_{2}}$. We define the no-write advantage of \mathcal{A} as
$\operatorname{Adv} \mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\text {AC-no-write }}:=2 \cdot \operatorname{Pr}\left[b^{\prime}=b \wedge i \in I_{1} \cup\{0\} \wedge \forall i \in I_{1} \forall j \in J P(i, j)=0 \wedge \operatorname{San}\left(s p, c_{0}\right) \neq \perp\right]-1$,
where the probability is over the randomness of all algorithms in Exp ${ }_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}}$-no-write .

3 Ciphertext-Revealing Attacks Against Existing Schemes

3.1 Generic Description of Attack

We describe a fundamental practical issue of schemes which meet the above no-read and no-write definitions and show why the guarantees expected from an ACE scheme need to be strengthened. We show that schemes fulfilling the definition can suffer from what we call a malleability attack, which effectively bypasses the given policy and allows communication that is forbidden by the policy. The attack does not abuse any peculiarities of existing models and in fact only requires that the semi-honest sanitizer shares its inputs and outputs with colluding parties, which is arguably possible when the sanitizer is outsourced. In particular, security against such a sanitizer is desirable from a practical point of view.

We first give a high-level explanation of the attack, formalize it as a second step, and show that several existing schemes are vulnerable. Assume there are three parties, Alice, Bob, and Charlie, each having a different role assigned. We denote by A, B, and C the associated roles. In our example, Alice and Charlie are always honest. Alice is allowed to communicate with Bob and Charlie. Bob is dishonest and forbidden to send messages to Charlie (and to Alice). The attack now proceeds as follows: When Alice sends her first message, Bob requests the corresponding ciphertext and the sanitized ciphertext from the semi-honest sanitizer. He then decrypts the sanitized ciphertext and thus receives the message Alice has sent. With the knowledge of this message, as we show below, he is able to create a valid ciphertext for a chosen message m^{\prime}, which will be correctly sanitized and later decrypted by Charlie, hence allowing unrestricted communication from Bob to Charlie. Details follow.

Assume a policy matrix defined by

$$
P(i, j):= \begin{cases}1, & i=\mathrm{A} \\ 0, & \text { otherwise }\end{cases}
$$

For the sake of presentation, we assume that the ACE scheme \mathcal{E} under consideration enjoys perfect correctness. Also, we assume that the setup-phase has completed and the three parties thus possess the encryption and decryption keys, $e k_{i}$ and $d k_{i}$, respectively. Now, imagine that the ACE scheme admits an efficient function maul $\mathcal{E}_{\mathcal{E}}$ with the following property (later we show how to implement such a function for some existing schemes): For all messages m and m^{\prime}, any role i, and sanitizer parameters $s p$ in the range of Setup, and for any fixed randomness r,

$$
\begin{equation*}
\left.\operatorname{maul}_{\mathcal{E}}\left(\operatorname{Enc}\left(e k_{i}, m ; r\right), s p, m, m^{\prime}\right)\right)=\operatorname{Enc}\left(e k_{i}, m^{\prime} ; r\right) . \tag{1}
\end{equation*}
$$

If such a malleability function exists, the communication policy can be bypassed as follows:

1. Alice encrypts a message $c \leftarrow \operatorname{Enc}\left(e k_{\mathrm{A}}, m\right)$ and the sanitizer computes $c^{\prime} \leftarrow \operatorname{San}(s p, c)$ and gives c and c^{\prime} to Bob.
2. Bob computes $m \leftarrow \operatorname{Dec}\left(d k_{\mathrm{B}}, c^{\prime}\right)$ and creates a new ciphertext $\hat{c} \leftarrow \operatorname{mau} \boldsymbol{I}_{\mathcal{E}}\left(c, s p, m, m^{\prime}\right)$ and sends it to the sanitizer.
3. The ciphertext is sanitized $\hat{c}^{\prime} \leftarrow \operatorname{San}(s p, \hat{c})$ and subsequently sent to Charlie. By the (perfect) correctness of the assumed ACE scheme and by our assumption on maul $\mathcal{E}_{\mathcal{E}} \hat{c}^{\prime}$ is a valid ciphertext (under the encryption key of Alice) and Charlie is able to decrypt $m^{\prime} \leftarrow \operatorname{Dec}\left(d k_{\mathrm{c}}, \hat{c}^{\prime}\right)$, effectively receiving Bob's message m^{\prime}.

In the following sections, we show that several existing ACE schemes \mathcal{E} admit an efficient function maul $\mathcal{E}_{\mathcal{E}}$. More specifically, we consider the "linear" scheme by Damgård et al. [DHO16] based on ElGamal and the ElGamal-based scheme by Fuchsbauer et al. [FGKO17].

3.2 DHO Scheme Based on ElGamal

We briefly recall the ElGamal based ACE scheme for a single identity. The public parameters of the scheme contain the description of a finite cyclic group $G=\langle g\rangle$ and its group order q, and additionally an element $h=g^{x}$ for a uniform random $x \in \mathbb{Z}_{q}$. The encryption key for A is a random value $e k \in \mathbb{Z}_{q}$, and the decryption key is $-x$. The algorithm Enc on input an encryption key $e k_{i}$ and a message $m \in \mathcal{M}$, samples $r_{1}, r_{2} \in \mathbb{Z}_{q}$ uniformly at random and outputs the ciphertext

$$
c=\left(c_{0}, c_{1}, c_{2}, c_{3}\right):=\left(g^{r_{1}}, h^{r_{1}} g^{e k_{i}}, g^{r_{2}}, m \cdot h^{r_{2}}\right)
$$

We can define the function maul ${ }_{\text {DHO }}$ as

$$
\operatorname{maul}_{\mathrm{DHO}}\left(\left(c_{0}, c_{1}, c_{2}, c_{3}\right), s p, m, m^{\prime}\right):=\left(c_{0}, c_{1}, c_{2}, m^{\prime} \cdot m^{-1} \cdot c_{3}\right)
$$

Since the group order q is part of $s p$, this function is efficiently computable. For $c_{3}=m \cdot h^{r_{2}}$, we thus get a new fourth component $c_{3}^{\prime}=m^{\prime} \cdot h^{r_{2}}$ and equation (1) is satisfied.

The malleability for more than one identity (and in particular in our scenario described above) follows since the scheme for several identities is composed of independent instances of the basic single-identity scheme.

3.3 FGKO Scheme Based on ElGamal

Description of the scheme. In that scheme, the public parameters consist of the description of a finite cyclic group $G=\langle g\rangle$ including the group order q and a generator g, a verification key $v k^{\mathrm{Sig}}$ of a signature scheme Sig, and a common-reference string $c r s^{\text {NIZK }}$ of a NIZK proof system NIZK for the language $L:=\{x \mid \exists w(x, w) \in R\}$, where R is defined as follows: for $x=\left(v k^{\mathrm{Sig}}, c_{0}, c_{1}, c_{2}, c_{3}\right)$ and a witness $w=\left(g^{x}, \sigma^{\mathrm{Sig}}, m, r, s\right), R(x, w)=1$ if and only if

$$
\operatorname{Sig} . \operatorname{Ver}\left(v k^{\mathrm{Sig}}, g^{x}, \sigma^{\mathrm{Sig}}\right)=1 \wedge\left(c_{0}, c_{1}, c_{2}, c_{3}\right)=\left(g^{r}, g^{x \cdot r}, g^{s}, m \cdot g^{x \cdot s}\right)
$$

The encryption and decryption keys are given by $e k:=\left(g^{x}, \sigma^{\text {Sig }}\right), d k:=x$ for a uniformly chosen $x \nVdash \mathbb{Z}_{q}$, where $\sigma^{\text {sig }}$ is a signature on g^{x}. To encrypt a message m, first choose $r \longleftarrow \mathbb{Z}_{q}^{*}$ and $s \leftrightarrows \mathbb{Z}_{q}$ uniformly at random and compute $\left(c_{0}, c_{1}, c_{2}, c_{3}\right):=\left(g^{r}, g^{x \cdot r}, g^{s}, m \cdot g^{x \cdot s}\right)$. Then run $\pi^{\mathrm{NIZK}} \leftarrow \mathrm{NIZK}$. Prove $\left(c r s^{\mathrm{NIZK}},\left(v k^{\mathrm{Sig}}, c_{0}, c_{1}, c_{2}, c_{3}\right),\left(g^{x}, \sigma^{\mathrm{Sig}}, m, r, s\right)\right)$ and output the ciphertext $c:=\left(c_{0}, c_{1}, c_{2}, c_{3}, \pi\right)$.

Potential malleability. We define the function maul ${ }_{\text {FGKO }}$ as

$$
\operatorname{maul}_{\mathrm{FGKO}}\left(\left(c_{0}, c_{1}, c_{2}, c_{3}, \pi\right), s p, m, m^{\prime}\right):=\left(c_{0}, c_{1}, c_{2}, m^{\prime} \cdot m^{-1} \cdot c_{3}, \pi\right)
$$

This function satisfies equation (1) if, for example, the non-interactive zero-knowledge proof is independent of the last component c_{3}. We show that such a NIZK proof system exists without violating the properties assumed by Fuchsbauer et al. [FGKO17]. To this end, let NIZK' be a

NIZK proof system for the language $L^{\prime}:=\left\{x \mid \exists w(x, w) \in R^{\prime}\right\}$, where the relation R^{\prime} is defined as follows: for $x=\left(v k^{\mathrm{Sig}}, c_{0}, c_{1}, c_{2}\right)$ and $w=\left(g^{x}, \sigma^{\text {Sig }}, m, r, s\right),(x, w) \in R^{\prime}$ if and only if

$$
\operatorname{Sig} . \operatorname{Ver}\left(v k^{\mathrm{Sig}}, g^{x}, \sigma^{\mathrm{Sig}}\right)=1 \wedge\left(c_{0}, c_{1}, c_{2}\right)=\left(g^{r}, g^{x \cdot r}, g^{s}\right)
$$

Given NIZK $^{\prime}$, we construct a NIZK proof system NIZK for the original language L as follows:

$$
\begin{aligned}
& \operatorname{NIZK} . \operatorname{Gen}\left(1^{\kappa}\right):=\operatorname{NIZK}^{\prime} . \operatorname{Gen}\left(1^{\kappa}\right), \\
& \text { NIZK.Prove }\left(c r s^{\mathrm{NIZK}},\left(v k^{\mathrm{Sig}}, c_{0}, c_{1}, c_{2}, c_{3}\right),\left(g^{x}, \sigma^{\mathrm{Sig}}, m, r, s\right)\right):= \\
& \quad \operatorname{NIZK}^{\prime} . \operatorname{Prove}\left(c r s^{\mathrm{NIZK}},\left(v k^{\mathrm{Sig}}, c_{0}, c_{1}, c_{2}\right),\left(g^{x}, \sigma^{\mathrm{Sig}}, m, r, s\right)\right), \\
& \mathrm{NIZK} . \operatorname{Ver}\left(c r s^{\mathrm{NIZK}},\left(v k^{\mathrm{Sig}}, c_{0}, c_{1}, c_{2}, c_{3}\right), \pi^{\mathrm{NIZK}}\right):=\mathrm{NIZK}^{\prime} . \operatorname{Ver}\left(c r s^{\mathrm{NIZK}},\left(v k^{\mathrm{Sig}}, c_{0}, c_{1}, c_{2}\right), \pi^{\mathrm{NIZK}}\right) .
\end{aligned}
$$

Correctness and zero-knowledge of NIZK follow straightforwardly from the underlying scheme NIZK^{\prime}. For knowledge-extraction, consider that the underlying NIZK is capable of extracting the valid witness $\left(g^{x}, \sigma^{\mathrm{Sig}}, r, s\right)$ given a valid proof for the statement $\left(v k^{\mathrm{Sig}}, c_{0}, c_{1}, c_{2}\right)$. Then, by computing $m:=c_{3} \cdot\left(g^{x \cdot s}\right)^{-1}$, we can obtain a valid message encoded in c_{3}. Finally, for soundness, note that if ($v k^{\mathrm{Sig}}, c_{0}, c_{1}, c_{2}$) $\in L^{\prime}$, this implies that any group element $c_{3} \in G$ is a valid last component, i.e., $\left(v k^{\mathrm{Sig}}, c_{0}, c_{1}, c_{2}, c_{3}\right) \in L$ for any $c_{3} \in G$, since there exists the message $m:=c_{3} \cdot\left(g^{x \cdot s}\right)^{-1}$, and thus a valid witness $w=\left(g^{x}, \sigma^{\mathrm{Sig}}, m, r, s\right)$.

For the constructed scheme NIZK and the function maul ${ }_{\text {FGKO }}$, equation (1) clearly holds. Hence, the FGKO scheme can be instantiated such that the malleability attack works. It could potentially be excluded by requiring stronger properties from the NIZK scheme.

4 A Stronger Notion of ACE

4.1 ACE with Modification Detection

In this section, we introduce our new security definitions, which exclude the issues we have discovered. To be resilient against the ciphertext-revealing attacks described in Section 3, the sanitizer should ideally only sanitize fresh encryptions and block ciphertexts that are either replays or obtained by modifying previous ciphertexts. Therefore, we introduce an additional algorithm for detecting modified ciphertexts. If the sanitizer receives a ciphertext that is detected to be a modification of a previously received one, this ciphertext is blocked. Since such ciphertexts will not be stored in the repository and consequently not be decrypted, we define the chosenciphertext security with respect to a decryption oracle that does not return a decryption if the received ciphertext is detected to be a modification of the challenge ciphertext. Our definitions can therefore be seen as a variant of publicly-detectable replayable-CCA security, which was introduced by Canetti et al. [CKN03] for public key encryption. Before defining the security, we define the syntax of ACE schemes with this additional algorithm.

Definition 4.1. An access control encryption with modification detection scheme is an ACE scheme \mathcal{E} together with a PPT algorithm DMod that on input sanitizer parameters $s p$ and two ciphertexts $c, \tilde{c} \in \mathcal{C}$, outputs a bit b (where $b=1$ means that \tilde{c} was obtained via modifying c).

Except for Section 4.3, where we show that our new definitions imply the existing ones, we will in this paper only consider ACE schemes with modification detection and thus often refer to them simply as ACE schemes.

The algorithm DMod should output 1 if \tilde{c} is an adversarial modification of c, and 0 otherwise. We have the following intuitive requirements on DMod:

1. All ciphertexts \tilde{c} an adversary can produce given ciphertexts c_{1}, \ldots, c_{l} and no encryption key, are either invalid (i.e., sanitize to \perp) or we have $\operatorname{DMod}\left(s p, c_{i}, \tilde{c}\right)=1$ for some $i \in\{1, \ldots, n\}$.
2. Given encryption and decryption keys, an adversary is unable to produce a ciphertext that is detected to be in relation with a ciphertext produced by Enc for a message of the adversary's choice. In particular, independent encryptions of messages collide only with negligible probability.

The first requirement is captured by role-respecting security as defined in Definition 4.5, the second one by ciphertext unpredictability defined in Definition 4.4.
Remark. Canetti et al. (translated to our setting) also require that if $\operatorname{DMod}(s p, c, \tilde{c})=1$, then c and \tilde{c} decrypt to the same message [CKN03]. For our purpose, this is not needed. This means that we do not want to detect replays in the sense that the same message is replayed, but more generally, whether the given ciphertext was obtain via some modification of another ciphertext.

4.2 Security Definitions

We formalize chosen-ciphertext attacks by giving the adversary access to an oracle $\mathcal{O}_{S D}$ that first sanitizes a given ciphertext and then decrypts the result. One could also consider chosen-sanitized-ciphertext attacks by providing the adversary access to an oracle \mathcal{O}_{D} that only decrypts. This is potentially stronger since the adversary can emulate the oracle $\mathcal{O}_{S D}$ by first sanitizing the ciphertexts and then giving the result to \mathcal{O}_{D}, but given $\mathcal{O}_{S D}$, it is not necessarily possible to emulate \mathcal{O}_{D}. Since in the application, users can only send ciphertexts to the sanitizer but not directly write ciphertexts to the repository such that they are decrypted without being sanitized, the weaker notion is sufficient.

In principle, the adversary has in all definitions access to $\mathcal{O}_{S D}$, as well as to an encryption oracle and a key-generation oracle. To simplify the definitions, we omit the encryption or decryption oracles if the winning condition places no restriction on the encryption or decryption keys obtained from the key-generation oracle, respectively.

Privacy and anonymity. We now define (payload) privacy and sender-anonymity. The former guarantees that encryptions of different messages under the same encryption key cannot be distinguished as long as the adversary has no decryption key that allows to decrypt. We also require this for messages of different length, i.e., schemes satisfying our definition do not leak the length of the encrypted message, which means that the message space has to be bounded. Anonymity guarantees that encryptions of the same message under different keys cannot be distinguished. We distinguish a weak and a strong variant of anonymity, where the weak one provides no guarantees if the adversary can decrypt the ciphertext, and the strong one guarantees that even if the adversary has decryption keys, nothing is leaked about the sender role beyond which of the adversary's decryption keys can be used to decrypt.

Definition 4.2. Let $\mathcal{E}=($ Setup, Gen, Enc, San, Dec, DMod), be an ACE with modification detection scheme and let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be a pair of probabilistic algorithms. Consider the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}}$-privAnon-CCA in Figure 2 and let J be the set of all j such that \mathcal{A}_{1} or \mathcal{A}_{2} issued the query (j, rec) to the oracle \mathcal{O}_{G}. We define the privacy advantage and the sender-anonymity

Experiment Exp $\operatorname{Ex,A}_{\mathcal{A}}^{\mathrm{ACE}}$-privAnon-CCA

Input: $\left(1^{\kappa}, P\right), \kappa \in \mathbb{N}, P:[n] \times[n] \rightarrow\{0,1\}$
$(s p, m s k) \leftarrow \operatorname{Setup}\left(1^{\kappa}, P\right)$
$\left(m_{0}, m_{1}, i_{0}, i_{1}, s t\right) \leftarrow \mathcal{A}_{1}^{\mathcal{O}_{G}(\cdot, \cdot), \mathcal{O}_{S D}(\cdot, \cdot)}(s p)$
$b \nleftarrow\{0,1\}$
$e k_{i_{b}} \leftarrow \operatorname{Gen}\left(m s k, i_{b}\right.$, sen $)$
$c^{*} \leftarrow \operatorname{Enc}\left(e k_{i_{b}}, m_{b}\right)$

Experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\text {ACE-ctxt-unpred }}$

Input: $\left(1^{\kappa}, P\right), \kappa \in \mathbb{N}, P:[n] \times[n] \rightarrow\{0,1\}$
$(s p, m s k) \leftarrow \operatorname{Setup}\left(1^{\kappa}, P\right)$
$(m, i, c) \leftarrow \mathcal{A}^{\mathcal{O}_{G}(\cdot, \cdot)}(s p)$
$e k_{i} \leftarrow \operatorname{Gen}(m s k, i$, sen $)$
$c^{*} \leftarrow \operatorname{Enc}\left(e k_{i}, m\right)$
$b \leftarrow \operatorname{DMod}\left(s p, c^{*}, c\right)$

Experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}}-\mathrm{san}-\mathrm{CCA}$

Input: $\left(1^{\kappa}, P\right), \kappa \in \mathbb{N}, P:[n] \times[n] \rightarrow\{0,1\}$
$(s p, m s k) \leftarrow \operatorname{Setup}\left(1^{\kappa}, P\right)$
$\left(c_{0}, c_{1}, s t\right) \leftarrow \mathcal{A}_{1}^{\mathcal{O}_{G}(\cdot, \cdot), \mathcal{O}_{S D}(\cdot, \cdot)}(s p)$
$c_{0}^{\prime} \leftarrow \operatorname{San}\left(s p, c_{0}\right) ; c_{1}^{\prime} \leftarrow \operatorname{San}\left(s p, c_{1}\right)$
$b \leftrightarrow\{0,1\}$
$b^{\prime} \leftarrow \mathcal{A}_{2}^{\mathcal{O}}{ }_{G}(\cdot, \cdot), \mathcal{O}_{S D}(\cdot, \cdot)\left(s t, c_{b}^{\prime}\right)$
for $j \in[n]$ do
$m_{0, j} \leftarrow \operatorname{Dec}\left(\operatorname{Gen}(m s k, j, \mathrm{rec}), c_{0}^{\prime}\right)$
$m_{1, j} \leftarrow \operatorname{Dec}\left(\operatorname{Gen}(m s k, j, \mathrm{rec}), c_{1}^{\prime}\right)$

Experiment Exp $\mathcal{E A}_{, A}^{A C E-U R R}$

Input: $\left(1^{\kappa}, P\right), \kappa \in \mathbb{N}, P:[n] \times[n] \rightarrow\{0,1\}$
$(s p, m s k) \leftarrow \operatorname{Setup}\left(1^{\kappa}, P\right)$
$c \leftarrow \mathcal{A}^{\mathcal{O}_{G}(\cdot, \cdot), \mathcal{O}_{E}(\cdot, \cdot)}(s p)$
dct \leftarrow false
for $\tilde{c} \in C_{\mathcal{O}}$ do $\quad \triangleright C_{\mathcal{O}}=$ set of answers from \mathcal{O}_{E} $\mathrm{dct} \leftarrow \operatorname{dct} \vee \operatorname{DMod}(s p, \tilde{c}, c)=1$
$c^{\prime} \leftarrow \operatorname{San}(s p, c)$
for $j \in[n]$ do
$m_{j} \leftarrow \operatorname{Dec}\left(\operatorname{Gen}(m s k, j\right.$, rec $\left.), c^{\prime}\right)$

Definitions of oracles

$$
\begin{aligned}
\mathcal{O}_{G}(i, t) & :=\operatorname{Gen}(m s k, i, t) \\
\mathcal{O}_{E}(i, m) & :=\operatorname{Enc}(\operatorname{Gen}(m s k, i, \operatorname{sen}), m) \\
\mathcal{O}_{S D}(j, c) & :=\operatorname{Dec}(\operatorname{Gen}(m s k, j, \mathrm{rec}), \operatorname{San}(s p, c)) \\
\mathcal{O}_{S D^{*}}(j, c) & := \begin{cases}\operatorname{Dec}(\operatorname{Gen}(m s k, j, \text { rec }), \operatorname{San}(s p, c)), & \operatorname{DMod}\left(s p, c^{*}, c\right)=0 \\
\operatorname{test}, & \text { else }\end{cases}
\end{aligned}
$$

Figure 2: Security experiments for an ACE with modification detection scheme \mathcal{E} and an adversary \mathcal{A}, where $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ in the first two experiments.
advantage of \mathcal{A} as

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\text {ACE-priv-CCA }} & :=2 \cdot \operatorname{Pr}\left[b^{\prime}=b \wedge i_{0}=i_{1} \wedge \forall j \in J P\left(i_{0}, j\right)=0\right]-1, \\
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{~A} A n o n-C C A & :=2 \cdot \operatorname{Pr}\left[b^{\prime}=b \wedge m_{0}=m_{1} \wedge \forall j \in J P\left(i_{0}, j\right)=P\left(i_{1}, j\right)=0\right]-1, \\
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{~A} \text {-snon-CCA } & :=2 \cdot \operatorname{Pr}\left[b^{\prime}=b \wedge m_{0}=m_{1} \wedge \forall j \in J P\left(i_{0}, j\right)=P\left(i_{1}, j\right)\right]-1,
\end{aligned}
$$

respectively, where the probabilities are over the randomness in $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}-\mathrm{privAnon}-\mathrm{CCA}}$.
Remark. Weak anonymity corresponds to the anonymity considered by Fuchsbauer et al. [FGKO17] and strong anonymity to the one considered by Damgård et al. [DHO16]. We state both definitions because weak anonymity is easier to achieve but strong anonymity might be required by some applications. If anonymity is only required against the sanitizer or if all messages are anyway signed by the sender, weak anonymity is sufficient. Strong anonymity is required in settings where senders also want to retain as much anonymity as possible against legitimate receivers.

Sanitization security. We next define sanitization security, which excludes that dishonest parties can communicate via the ciphertexts. We formalize this by requiring that the output of the sanitizer for two different ciphertexts cannot be distinguished, as long as both sanitized ciphertexts are not \perp and the adversary has no decryption key that decrypts one of the ciphertexts. We do not need to guarantee any security if the adversary can decrypt the ciphertexts since in this case, the parties can directly communicate via the messages. Since the adversary provides the two ciphertexts that are sanitized, we do not know to which roles they correspond; they could even be particularly crafted without belonging to an existing role. Hence, we cannot state the requirement that the adversary should not be able to decrypt by only considering the policy and the obtained decryption keys. Instead, we require that the decryption algorithm returns \perp for all decryption keys the adversary possesses. For this to provide the intended security, we need that the decrypt algorithm returns \perp whenever the receiver role corresponding to the used key is not supposed to read the message. This is guaranteed by role-respecting security which is defined later.

Definition 4.3. Let $\mathcal{E}=($ Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification detection scheme and let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be a pair of probabilistic algorithms. Consider the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{san}-\mathrm{CCA}$ in Figure 2 and let J be the set of all j such that \mathcal{A}_{1} or \mathcal{A}_{2} issued the query (j, rec) to the oracle \mathcal{O}_{G}. We define the sanitization advantage of \mathcal{A} as

$$
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}-\text { san-CCA }}:=2 \cdot \operatorname{Pr}\left[b^{\prime}=b \wedge c_{0}^{\prime} \neq \perp \neq c_{1}^{\prime} \wedge \forall j \in J m_{0, j}=m_{1, j}=\perp\right]-1
$$

where the probability is over the randomness in $\operatorname{Exp} A \mathcal{E}, \mathcal{A}-$-san-CCA .
Ciphertext unpredictability. In the intended way of using a scheme satisfying our notions, the sanitizer only adds sanitized ciphertexts to the repository if the given ciphertext is not detected to be a modification of a previously received ciphertext. This means that if an adversary can find a ciphertext c such that another ciphertext c^{*} that is later honestly generated is detected as a modification of c, the delivery of the message at that later point can be prevented by sending the ciphertext c to the sanitizer earlier. We exclude this by the following definition, which can be seen as an extended correctness requirement.

Definition 4.4. Let $\mathcal{E}=$ (Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification detection scheme and let \mathcal{A} be a probabilistic algorithm. Consider the $\operatorname{experiment} \operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{A C E-c t x t-u n p r e d}$ in Figure 2. We define the ciphertext unpredictability advantage of \mathcal{A} as

$$
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE} \text {-ctxt-unpred }}:=\operatorname{Pr}[b=1]
$$

where the probability is over the randomness in $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{Ctxt}$-unpred .

Role-respecting and uniform-decryption security. We finally define role-respecting and uniform-decryption security. The former means that an adversary cannot produce a ciphertext for which the pattern of roles that can decrypt does not correspond to a role for which the adversary has an encryption key. For example, if the adversary has only an encryption key for the role i such that roles j_{0} and j_{1} are the only roles j with $P(i, j)=1$, all ciphertexts produced by the adversary are either invalid (i.e., sanitized to \perp or detected as a modification) or decrypt to a message different from \perp precisely under the decryption keys for j_{0} and j_{1}. On the one hand, this means that receivers who are not allowed to receive the message get \perp and hence
know that the message is not for them. On the other hand, it also guarantees that the adversary cannot prevent receivers with role j_{1} from receiving a message that is sent to receivers with role j_{0}. Furthermore, uniform decryption guarantees for all ciphertexts c output by an adversary that if c decrypts to a message different from \perp for different decryption keys, it always decrypts to the same message. In the example above, this means that j_{0} and j_{1} not only both receive some message, but they both receive the same one.

Definition 4.5. Let $\mathcal{E}=$ (Setup, Gen, Enc, San, Dec, DMod), be an ACE with modification detection scheme and let \mathcal{A} be a probabilistic algorithm. Consider the experiment $\operatorname{Exp} \mathrm{E}_{\mathcal{E}, \mathcal{A}}^{\text {ACE-URR }}$ in Figure 2 and let I and J be the sets of all i and j such that \mathcal{A} issued the query (i, sen) and (j, rec) to the oracle \mathcal{O}_{G}, respectively. We define the role-respecting advantage and the uniform-decryption advantage of \mathcal{A} as

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}-\operatorname{RR}} & :=\operatorname{Pr}\left[c^{\prime} \neq \perp \wedge \text { dct }=\mathrm{fal} \text { se } \wedge \neg\left(\exists i \in I \forall j \in J\left(m_{j} \neq \perp \leftrightarrow P(i, j)=1\right)\right)\right], \\
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{AC}} \mathrm{-uDec} & :=\operatorname{Pr}\left[\exists j, j^{\prime} \in J m_{j} \neq \perp \neq m_{j^{\prime}} \wedge m_{j} \neq m_{j^{\prime}}\right],
\end{aligned}
$$

respectively, where the probabilities are over the randomness in Exp $\operatorname{ExE}_{\mathcal{A}}^{\mathrm{ACE}} \boldsymbol{\mathcal { A }}$-URR .
Remark. Note that in Definition 4.5, we only check the decryptions for receiver roles for which \mathcal{A} has requested the corresponding decryption key. This means that an adversary in addition to producing a ciphertext that causes an inconsistency, also has to find a receiver role for which this inconsistency manifests. If the total number of roles n is small (say polynomial in the security parameter), \mathcal{A} can simply query \mathcal{O}_{G} on all receiver keys, but for large n this condition is nontrivial. For example, we consider a scheme secure if an adversary can efficiently produce a ciphertext such that there is a receiver role that can decrypt it even though the policy does not allow it, as long as this receiver role is hard to find. The rationale is that in this case, the inconsistency cannot be exploited and will only be observed with negligible probability in an execution of the protocol.

4.3 Relation to the Original Security Notions

In this section, we show that our notions imply the original security definitions (see Section 2.4). We first show that the no-read and no-write rules are implied by our new security definitions.

Theorem 4.6. Let $\mathcal{E}^{\prime}=($ Setup, Gen, Enc, San, Dec, DMod) be an ACE with modification detection scheme and let $\mathcal{E}=($ Setup, Gen, Enc, San, Dec) be the corresponding ACE scheme. For adversaries $\mathcal{A}, \mathcal{B}, \mathcal{C}$ for the security games of $A C E$, where we assume that adversary \mathcal{A} makes at most q queries to its encryption oracle, we derive adversaries $\mathcal{A}_{i}, \mathcal{B}_{i}$, and \mathcal{C}_{i} such that the following inequalities hold:

$$
\begin{aligned}
& \operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{-no} \text {-write } \leq \operatorname{Adv}_{\mathcal{E}, \mathcal{A}_{1}}^{\mathrm{ACE}} \mathrm{san}-\mathrm{CCA}+2 \cdot \operatorname{Adv}_{\mathcal{E}, \mathcal{A}_{2}}^{\mathrm{ACE}} \mathrm{RR}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Adv}_{\mathcal{E}, \mathcal{B}}^{\mathrm{ACE}} \mathrm{no} \text {-read,priv } \leq \operatorname{Adv}_{\mathcal{E}, \mathcal{B}_{1}}^{\mathrm{AC} \text {-priv-CCA }}+\mathrm{Adv}_{\mathcal{E}, \mathcal{B}_{2}}^{\mathrm{ACE} \text {-sAnon-CCA }}, \\
& \operatorname{Adv}_{\mathcal{E}, \mathcal{C}}^{A C E-n o-r e a d, a n o n} \leq \operatorname{Adv}_{\mathcal{E}, \mathcal{C}_{1}}^{A C E-\text { sAnon-CCA }} \text {. }
\end{aligned}
$$

Proof. We distinguish the above three cases.

No-write advantage. We start with the first reduction. Assume there is an adversary \mathcal{A} that plays the security game $\operatorname{Exp} \mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\text {AC-no-write }}$. We construct the adversary $\mathcal{A}_{1}=\left(\mathcal{A}_{1,1}, \mathcal{A}_{1,2}\right)$ that plays the security game $\operatorname{Exp} p_{\mathcal{E}, \mathcal{A}}^{A C-s a n-C C A}$ and relate their advantages. When invoked on input $s p, \mathcal{A}_{1,1}$ internally emulates a (black-box) execution of \mathcal{A} on input $s p$. In particular, the only oracle queries that \mathcal{A} asks are queries to generate keys and to produce sanitized ciphertexts for a given message m and role j. These are emulated by $\mathcal{A}_{1,1}$ as follows:
$\mathcal{O}_{G_{i}}(\cdot, \cdot)$: On query $(i$, sen $)$ or (i, rec $), \mathcal{A}_{1,1}$ queries $(i$, sen $)$, respectively (i, rec), to its own oracle \mathcal{O}_{G} and returns the answer to \mathcal{A}.
$\mathcal{O}_{E S}(\cdot, \cdot)$: On query $(j, m), \mathcal{A}_{1,1}$ queries (j, sen $)$ to its oracle \mathcal{O}_{G} to receive the encryption key $e k_{j} .{ }^{3}$ It then computes $c^{\prime} \leftarrow \operatorname{San}\left(s p, \operatorname{Enc}\left(e k_{j}, m\right)\right)$ and outputs c^{\prime} to \mathcal{A}.

When \mathcal{A} outputs its challenge $\left(c_{0}, i^{\prime}\right.$,st), $\mathcal{A}_{1,1}$ chooses a uniformly random message $m \leftarrow \mathcal{M}$, queries (i^{\prime}, sen) to its oracle \mathcal{O}_{G} to receive the encryption key $e k_{i^{\prime}}$. It then computes $c_{1} \leftarrow \operatorname{Enc}\left(e k_{i^{\prime}}, m\right)$. Finally, $\mathcal{A}_{1,1}$ outputs $\left(c_{0}, c_{1}, s t\right)$ as its challenge.
When $\mathcal{A}_{1,2}$ is invoked with the sanitized version of one of its challenge ciphertexts and the state, i.e., on input ($c^{\prime}, s t$), it invokes \mathcal{A} on the same input and emulates the oracles the same way as $\mathcal{A}_{1,2}$ does above. When \mathcal{A} outputs its decision bit $b^{\prime}, \mathcal{A}_{1,2}$ outputs b^{\prime} as its own guess and terminates.
We observe that the view \mathcal{A}_{1} emulates towards \mathcal{A} in the experiment $\operatorname{Exp} \mathcal{E}_{\mathcal{E}, \mathcal{A}_{1}}^{\text {ACE-san-CCA }}$ is identical to the view that \mathcal{A} has in the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{A C E-n o-w r i t e}$. In particular, if $b=0$, \mathcal{A} receives sanitized ciphertext which was part of the challenge, and if $b=1$ it receives the sanitized ciphertext of an encryption to a random message. We can thus conclude that the probability of the event $b=b^{\prime}$ is the same. What remains to prove is that the winning conditions required from Definition 2.4, and the emulation strategy above, lead to valid winning conditions according to Definition 4.3.
To see this, observe that the winning event for \mathcal{A} is

$$
\mathrm{W}_{\mathrm{noW}}:=\left[b=b^{\prime} \wedge i^{\prime} \in I_{1} \cup\{0\} \wedge \forall i \in I_{1} \forall j \in J P(i, j)=0 \wedge \operatorname{San}\left(s p, c_{0}\right) \neq \perp\right]
$$

and the winning event for \mathcal{A}_{1} is

$$
\mathrm{W}_{\text {san }}:=\left[b^{\prime}=b \wedge c_{0}^{\prime} \neq \perp \neq c_{1}^{\prime} \wedge \forall j \in J m_{0, j}=m_{1, j}=\perp\right] .
$$

By correctness of the assumed ACE scheme, we have $\operatorname{San}\left(s p, c_{1}\right) \neq \perp$ (except with probability p) in the above emulation. Furthermore, the winning conditions of Definition 4.3 do not restrict the sets of requested keys, but requires that for all decryption keys requested, the decrypted ciphertexts yield the same message. Define the event E_{1} in the above emulation, if $\forall i \in I_{1} \forall j \in J P(i, j)=0 \wedge \exists j: \operatorname{Dec}\left(\operatorname{Gen}(m s k, j\right.$, rec $\left.), c_{i}^{\prime}\right) \neq \perp$. We see that if event E_{1} does not occur and correctness is not violated then the winning condition of \mathcal{A} implies the winning condition of \mathcal{A}_{1}. Thus

[^2]Note that if we violate the correctness property with probability p, we can define a straightforward reduction to obtain another adversary such that $p \leq \operatorname{Adv}_{\mathcal{E}, \mathcal{A}_{5}}^{\mathrm{ACE}}{ }^{\text {corr }}$.
To cover the remaining cases, let us introduce a hybrid process $\mathrm{Hyb}_{\mathcal{E}, \mathcal{A}}$, which is identical to $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}}$-no-write , but where we introduce the additional steps. Hyb evaluates $\operatorname{DMod}\left(s p, \tilde{c}, c_{0}\right)$ for all ciphertexts \tilde{c} which are generated by $\mathcal{O}_{E S}$ before being sanitized. We define the event D which occurs iff at least one of these evaluations yields output 1 . Note that the hybrid process has the same input-output behavior as the original experiment.

We partition the probability space accordingly to design the remaining reductions.

2nd Reduction, Role-Respecting: When invoked on input $s p, \mathcal{A}_{2}$ internally emulates a (black-box) execution of \mathcal{A} on input $s p$ and emulates the oracles as above. When \mathcal{A} outputs its challenge $\left(c, i^{\prime}, s t\right), \mathcal{A}_{2}$ chooses a uniformly random message $m \leftarrow \mathcal{M}$, queries $\left(i^{\prime}, m\right)$ to its oracle \mathcal{O}_{E} to receive the corresponding ciphertext c_{1}. Finally, \mathcal{A}_{2} outputs as its challenge either c_{0} or c_{1}, each with probability one-half. The winning condition of the role-respecting game says

$$
W_{R R}:=\left[c^{\prime} \neq \perp \wedge \mathrm{dct}=\mathrm{false} \wedge \neg\left(\exists i \in I \forall j \in J\left(m_{j} \neq \perp \leftrightarrow P(i, j)=1\right)\right)\right]
$$

Observing that adversary \mathcal{A}_{2} perfectly emulates the experiment Hyb towards \mathcal{A} (where the event D of Hyb is represented by the event $\mathrm{dtc}=1$ in the emulation), we conclude that

$$
\operatorname{Pr}^{\mathrm{Exp}}{ }_{\mathcal{E}, \mathcal{A}_{2}^{\mathrm{ACE}-\mathrm{URR}}}\left[W_{R R}\right]=\frac{1}{2} \operatorname{Pr}^{\mathrm{Hyb}_{\mathcal{E}, \mathcal{A}}}\left[W_{\mathrm{noW}} \wedge E_{1} \wedge \neg D\right] .
$$

3rd Reduction, Sanitization: Assume there is an adversary \mathcal{A} that plays the security game $\operatorname{Exp} \mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\text {ACE-no-write }}$. We construct the adversary $\mathcal{A}_{3}=\left(\mathcal{A}_{3,1}, \mathcal{A}_{3,2}\right)$ against the sanitization game. When invoked on input $s p, \mathcal{A}_{3,1}$, first chooses $q_{0} \leftarrow\{1 \ldots q\}$ uniformly at random, sets $k \leftarrow 1$ and internally emulates a (black-box) execution of \mathcal{A} on input $s p$. In particular, the oracle queries that \mathcal{A} asks are queries to generate keys and to produce sanitized ciphertexts for a given message m and role j. These are emulated by $\mathcal{A}_{3,1}$ as follows:
$\mathcal{O}_{G_{i}}(\cdot, \cdot)$: On query $(i$, sen $)$ or (i, rec $), \mathcal{A}_{3,1}$ queries $(i$, sen $)$, respectively (i, rec $)$, to its own oracle \mathcal{O}_{G} and returns the answer to \mathcal{A}.
$\mathcal{O}_{E S}(\cdot, \cdot)$: On query (j, m), if $k \neq q_{0}$, it queries $(j$, sen $)$ to its oracle \mathcal{O}_{G} to receive the encryption key $e k_{j}$, then computes $c^{\prime} \leftarrow \operatorname{San}\left(s p, \operatorname{Enc}\left(e k_{j}, m\right)\right)$ and outputs c^{\prime} to \mathcal{A}. Finally, set $k \leftarrow k+1$.
If $k=q_{0}$, then $\mathcal{A}_{3,1}$ queries $(j$, sen $)$ to its oracle \mathcal{O}_{G} to receive the encryption key $e k_{j}$. It then creates two independent encryptions of m by computing $\tilde{c}^{\prime}{ }_{0} \leftarrow$ $\operatorname{San}\left(s p, \operatorname{Enc}\left(e k_{j}, m\right)\right)$ and $\tilde{c}_{1}^{\prime} \leftarrow \operatorname{San}\left(s p, \operatorname{Enc}\left(e k_{j}, m\right)\right)$, set $k \leftarrow k+1$, and outputs $\left(\left(s p, s t, k, \tilde{c}_{0}, \tilde{c}_{0}\right), \tilde{c}_{0}, \tilde{c}_{1}\right)$, where $s t$ denotes the current state of the emulation of \mathcal{A}_{1}. This ends phase 1 of the experiment.

When $\mathcal{A}_{3,2}$ is invoked with $\left(\left(s p, s t, k, \tilde{c}_{0}, \tilde{c}_{1}\right), \tilde{c}_{b}\right)$ (where b is the bit chosen by the game), then it continues executing \mathcal{A} (using state st) and emulates the oracles as above. If \mathcal{A}_{1} terminates, outputting a challenge ciphertext $c_{0}, \mathcal{A}_{3,2}$ evaluates $d_{0} \leftarrow \operatorname{DMod}\left(s p, \tilde{c}_{i}, c_{0}\right)$ and $d_{1} \leftarrow \operatorname{DMod}\left(s p, \tilde{c}_{i}, c_{0}\right)$. Given challenge c_{0}, let C denote the event that $\operatorname{DMod}\left(s p, \tilde{c}_{0}, \tilde{c}_{1}\right)=1$
or $\operatorname{DMod}\left(s p, \tilde{c}_{1-b}, c\right)=1$ and let us denote its probability by $\varepsilon .{ }^{4}$ Let further $D_{q_{0}}$ be the event that the output c_{0} from adversary \mathcal{A} detects with \tilde{c}_{i} for exactly one $i \in\{0,1\}$. Assuming occurrence of D, this happens with probability at least $\frac{1}{q}$. We further see that if $D_{q_{0}}$ occurs, but not C, then the adversary \mathcal{A}_{3} can correctly distinguish \tilde{c}_{0} and \tilde{c}_{1}. Details follow. To decide on its output bit, $\mathcal{A}_{3,2}$ proceeds as follows: if event $\left(E_{1} \wedge D_{q_{0}} \wedge D \wedge \neg C\right)$ does not occur, output a uniform random bit b^{\prime}. Else, if $d_{0}=1$, then output $b^{\prime}=0$, and if $d_{1}=1$, then output $b^{\prime}=1$. We get

$$
\begin{aligned}
& \operatorname{Pr}^{\text {Expen }_{\mathcal{E}, A_{3}}^{\text {ACE-san-CCA }}}\left[W_{\text {san }}\right]=\operatorname{Pr}^{\mathrm{Hyb}_{\mathcal{E}, \mathcal{A}}}\left[E_{1} \wedge D_{q_{0}} \wedge D \wedge \neg C\right] \\
& +\frac{1}{2}\left(1-\operatorname{Pr}^{\mathrm{Hyb}}{ }_{\varepsilon, A}^{\prime}\left[E_{1} \wedge D_{q_{0}} \wedge D \wedge \neg C\right]\right) \\
& =\frac{1}{2} \operatorname{Pr}^{\mathrm{Hyb}}{ }_{\mathcal{\varepsilon}, \mathcal{A}}^{\prime}\left[E_{1} \wedge D_{q_{0}} \wedge D \wedge \neg C\right]+\frac{1}{2} \geq \frac{1-\varepsilon}{2 q} \operatorname{Pr}^{\mathrm{Hyb}_{\mathcal{E}, \mathcal{A}}^{\prime}}\left[E_{1} \wedge D\right]+\frac{1}{2} \text {. }
\end{aligned}
$$

Overall, we conclude

$$
\begin{aligned}
& \operatorname{Pr}^{\mathrm{Exp}}{ }_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{~A} \text {-write }\left[\mathrm{win}_{\mathrm{noW}}\right]=\operatorname{Pr}^{\mathrm{Hyb}_{\mathcal{E}, \mathcal{A}}}\left[\operatorname{win}_{\mathrm{noW}}\right]
\end{aligned}
$$

We observe that the occurrence of event C violates the ciphertext unpredictability requirement and it is straightforward to construct an adversary \mathcal{A}_{4} against that game with advantage at least ε. Therefore,

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{ACE}}
\end{aligned}
$$

No-read, privacy advantage. Assume there is an adversary \mathcal{B} that plays the security game $\operatorname{Exp}_{\mathcal{E}, \mathcal{B}}^{A C E-n o-r e a d}$. We construct the adversary $\mathcal{B}_{1}=\left(\mathcal{B}_{1,1}, \mathcal{B}_{1,2}\right)$ that plays the security game $\operatorname{Exp}_{\mathcal{E}, \mathcal{B}_{1}}^{\mathrm{ACE}-\text { privAnon-CCA }}$ and relate their advantages. When invoked on input $s p, \mathcal{B}_{1,1}$ internally emulates a (black-box) execution of \mathcal{B} on input $s p$. In particular, the only oracle queries that \mathcal{B} asks are queries to generate keys, which are emulated by $\mathcal{B}_{1,1}$ as follows:
$\mathcal{O}_{G}(\cdot, \cdot)$: On query $(i$, sen $)$ or $(i$, rec $), \mathcal{B}_{1,1}$ queries $(i$, sen $)$, respectively $(i$, rec $)$, to its own oracle \mathcal{O}_{G} and returns the answer to \mathcal{B}.
$\mathcal{O}_{E}(\cdot, \cdot)$: On query $(j, m), \mathcal{B}_{1,1}$ queries $(j$, sen $)$ to its oracle \mathcal{O}_{G} to receive the encryption key $e k_{j} .{ }^{5}$ It then computes $c \leftarrow \operatorname{Enc}\left(e k_{j}, m\right)$ and outputs c to \mathcal{B}.

[^3]When \mathcal{B} outputs its challenge ($m_{0}, m_{1}, i_{0}, i_{1}, s t$), $\mathcal{B}_{1,1}$ outputs the challenge ($\left.m_{0}, m_{1}, i_{0}, i_{0}, s t\right)$. When invoked (in the second phase of the experiment, $\mathcal{B}_{1,2}$ invokes \mathcal{B} on input ($s t, c$) and emulates oracle \mathcal{O}_{G} exactly the way $\mathcal{B}_{1,1}$ did in the first phase. When adversary \mathcal{B} terminates with output $b, \mathcal{B}_{1,2}$ outputs b as its own guess and terminates.
Consider the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{B}_{1}}^{\text {AC-privAnon-CCA }}$: we observe that

Let us further consider a hybrid process $\operatorname{Hyb}_{\mathcal{E}, \mathcal{B}}$ which is identical to $\operatorname{Exp}_{\mathcal{E}, \mathcal{B}}^{\mathrm{ACE}}$-no-read except that the output ($m_{0}, m_{1}, i_{0}, i_{1}$,st) of \mathcal{B} gets overwritten by ($m_{0}, m_{1}, i_{0}, i_{0}$,st). We thus have

$$
\begin{aligned}
& \operatorname{Pr}^{\text {Exp }}{ }_{\mathcal{E}, \mathcal{B}_{1}}^{\text {ACEprivAnon-CCA }}\left[b^{\prime}=\mid b=1\right]=\operatorname{Pr}^{\mathrm{Hyb}}\left[b^{\prime}=1 \mid b=1\right] \\
& =\operatorname{Pr}^{\mathrm{ExP}}{ }_{\mathcal{E}, \mathcal{B}}^{\mathrm{AC}-\text { noreread }}\left[b^{\prime}=1 \mid b=1\right]-\delta,
\end{aligned}
$$

where the difference δ can be bounded by $\operatorname{Adv}_{\mathcal{E}, \mathcal{B}_{2}}^{\mathrm{ACE}} \mathrm{E}$ Anon-CCA for an adversary $\mathcal{B}_{2}=\left(\mathcal{B}_{2,1}, \mathcal{B}_{2,2}\right)$ against the anonymity of the ACE scheme:
When invoked on input $s p, \mathcal{B}_{2,1}$ internally emulates a (black-box) execution of \mathcal{B} on input $s p$. In particular, the only oracle queries that \mathcal{B} asks are queries to generate keys, which are emulated the same way as done by $\mathcal{B}_{1,1}$ before. When \mathcal{B} outputs its challenge ($m_{0}, m_{1}, i_{0}, i_{1}, s t$), $\mathcal{B}_{2,1}$ outputs the challenge ($m_{1}, m_{1}, i_{0}, i_{1}, s t$). When invoked (in the second phase of the experiment, $\mathcal{B}_{2,2}$ invokes \mathcal{B} on input ($s t, c$) and emulates oracle \mathcal{O}_{G} as before. When adversary \mathcal{B} terminates with output $b, \mathcal{B}_{2,2}$ outputs b as its own guess and terminates. For this adversary, we have

$$
\begin{aligned}
& \operatorname{Pr}^{\mathrm{Exp}} \mathrm{Ex}_{\mathcal{E}}^{\mathrm{ACE}-\mathrm{B}_{2}} \mathrm{FriAnon-CCA}\left[b^{\prime}=b\right]= \\
& \frac{1}{2} \operatorname{Pr}^{\text {Exp }}{ }_{\mathcal{E}, \mathcal{B}}^{A C-\text { noreread }}\left[b^{\prime}=1 \mid b=1\right]+\frac{1}{2}\left(1-\operatorname{Pr}^{\mathrm{Hyb}} \mathrm{E}_{\mathcal{B}}\left[b^{\prime}=1 \mid b=1\right]\right) \\
& =\frac{1}{2}+\frac{\delta}{2} \text {. }
\end{aligned}
$$

The proof is concluded by observing that if \mathcal{B} satisfies the condition $\forall j \in J P\left(i_{0}, j\right)=$ $P\left(i_{1}, j\right)=0$, this implies the respective necessary winning conditions $\forall j \in J P\left(i_{0}, j\right)=0$ (for the privacy adversary \mathcal{B}_{1}) and in addition $\forall j \in J P\left(i_{0}, j\right)=P\left(i_{1}, j\right)$ (for the anonymity adversary \mathcal{B}_{2}) as required by Definition 4.2.

No-read, anonymity advantage. Assume there is an adversary \mathcal{C} that plays the security game $\operatorname{Exp}_{\mathcal{E}, \mathcal{C}}^{A C E-n o-r e a d}$. We construct the adversary $\mathcal{C}_{1}=\left(\mathcal{C}_{1,1}, \mathcal{C}_{1,2}\right)$ that plays the security game $\operatorname{Exp}_{\mathcal{E}, \mathcal{C}_{1}}^{\mathrm{ACE}} \mathrm{C}$-rivAnon-CCA and relate their advantages. When invoked on input $s p, \mathcal{C}_{1,1}$ internally emulates a (black-box) execution of \mathcal{C} on input $s p$. In particular, the only oracle queries that \mathcal{C} asks are queries to generate keys, which are emulated by $\mathcal{C}_{1,1}$ as follows:
$\mathcal{O}_{G}(\cdot, \cdot)$: On query (i, sen) or $(i, \mathrm{rec}), \mathcal{C}_{1,1}$ queries (i, sen), respectively (i, rec), to its own oracle \mathcal{O}_{G} and returns the answer to \mathcal{C}.
$\mathcal{O}_{E}(\cdot, \cdot)$: On query $(j, m), \mathcal{C} 1,1$ queries $(j$, sen $)$ to its oracle \mathcal{O}_{G} to receive the encryption key $e k_{j}$. It then computes $c \leftarrow \operatorname{Enc}\left(e k_{j}, m\right)$ and outputs c to \mathcal{C}.

When \mathcal{C} outputs its challenge $\left(m_{0}, m_{1}, i_{0}, i_{1}, s t\right)$, $\mathcal{C}_{1,1}$ outputs the challenge ($m_{0}, m_{1}, i_{0}, i_{1}, s t$). When invoked (in the second phase of the experiment, $\mathcal{C}_{1,2}$ invokes \mathcal{C} on input ($s t, c$) and emulates oracle \mathcal{O}_{G} exactly the way $\mathcal{C} 1,1$ did in the first phase. When adversary \mathcal{C} terminates with output $b, \mathcal{C}_{1,2}$ outputs b as its own guess and terminates.
We observe that the view \mathcal{C}_{1} emulates towards \mathcal{C} in the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{C}_{\mathcal{C}}}^{\text {ACE-privAnon-CCA }}$ is identical to the view that \mathcal{C} has in the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{C}}^{A C E-n o-r e a d . ~ I n ~ p a r t i c u l a r, ~ i f ~} b=0, \mathcal{C}$ receives the encryption of m_{0} relative to encryption key $e k_{i_{0}}$ and if $b=1, \mathcal{C}$ receives the encryption of m_{1} relative to encryption key $e k_{i_{1}}$. We thus conclude that

$$
\begin{aligned}
& \operatorname{Pr}^{\mathrm{Exp} \mathcal{P}_{, C_{1}}^{\text {ACE-priAnon-CCA }}}\left[b^{\prime}=b \wedge m_{0}=m_{1} \wedge \forall j \in J P\left(i_{0}, j\right)=P\left(i_{1}, j\right)\right] \\
& =\operatorname{Pr}^{\text {Exp }} \text { ACEC-Co-read }\left[b^{\prime}=b \wedge m_{0}=m_{1} \wedge \forall j \in J P\left(i_{0}, j\right)=P\left(i_{1}, j\right)\right] .
\end{aligned}
$$

This concludes the third case and the proof of the theorem.

5 Enhanced Sanitizable Public-Key Encryption

5.1 Definitions

As a stepping stone toward ACE schemes satisfying our new security definitions, we introduce enhanced sanitizable public-key encryption. Sanitizable public-key encryption has been considered by Damgård et al. [DHO16] and Fuchsbauer et al. [FGKO17] as a relaxation of universal reencryption [GJJS04] and rerandomizable encryption [Gro04; PR07]. It allows to sanitize a ciphertext to obtain a sanitized ciphertext that cannot be linked to the original ciphertext except that it decrypts to the correct message. In contrast to rerandomizable encryption, sanitized ciphertexts can have a different syntax than ciphertexts, i.e., it is not required that a sanitized ciphertext is indistinguishable from a fresh encryption. We introduce an enhanced variant with a different syntax and stronger security guarantees.

Definition 5.1. An enhanced sanitizable public-key encryption (sPKE) scheme consists of the following five PPT algorithms:
Setup: The algorithm Setup on input a security parameter 1^{κ}, outputs public parameters $s p$, which contain a message space \mathcal{M} and a ciphertext space \mathcal{C}, and a secret parameter msk.

Key Generation: The algorithm Gen private parameters msk, outputs an encryption key ek and a decryption key Dec.

Encrypt: The algorithm Enc on input an encryption key $e k$ and a message $m \in \mathcal{M}$, outputs a ciphertext $c \in \mathcal{C}$.

Sanitizer: The algorithm San on input public parameters $s p$ and a ciphertext $c \in \mathcal{C}$, outputs a sanitized ciphertext $c^{\prime} \in \mathcal{C}^{\prime} \cup\{\perp\}$.

Decrypt: The algorithm Dec on input a decryption key $d k$ and a sanitized ciphertext $c^{\prime} \in \mathcal{C}^{\prime}$, outputs a message $m \in \mathcal{M} \cup\{\perp\}$; on input $d k$ and \perp, it outputs \perp.

For correctness, we require for all ($s p, m s k$) in the range of Setup, all $(e k, d k)$ in the range of Gen($m s k$), and all $m \in \mathcal{M}$ that

$$
\operatorname{Dec}(d k, \operatorname{San}(s p, \operatorname{Enc}(e k, m)))=m
$$

with probability 1 .
We require robustness in the sense that no ciphertext decrypts to a message different from \perp for two different decryption keys (except with small probability). This is similar to detectability for ACE schemes, but we allow the adversary to directly output a ciphertext, instead of a message, which is then honestly encrypted. Our notion therefore closely resembles unrestricted strong robustness (USROB), introduced by Farshim et al. [FLPQ13] for public-key encryption, which also allows the adversary to choose a ciphertext and, in contrast to strong robustness by Abdalla et al. [ABN10], gives the adversary access to decryption keys.

Definition 5.2. Let $\mathcal{E}=($ Setup, Gen, Enc, San, Dec) be an sPKE scheme. For a probabilistic algorithm \mathcal{A}, we define the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{s} P \mathrm{~A}-\mathrm{USROB}}$ that executes $(s p, m s k) \leftarrow \operatorname{Setup}\left(1^{\kappa}\right)$ and $\left(c, i_{0}, i_{1}\right) \leftarrow \mathcal{A}^{\mathcal{O}_{G}}{ }^{(\cdot)}(s p)$, where the oracle \mathcal{O}_{G} on input getNew, outputs a fresh key pair $(e k, d k) \leftarrow G e n(m s k)$. Let q be the number of oracle queries and let for $i \in\{1, \ldots, q\},\left(e k_{i}, d k_{i}\right)$ be the i-th answer from \mathcal{O}_{G}. We define the robustness advantage of \mathcal{A} as

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\text {sPE-USROB }:=\operatorname{Pr}\left[1 \leq i_{0}, i_{1} \leq q\right.} & \wedge i_{0} \neq i_{1} \\
& \left.\wedge \operatorname{Dec}\left(d k_{i_{0}}, \operatorname{San}(s p, c)\right) \neq \perp \neq \operatorname{Dec}\left(d k_{i_{1}}, \operatorname{San}(s p, c)\right)\right],
\end{aligned}
$$

where the probability is over the randomness in Exp $\mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\mathrm{PKE}} \mathrm{USROB}$ and the random coins of San and Dec (both executed independently twice).

We next define IND-CCA security analogous to the definition for ordinary public-key encryption. In contrast to the usual definition, we do not require the adversary to output two message of equal length, which implies that schemes satisfying our definition do not leak the length of the encrypted message.

Definition 5.3. Let $\mathcal{E}=\left(\right.$ Setup, Gen, Enc, San, Dec) be an sPKE scheme and let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be a pair of probabilistic algorithms. Consider the experiment Exp $\mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\text {PKEIND-CCA }}$ in Figure 3 and let $C_{\mathcal{A}_{2}}$ be the set of all ciphertexts that \mathcal{A}_{2} queried to the oracle $\mathcal{O}_{S D}$. We define the ciphertext indistinguishability under chosen-ciphertext attacks advantage of \mathcal{A} as

$$
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPKE}-\operatorname{IND}-\mathrm{CCA}}:=2 \cdot \operatorname{Pr}\left[b^{\prime}=b \wedge c^{*} \notin C_{\mathcal{A}_{2}}\right]-1,
$$

where the probability is over the randomness in Exp $\mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\text {sPE-IND-CCA }}$.
We also need that it is hard to predict a ciphertext generated by Enc from a message of the adversary's choice given encryption and decryption keys. Note that this is not implied by IND-CCA security since the adversary obtains the decryption key.

Definition 5.4. Let $\mathcal{E}=($ Setup, Gen, Enc, San, Dec) be an sPKE scheme and let \mathcal{A} be a probabilistic algorithm. Consider the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{SPKE}} \mathrm{Ctxt-unpred}$ in Figure 3. We define the ciphertext unpredictability advantage of \mathcal{A} as

$$
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\text {sPKE-ctxt-unpred }}:=\operatorname{Pr}\left[c=c^{*}\right],
$$

where the probability is over the randomness in $\operatorname{Exp}{\underset{\mathcal{E}}{\mathcal{A}}, \mathcal{A}}_{\text {sPE-ctxt-unpred }}$.
We further define anonymity or indistinguishability of keys following Bellare et al. [BBDP01].

Experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\text {sPKE-IND-CCA }}$

Input: 1^{κ}

$$
\begin{aligned}
& (s p, m s k) \leftarrow \operatorname{Setup}\left(1^{\kappa}\right) \\
& (e k, d k) \leftarrow \operatorname{Gen}(m s k) \\
& \left(m_{0}, m_{1}, s t\right) \leftarrow \mathcal{A}_{1}^{\mathcal{O}_{G}(\cdot), \mathcal{O}_{S D}(\cdot)}(s p, e k) \\
& b \leftarrow\{0,1\} \\
& c^{*} \leftarrow \operatorname{Enc}\left(e k, m_{b}\right) \\
& b^{\prime} \leftarrow \mathcal{A}_{2}^{\mathcal{O}_{G}(\cdot), \mathcal{O}_{S D}(\cdot)}\left(s t, c^{*}\right)
\end{aligned}
$$

Experiment Exp $\mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\text {PKE-IK-CCA }}$

Input: 1^{κ}

$$
\begin{aligned}
& (s p, m s k) \leftarrow \operatorname{Setup}\left(1^{\kappa}\right) \\
& \left(e k_{0}, d k_{0}\right) \leftarrow \operatorname{Gen}(m s k) \\
& \left(e k_{1}, d k_{1}\right) \leftarrow \operatorname{Gen}(m s k) \\
& (m, s t) \leftarrow \mathcal{A}_{1}^{\mathcal{O}_{G}(\cdot), \mathcal{O}_{S D_{0}}(\cdot), \mathcal{O}_{S D_{1}}(\cdot)}\left(s p, e k_{0}, e k_{1}\right) \\
& b \leftarrow\{0,1\} \\
& c^{*} \leftarrow \operatorname{Enc}\left(e k_{b}, m\right) \\
& b^{\prime} \leftarrow \mathcal{A}_{2}^{\mathcal{O}_{G}(\cdot), \mathcal{O}_{S D_{0}}(\cdot), \mathcal{O}_{S D_{1}}(\cdot)}\left(s t, c^{*}\right)
\end{aligned}
$$

Experiment $\mathrm{Adv}_{\mathcal{E}, \mathcal{A}}^{\text {sPKE-ctxt-unpred }}$

Input: 1^{κ}

$$
\begin{aligned}
& (s p, m s k) \leftarrow \operatorname{Setup}\left(1^{\kappa}\right) \\
& (e k, d k) \leftarrow \operatorname{Gen}(m s k) \\
& (m, c) \leftarrow \mathcal{A}_{G} \mathcal{O}^{(\cdot)}(s p, e k, d k) \\
& c^{*} \leftarrow \operatorname{Enc}(e k, m)
\end{aligned}
$$

Experiment Exp ${ }_{\mathcal{E}, \mathcal{A}}^{\text {PKE-san-CCA }}$

Input: 1^{κ}

$$
\begin{aligned}
& (s p, m s k) \leftarrow \operatorname{Setup}\left(1^{\kappa}\right) \\
& \left(e k_{0}, d k_{0}\right) \leftarrow \operatorname{Gen}(m s k) \\
& \left(e k_{1}, d k_{1}\right) \leftarrow \operatorname{Gen}(m s k) \\
& \left(c_{0}, c_{1}, s t\right) \leftarrow \mathcal{A}_{G}(\cdot), \mathcal{O}_{S D_{0}}(\cdot), \mathcal{O}_{S D_{1}}(\cdot) \\
& c_{0}^{\prime} \leftarrow \operatorname{San}\left(s p, c_{0}\right) ; c_{1}^{\prime} \leftarrow \operatorname{San}\left(s p, c_{1}\right) \\
& m_{0,0} \leftarrow \operatorname{Dec}\left(d k_{0}, c_{0}^{\prime}\right) ; m_{0,1} \leftarrow \operatorname{Dec}\left(d k_{1}, c_{0}^{\prime}\right) \\
& m_{1,0} \leftarrow \operatorname{Dec}\left(d k_{0}, c_{1}^{\prime}\right) ; m_{1,1} \leftarrow \operatorname{Dec}\left(d k_{1}, c_{1}^{\prime}\right) \\
& b \leftarrow\{0,1\} \\
& b^{\prime} \leftarrow \mathcal{A}_{2}^{\mathcal{O}_{G}(\cdot), \mathcal{O}_{S D_{0}}(\cdot), \mathcal{O}_{S D_{1}}(\cdot)}\left(s t, c_{b}^{\prime}\right)
\end{aligned}
$$

Figure 3: Security experiments for an sPKE scheme \mathcal{E} and an adversary \mathcal{A}, where $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ in the experiments $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPKE}-I N D-C C A}, \operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPKE}} \mathrm{IK}-\mathrm{CCA}$, and $\operatorname{Exp} \mathrm{E}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPKE}-s a n-C C A}$. The oracle $\mathcal{O}_{S D}$ is defined as $\mathcal{O}_{S D}(c)=\operatorname{Dec}(d k, \operatorname{San}(s p, c))$ and the oracle $\mathcal{O}_{S D_{j}}$ as $\mathcal{O}_{S D_{j}}(c)=\operatorname{Dec}\left(d k_{j}, \operatorname{San}(s p, c)\right)$. Moreover, the oracle \mathcal{O}_{G} on input getNew, outputs a fresh key pair $(e k, d k) \leftarrow \operatorname{Gen}(m s k)$.

Definition 5.5. Let $\mathcal{E}=$ (Setup, Gen, Enc, San, Dec) be an sPKE scheme and let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be a pair of probabilistic algorithms. Consider the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPK}} \mathrm{IK}$-CCA in Figure 3 and let $C_{\mathcal{A}_{2}}$ be the set of all ciphertexts that \mathcal{A}_{2} queried to the oracle $\mathcal{O}_{S D_{0}}$ or $\mathcal{O}_{S D_{1}}$. We define the indistinguishability of keys under chosen-ciphertext attacks advantage of \mathcal{A} as

$$
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPKE}-\mathrm{IK}-\mathrm{CCA}}:=2 \cdot \operatorname{Pr}\left[b^{\prime}=b \wedge c^{*} \notin C_{\mathcal{A}_{2}}\right]-1
$$

where the probability is over the randomness in $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPKE}}$ IK-CCA.
Sanitization security formalizes that given certain public keys and a sanitized ciphertext, it is hard to tell which of two adversarially chosen ciphertexts was actually sanitized. To exclude trivial attacks, we require that both ciphertexts decrypt are encryptions relative to the two challenge public keys $e k_{0}$ and $e k_{1}$.

Definition 5.6. Let $\mathcal{E}=\left(\right.$ Setup, Gen, Enc, San, Dec) be an sPKE scheme and let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be a pair of probabilistic algorithms. Consider the experiment Exp $\operatorname{Ex}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPK}}$-san-CCA in Figure 3. We define the sanitization under chosen-ciphertext attacks advantage of \mathcal{A} as

$$
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPK}} \mathrm{~s}-\mathrm{san}-\mathrm{CCA}:=2 \cdot \operatorname{Pr}\left[b^{\prime}=b \wedge \exists j, j^{\prime} \in\{0,1\} m_{0, j} \neq \perp \neq m_{1, j^{\prime}}\right]-1
$$

where the probability is over the randomness in $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{s P K E-I K-C C A}$.

We finally define the probability that two independent executions of the key-generation algorithm produce the same encryption key. This probability has to be small for all IND-CCAsecure schemes because an attacker can otherwise generate a new key pair himself and if the obtained encryption key matches the one with which the challenge ciphertext is generated, the attacker can decrypt and win the IND-CCA game. We anyway explicitly define this probability to simplify our reductions later.

Definition 5.7. Let $\mathcal{E}=$ (Setup, Gen, Enc, San, Dec) be an sPKE scheme. We define the encryption-key collision probability $\operatorname{Col}_{\mathcal{E}}^{\mathrm{ek}}$ as the maximum over all ($s p, m s k$) in the range of Setup $\left(1^{\kappa}\right)$ of

$$
\operatorname{Pr}^{\left(e e_{0}, d k_{0}\right) \leftarrow \operatorname{Gen}(m s k) ;\left(e k_{1}, d k_{1}\right) \leftarrow \operatorname{Gen}(m s k)}\left[e k_{0}=e k_{1}\right] .
$$

5.2 Constructing an sPKE Scheme

We next construct an sPKE scheme satisfying our security definitions. Our construction resembles the weakly sanitizable PKE scheme by Fuchsbauer et al. [FGKO17]. We obtain security against chosen-ciphertext attacks using the technique of Naor and Yung [NY90], i.e., encrypting the message under two independent keys and proving in zero-knowledge that the ciphertexts are encryptions of the same message, which was shown to achieve full IND-CCA security if the zero-knowledge proof is simulation-sound by Sahai [Sah99].
Setup: The setup algorithm first generates a key pair $\left(e k^{\text {PKE }}, d k^{\text {PKE }}\right) \leftarrow$ PKE.Gen of a (INDCPA secure) public-key encryption scheme, and a key pair ($\left.v k^{\mathrm{Sig}}, s k^{\mathrm{Sig}}\right) \leftarrow$ Sig. Gen of a (EU-CMA-secure) signature scheme. Additionally, it samples a uniformly random commonreference string for the non-interactive zero-knowledge proof system NIZK for language $L=\{x \mid \exists w:(x, w) \in R\}$, where the relation R is defined as follows: for $x=\left(c_{1}, c_{2}, c_{\sigma}\right)$ and $w=\left(m, g^{x}, g^{y} ; r_{1}, s_{1}, r_{2}, s_{2} ; \sigma, r\right), R(x, w)=1$ if and only if

$$
\begin{gathered}
\left.c_{1}=\left(g^{r_{1}}, g^{x \cdot r_{1}}, g^{s_{1}}, g^{x \cdot s_{1}} \cdot m\right) \wedge c_{2}=\left(g^{r_{2}}, g^{y \cdot r_{2}}, g^{s_{2}}, g^{y \cdot s_{2}} \cdot m\right)\right\} \\
\wedge \operatorname{Ver}\left(v k^{\operatorname{Sig}},\left(g^{x}, g^{y}\right), \sigma\right)=1 \wedge c_{\sigma}=\operatorname{PKE} . \operatorname{Enc}\left(e k^{\text {PKE }},\left(g^{x}, g^{y}, \sigma\right) ; r\right) .
\end{gathered}
$$

The public parameters $s p$ contains a description of a finite cyclic group G with prime order, a generator g (i.e., $G=\langle g\rangle$), the order q of G, the message space $\mathcal{M} \subset G$ of size n, and the verification key $v k^{\text {Sig }}$, the public key $e k^{\mathrm{PKE}}$, and the CRS crs. We assume that $q>2^{\kappa}$, and that $n / q \leq 2^{-\kappa}$,
The private parameters msk consist of the signing key $s k^{\mathrm{Sig}}$ and a decryption key $d k^{\mathrm{PKE}}$ and the public parameter.

Key Generation: The algorithm Gen on input $s p$, and $m s k$, samples two elements $d k_{1}, d k_{2} \in \mathbb{Z}_{q}$ and computes $e k_{1}:=g^{d k_{1}}, e k_{2}:=g^{d k_{2}}$, as well as $\sigma \leftarrow \operatorname{Sig} \cdot \operatorname{Sign}\left(s k^{\operatorname{Sig}},\left(e k_{1}, e k_{2}\right)\right)$. Finally, it outputs $e k:=\left(e k_{1}, e k_{2}, \sigma\right)$ and $d k:=\left(d k_{1}, d k_{2}\right)$.

Encrypt: The algorithm Enc on input an encryption key $e k$ and a message $m \in \mathcal{M}$, computes the following: choose randomness $\left(r_{1}, s_{1}\right)$ and $\left(r_{2}, s_{2}\right)$ (each component from set $\left.\mathbb{Z}_{q}^{*}\right)$ and compute two ElGamal ciphertexts

$$
\begin{aligned}
& c_{1}:=\left(g^{r_{1}}, e k_{1}^{r_{1}}, g^{s_{1}}, e k_{1}^{s_{1}} \cdot m\right), \\
& c_{2}:=\left(g^{r_{2}}, e k_{2}^{r_{2}}, g^{s_{2}}, e k_{2}^{s_{2}} \cdot m\right),
\end{aligned}
$$

and the ciphertext $c_{\sigma}:=\operatorname{PKE} . \operatorname{Enc}\left(e k^{\mathrm{PKE}},\left(e k_{1}, e k_{2}, \sigma\right) ; r\right)$, and finally $\pi:=$ NIZK.Prove $(c r s$, $x=\left(c_{1}, c_{2}, c_{\sigma}\right), w=\left(m, e k_{1}, e k_{2} ; r_{1}, s_{1}, r_{2}, s_{2} ; \sigma, r\right)$. The output of the encryption function is the ciphertext $c:=\left(c_{1}, c_{2}, c_{\sigma}, \pi\right)$.

Sanitizer: The algorithm San on input public parameters $s p$ and a ciphertext $c \in \mathcal{C}$, computes a sanitized ciphertext c^{\prime} as follows: First verify the NIZK proofs by evaluating $f:=$ $\operatorname{Ver}\left(c r s, x=\left(c_{1}, c_{2}, c_{\sigma}\right), \pi\right)$. If $f=1$, then sanitize the ElGamal ciphertext $c_{1}=(a, b, c, d)=$ ($g^{r_{1}}, e k_{1}^{r_{1}}, g^{s_{1}}, e k_{1}^{s_{1}} \cdot m$) as follows: if $a \neq 1 \neq b$, choose a random $t \in \mathbb{Z}_{q}^{*}$ and output the following value:

$$
c^{\prime}:=\left(a^{t} \cdot c, b^{t} \cdot d\right)=\left(g^{r_{1} \cdot t+s_{1}}, e k_{1}^{r_{1} \cdot t+s_{1}} \cdot m\right) .
$$

In case $f=0$ or $a=1$ or $b=1$, then output \perp.
Decrypt: The algorithm Dec on input a decryption key $d k$ and a sanitized ciphertext $c^{\prime}=(a, b)$, computes the message $m:=b \cdot\left(a^{d k_{1}}\right)^{-1}$. It outputs m if $m \in \mathcal{M}$, and otherwise it outputs \perp; on input $d k$ and \perp, it outputs \perp.

The main result of this section is the security of the scheme, summarized as follows.
Theorem 5.8 (Informal). The above sPKE scheme is secure, i.e., all efficient adversaries have only negligible advantage in breaking the privacy, anonymity, or sanitization property, if the DDH problem is hard in group G, the underlying encryption scheme is CPA secure, the signature scheme is unforgeable, and if the proof system is correct and provides simulation-soundness and zero-knowledge. The scheme is further correct and robust, has unpredictable ciphertexts, and a negligible encryption-key collision-probability.

5.3 Security Proof

5.3.1 Proof Intuition

The basic motivation behind our scheme is the same as for the original idea to lift CPA security to CCA security. The general idea is to preserve the desirable properties that (this particular version of) ElGamal encryption has in a "CPA" world. More technically, we would like to reduce the required properties in Definitions 5.3 to 5.6 to the respective properties of ElGamal that hold in a world where no decryption oracle is available. The proof intuition (for example for the anonymity or privacy game) is closely related to the standard result in [Sah99]: the basic idea of the above construction is that it is actually enough to decrypt a ciphertext with one decryption key. Since the NIZK proof can be verified by anyone, and since it assures that both are valid ElGamal encryption to the same message, it does not matter which of the two ciphertexts (corresponding decryption key) is used to decrypt. In a reduction, where we assume an adversary \mathcal{A} against the desired properties stated above and would like to attack the corresponding CPA properties of ElGamal, we need only get one public key and no decryption oracle. In order to emulate the view towards \mathcal{A}, the reduction chooses an additional public key and a CRS for the NIZK scheme. Since the reduction thus knows one of the secret keys, it can now emulate a decryption oracle. A subtle point here is that the verification can be done without knowing which public keys are used - to resolve this, the key generation process signs valid key pairs, and the verifier only needs to know that the key pair (which is not revealed to the verifier) was signed by the key generation process.

To generate a challenge ciphertext, the reduction will obtain one challenge ciphertext from its CPA-Game, and encrypt another, arbitrary message to obtain a second ciphertext. The
reduction uses the NIZK simulator to obtain an accepting proof that is indistinguishable from a "real proof", even if the underlying statement is not true. A crucial point here is that the NIZK scheme has to be what is known as 1-proof simulation sound. Even if the adversary sees one simulated (accepting) proof, even of a wrong statement, it is still not capable of producing an accepting proofs of wrong statements (except by reproducing the exact proof it obtained within the challenge, but which \mathcal{A} is not allow to ask by the CCA definition). The fundamental result of [Sah99] is that the above strategy successfully simulates a complete CCA attack towards \mathcal{A}. While the intuition seems to match for our versions of IK-CCA and IND-CCA, it is unclear for the sanitization game and hence proven first.

5.3.2 Correctness, Robustness, Unpredictability, and Key Collision

The correctness of the scheme follows directly from the correctness of the underlying cryptographic primitives. Since we base our scheme on the ElGamal encryption scheme (and consists of two independent encryptions of which each contains two randomly chosen group elements), we have $\operatorname{Adv} v_{\mathcal{E}, \mathcal{A}}^{\text {sPKE-ctxt-unpred }} \leq 1 / q^{4}$ (where $q>2^{-\kappa}$ is the order of the group). Also, since the encryption key contains a pair of random group elements, we also have that $\operatorname{Col}_{\mathcal{E}}^{\text {ek }} \leq 1 / q^{2}$ (for group order $\left.q>2^{-\kappa}\right)$.

Finally, for robustness, let us denote the generated keys of the experiment by $e k_{i}=\left(e k_{i, 1}, e k_{i, 1}\right)$ and $d k_{i}=\left(d k_{i, 1}, d k_{i, 1}\right)$ (recall that each key consists of two parts for the respective ElGamal encryption). We observe that as long as $e k_{i, 1} \neq e k_{j, 1}$ for all generated keys $i \neq j$ in the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPKE}} \mathrm{USROB}$ implies that $d k_{i, 1} \neq d k_{j, 1}$ for the corresponding decryption keys. Assume the adversary outputs the two indices i_{0} and i_{1} and some arbitrary ciphertext $\tilde{c}:=\left(c_{1}, c_{2}, c_{\sigma}, \pi\right)$, let $c_{1}=\left(g^{a}, g^{b}, g^{c}, g^{d}\right)$, and assume it is sanitized, i.e., $a \neq 0$ and $b \neq 0$, then this yields

$$
c^{\prime}:=\left(g^{a t+c}, g^{b t+d}\right)
$$

and hence is decrypted to $\bar{m}_{0}:=g^{b t+d-d k_{i_{0}, 1}(a t+c)}$). Similarly, $\bar{m}_{1}:=g^{b t^{\prime}+d-d k_{i_{1}, 1}\left(a t^{\prime}+c\right)}$) would be the result of a second sanitization followed by a decryption using $d k_{i_{1}, 1}$. Thus, the fraction $\frac{\bar{m}_{0}}{\bar{m}_{1}}=g^{t\left(b-a \cdot d k_{i_{0}, 1}\right)+t^{\prime}\left(a \cdot d k_{i_{1}, 1}-b\right)+c\left(d k_{i_{1}, 1}-d k_{i_{0}, 1}\right)}$ is a random group element, because t and t^{\prime} are chosen at random and not both depending terms can be canceled (since computation in the exponent is done in the field \mathbb{Z}_{q} and the decryption keys are different under our assumption above). Hence, for all adversaries that obtain at most m key pairs in experiment Exp $\boldsymbol{E}_{\mathcal{E}, \mathcal{A}}^{\text {sPKE-USROB }}$ we have that $\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPKE}} \mathrm{USROB} \leq\left(m^{2}+1\right) \cdot 2^{-\kappa}$ due to the collision probability on the respective first components $e k_{i, 1}$ and $d k_{i, 1}$ of the obtained keys, and by the restriction on the size of the message space \mathcal{M} relative to the size of the group G. Taking the union bound yields the result.

5.3.3 Sanitization

To clarify the syntax, note that an adversary in the experiment Exp $\operatorname{Ep}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPKE}-\operatorname{san}-C C A}$ obtains two independent encryption keys of the scheme. This means, in our particular case of the above ElGamal scheme, that the adversary obtains, for $i \in\{0,1\}, e k_{i}=\left(e k_{i, 1}, e k_{i, 2}, \sigma_{i}\right)$, where $e k_{i, j}$ are (independent) instances of ElGamal public keys as defined above.

Let us define the following hybrid experiments $\operatorname{Exp}_{\mathcal{A}}^{0}$ to $\operatorname{Exp}_{\mathcal{A}}^{4}$: they behave as the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{SPK}} \mathrm{-san}-\mathrm{CCA}$, except as follows: after the values $m_{i, j}$ have been calculated, then

- $\operatorname{Exp}_{\mathcal{A}}^{0}$ is the real experiment.
- Exp ${ }_{\mathcal{A}}^{1}$, if $m_{0,0}=\perp$, replaces c_{0}^{\prime} by two uniformly random group elements $\left(g^{b}, g^{c}\right)$.
- $\operatorname{Exp}_{\mathcal{A}}^{2}$, does the above replacement, but if $m_{0,0}=\perp$, replaces c_{0}^{\prime} by two uniformly at random chosen group elements $\left(g^{b}, g^{c}\right)$ if $m_{0,1} \neq \perp$.
- $\operatorname{Exp}_{\mathcal{A}}^{3}$ does the above replacements, and in addition replaces c_{1}^{\prime} by two uniformly at random chosen group elements $\left(g^{b}, g^{c}\right)$ if $m_{1,0} \neq \perp$.
- $\operatorname{Exp}_{\mathcal{A}}^{4}$ does the above replacement, but if $m_{1,0}=\perp$, it replaces c_{1}^{\prime} by two uniformly at random chosen group elements $\left(g^{b}, g^{c}\right)$ if $m_{1,1} \neq \perp$.

We observe that $\operatorname{Pr}^{\mathrm{ExP}}{ }_{\mathcal{A}}^{4}\left[W_{\text {san }}\right] \leq \frac{1}{2}$ for all adversaries, since the outputs are independent of bit b chosen by the experiment.

Lemma 5.9. Let \mathcal{A} be an adversary in the experiment $\operatorname{Exp}_{\mathcal{A}}^{i}$. Let BAD_{1} be the event that \mathcal{A} queries at least one of its decryption oracles $\mathcal{O}_{S D_{i}}$ with a valid but improper ciphertext $\left(c_{1}, c_{2}, \pi\right)$, i.e., $\left(c_{1}, c_{2}, c_{\sigma}\right) \notin L$, but where π is an accepting proof, i.e., $\operatorname{NIZK.Ver~}\left(\right.$ crs $\left.\left.,\left(c_{1}, c_{2}, c_{\sigma}\right), \pi\right)=1\right)$. We construct an adversary \mathcal{A}^{\prime} such that $\operatorname{Pr}^{\operatorname{Exp}_{\mathcal{A}}^{i}}\left[\mathrm{BAD}_{1}\right] \leq \operatorname{Adv} \mathrm{N}_{\mathrm{NIZKK}}^{\mathrm{NK}, \mathcal{A}^{\prime}}$.

Proof. The claim follows from the soundness property of the assumed NIZK scheme: upon receiving a CRS $c r s^{\prime}$ (from its own challenger), \mathcal{A}^{\prime} defines $c r s \leftarrow c r s^{\prime}$ and emulates towards \mathcal{A} all further steps of his experiment $\mathrm{Exp}_{\mathcal{A}}^{i}$. This is in particular possible when possessing all secret keys. Whenever \mathcal{A} submits a query to a decryption oracle, \mathcal{A}^{\prime} verifies the NIZK proof, and additionally checks that decryption is possible relative to the specified keys and that the signature is valid (these values are part of c_{σ} which the \mathcal{A}^{\prime} is able to decrypt ${ }^{6}$). If any check fails, i.e., if $B A D_{1}$ occurs, then it holds that a valid forgery against the challenged NIZK scheme (with CRS crs) occurred and that \mathcal{A}^{\prime} can present this forgery to its challenger.

Lemma 5.10. Let \mathcal{A} be an adversary in the experiment $\operatorname{Exp}_{\mathcal{A}}^{i}$. Let BAD_{2} be the event that \mathcal{A} queries at least one of its decryption oracles $\mathcal{O}_{S D_{i}}$ with a valid and proper ciphertext $\left(c_{1}, c_{2}, c_{\sigma}, \pi\right)$ (i.e., $\left(c_{1}, c_{2}, c_{\sigma}\right) \in L$ and π is accepting), but where c_{σ} is the encryption of a triple $\left(e k_{1}, e k_{2}, \sigma\right)$, such that the pair $\left(e k_{1}, e k_{2}\right)$ has never been output by the experiment or the oracle \mathcal{O}_{G}. We construct an adversary \mathcal{A}^{\prime} such that $\operatorname{Pr}^{\mathrm{ExP}}{ }_{\mathcal{A}}^{i}\left[\mathrm{BAD}_{2}\right] \leq \mathrm{Adv}_{\mathrm{Sig}_{, \mathcal{A}^{\prime}}}^{\mathrm{Sig}-E U F-C M A}$

Proof. We construct an adversary \mathcal{A}^{\prime} which produces a valid forgery in the signature experiment $\operatorname{Exp}_{\text {Sig }, \mathcal{A}^{\prime}}^{\text {sig-ELF }}$,CMA as follows: \mathcal{A}^{\prime} receives the signature verification key $v k^{\text {Sig }}$ from the experiment. It sets up the experiment $\operatorname{Exp}_{\mathcal{A}}^{i}$, where it generates all necessary keys, except for the signature key pair, where it chooses defines $v k^{\text {Sig }}$ as the verification key. Upon queries to the the key generation oracles, \mathcal{A}^{\prime} selects the key pair $\left(e k_{1}, e k_{2}\right)$ as $\operatorname{Exp}_{\mathcal{A}}^{S, j}$, but lets it sign using its own oracle $\operatorname{Sign}(s k, \cdot)$. The rest of the emulation, in particular the decryption oracle, can be done with the knowledge of the remaining keys (no signing key is required). Furthermore, whenever \mathcal{A} submits a valid query to the decryption oracle, \mathcal{A}^{\prime} decrypts c_{σ} to extract a pair $\left(e k_{1}^{\prime}, e k_{1}^{\prime}\right)$ and a signature σ^{\prime}, and if the pair has never been queried to its own signing oracle, but the signature is valid, then it outputs $\left(\left(e k_{1}^{\prime}, e k_{1}^{\prime}\right), \sigma^{\prime}\right)$ as its forgery.

Recall that the winning condition of an assumed adversary \mathcal{A} in the sanitization game is

$$
W_{\text {san }}:=\left[b^{\prime}=b \wedge \exists j, j^{\prime} \in\{0,1\} m_{0, j} \neq \perp \neq m_{1, j^{\prime}}\right] .
$$

[^4]We further observe, that we can construct from an adversary \mathcal{A} against hybrid $\operatorname{Exp}_{\mathcal{A}}^{5}$, an adversary with success probability at least $\frac{1}{2}-\left(q^{2}+4\right) \cdot 2^{-\kappa}$, where q is an upper bound on the number of key pairs obtained by \mathcal{A}. To see this, let \mathcal{A}^{\prime} be the adversary that runs $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ as subroutine and relays back and forth oracle queries and answers to and from \mathcal{A}. When \mathcal{A}_{1} outputs its challenge $\left(c_{0}, c_{1}\right), \mathcal{A}^{\prime}$ asks both of its oracles to decrypt to compute $m_{i, j}$. If the winning condition $W_{\text {san }}$ is not already violated, then \mathcal{A}^{\prime} outputs the received challenge as its own challenge. Otherwise, \mathcal{A}^{\prime} encrypts twice the same message using one of the public key, say $e k_{0}$ and outputs a uniform random bit. The proof follows by observing that all outputs of this last hybrid are independent of b, and that the probability of a wrong prediction is upper bounded by the probability that the first part of a public key collides with the first part of another public key (and hence robustness says that the outcome is \perp except with probability $2^{-\kappa}$) and taking the union bound.

Lemma 5.11. For any adversary \mathcal{A}, we have that
where algorithms \mathcal{B}_{i} are described in the proof below.
Proof. Let c_{0} and c_{1} be the challenge ciphertexts of \mathcal{A}_{1}. Each c_{i} in particular contains two candidate ElGamal encryptions. Recall the sanitizer first checks the validity of the proof and, if successful, only the first ElGamal ciphertext is processed.

Let us denote by c_{0}^{1} and c_{1}^{1}, the respective first ElGamal encryption.

$$
\begin{aligned}
& c_{0}^{1}=\left(d_{0}, d_{1}, e_{0}, e_{1}\right), \\
& c_{1}^{1}=\left(d_{0}^{\prime}, d_{1}^{\prime}, e_{0}^{\prime}, e_{1}^{\prime}\right) .
\end{aligned}
$$

If $\neg \mathrm{BAD}_{1}$, then each c_{i} consists of two valid ElGamal encryptions to the same message m_{0} and m_{1}, respectively. We are thus guaranteed in this case that there exist values r_{i} and s_{i} such that

$$
\begin{aligned}
& c_{0}^{1}=\left(g^{r_{0}}, g^{r_{0} \cdot d k_{0,1}^{\prime}}, g^{s_{0}}, g^{s_{0} \cdot d k_{0,1}^{\prime}} m_{0}\right), \\
& c_{1}^{1}=\left(g^{r_{1}}, g^{r_{1} \cdot d k_{1,1}^{\prime}}, g^{s_{1}}, g^{s_{1} \cdot d k_{1,1}^{\prime}} m_{1}\right) .
\end{aligned}
$$

If $\neg \mathrm{BAD}_{2}$, then both keys $g^{d k_{i, 1}^{\prime}}$ have been generated either via a call to the key generation oracle, or they correspond to the respective challenge keys output by the experiment. Let us denote the set of such generated keys by \mathcal{K}.

Additionally, and without loss of generality, we assume that $d_{i} \neq \perp \neq d_{i}^{\prime}$ for all $i \in\{0,1\}$ as otherwise, the sanitization algorithm return \perp and the game cannot be won (since decryption of \perp yields \perp). We now show that, given the above conditions, that the difference between $\operatorname{Pr}^{E x p_{\mathcal{A}}^{i+1}}\left[W_{\text {san }}\right]$ and $\operatorname{Pr}^{E \operatorname{Exp}_{\mathcal{A}}^{i}}\left[W_{\text {san }}\right]$ is a lower bound on the advantage of a DDH adversary \mathcal{B}_{0} in distinguishing triples of the form $\left(g^{a}, g^{b}, g^{c}\right)$ and $\left(g^{a}, g^{b}, g^{a b}\right)$ for uniformly at random chosen exponents a, b, c.

We discuss the case $i=0$, the other cases are similar: The adversary \mathcal{B}_{0} is defined as follows: on input at DDH triple $\left(g^{a}, g^{b}, g^{c^{\prime}}\right)$, where c^{\prime} is either the product of a and b or a uniformly random exponent, \mathcal{B}_{0} defines $e k_{0,0}:=g^{a}$. All remaining keys are generated by \mathcal{B}_{0} (and thus,
only the decryption key of $e k_{0,0}$ is actually missing). It then emulates the experiment $\operatorname{Exp}_{\mathcal{A}}^{0}$ (by internally running \mathcal{A} and performing the operations of the experiment). The only crucial point is how to emulate the decryption oracle $\mathcal{O}_{D S_{0}}$ towards \mathcal{A} : \mathcal{B}_{0} verifies the NIZK proof π of each queried ciphertext, and, if valid, sanitizes and decrypts the second ElGamal encryption c_{0}^{2} of the received ciphertext using $d k_{0,2}$ (here is where we use the Sahai-trick). The remaining oracles are straightforward to emulate.

When \mathcal{A} outputs its challenge $\left(c_{0}, c_{1}\right)$, both are processed as in experiment Exp, except that in order to sanitize c_{0}, \mathcal{B}_{0} first computes $m_{i, j}$ as the experiment does, and, if $m_{0,0} \neq \perp$, and defines $c_{0}^{\prime}:=g^{b}, g^{c^{\prime}} \cdot m_{0,0}$. Finally, when \mathcal{A} terminates, \mathcal{B}_{0} outputs 1 if condition $W_{\text {san }}$ occurs (i.e, if the guess b^{\prime} of \mathcal{A} is equal to the emulated bit b of the experiment) and 0 otherwise.

We state the sufficient conditions under which the emulation of oracle $\mathcal{O}_{S D_{0}}$ is perfect: assume $\neg \mathrm{BAD}_{1}$ and $\neg \mathrm{BAD}_{2}$ hold and that none of the first parts $e k_{k, 1}$ of all keys generated by the experiment or the oracles collide. Then, it holds that decrypting c_{0}^{1} with (unknown) decryption key a would yield the same result as decrypting c_{0}^{2} with $d k_{0,2}$, except with probability $2 \cdot 2^{-\kappa}$. In particular, since any valid ciphertext is proper and keys are unique under the above assumption, if c_{0}^{2} is an encryption relative to public key $g^{d k_{0,2}}$, then also c_{1}^{0} decrypts under a with probability 1 due to correctness. On the contrary, due to the robustness of the scheme in this case, if c_{0}^{2} is not an encryption relative to $g^{d k_{0,2}}$ then c_{0}^{1} is not an encryption relative to g^{a}, and thus, except with probability $1-2 \cdot 2^{-\kappa}$ (by robustness), both ciphertexts do not decrypt in this case. By taking the union bound over all these undesirable events, we see that the probability of an incorrect emulation is bounded by

$$
\begin{aligned}
p_{\text {fail }} & :=2 \cdot q^{2} \cdot 2^{-\kappa}+\operatorname{Pr}^{\operatorname{Exp}_{\mathcal{A}}^{i}}\left[\mathrm{BAD}_{1}\right]+\operatorname{Pr}^{\operatorname{Exp}_{\mathcal{A}}^{i}}\left[\mathrm{BAD}_{2}\right] \\
& \leq 2 \cdot q^{2} \cdot 2^{-\kappa}+\operatorname{Adv}_{\mathrm{NIZK}, \mathcal{A}^{\prime}}^{\mathrm{NIIK}-\text { snd }}+\operatorname{Adv}_{\mathrm{Sig}, \mathcal{A}^{\prime \prime}}^{\mathrm{Sig}-\mathrm{EUF}-\mathrm{CMA}}
\end{aligned}
$$

where q is an upper bound on the number of queries that \mathcal{A} asks to his oracles.
Furthermore, if $c^{\prime}=a \cdot b$, then $c_{0}^{\prime}:=g^{b}, g^{a \cdot b} \cdot m_{0,0}$ is identically distributed to a normal sanitization of c_{0}^{1}, since b is a random exponent, just as $r_{0} \cdot t+s_{0}$ is for t chosen at random (and computation takes place in the field Z_{q}). Hence, we emulate the experiment $\operatorname{Exp}_{\mathcal{A}}^{0}$. In the other case, i.e., if c^{\prime} is a random element, then c_{0}^{1} is a pair of uniformly random group elements - just as in experiment $\operatorname{Exp}_{\mathcal{A}}^{1}$.

This concludes in the following theorem.
Theorem 5.12. The above enhanced sPKE scheme \mathcal{E} satisfies

$$
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPKE} \text {-san-CCA }} \leq 8 \cdot\left(\operatorname{Adv}_{\overline{\mathcal{B}}}^{\mathrm{DDH}}+\operatorname{Adv}_{\mathrm{NIZK}, \mathcal{A}^{\prime}}^{\text {NIZK-snd }}+\operatorname{Adv}_{\mathrm{Sig}, \mathcal{A}^{\prime \prime}}^{\mathrm{Sig}-\mathrm{EUF}-\mathrm{CMA}}+2 \cdot q^{2} \cdot 2^{-\kappa}\right)
$$

where the adversaries are described in the respective lemmata. In particular, adversary $\overline{\mathcal{B}}$ is defined as being a mixture of adversaries \mathcal{B}_{0} up to \mathcal{B}_{3} of Lemma 5.11, i.e., $\overline{\mathcal{B}}$ samples a random number i between 0 and 3 and executes adversary \mathcal{B}_{i}.

The theorem implies in particular, that if the underlying cryptographic primitives are secure, then the scheme \mathcal{E} has a secure sanitization procedure.

5.3.4 Privacy

For this case, we consider a hybrid experiment $\operatorname{Exp}_{\mathcal{A}}^{S, b_{1}, b_{2}}$: Let $\operatorname{Exp}_{\mathcal{A}}^{S, b_{1}, b_{2}}$ be as $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{s P K E-I N D-C C A}$, but where the common reference string crs is obtained via evaluation $\left(c r s, \tau^{\mathrm{NIZK}}\right) \leftarrow S_{1}^{\mathrm{NIZK}}$ (instead
via an invocation of NIZK.Gen). Also, when computing the challenge ciphertext $c^{*}=\left(c_{1}, c_{2}, c_{\sigma}, \pi\right)$, π is generated by an invocation of $S_{2}\left(\operatorname{crs}, \tau^{\text {NIZK }},\left(c_{1}, c_{2}, c_{\sigma}\right)\right)$. The following versions of this hybrid system exist:

- Upon receiving the challenge $\left(m_{0}, m_{1}\right)$, then compute c_{1} as the encryption of $m_{b_{1}}$ and c_{2} as the encryption of $m_{b_{2}}$, and compute c_{σ} as in the real experiment (namely as the encryption of the two ElGamal public keys plus the accompanying signature). Simulate the proof $\pi \leftarrow S_{2}\left(c r s, \tau^{\mathrm{NIZK}},\left(c_{1}, c_{2}, c_{\sigma}\right)\right)$ and output $c^{*}:=\left(c_{1}, c_{2}, c_{\sigma}, \pi\right)$.
Lemma 5.13. Let \mathcal{A} be an adversary in the experiment $\operatorname{Exp}_{\mathcal{A}}^{S, b_{1}, b_{2}}$. Let BAD_{1} be the event that \mathcal{A} queries its decryption oracle $\mathcal{O}_{S D}$ with a valid but improper ciphertext $\left(c_{1}, c_{2}, c_{\sigma}, \pi\right)$, i.e., $\left(c_{1}, c_{2}, c_{\sigma}\right) \notin L$, but where π is an accepting proof, i.e., $\operatorname{NIZK} \operatorname{Ver}\left(\operatorname{crs},\left(c_{1}, c_{2}, c_{\sigma}\right), \pi\right)=$ 1), and which is not the equal to the challenge c^{*}. We construct an adversary \mathcal{B}_{0} such that

Proof. The claim follows from the simulation soundness property of the assumed NIZK scheme: upon receiving a CRS crs ${ }^{\prime}$ (from its own challenger), \mathcal{A}^{\prime} defines crs $\leftarrow c r s^{\prime}$ and emulates all further steps of the experiment $\operatorname{Exp}_{\mathcal{A}}^{S, b_{0}, b_{1}}$. This is in particular possible when possessing all secret keys. In particular, simulate the challenge ciphertext using the prove-oracle of its challenger. Note further that without loss of generality the assumed adversary never asks to decrypt the challenge query c^{*}. If BAD_{1} occurs, then it holds that a valid forgery against the challenged NIZK scheme (with CRS crs) occurred.

Lemma 5.14. Let \mathcal{A} be an adversary in the experiment $\operatorname{Exp}_{\mathcal{A}}^{S_{0}, b_{0}, b_{1}}$. Let BAD_{2} be the event that \mathcal{A} queries its decryption oracle $\mathcal{O}_{S D}$ with a valid and proper ciphertext (not equal to the challenge) $\left(c_{1}, c_{2}, c_{\sigma}, \pi\right)\left(\right.$ i.e., $\left(c_{1}, c_{2}, c_{\sigma}\right) \in L$ and π is accepting), but where c_{σ} is the encryption of a triple $\left(e k_{1}, e k_{2}, \sigma\right)$, such that the pair $\left(e k_{1}, e k_{2}\right)$ has never been output by the experiment or the oracle \mathcal{O}_{G}. We construct an adversary \mathcal{A}^{\prime} such that $\operatorname{Pr}^{\mathrm{ExP}_{\mathcal{A}}^{S} b_{0}, b_{0}, b_{1}}\left[\mathrm{BAD}_{2}\right] \leq \operatorname{Adv} \mathrm{S}_{\text {Sig, } \mathcal{A}^{\prime}}^{\text {Sig-CUF-CMA }}$
Proof. Follows analogously to the previous paragraph.
Recall that the winning condition of an assumed adversary \mathcal{A} in the IND-CCA game is

$$
W_{p r}:=\left[b^{\prime}=b \wedge c^{*} \notin C_{\mathcal{A}_{2}}\right] .
$$

We assume without loss of generality that the assumed adversary \mathcal{A} against the privacy game does not query the challenge c^{*} to its decryption oracle since one can construct, from an adversary that does so, a new adversary that simply guesses the bit once it observes that a violation of the condition $c^{*} \notin C_{\mathcal{A}_{2}}$ would happen.

Lemma 5.15. For any adversary \mathcal{A}, we have that
where the respective adversaries \mathcal{B}_{i} are derived in the proof below.
Proof. The proof closely follows the proof proposed by Lindell [Lin06]. In particular, (1) and (4) follow by a straightforward reduction to the underlying zero-knowledge property. Consider (1) and define the following adversary \mathcal{B}_{1} which receives a crs from its own challenger. Then, it emulates towards \mathcal{A} the experiment $\operatorname{Exp}_{\mathcal{A}}^{S_{1,1,1}}$. This can be done, when possessing all the decryption keys generated in the experiment. Furthermore, when generating the challenge $c^{*}=\left(c_{1}, c_{2}, c_{\sigma}\right)$, which is the correct decryption of m_{1} in this case, \mathcal{B}_{1} asks its proving oracle to obtain a valid proof to this correct statement. We observe that if the CRS and the proofs are real, then this is equivalent to the experiment $\operatorname{Exp} \mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\mathrm{APE} \text { IND-CCA }}$ when $b=1$, and if the CRS and the proofs are simulated, then this is equivalent to $\operatorname{Exp}_{\mathcal{A}}^{S, 1,1}$ and (1) follows.

Also, equations (2) and (3) follow along the lines of the proof in [Lin06]: consider (2) and define the adversary \mathcal{B}_{2} as follows. \mathcal{B}_{2} receives a candidate DDH triple $\left(g^{a}, g^{b}, g^{c}\right)$ and declares g^{a} to be the encryption key $e k_{2}$. It further generates all the remaining keys of the experiment (and thus lacks only the decryption key $d k_{2}=a$). In particular, \mathcal{B}_{2} chooses the bit b of the game and key pair $\left(e k_{1}, d k_{1}\right)$ and defines the public key $e k:=\left(e k_{1}, e k_{2}, \sigma\right)$ (where the signature can be generated by \mathcal{B}_{2}). When receiving the challenge (m_{0}, m_{1}) of $\mathcal{A}, \mathcal{B}_{2}$ generates one ElGamal encryption of m_{b} as follows:

$$
c_{2}:=\left(\left(g^{b}\right)^{\bar{r}},\left(g^{c}\right)^{\bar{r}}, g^{b}, g^{c} \cdot m_{b}\right) .
$$

It further defines c_{1} as an ElGamal encryption of m_{1}, encrypts both keys and the signature to obtain c_{σ}, and simulates a NIZK proof π. We note that if the candidate triple is a DDH triple then $c_{2}=\left(g^{b \cdot \bar{r}},\left(g^{a}\right)^{b \cdot \bar{r}}, g^{b},\left(g^{a}\right)^{b} \cdot m_{b}\right)=\left(g^{b \cdot \bar{r}},\left(e k_{2}\right)^{b \cdot \bar{r}}, g^{b},\left(e k_{2}\right)^{b} \cdot m_{b}\right)$ and thus corresponds to a correctly distributed ElGamal encryption.

When \mathcal{A}_{2} outputs its decision bit $b^{\prime}, \mathcal{B}_{2}$ outputs $d=1$ if $b=b^{\prime}$ and $d=0$ otherwise. Assume that none of the above defined bad events happen. Then, if $\left(g^{a}, g^{b}, g^{c}\right)$ is a random triple, \mathcal{B}_{2} outputs a uniform bit since the challenge ciphertext is independent of b. If the candidate triple is indeed a DDH triple $\left(g^{a}, g^{b}, g^{a b}\right)$, then \mathcal{B}_{2} emulates either the experiment $\operatorname{Exp}_{\mathcal{A}}^{S, 1,0}$ or the
experiment $\operatorname{Exp}_{\mathcal{A}}^{S, 1,1}$, each with probability one-half. The output of \mathcal{B}_{2} is thus

$$
\begin{aligned}
& \operatorname{Pr}^{\text {DDH }_{B_{2}}^{\text {rand }}}[d=1]=\frac{1}{2} \quad \text { and } \\
& \operatorname{Pr}^{\mathrm{DDH}_{\mathcal{B}_{2}}^{\text {real }}}[d=1]=\frac{1}{2} \cdot \operatorname{Pr}^{\mathrm{ExP}_{\mathcal{A}}^{S_{\mathcal{A}}, 1,1}}\left[b^{\prime}=1\right]+\frac{1}{2} \cdot \operatorname{Pr}^{\mathrm{Exp}_{\mathcal{A}}^{S_{\mathcal{A}}, 1,0}}\left[b^{\prime}=0\right] \\
& =\frac{1}{2} \cdot \operatorname{Pr}^{\operatorname{ExP}}{ }_{\mathcal{A}}^{S_{1}, 1}\left[b^{\prime}=1\right]+\frac{1}{2} \cdot\left(1-\operatorname{Pr}^{\operatorname{Exp}_{\mathcal{A}}^{S_{1}, 0}}\left[b^{\prime}=1\right]\right) \\
& =\frac{1}{2}+\frac{1}{2} \cdot\left(\operatorname{Pr}^{\operatorname{Exp}_{\mathcal{A}}^{S, 1,1}}\left[b^{\prime}=1\right]-\operatorname{Pr}^{\operatorname{ExP}_{\mathcal{A}}^{S 1,0}}\left[b^{\prime}=1\right]\right) \text {. }
\end{aligned}
$$

and therefore $\operatorname{Adv}_{\mathcal{B}_{2}}^{\operatorname{DDH}}=\frac{1}{2} \cdot\left(\operatorname{Pr}^{\mathrm{Exp}}{ }_{\mathcal{A}}^{S_{1,1}}\left[b^{\prime}=1\right]-\operatorname{Pr}^{\mathrm{Exp}}{ }_{\mathcal{A}}^{S_{1}, 0}\left[b^{\prime}=1\right]\right)$.
The proof is concluded by the observation that the oracle $\mathcal{O}_{S D}$ can be emulated perfectly, even without knowledge of $d k_{0,1}=a$, except with probability at most $p_{\text {fail }}$ derived the same way as in the previous paragraph (except that we need here simulation soundness as opposed to ordinary soundness). Equation (3) follows similarly.

This concludes in the following theorem.
Theorem 5.16. The above enhanced sPKE scheme \mathcal{E} satisfies

where the adversaries are defined in the respective lemmata and adversary $\overline{\mathcal{B}}$ is the mixture of adversaries \mathcal{B}_{2} and \mathcal{B}_{3} of Lemma 5.15, i.e., $\overline{\mathcal{B}}$ samples a random coin and either executes adversary \mathcal{B}_{2} or \mathcal{B}_{3}.

The theorem implies in particular that if the underlying cryptographic primitives are secure, then the scheme \mathcal{E} is IND-CCA secure.

5.3.5 Anonymity

For this case, we consider the hybrid experiment $\operatorname{Exp}_{\mathcal{A}}^{S, i}:$ Let $\operatorname{Exp}_{\mathcal{A}}^{S, i}$ be basically as $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{sPE}}$-IK-CCA , but where, for all of them, the common reference string crs is obtained via (crs, $\left.\tau^{\text {NIZK }}\right) \leftarrow S_{1}^{\text {NIZK }}$ (instead via an invocation of NIZK.Gen). Furthermore, when computing the challenge ciphertext $c^{*}=\left(c_{1}, c_{2}, c_{\sigma}, \pi\right), \pi$ is generated by an invocation of $S_{2}\left(\right.$ crs $\left., \tau^{\mathrm{NIZK}},\left(c_{1}, c_{2}, c_{\sigma}\right)\right)$. The following versions of this hybrid system exist:

- For $i=0$, upon receiving the challenge m, then compute c_{b}^{1} as the encryption of m under key $e k_{b, 1}$ and c_{b}^{2} as the encryption of m under $e k_{b, 2}$, and compute c_{σ} as in the real experiment (namely as the encryption of the two ElGamal public keys plus the accompanying signature). Simulate the proof $\pi \leftarrow S_{2}\left(c r s, \tau^{\mathrm{NIZK}},\left(c_{b}^{1}, c_{b}^{2}, c_{\sigma}\right)\right)$ and output $c^{*}:=\left(c_{b}^{1}, c_{b}^{2}, c_{\sigma}, \pi\right)$.
- For $i=1$, the hybrid system acts as above, but upon receiving the challenge m, instead of computing c_{σ} as an encryption of $\left(e k_{b, 1}, e k_{b, 2}, \sigma\right)$, encrypt the message 0^{n}, for an appropriate length n that matches the length of (an appropriate encoding of) the triple ($e k_{b, 1}, e k_{b, 2}, \sigma$). The rest is done as for the previous hybrid.
- For $i=2$, the hybrid acts as above, but in addition, when receiving the challenge m, instead of computing c_{0}^{1} as the encryption of m under key $e k_{0,1}$, choose a new encryption key g^{x}, for a uniformly random exponent x. If $b=0$ in the game, then the first ciphertext c_{0}^{1} would be an encryption under "key" g^{x}. The remaining steps are as usual.
- For $i=3$, in addition to all the steps above, here upon a challenge, we also compute c_{0}^{2} relative to a freshly chosen public key $g^{x^{\prime}}$.
- For $i=4$, in addition to all the steps above, here upon a challenge, we also compute c_{1}^{1} relative to a freshly chosen public key $g^{x^{\prime \prime}}$ instead of as an encryption under $e k_{1,1}$.
- For $i=5$, in addition to all the steps above, here upon a challenge, we also compute c_{1}^{2} relative to a freshly chosen public key $g^{x^{\prime \prime \prime}}$.

We observe that in the final hybrid experiment $\operatorname{Exp}_{\mathcal{A}}^{S, 5}$, the advantage in guessing b is at most $\frac{1}{2}$, since all outputs given to the adversary are independent of the actual keys $e k_{0}$ or $e k_{1}$ and hence of the bit b chosen by the game.

As in the analysis above, we have the analogous lemmata:
Lemma 5.17. Let \mathcal{A} be an adversary in the experiment $\operatorname{Exp}_{\mathcal{A}}^{S, i}$. Let BAD_{1} be the event that \mathcal{A} queries at least one of its decryption oracles $\mathcal{O}_{S D_{j}}$ with a valid but improper ciphertext $\left(c_{1}, c_{2}, c_{\sigma}, \pi\right)$ (which is not the challenge c^{*}), i.e., $\left(c_{1}, c_{2}, c_{\sigma}\right) \notin L$, but where π is an accepting proof, i.e., $\operatorname{NIZK} . \operatorname{Ver}\left(\right.$ crs $\left.\left.,\left(c_{1}, c_{2}, c_{\sigma}\right), \pi\right)=1\right)$. We construct an adversary \mathcal{A}^{\prime} such that $\operatorname{Pr}^{\mathrm{Exp}_{\mathcal{A}}^{S, 1}}\left[\mathrm{BAD}_{1}\right] \leq$ AdvNIZK-sim-snd.

Proof. The claim follows from the simulation soundness property of the assumed NIZK scheme similar to the statements in the previous paragraph.
Lemma 5.18. Let \mathcal{A} be an adversary in the experiment $\operatorname{Exp}_{\mathcal{A}}^{S, i}$. Let BAD_{2} be the event that \mathcal{A} queries at least one of its decryption oracles $\mathcal{O}_{S D_{j}}$ with a valid and proper ciphertext (which is not the challenge) $\left(c_{1}, c_{2}, c_{\sigma}, \pi\right)$ (i.e., $\left(c_{1}, c_{2}, c_{\sigma}\right) \in L$ and π is accepting), but where c_{σ} is the encryption of a triple $\left(e k_{1}, e k_{2}, \sigma\right)$, such that the pair $\left(e k_{1}, e k_{2}\right)$ has never been output by the experiment or the oracle \mathcal{O}_{G}. We construct an adversary \mathcal{A}^{\prime} such that $\operatorname{Pr}^{\mathrm{Exp}}{ }_{\mathcal{A}}^{S_{, i}}\left[\mathrm{BAD}_{2}\right] \leq \operatorname{Adv} \mathrm{Sig}_{\mathrm{Sig}, \mathcal{A}^{\prime}}^{\mathrm{S}-\mathrm{CUF}-\mathrm{CMA}}$

Proof. Follows analogously to the previous paragraph.
Recall that the winning condition of an assumed adversary \mathcal{A} in the IK-CCA game is

$$
W_{i k}:=\left[b^{\prime}=b \wedge c^{*} \notin C_{\mathcal{A}_{2}}\right] .
$$

We assume without loss of generality that the assumed adversary \mathcal{A} against the anonymity game does not query the challenge c^{*} to its decryption oracle since one can construct, from an adversary that does so, a new adversary that simply guesses the bit once it observes that a violation of the condition $c^{*} \notin C_{\mathcal{A}_{2}}$ would happen.

Lemma 5.19. For any adversary \mathcal{A}, we have that
where the respective adversaries \mathcal{B}_{i} are derived in the proof below.
Proof sketch. The proof closely follows along the lines of the previous proofs. In particular, (3) is again a straightforward reduction to the zero-knowledge property of the underlying NIZK scheme. (2) Follows from the CPA security of the assumed PKE scheme: consider the adversary \mathcal{B}_{1} that obtains a public key $e k$ from its CPA challenger. \mathcal{B}_{1} generates all remaining keys himself to be able to emulate the steps of the experiment Exp ${ }^{S, 1}$ towards the (assumed) adversary $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$. Note that when \mathcal{B}_{1} never needs to decrypt any of the ciphertexts c_{σ} in the experiment (and thus, no decryption key is needed). When \mathcal{A}_{1} outputs his challenge, \mathcal{B}_{1} first asks the challenge ($m_{0}=\left(e k_{b, 1}, e k_{b, 2}, \sigma\right), m_{1}=0^{n}$) to its own challenger and obtains a ciphertext c_{σ}. If the challenger outputs an encryption of 0^{n}, then this is equivalent to experiment $\operatorname{Exp}_{A_{S}, 0}^{S, 1}$, and if the challenger returns an encryption of $\left(e k_{b, 1}, e k_{b, 2}, \sigma\right)$, then this is equivalent to $\operatorname{Exp}_{\mathcal{A}}^{S, 0}$. Hence, if \mathcal{B}_{1} returns 1 in case the guess b^{\prime} of \mathcal{A}_{2} is correct (i.e., is equal to the bit b that \mathcal{B}_{1} emulated) and 0 otherwise, then this is a biased bit with bias half the difference between the two experiments in question. Equation (2) hence follows from an analogous computation as done, for example, in the proof of Lemma 5.15.

Finally, we consider equation (1) and describe adversary \mathcal{B}_{1} (the remaining cases are analogous). Adversary \mathcal{B}_{1} works as follows. It receives a candidate DDH triple $\left(g^{a}, g^{b}, g^{c}\right)$ and declares g^{a} to be the encryption key $e k_{0,1}$. It further generates all the remaining keys of the experiment (and thus lacks only the decryption key $d k_{0,1}=a$). In particular, \mathcal{B}_{1} chooses the bit b of the game and the remaining key pairs, which includes $\left(e k_{0,2}, d k_{0,2}\right)$ (to be able to emulate the oracle $\left.\mathcal{O}_{S D_{0}}\right)$ and defines the public key $e k 0:=\left(e k_{0,1}, e k_{0,2}, \sigma\right)$ (where the signature can be generated by \mathcal{B}_{1}). When receiving the challenge (m) of $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$, generate one ElGamal encryption of m as follows:

$$
c_{0}^{1}:=\left(\left(g^{b}\right)^{\bar{r}},\left(g^{c}\right)^{\bar{r}}, g^{b}, g^{c} \cdot m\right) .
$$

It further defines the other parts c_{j}^{k} as the experiment does (including encrypting the zerostring and simulating a proof). We note that if the candidate triple is a DDH triple then $c_{2}=\left(g^{b \cdot \cdot},\left(g^{a}\right)^{b \cdot \bar{r}}, g^{b},\left(g^{a}\right)^{b} \cdot m_{b}\right)=\left(g^{b \cdot \bar{r}},\left(e k_{2}\right)^{b \cdot \bar{r}}, g^{b},\left(e k_{2}\right)^{b} \cdot m_{b}\right)$ and thus corresponds to a correctly distributed ElGamal encryption as in the experiment $\operatorname{Exp}_{\mathcal{A}}^{S, 1}$. However, if $\left(g^{a}, g^{b}, g^{c}\right)$ then the encryption c_{0}^{1} is distributed identically to a fresh encryption of m relative to a random public key g^{x}, just as it is done in experiment $\operatorname{Exp}_{\mathcal{A}}^{S, 2}$. Hence when \mathcal{A}_{2} outputs its decision bit b^{\prime}, \mathcal{B}_{2} outputs $d=1$ if $b=b^{\prime}$ and $d=0$ otherwise and constitutes a distinguihser of DDH triples and random triples with advantage the same as the difference in probabilities of winning the respective experiments.

This concludes in the following theorem.

Theorem 5.20. The above enhanced sPKE scheme \mathcal{E} satisfies

$$
\begin{aligned}
& A d v_{\mathcal{E}, \mathcal{A}}^{\mathrm{SPKE}-I K-C C A} \leq 8 \cdot \operatorname{Adv}_{\overline{\mathcal{B}}}^{\mathrm{DDH}}+4 \cdot \operatorname{Adv}_{\mathrm{PKE}, \mathcal{B}_{1}}^{\mathrm{PKE}} \mathrm{~B}_{\mathrm{I}} \mathrm{CPA}+2 \cdot \operatorname{Adv}_{\mathrm{NIZK}, S, \mathcal{B}_{0}}^{\mathrm{NIZK}-\mathrm{ZK}} \\
& +8 \cdot\left(\operatorname{Adv}_{\mathrm{NIZK}, \mathcal{A}^{\prime}}^{\mathrm{NIZK} \text {-sim-snd }}+\operatorname{Adv}_{\mathrm{Sig}, \mathcal{A}^{\prime \prime}}^{\mathrm{Sig}-\mathrm{EMF}-\mathrm{CMA}}+2 \cdot q^{2} \cdot 2^{-\kappa}\right),
\end{aligned}
$$

where the adversaries are defined in the respective lemmata, and $\overline{\mathcal{B}}$ is a mixture of the adversaries \mathcal{B}_{i} of Lemma 5.19.

The theorem implies in particular, that if the underlying cryptographic primitives are secure, then the scheme \mathcal{E} is IK-CCA secure.

6 Construction of an ACE Scheme

6.1 Construction for Equality

Following Fuchsbauer et al. [FGKO17], we first construct an ACE scheme for the equality policy, i.e., $P(i, j)=1 \Leftrightarrow i=j$, and then use such a scheme in another construction for richer policies.

Let sPKE be a sanitizable public-key encryption scheme, let Sig be a signature scheme, and let F be a PRF. Further let NIZK be a NIZK proof of knowledge system for the language $L:=\{x \mid \exists w(x, w) \in R\}$, where the relation R is defined as follows: for $x=\left(v k^{\text {Sig }}, \tilde{c}\right)$ and $w=\left(e k_{i}^{\text {sPKE }}, m, r, v k_{i}^{\text {Sig }}, \sigma_{i}^{\text {Sig }}, \sigma_{c}^{\text {Sig }}\right),(x, w) \in R$ if and only if

$$
\begin{gathered}
\tilde{c}=\operatorname{sPKE} . \operatorname{Enc}\left(e k_{i}^{\mathrm{sPKE}}, m ; r\right) \wedge \operatorname{Sig} . \operatorname{Ver}\left(v k^{\mathrm{Sig}},\left[e k_{i}^{\mathrm{SPKE}}, v k_{i}^{\mathrm{Sig}}\right], \sigma_{i}^{\mathrm{Sig}}\right)=1 \\
\wedge \operatorname{Sig} \cdot \operatorname{Ver}\left(v k_{i}^{\mathrm{Sig}}, \tilde{c}, \sigma_{c}^{\mathrm{Sig}}\right)=1 .
\end{gathered}
$$

We define an ACE with modification detection scheme ACE as follows:
Setup: On input a security parameter 1^{κ} and a policy $P:[n] \times[n] \rightarrow\{0,1\}$ with $P(i, j)=1 \Leftrightarrow$ $i=j$, the algorithm ACE.Setup picks a random PRF key K for a PRF F, and runs

$$
\begin{aligned}
\left(s p^{\mathrm{sPKE}}, m s k^{\mathrm{SPKE}}\right) & \leftarrow \operatorname{sPKE} \cdot \operatorname{Setup}\left(1^{\kappa}\right), \\
\left(v k^{\mathrm{Sig}}, s k^{\mathrm{Sig}}\right) & \leftarrow \operatorname{Sig} \cdot \operatorname{Gen}\left(1^{\kappa}\right), \\
c r s^{\mathrm{NIZK}} & \leftarrow \operatorname{NIZK} \cdot \operatorname{Gen}\left(1^{\kappa}\right) .
\end{aligned}
$$

It outputs the master secret key $m s k^{\mathrm{ACE}}:=\left(K, m s k^{\mathrm{sPKE}}, v k^{\mathrm{Sig}}, s k^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ and the sanitizer parameters $s p^{\mathrm{ACE}}:=\left(s p^{\mathrm{SPKE}}, v k^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$.
Key Generation: The algorithm ACE.Gen on input a master secret key $m s k^{\mathrm{ACE}}=\left(K, m s k^{\mathrm{sPKE}}\right.$, $\left.v k^{\mathrm{Sig}}, s k^{\mathrm{Sig}}, c r \mathrm{~s}^{\mathrm{NIZK}}\right)$, a role $i \in[n]$, and a type $t \in\{\mathbf{s e n}, \mathrm{rec}\}$, computes

$$
\left(e k_{i}^{\mathrm{sPKE}}, d k_{i}^{\mathrm{sPKE}}\right) \leftarrow \mathrm{sPKE} . \operatorname{Gen}\left(m s k^{\mathrm{sPKE}} ; F_{K}([i, 0])\right) .
$$

If $t=$ sen, it further computes

$$
\begin{aligned}
\left(v k_{i}^{\mathrm{Sig}}, s k_{i}^{\mathrm{Sig}}\right) & \leftarrow \operatorname{Sig} \cdot \operatorname{Gen}\left(1^{\kappa} ; F_{K}([i, 1])\right), \\
\sigma_{i}^{\mathrm{Sig}} & \leftarrow \operatorname{Sig} \cdot \operatorname{Sign}\left(s k^{\mathrm{Sig}},\left[e k_{i}^{\mathrm{sPE}}, v k_{i}^{\mathrm{Sig}}\right] ; F_{K}([i, 2])\right) .
\end{aligned}
$$

If $t=$ sen, it outputs the encryption key $e k_{i}^{\mathrm{ACE}}:=\left(v k^{\mathrm{Sig}}, e k_{i}^{\mathrm{SPKE}}, v k_{i}^{\mathrm{Sig}}, s k_{i}^{\mathrm{Sig}}, \sigma_{i}^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$; if $t=$ rec, it outputs the decryption key $d k_{i}^{\text {ACE }}:=d k_{i}^{\text {sPKE }}$.

Encrypt: On input an encryption key $e k_{i}^{\mathrm{ACE}}=\left(v k^{\mathrm{Sig}}, e k_{i}^{\text {SPE }}, v k_{i}^{\mathrm{Sig}}, s k_{i}^{\mathrm{Sig}}, \sigma_{i}^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ and a message $m \in \mathcal{M}^{\text {ACE }}$, the algorithm ACE.Enc samples randomness r and computes

$$
\begin{aligned}
\tilde{c} & \leftarrow \operatorname{sPKE} \cdot \operatorname{Enc}\left(e k_{i}^{\mathrm{sPKE}}, m ; r\right), \\
\sigma_{c}^{\mathrm{Sig}} & \leftarrow \operatorname{Sig} \cdot \operatorname{Sign}\left(s k_{i}^{\mathrm{Sig}}, \tilde{c}\right), \\
\pi^{\mathrm{NIZK}} & \leftarrow \operatorname{NIZK} . \operatorname{Prove}\left(c r s^{\mathrm{NIZK}}, x:=\left(v k^{\mathrm{Sig}}, \tilde{c}\right), w:=\left(e k_{i}^{\text {sPKE }}, m, r, v k_{i}^{\mathrm{Sig}}, \sigma_{i}^{\mathrm{Sig}}, \sigma_{c}^{\mathrm{Sig}}\right)\right) .
\end{aligned}
$$

It outputs the ciphertext $c:=\left(\tilde{c}, \pi^{\text {NIZK }}\right)$.
Sanitizer: On input sanitizer parameters $s p^{\mathrm{ACE}}=\left(s p^{\mathrm{SPKE}}, v k^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ and a ciphertext $c=$ $\left(\tilde{c}, \pi^{\mathrm{NIZK}}\right)$, the algorithm ACE. San outputs the sanitized ciphertext $c^{\prime} \leftarrow \operatorname{sPKE} . \operatorname{San}\left(s p^{\mathrm{SPKE}}, \tilde{c}\right)$ if $\operatorname{NIZK} \cdot \operatorname{Ver}\left(\right.$ crs $\left.^{\mathrm{NIZK}}, x:=\left(v k^{\mathrm{Sig}}, \tilde{c},\right), \pi^{\mathrm{NIZK}}\right)=1$; otherwise, it outputs \perp.

Decrypt: The algorithm ACE.Dec on input a decryption key $d k_{j}^{\mathrm{ACE}}$ and a sanitized ciphertext c^{\prime}, outputs the message $m \leftarrow \operatorname{sPKE} \cdot \operatorname{Dec}\left(d k_{j}^{\mathrm{ACE}}, c^{\prime}\right)$.
Modification detection: The algorithm ACE.DMod on input $s p^{\text {ACE }}, c_{1}=\left(\tilde{c}_{1}, \pi_{1}^{\text {NIZK }}\right)$, and $c_{2}=\left(\tilde{c}_{2}, \pi_{2}^{\text {NIZK }}\right)$, outputs 1 if $\tilde{c}_{1}=\tilde{c}_{2}$, and 0 otherwise.
Our scheme enjoys perfect correctness since the underlying sPKE and signature schemes are perfectly correct and the NIZK is perfectly complete, i.e.,

$$
\operatorname{Adv}_{A C E, \mathcal{A}}^{A C E-c o r r}=0
$$

for all \mathcal{A}. The scheme is also detectable as the following lemma shows.
Lemma 6.1. Let ACE be the scheme from above and let \mathcal{A} be a probabilistic algorithm. Then, there exist probabilistic algorithms $\mathcal{A}_{\text {PRF }}$ and $\mathcal{A}_{\text {rob }}$ (roughly as efficient as emulating an execution of $\operatorname{Exp}_{A C E}^{\text {ACE-dtct }}$) such that

$$
\operatorname{Adv}_{\mathrm{ACE}, \mathcal{A}}^{\mathrm{ACE}-\mathrm{Atct}}=\operatorname{Adv}_{F, \mathcal{A}_{\text {PRF }}}^{\text {PRRF }}+\operatorname{Adv}_{\mathrm{sPRE},, \mathcal{A}_{\text {rob }}}^{\mathrm{SPKE}} .
$$

Proof. We assume without loss of generality that \mathcal{A} returns (m, i, j) with $P(i, j)=0$ since doing otherwise can only reduce the advantage. Let $H_{0}:=\operatorname{Exp}_{\mathrm{ACE}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{A}$-dct, let H_{1} be as H_{0} where F_{K} is replaced by a truly uniform function U, and let W be the event that \mathcal{A} wins the detectability game, i.e.,

$$
W:=\left[\operatorname{ACE} \cdot \operatorname{Dec}\left(d k_{j}^{\mathrm{ACE}}, \operatorname{ACE} \cdot \operatorname{San}\left(s p^{\mathrm{ACE}}, \operatorname{ACE} \cdot \operatorname{Enc}\left(e k_{i}^{\mathrm{ACE}}, m\right)\right)\right) \neq \perp\right] .
$$

We first show that the difference in the winning probability in H_{0} and H_{1} is bounded by the PRF advantage.
Claim 1. There exists a probabilistic algorithm $\mathcal{A}_{\text {PRF }}^{\mathcal{O}(\cdot)}$ such that

$$
\operatorname{Pr}^{H_{0}}[W]-\operatorname{Pr}^{H_{1}}[W]=\operatorname{Adv}_{F, \mathcal{A}_{\text {PRF }}}^{\text {PRF }} .
$$

Proof of claim. Consider $\mathcal{A}_{\text {PRF }}^{\mathcal{O}(\cdot)}$ that emulates an execution of H_{0}, where all invocations of $F_{K}(\cdot)$ are replaced by a call to the oracle $\mathcal{O}(\cdot)$. When \mathcal{A} wins, $\mathcal{A}_{\text {pRF }}$ outputs 1 , and 0 otherwise. In case $\mathcal{O}(\cdot)$ corresponds to $F_{K}(\cdot), \mathcal{A}_{\text {PRF }}$ perfectly emulates H_{0}, if it corresponds to $U(\cdot)$, it perfectly emulates H_{1}. Hence,

$$
\operatorname{Pr}^{H_{0}}[W]-\operatorname{Pr}^{H_{1}}[W]=\operatorname{Pr}\left[\mathcal{A}_{\mathrm{PRF}}^{F_{K}(\cdot)}\left(1^{\kappa}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}_{\mathrm{PRF}}^{U(\cdot)}\left(1^{\kappa}\right)=1\right]=\operatorname{Adv}_{F, \mathcal{A}_{\mathrm{PRF}}}^{\mathrm{PRF}} .
$$

We now construct a winner for the robustness game for sPKE. The algorithm $\mathcal{A}_{\text {rob }}$ on input $s s^{\text {SPKE }}$ emulates an execution of H_{1}. To answer queries of \mathcal{A} to the key-generation oracle, $\mathcal{A}_{\text {rob }}$ uses the oracle \mathcal{O}_{G} to obtain encryption and decryption keys for sPKE; the required signature keys are generated internally. For each query $(i, t), \mathcal{A}_{\text {rob }}$ remembers the generated keys $e k_{i}^{\mathrm{ACE}}$ and $d k_{i}^{\mathrm{ACE}}$, and returns the same keys for subsequent queries with the same i. When \mathcal{A} returns $(m, i, j), \mathcal{A}_{\text {rob }}$ first checks whether i and j have been queried by \mathcal{A} to the key-generation oracle. If not, $\mathcal{A}_{\text {rob }}$ now generates these keys as above. Then, $\mathcal{A}_{\text {rob }}$ computes $c \leftarrow \operatorname{sPKE} . \operatorname{Enc}\left(e k_{i}^{\text {sPKE }}, m\right)$, and returns $\left(c, i_{0}, i_{1}\right)$, such that the i_{0}-th query and the i_{1}-th query to the key-generation oracle were for the roles i and j, respectively. Since P is the equality predicate, $P(i, j)=0$ is equivalent to $i_{0} \neq i_{1}$. We further have by the perfect correctness of sPKE that $\operatorname{sPKE} . \operatorname{Dec}\left(d k_{i}^{\text {SPK }}, \operatorname{sPKE} . \operatorname{San}\left(s p^{\text {sPKE }}, c\right)\right) \neq \perp$. Hence, $\mathcal{A}_{\text {rob }}$ wins the robustness game if and only if \mathcal{A} wins the detectability game in H_{1}. Using Claim 1, we can therefore conclude

In the following, we prove the security of our scheme, which is summarized by the theorem below.

Theorem 6.2 (Informal). The above ACE scheme for equality is secure, i.e., all efficient adversaries have only negligible advantage in breaking the privacy, (strong) anonymity, sanitization, role-respecting, uniform-decryption, or ciphertext-unpredictability properties, if the underlying sPKE scheme is secure, the signature scheme is unforgeable, the proof system provides zeroknowledge and extractability, and if the function F is pseudo-random.

We first show that our scheme satisfies the privacy definition from Definition 4.2 if the underlying sanitizable public-key encryption scheme is IND-CCA secure, the PRF is secure, and the NIZK is zero knowledge.

Theorem 6.3. Let ACE be the scheme from above, let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be an attacker on the privacy such that \mathcal{A}_{1} makes at most q_{S} queries of the form $\left(\cdot\right.$, sen) to the oracle \mathcal{O}_{G}, and at most q_{D} queries to $\mathcal{O}_{S D}$. Then, there exist probabilistic algorithms $\mathcal{A}_{\text {PRF }}, \mathcal{A}_{\mathrm{ZK}}$, and $\mathcal{A}_{\text {sPKE }}$ (which are all roughly as efficient as emulating an execution of $\operatorname{Exp}_{\mathrm{ACE}, \mathcal{A}}^{\mathrm{ACE}}$-privnon-CCA $)$ such that

$$
\operatorname{Adv}_{\mathrm{ACE}, \mathcal{A}}^{\mathrm{ACE}-\mathrm{ArivCA}}=2 \cdot \operatorname{Adv}_{F, \mathcal{A} \text { PRF }}^{\text {PRF }}+2 \cdot \operatorname{Adv}_{\mathrm{NIIK}, \mathcal{A}_{Z K}}^{\mathrm{NIIK}-\mathrm{ZK}}+\left(q_{S}+q_{D}+1\right) \cdot \operatorname{Adv}_{\text {SPKE }, \mathcal{A}_{\text {sPKE }}}^{\text {sPKE }} .
$$

Proof. We assume without loss of generality that \mathcal{A} ensures $i_{0}=i_{1}$ and $P\left(i_{0}, j\right)=0$ for all $j \in J$, since doing otherwise can only decrease the advantage. Let $H_{0}:=\operatorname{Exp}_{A C E}^{\mathrm{ACE}} \mathrm{\mathcal{A}}$. A Anon-CCA and H_{1} be as H_{0} where F_{K} is replaced by a truly uniform random function U. The following can be proven as Claim 1 in the proof of Lemma 6.1.
Claim 1. There exists a probabilistic algorithm $\mathcal{A}_{\text {PRF }}^{\mathcal{O}(\cdot)}$ such that

$$
\operatorname{Pr}^{H_{0}}\left[b^{\prime}=b\right]-\operatorname{Pr}^{H_{1}}\left[b^{\prime}=b\right]=\operatorname{Adv}_{F, \mathcal{A}_{\text {PRF }}}^{\text {PRF }} .
$$

Now let H_{2} be as H_{1}, where we replace $\operatorname{crs}{ }^{\mathrm{NIZK}} \leftarrow \operatorname{NIZK} . \operatorname{Gen}\left(1^{\kappa}\right)$ by $\left(\right.$ crs $\left.^{\mathrm{NIZK}}, \tau^{\mathrm{NIZK}}\right) \leftarrow$ $S_{1}^{\mathrm{NIZK}}\left(1^{\kappa}\right)$ in ACE.Setup, and for the generation of the challenge ciphertext c^{*}, we replace $\pi^{\mathrm{NIZK}} \leftarrow$ NIZK.Prove $\left(\right.$ crs $\left.^{\text {NIZK }}, x, w\right)$ in ACE.Enc by $\pi^{\mathrm{NIZK}} \leftarrow S_{2}^{\text {NIZK }}\left(\operatorname{crs}^{\mathrm{NIZK}}, \tau^{\mathrm{NIZK}}, x\right)$.
Claim 2. There exists a probabilistic algorithm $\mathcal{A}_{\mathrm{ZK}}^{\mathcal{O}(, \cdot)}$ such that

$$
\operatorname{Pr}^{H_{1}}\left[b^{\prime}=b\right]-\operatorname{Pr}^{H_{2}}\left[b^{\prime}=b\right]=\operatorname{Adv}_{\text {NIZKK }}^{\text {NIK }} \text {, } \mathcal{A}_{Z K} \text {. }
$$

Proof of claim. The algorithm $\mathcal{A}_{\mathrm{ZK}}^{\mathcal{O}(\cdot,)}$ on input crs $^{\text {NIZK }}$ proceeds as follows. It emulates an execution of H_{1}, where in ACE.Setup, crs ${ }^{\text {NIZK }}$ is used instead of generating it, and for the generation of c^{*}, NIZK.Prove $\left(\operatorname{crs}^{\mathrm{NIZK}}, x, w\right)$ in ACE.Enc is replaced by the oracle query (x, w). Finally, $\mathcal{A}_{\mathrm{ZK}}^{\mathcal{O}(\cdot, \cdot)}$ outputs $\tilde{b}=1$ if \mathcal{A}_{2} returns $b^{\prime}=b$, and $\tilde{b}=0$ otherwise. Note that if $\operatorname{crs} \mathrm{s}^{\mathrm{NIZK}}$ is generated by NIZK.Gen and $\mathcal{O}(\cdot, \cdot)$ corresponds to NIZK.Prove $\left(\right.$ crs $\left.^{\text {NIZK }}, \cdot, \cdot\right), \mathcal{A}_{Z K}^{\mathcal{O}(\cdot, \cdot)}$ perfectly emulates H_{1}. Moreover, if $c r s^{\text {NIZK }}$ is generated together with $\tau^{\text {NIZK }}$ by $S_{1}^{\text {NIZK }}$ and $\mathcal{O}(x, w)$ returns $S_{2}^{\text {NIZK }}\left(c r s^{\mathrm{NIZK}}, \tau^{\mathrm{NIZK}}, x\right), \mathcal{A}_{\text {ZK }}^{\mathcal{O}(\cdot)}$ perfectly emulates H_{2}. Thus, the claim follows.

We finally show how to transform any winner \mathcal{A} for H_{2} to a winner $\mathcal{A}_{\text {sPKE }}$ for the IND-CCA game for the scheme sPKE. The strategy of our reduction is to guess which oracle queries of \mathcal{A}_{1} are for the role i_{0}, use the key from the sPKE-scheme for these queries, and generate all other keys as H_{2}. Details follow. On input ($\left.s p^{5 \mathrm{PKE}}, e k^{\text {SPK }}\right), \mathcal{A}_{\text {SPKE }}$ initializes $i_{q_{0}} \leftarrow \perp, k_{q} \leftarrow 1$, chooses $q_{0} \longleftarrow\left\{0, \ldots, q_{S}+q_{D}\right\}$ uniformly at random, runs $\left(v k^{\mathrm{Sig}}, s k^{\mathrm{Sig}}\right) \leftarrow \operatorname{Sig} . \operatorname{Gen}\left(1^{\kappa}\right)$, and $\left(c r s^{\mathrm{NIZK}}, \tau^{\mathrm{NIZK}}\right) \leftarrow S_{1}^{\mathrm{NIZK}}\left(1^{\kappa}\right)$, and gives $s p^{\mathrm{ACE}}:=\left(s p^{\mathrm{SPKE}}, v k^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ to \mathcal{A}_{1}. It emulates the oracles for \mathcal{A}_{1} as follows.
$\mathcal{O}_{G}(\cdot, \cdot)$: On query $(i$, sen $)$, if $k_{q} \neq q_{0}$ and $i \neq i_{q_{0}}$, then generate an encryption key $e k_{i}^{\text {ACE }}:=$ $\left(v k^{\mathrm{Sig}}, e k_{i}^{\text {sPKE }}, v k_{i}^{\mathrm{Sig}}, s k_{i}^{\mathrm{Sig}}, \sigma_{i}^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ as H_{2} does, where $\left(e k_{i}^{\text {sPKE }}, d k_{i}^{\text {sPKE }}\right)$ is obtained via \mathcal{O}_{G} and remembered for future queries. If $k_{q}=q_{0}$ or $i=i_{q_{0}}$, replace $e k_{i}^{\text {sPKE }}$ by $e k^{\text {sPKE }}$ and set $i_{q_{0}} \leftarrow i$. In both cases, set $k_{q} \leftarrow k_{q}+1$ at the end. On query (j, rec), obtain a decryption key via \mathcal{O}_{G}.
$\mathcal{O}_{S D}(\cdot, \cdot)$: On query $\left(j, c=\left(\tilde{c}, \pi^{\mathrm{NIZK}}\right)\right)$, if $k_{q} \neq q_{0}$ and $j \neq i_{q_{0}}$, run $c^{\prime} \leftarrow \operatorname{ACE} \cdot \operatorname{San}\left(s p^{\mathrm{ACE}}, c\right)$, generate a decryption key $d k_{j}^{\mathrm{ACE}}$ as above, decrypt c^{\prime} using $d k_{j}^{\mathrm{ACE}}$, and return the resulting message. If $k_{q}=q_{0}$ or $j=i_{q_{0}}$, set $i_{q_{0}} \leftarrow j$ and use the oracle $\mathcal{O}_{S D}$ of the IND-CCA experiment to obtain a decryption m of \tilde{c}. If NIZK.Ver $\left(\operatorname{crs}{ }^{\mathrm{NIZK}}, x:=\left(v k^{\mathrm{Sig}}, \tilde{c},\right), \pi^{\mathrm{NIZK}}\right)=1$, return m, otherwise, return \perp. In all cases, set $k_{q} \leftarrow k_{q}+1$ at the end.

When \mathcal{A}_{1} returns ($m_{0}, m_{1}, i_{0}, i_{1}$,st), output (m_{0}, m_{1}) to the challenger of the IND-CCA experiment to obtain a challenge ciphertext \tilde{c}^{*}. Then run $\pi^{\mathrm{NIZK}} \leftarrow S_{2}^{\mathrm{NIZK}}\left(\right.$ crs $^{\mathrm{NIZK}}, \tau^{\mathrm{NIZK}}, x:=$ $\left.\left(v k^{\mathrm{Sig}}, \tilde{c}^{*}\right)\right)$, and give st and the ciphertext $c^{*}:=\left(\tilde{c}^{*}, \pi^{\mathrm{NIZK}}\right)$ to \mathcal{A}_{2}. Emulate the oracles for \mathcal{A}_{2} as follows.
$\mathcal{O}_{G}(\cdot, \cdot)$: On query $(i$, sen $)$, if $i \neq i_{0}$, then generate an encryption key $e k_{i}^{\text {ACE }}:=\left(v k^{\mathrm{Sig}}, e k_{i}^{\text {sPKE }}\right.$, $\left.v k_{i}^{\text {Sig }}, s k_{i}^{\text {Sig }}, \sigma_{i}^{\text {Sig }}, c r s^{\mathrm{NIZK}}\right)$ as H_{2} does, where $\left(e k_{i}^{\mathrm{SPKE}}, d k_{i}^{\mathrm{SPKE}}\right)$ is obtained via \mathcal{O}_{G} and remembered for future queries. If $i=i_{0}$, replace $e k_{i}^{\text {sPKE }}$ by $e k^{\text {sPKE }}$. On query (j, rec), obtain a decryption key from \mathcal{O}_{G}.
$\mathcal{O}_{S D^{*}}(\cdot, \cdot)$: On query $\left(j, c=\left(\tilde{c}, \pi^{\mathrm{NIZK}}\right)\right)$, run ACE.DMod $\left(s p^{\mathrm{ACE}}, c^{*}, c\right)$. If the output is 1 , return test. Otherwise, if $j \neq i_{0}$, run $c^{\prime} \leftarrow \operatorname{ACE} \cdot \operatorname{San}\left(s p^{A C E}, c\right)$, generate a decryption key $d k_{j}^{\mathrm{ACE}}$ as above, decrypt c^{\prime} using $d k_{j}^{\mathrm{ACE}}$, and return the resulting message. If $j=i_{0}$, use the oracle $\mathcal{O}_{S D}$ of the IND-CCA experiment to obtain a decryption m of \tilde{c}. If $\operatorname{NIZK} . \operatorname{Ver}\left(\operatorname{crs}^{\mathrm{NIZK}}, x:=\left(v \mathrm{~K}^{\mathrm{Sig}}, \tilde{c},\right), \pi^{\mathrm{NIZK}}\right)=1$, return m, otherwise, return \perp.

Note that we never query the decryption oracle of the IND-CCA experiment on \tilde{c}^{*} because we return test whenever this would be necessary. Denote by Q the event that either $i_{q_{0}}=i_{0}$, or $q_{0}=0$ and \mathcal{A}_{1} does not make the query (i_{0}, sen $)$ to \mathcal{O}_{G} and no queries for role i_{0} to $\mathcal{O}_{S D}$.

When \mathcal{A}_{2} returns a bit b^{\prime} and Q holds, $\mathcal{A}_{\text {sPKE }}$ returns the same bit $b^{\prime \prime} \leftarrow b^{\prime}$, if $\neg Q$, $\mathcal{A}_{\text {sPKE }}$ returns a uniform bit $b^{\prime \prime} \longleftarrow\{0,1\}$.

Let \tilde{b} be the bit chosen by the IND-CCA challenger. Note that by our assumption on \mathcal{A}, $i_{0}=i_{1}$ and \mathcal{A} does not query $\left(i_{0}, \mathrm{rec}\right)$ to \mathcal{O}_{G}, i.e., $i_{0} \notin J$, since $P\left(i_{0}, i_{0}\right)=1$. Hence, if Q occurs, the view of \mathcal{A} is identical to the one in H_{2} with $b=\tilde{b}$. This implies
and therefore

Using that the probability of Q is $1 /\left(q_{S}+q_{D}+1\right)$, this yields

$$
\begin{aligned}
& \operatorname{Pr}^{H_{2}}\left[b^{\prime}=b\right]
\end{aligned}
$$

Combining this with Claims 1 and 2, we can conclude

$$
\begin{aligned}
& \operatorname{Adv}_{\text {ACE, }} \mathrm{A} \text { ACE--CCA } \\
& =2 \cdot \operatorname{Pr}^{H_{0}}\left[b^{\prime}=b\right]-1 \\
& =2 \cdot\left(\operatorname{Pr}^{H_{0}}\left[b^{\prime}=b\right]-\operatorname{Pr}^{H_{1}}\left[b^{\prime}=b\right]+\operatorname{Pr}^{H_{1}}\left[b^{\prime}=b\right]-\operatorname{Pr}^{H_{2}}\left[b^{\prime}=b\right]+\operatorname{Pr}^{H_{2}}\left[b^{\prime}=b\right]\right)-1
\end{aligned}
$$

We next consider anonymity, which can be shown similarly. We provide a proof for strong anonymity. Note, however, that for the equality policy, strong anonymity does not provide more guarantees than weak anonymity because anyone who can decrypt directly learns that the sender role is equal to the receiver role.

Theorem 6.4. Let ACE be the scheme from above, let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be an attacker on the anonymity such that \mathcal{A}_{1} makes at most q_{S} queries of the form (\cdot, sen) to the oracle \mathcal{O}_{G}, and at most q_{D} queries to $\mathcal{O}_{S D}$. Then, there exist probabilistic algorithms $\mathcal{A}_{\text {PRF }}, \mathcal{A}_{\mathrm{ZK}}$, and $\mathcal{A}_{\mathrm{sPKE}}$ (which are all roughly as efficient as emulating an execution of $\operatorname{Exp}_{A C E}^{\text {ACE-privAnon-CCA }}$) such that

Proof. We assume without loss of generality that \mathcal{A} ensures $m_{0}=m_{1}$ and $P\left(i_{0}, j\right)=P\left(i_{1}, j\right)$ for all $j \in J$, since doing otherwise can only decrease the advantage. Since we have $P(i, j)=1 \Leftrightarrow i=j$,
the latter condition implies that if $i_{0} \in J$ or $i_{1} \in J$, then $i_{0}=i_{1}$. In case $i_{0}=i_{1}$ and $m_{0}=m_{1}$, \mathcal{A} cannot have positive advantage. Hence, we can further assume without loss of generality that $i_{0} \notin J$ and $i_{1} \notin J$. As in the proof of Theorem 6.3, let $H_{0}:=\operatorname{Exp}_{A C E, \mathcal{A}}^{\text {ACE-privAnon-CCA }}$, let H_{1} be as H_{0} where F_{K} is replaced by a truly uniform random function U, and let H_{2} be as H_{1}, where crs $^{\mathrm{NIZK}} \leftarrow \mathrm{NIZK}$.Gen $\left(1^{\kappa}\right)$ in ACE. Setup is replaced by $\left(\right.$ crs $\left.^{\mathrm{NIZK}}, \tau^{\mathrm{NIZK}}\right) \leftarrow S_{1}^{\text {NIZK }}\left(1^{\kappa}\right)$ and for the generation of the challenge ciphertext $c^{*}, \pi^{\text {NIZK }} \leftarrow \operatorname{NIZK}$. Prove $\left(c r s^{\text {NIZK }}, x, w\right)$ in ACE.Enc is replaced by $\pi^{\mathrm{NIZK}} \leftarrow S_{2}^{\mathrm{NIZK}}\left(\right.$ crs $\left.^{\mathrm{NIZK}}, \tau^{\mathrm{NIZK}}, x\right)$. An identical proof as the one in the proof of Theorem 6.3 shows that there exist $\mathcal{A}_{\text {PRF }}$ and $\mathcal{A}_{\text {ZK }}$ such that

$$
\operatorname{Pr}^{H_{0}}\left[b^{\prime}=b\right]-\operatorname{Pr}^{H_{2}}\left[b^{\prime}=b\right]=\operatorname{Adv}_{F, \mathcal{A}_{\text {PRF }}}^{\text {PRF }}+\operatorname{Adv}_{\mathrm{NIIZK}, \mathcal{A}_{\text {IK }}}^{\mathrm{NIK} \text {. }} .
$$

We now transform \mathcal{A} to a winner $\mathcal{A}_{\text {sPKE }}$ for the anonymity game for the scheme sPKE. The reduction is similar to the one in the proof of Theorem 6.3, but $\mathcal{A}_{\text {SPKE }}$ has to guess both i_{0} and i_{1}, which is why we loose the quadratic factor $\left(q_{S}+q_{D}+1\right)^{2}$. On input ($s p^{\text {sPKE }}, e k_{0}^{\text {sPKE }}, e k_{1}^{\text {sPKE }}$), $\mathcal{A}_{\text {sPKE }}$ initializes $i_{q_{0}}, i_{q_{1}} \leftarrow \perp, k_{q} \leftarrow 1$, chooses $q_{0}, q_{1} \leftarrow\left\{0, \ldots, q_{S}+q_{D}\right\}$ uniformly at random, runs $\left(v k^{\mathrm{Sig}}, s k^{\mathrm{Sig}}\right) \leftarrow \operatorname{Sig} . \operatorname{Gen}\left(1^{\kappa}\right)$, and $\left(c r s^{\mathrm{NIZK}}, \tau^{\mathrm{NIZK}}\right) \leftarrow S_{1}^{\text {NIZK }}\left(1^{\kappa}\right)$, and gives $s p^{\text {ACE }}:=$ $\left(s p^{\mathrm{SPKE}}, v k^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ to \mathcal{A}_{1}. It emulates the oracles for \mathcal{A}_{1} as follows.
$\mathcal{O}_{G}(\cdot, \cdot)$: On query (i, sen), if $k_{q} \notin\left\{q_{0}, q_{1}\right\}$ and $i \notin\left\{i_{q_{0}}, i_{q_{1}}\right\}$, then generate an encryption key $e k_{i}^{\mathrm{ACE}}:=\left(v k^{\mathrm{Sig}}, e k_{i}^{\mathrm{sPKE}}, v k_{i}^{\mathrm{Sig}}, s k_{i}^{\mathrm{Sig}}, \sigma_{i}^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ as H_{2} does, where $\left(e k_{i}^{\mathrm{SPKE}}, d k_{i}^{\text {sPKE }}\right)$ is obtained via \mathcal{O}_{G} and remembered for future queries. If $k_{q}=q_{l}$ or $i=i_{q_{l}}$ for some $l \in\{0,1\}$, replace $e k_{i}^{\text {SPE }}$ by $e k_{l}^{\text {SPKE }}$ (by $e k_{0}^{\text {sPKE }}$ if $q_{0}=q_{1}$) and set $i_{q_{l}} \leftarrow i$. In both cases, set $k_{q} \leftarrow k_{q}+1$ at the end. On query (j, rec), obtain a decryption key from \mathcal{O}_{G} and remember it for later.
$\mathcal{O}_{S D}(\cdot, \cdot)$: On query $\left(j, c=\left(\tilde{c}, \pi^{\text {NIZK }}\right)\right)$, if $k_{q} \notin\left\{q_{0}, q_{1}\right\}$ and $j \notin\left\{i_{q_{0}}, i_{q_{1}}\right\}$, then execute $c^{\prime} \leftarrow$ $\operatorname{ACE} . \operatorname{San}\left(s p^{\mathrm{ACE}}, c\right)$, generate a decryption key $d k_{j}^{\mathrm{ACE}}$ as above, decrypt c^{\prime} using $d k_{j}^{\mathrm{ACE}}$, and return the resulting message. If $k_{q}=q_{l}$ or $j=i_{q_{l}}$ for some $l \in\{0,1\}$, set $i_{q_{l}} \leftarrow j$ and use the oracle $\mathcal{O}_{S D_{l}}$ of the IK-CCA experiment to obtain a decryption m of \tilde{c}. If $\operatorname{NIZK} . \operatorname{Ver}\left(c r s^{\text {NIZK }}, x:=\left(v k^{\text {Sig }}, \tilde{c},\right), \pi^{\mathrm{NIZK}}\right)=1$, return m, otherwise, return \perp. In all cases, set $k_{q} \leftarrow k_{q}+1$ at the end.

When \mathcal{A}_{1} returns ($m_{0}, m_{1}, i_{0}, i_{1}, s t$), $\mathcal{A}_{\text {SPKE }}$ outputs m_{0} to the challenger of the anonymity experiment to obtain a challenge ciphertext \tilde{c}^{*}. It then runs $S_{2}^{\mathrm{NIZK}}\left(c r s^{\mathrm{NIZK}}, \tau^{\mathrm{NIZK}}, x:=\left(v k^{\mathrm{Sig}}, \tilde{c}^{*}\right)\right)$, and gives st and the ciphertext $c^{*}:=\left(\tilde{c}^{*}, \pi^{\text {NIZK }}\right)$ to \mathcal{A}_{2}. It emulates the oracles for \mathcal{A}_{2} as follows:
$\mathcal{O}_{G}(\cdot, \cdot)$: On query (i, sen), if $i \notin\left\{i_{0}, i_{1}\right\}$, then generate an encryption key $e k_{i}^{\mathrm{ACE}}:=\left(v k^{\mathrm{Sig}}\right.$, $\left.e k_{i}^{\text {SPKE }}, v k_{i}^{\mathrm{Sig}}, s k_{i}^{\mathrm{Sig}}, \sigma_{i}^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ as H_{2} does, where $\left(e k_{i}^{\text {sPKE }}, d k_{i}^{\text {SPK }}\right)$ is obtained via \mathcal{O}_{G} and remembered for future queries. If $i=i_{q_{l}}$ for some $l \in\{0,1\}$, replace $e k_{i}^{\text {sPKE }}$ by $e k_{l}^{\text {sPKE }}$. On query (j, rec), obtain a decryption key as before.
$\mathcal{O}_{S D^{*}}(\cdot, \cdot)$: On query $\left(j, c=\left(\tilde{c}, \pi^{\mathrm{NIZK}}\right)\right)$, run ACE. $\operatorname{DMod}\left(s p^{\mathrm{ACE}}, c^{*}, c\right)$. If the output is 1 , return test. Otherwise, if $j \notin\left\{i_{0}, i_{1}\right\}$, run $c^{\prime} \leftarrow \operatorname{ACE} . \operatorname{San}\left(s p^{A C E}, c\right)$, generate a decryption key $d k_{j}^{\mathrm{ACE}}$ as above, decrypt c^{\prime} using $d k_{j}^{\mathrm{ACE}}$, and return the resulting message. If $j=i_{q_{l}}$ for some $l \in\{0,1\}$, use the oracle $\mathcal{O}_{S D_{l}}$ of the IK-CCA experiment to obtain a decryption m of \tilde{c}. If $\operatorname{NIZK} . \operatorname{Ver}\left(c r s^{\mathrm{NIZK}}, x:=\left(v k^{\mathrm{Sig}}, \tilde{c},\right), \pi^{\mathrm{NIZK}}\right)=1$, return m, otherwise, return \perp.

Note that $\mathcal{A}_{\text {sPKE }}$ never queries any of the decryption oracles of the IK-CCA experiment on \tilde{c}^{*} because we return test whenever this would be necessary. Denote by Q the event that for all
$l \in\{0,1\}$ we have either $i_{q_{l}}=i_{l}$, or $q_{l}=0$ and \mathcal{A}_{1} does not make the query (i_{l}, sen) to \mathcal{O}_{G} and no queries for role i_{l} to $\mathcal{O}_{S D}$. When \mathcal{A}_{2} returns a bit b^{\prime} and Q holds, $\mathcal{A}_{\text {sPKE }}$ returns the same bit $b^{\prime \prime} \leftarrow b^{\prime}$, if $\neg Q, \mathcal{A}_{\text {sPKE }}$ returns a uniform bit $b^{\prime \prime} \leftarrow\{0,1\}$.

Let \tilde{b} be the bit chosen by the IK-CCA experiment. Note that if Q occurs, the view of \mathcal{A} is identical to the one in H_{2} with $b=\tilde{b}$. This implies

$$
\operatorname{Pr}^{\operatorname{ExP}} \underset{\text { SPKE, }}{\text { SPKE-IK-CCA }} \text { SPKE } ~\left[b^{\prime \prime}=\tilde{b} \mid Q\right]=\operatorname{Pr}^{H_{2}}\left[b^{\prime}=b\right]
$$

Using that the probability of Q is $1 /\left(q_{S}+q_{D}+1\right)^{2}$, it follows as in the proof of Theorem 6.3 that

$$
\operatorname{Adv}_{\mathrm{ACE}, \mathcal{A}}^{\mathrm{ACE}-\mathrm{A}} \mathrm{Anon-CCA}=2 \cdot \operatorname{Adv}_{F, \mathcal{A}_{\mathrm{PRF}}}^{\mathrm{PRF}}+2 \cdot \operatorname{Adv}_{\mathrm{NIZK}, \mathcal{A}_{\mathrm{ZK}}}^{\mathrm{NIZKK}}+\left(q_{S}+q_{D}+1\right)^{2} \cdot \operatorname{Adv}_{\mathrm{sPKE}, \mathcal{A}_{\mathrm{sPKE}}}^{\mathrm{sPKE}} .
$$

We next prove the sanitization security of our scheme.
Theorem 6.5. Let ACE be the scheme from above, let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be an attacker on the sanitization security such that \mathcal{A}_{1} makes at most $q_{S_{1}}$ queries of the form $(\cdot$, sen $)$ and at most $q_{R_{1}}$ queries of the form (\cdot, rec) to the oracle \mathcal{O}_{G}, and at most $q_{D_{1}}$ queries to $\mathcal{O}_{S D}$, and \mathcal{A}_{2} makes at most $q_{R_{2}}$ queries of the form (\cdot, rec) to the oracle \mathcal{O}_{G}. Then, there exist probabilistic algorithms $\mathcal{A}_{\mathrm{PRFF}}, \mathcal{A}_{\mathrm{ZK}_{1}}, \mathcal{A}_{\mathrm{ZK}_{2}}, \mathcal{A}_{\mathrm{Sig}}, \mathcal{A}_{\mathrm{sPKE}}$, and $\mathcal{A}_{\mathrm{rob}}$ (which are all roughly as efficient as emulating an execution of $\left.\operatorname{Exp}_{\mathrm{ACE}, \mathcal{A}}^{\mathrm{ACE}}-\mathrm{san}-\mathrm{CCA}\right)$ such that

Proof. Let $H_{0}:=\operatorname{Exp} \underset{\mathrm{ACE}, \mathcal{A}}{\mathrm{ACE}-\mathrm{san}-\mathrm{CCA}}$, let H_{1} be as H_{0} where F_{K} is replaced by a truly uniform random function U, and let H_{2} be as H_{1}, where $c r s^{\text {NIZK }} \leftarrow \operatorname{NIZK}$.Gen $\left(1^{\kappa}\right)$ in ACE.Setup is replaced by $\left(c r s^{\mathrm{NIZK}}, \xi^{\mathrm{NIZK}}\right) \leftarrow E_{1}^{\mathrm{NIZK}}\left(1^{\kappa}\right)$. Let $W_{\text {ACE }}$ denote the event that \mathcal{A} wins, i.e.,

$$
W_{\mathrm{ACE}}:=\left[b^{\prime}=b \wedge c_{0}^{\prime} \neq \perp \neq c_{1}^{\prime} \wedge \forall j \in J m_{0, j}=m_{1, j}\right]
$$

Similarly as in the proof of Theorem 6.3 , it can be shown that there exist $\mathcal{A}_{\mathrm{PRF}}$ and $\mathcal{A}_{\mathrm{ZK}}^{1} 10$ such that

$$
\begin{equation*}
\operatorname{Pr}^{H_{0}}\left[W_{\mathrm{ACE}}\right]-\operatorname{Pr}^{H_{2}}\left[W_{\mathrm{ACE}}\right]=\operatorname{Adv}_{F, \mathcal{A}_{\mathrm{PRF}}}^{\mathrm{PRF}}+\mathrm{Adv}_{\mathrm{NIZK}, \mathcal{A}_{\mathrm{ZK}_{1}}}^{\mathrm{NIZK} \mathrm{ext}_{1}} \tag{2}
\end{equation*}
$$

Let H_{3} be identical to H_{2} except that after \mathcal{A}_{1} returns $\left(c_{0}=\left(\tilde{c}_{0}, \pi_{0}^{\mathrm{NIZK}}\right), c_{1}=\left(\tilde{c}_{1}, \pi_{1}^{\mathrm{NIZK}}\right), s t\right)$, H_{3} executes for $\tilde{b} \in\{0,1\}$

$$
w_{\tilde{b}}:=\left(e k_{i_{\tilde{b}}}^{\mathrm{sPKE}}, m_{\tilde{b}}, r_{\tilde{b}}, v k_{i_{\tilde{b}}}^{\mathrm{Sig}}, \sigma_{i_{\tilde{b}}}^{\mathrm{Sig}}, \sigma_{c_{\tilde{b}}}^{\mathrm{Sig}}\right) \leftarrow E_{2}^{\mathrm{NIZK}}\left(c r s^{\mathrm{NIZK}}, \xi^{\mathrm{NIZK}}, x_{\tilde{b}}:=\left(v k^{\mathrm{Sig}}, \tilde{c}_{\tilde{b}}\right), \pi_{\tilde{b}}^{\mathrm{NIZK}}\right)
$$

We clearly have

$$
\begin{equation*}
\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{ACE}}\right]=\operatorname{Pr}^{H_{2}}\left[W_{\mathrm{ACE}}\right] \tag{3}
\end{equation*}
$$

Let $V_{\tilde{b}}:=\left[\operatorname{NIZK} . \operatorname{Ver}\left(c r s^{\mathrm{NIZK}}, x_{\tilde{b}}, \pi_{\tilde{b}}^{\mathrm{NIZK}}\right)=1\right]$ and let B_{E} be the event that (at least) one of the extractions fail, i.e.,

$$
B_{E}:=\left[\left(V_{0} \wedge\left(x_{0}, w_{0}\right) \notin R\right) \vee\left(V_{1} \wedge\left(x_{1}, w_{1}\right) \notin R\right)\right]
$$

If B_{E} occurs, the knowledge extraction of NIZK is broken. To prove this, we define $\mathcal{A}_{\mathrm{ZK}_{2}}$ as follows. On input $c r s^{\mathrm{NIZK}}$, it emulates an execution of H_{3}, where in ACE.Setup, $c r s^{\mathrm{NIZK}}$ is used
instead of generating it. When \mathcal{A}_{1} returns $\left(c_{0}, c_{1}, s t\right), \mathcal{A}_{\mathrm{ZK}_{2}}$ flips a coin $\tilde{b} \longleftarrow\{0,1\}$ and returns $\left(x_{\tilde{b}}, \pi_{\tilde{b}}^{\mathrm{NIZK}}\right)$. If the \tilde{b} 's extraction fails, $\mathcal{A}_{\mathrm{ZK}_{2}}$ wins the extraction game. Hence,

$$
\begin{equation*}
\operatorname{Pr}^{H_{3}}\left[B_{E}\right] \leq 2 \cdot \mathrm{Adv}_{\mathrm{NIZK}, \mathcal{A}_{\mathrm{ZK}_{2}}}^{\mathrm{NIZK}-\mathrm{ext}_{2}} \tag{4}
\end{equation*}
$$

For $\tilde{b} \in\{0,1\}$, let $B_{S, \tilde{b}}$ be the event that $\left(x_{\tilde{b}}, w_{\tilde{b}}\right) \in R$ and $e k_{i_{\tilde{b}}}^{\text {sPKE }}$ is not contained in an answer from \mathcal{O}_{G} to \mathcal{A}_{1}, and let B_{S} be the union of $B_{S, 0}$ and $B_{S, 1}$. We next show that if B_{S} occurs, the adversary found a forgery for the signature scheme.

Claim 1. There exists a probabilistic algorithm $\mathcal{A}_{\mathrm{Sig}}$ such that

$$
\begin{equation*}
\operatorname{Pr}^{H_{3}}\left[B_{S}\right] \leq 2 \cdot \operatorname{Adv}_{\mathrm{Sig}, \mathcal{A}_{\mathrm{Sig}}}^{\mathrm{Sig}-\mathrm{EUF}-\mathrm{CMA}} \tag{5}
\end{equation*}
$$

Proof of claim. On input $v k^{\mathrm{Sig}}, \mathcal{A}_{\mathrm{Sig}}$ emulate an execution of H_{3}, where $v k^{\mathrm{Sig}}$ is used in $m s k^{\mathrm{ACE}}$ and $s p^{\text {ACE }}$. Queries $\left(i\right.$, sen) by \mathcal{A}_{1} to the oracle \mathcal{O}_{G} are answered by executing ACE.Gen (with F_{K} replaced by U) where $\sigma_{i}^{\text {Sig }}$ is generated using the signing oracle of Exp $\mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\text {sig-EUF-CMA }}$. After extracting w_{0} and $w_{1}, \mathcal{A}_{\mathrm{sig}}$ flips a coin $\tilde{b} \nleftarrow\{0,1\}$ and returns $\left(\left[e k_{i_{\tilde{b}}}^{\text {SKE }}, v k_{i_{\tilde{b}}}^{\mathrm{Sig}}\right], \sigma_{i_{\tilde{b}}}^{\mathrm{Sig}}\right)$. If $B_{S, \tilde{b}}$ occurs, $\left[e k_{i_{\tilde{b}}}^{\mathrm{PPKE}}, v k_{i_{\tilde{b}}}^{\mathrm{Sig}}\right]$ was not queried to the signing oracle and $\left(x_{\tilde{b}}, w_{\tilde{b}}\right) \in R$. The latter implies that $\sigma_{i_{\tilde{b}}}^{\text {Sig }}$ is a valid signature and hence $\mathcal{A}_{\text {sig }}$ successfully forged a signature. We conclude

$$
\operatorname{Pr}^{H_{3}}\left[B_{S}\right] \leq 2 \cdot\left(\frac{1}{2} \operatorname{Pr}^{H_{3}}\left[B_{S, 0}\right]+\frac{1}{2} \operatorname{Pr}^{H_{3}}\left[B_{S, 1}\right]\right)=2 \cdot \operatorname{Adv}_{\text {Sig }, \mathcal{A}_{\mathrm{Sig}}}^{\text {Sig-EUF-CMA }}
$$

Let H_{4} be identical to H_{3} with the difference that we replace for $k \in\{0,1\}$ and $j \in J$, $m_{k, j} \leftarrow \operatorname{ACE} . \operatorname{Dec}\left(\mathrm{ACE} . \operatorname{Gen}(m s k, j, \mathrm{rec}), c_{k}^{\prime}\right)$ by

$$
m_{k, j} \leftarrow \begin{cases}m_{k}, & e k_{j}^{\mathrm{sPKE}}=e k_{i_{k}}^{\mathrm{sPKE}} \text { for }\left(e k_{j}^{\mathrm{sPKE}}, d k_{j}^{\mathrm{sPKE}}\right)=\operatorname{sPKE} \cdot \operatorname{Gen}\left(m s k^{\mathrm{sPKE}} ; U([j, 0])\right), \tag{6}\\ \perp, & \text { else },\end{cases}
$$

where $e k_{i_{k}}^{\text {sPKE }}$ are the extracted keys. Note that if $V_{k}, \neg B_{E}$, and $\neg B_{S}$ occur, we have $c_{k}^{\prime}=$ $\operatorname{San}\left(s p^{\mathrm{SPKE}}, \tilde{c}_{k}\right), \tilde{c}_{k}=\operatorname{sPKE} . \operatorname{Enc}\left(e k_{i_{k}}^{\mathrm{SPKE}}, m_{k} ; r_{k}\right)$, and $e k_{i_{k}}^{\mathrm{SPKE}}$ was generated by \mathcal{O}_{G}. Hence, for $j \in J$ with $e k_{j}^{\text {sPKE }}=e k_{i_{k}}^{\text {sPKE }}$, we have by the correctness of the sPKE scheme that ACE.Dec(ACE.Gen $(m s k, j$, rec $\left.), c_{k}^{\prime}\right)=m_{k}$, i.e., $m_{k, j}=m_{k}$ in both H_{3} and H_{4}. For other $j \in J$, decryption only yields a message different from \perp if robustness of the sPKE scheme is violated. Since $|J| \leq q_{R_{1}}+q_{R_{2}}$, this implies for $V:=V_{0} \cap V_{1}$,

$$
\begin{equation*}
\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{ACE}} \mid V \cap \neg B_{E} \cap \neg B_{S}\right]-\operatorname{Pr}^{H_{4}}\left[W_{\mathrm{ACE}} \mid V \cap \neg B_{E} \cap \neg B_{S}\right] \leq 2\left(q_{R_{1}}+q_{R_{2}}\right) \mathrm{Adv}_{\text {sPKE, }} \mathrm{A}_{\mathrm{rob}}^{\text {sPE }}, \tag{7}
\end{equation*}
$$

where $\mathcal{A}_{\text {rob }}$ emulates the experiment and outputs \tilde{c}_{k} for a uniformly chosen $k \in\{0,1\}, i$ such that the i-th query to the key-generation oracle yields $e k_{i_{k}}^{\text {SPE }}$, and a uniformly chosen $j .{ }^{7}$

We finally construct an adversary $\mathcal{A}_{\text {sPKE }}$ against the sanitization security of sPKE. On input ($s p^{\text {sPKE }}, e k_{0}^{\text {sPKE }}, e k_{1}^{\text {sPKE }}$), $\mathcal{A}_{\text {sPKE }}$ initializes $i_{q_{0}}, i_{q_{1}} \leftarrow \perp, k_{q} \leftarrow 1$, chooses distinct $q_{0}, q_{1} \varangle$ $\left\{1, \ldots, q_{S_{1}}+q_{R_{1}}+q_{D_{1}}\right\}$ uniformly at random, executes $\left(v k^{\mathrm{Sig}}, s k^{\mathrm{Sig}}\right) \leftarrow \operatorname{Sig} . \operatorname{Gen}\left(1^{\kappa}\right)$, and $\left(c r s^{\mathrm{NIZK}}\right.$, $\left.\xi^{\mathrm{NIZK}}\right) \leftarrow E_{1}^{\mathrm{NIZK}}\left(1^{\kappa}\right)$, and gives $s p^{\mathrm{ACE}}:=\left(s p^{\mathrm{PPKE}}, v k^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ to \mathcal{A}_{1}. It emulates the oracles for \mathcal{A}_{1} as follows.

[^5]$\mathcal{O}_{G}(\cdot, \cdot)$: On query (i, sen) , if $k_{q} \notin\left\{q_{0}, q_{1}\right\}$ and $i \notin\left\{i_{q_{0}}, i_{q_{1}}\right\}$, generate an encryption key $\left(v k^{\mathrm{Sig}}, e k_{i}^{\text {sPKE }}, s k_{i}^{\text {Sig }}, \sigma_{i}^{\text {Sig }}, c r s^{\mathrm{NIZK}}\right)$ as H_{4}, where $\left(e k_{i}^{\text {SPE }}, d k_{i}^{\text {sPKE }}\right)$ is obtained via \mathcal{O}_{G} and remembered for future queries. If $k_{q}=q_{l}$ or $i=i_{q_{l}}$ for some $l \in\{0,1\}$, replace $e k_{i}^{\text {sPKE }}$ by $e k_{l}^{\text {SPKE }}$ and set $i_{q_{l}} \leftarrow i$. In both cases, set $k_{q} \leftarrow k_{q}+1$ at the end.
On query (j, rec), if $k_{q} \notin\left\{q_{0}, q_{1}\right\}$ and $j \notin\left\{i_{q_{0}}, i_{q_{1}}\right\}$, obtain a decryption key from \mathcal{O}_{G}, remember it, and set $k_{q} \leftarrow k_{q}+1$. If $k_{q}=q_{l}$ or $j=i_{q_{l}}$ for some $l \in\{0,1\}$, then return \perp and set $k_{q} \leftarrow k_{q}+1$.
$\mathcal{O}_{S D}(\cdot, \cdot)$: On query $\left(j, c=\left(\tilde{c}, \pi^{\mathrm{NIZK}}\right)\right)$, if $k_{q} \notin\left\{q_{0}, q_{1}\right\}$ and $j \notin\left\{i_{q_{0}}, i_{q_{1}}\right\}$, then execute $c^{\prime} \leftarrow$ ACE.San $\left(s p^{\mathrm{ACE}}, c\right)$, generate a decryption key $d k_{j}^{\mathrm{ACE}}$ as above, decrypt c^{\prime} using $d k_{j}^{\mathrm{ACE}}$, and return the resulting message. If $k_{q}=q_{l}$ or $j=i_{q_{l}}$ for some $l \in\{0,1\}$, set $i_{q_{l}} \leftarrow j$, if $\operatorname{NIZK} . \operatorname{Ver}\left(c r s^{\text {NIZK }}, x:=\left(v k^{\mathrm{Sig}}, \tilde{c},\right), \pi^{\mathrm{NIZK}}\right)=0$, return \perp, otherwise, use the oracle $\mathcal{O}_{S D_{l}}$ of the sPKE-sanitization experiment to obtain a decryption of \tilde{c} and return it. In all cases, set $k_{q} \leftarrow k_{q}+1$ at the end.
When \mathcal{A}_{1} returns $\left(c_{0}=\left(\tilde{c}_{0}, \pi_{0}^{\mathrm{NIZK}}\right), c_{1}=\left(\tilde{c}_{1}, \pi_{1}^{\mathrm{NIZK}}\right), s t\right), \mathcal{A}_{\text {SPKE }}$ verifies the proofs π_{0}^{NIZK} and $\pi_{1}^{\text {NIZK }}$ and extracts the witnesses to check the events V, B_{E}, and B_{S}. Denote by Q the event that $e k_{i_{0}}^{\text {sPKE }}, e k_{i_{1}}^{\mathrm{SPKE}} \in\left\{e k_{0}^{\mathrm{sPKE}}, e k_{1}^{\mathrm{SPKE}}\right\}$, where $e k_{i_{0}}^{\mathrm{SPK}}, e k_{i_{1}}^{\text {SPK }}$ are the extracted keys. Note that if V, $\neg B_{E}$, and $\neg B_{S}$ occur, both $e k_{i_{0}}^{\text {SPE }}$ and $e k_{i_{1}}^{\text {sPKE }}$ have been returned by \mathcal{O}_{G} to \mathcal{A}_{1}. This implies

If $Q, V, \neg B_{E}$, and $\neg B_{S}$ occur, $\mathcal{A}_{\text {sPKE }}$ returns ($\tilde{c}_{0}, \tilde{c}_{1}$) to the challenger of the sPKE-sanitization experiment to obtain the sanitized ciphertext $c_{\tilde{b}}^{\prime}$. It then gives $\left(s t, c_{\tilde{b}}^{\prime}\right)$ to \mathcal{A}_{2} and emulates the oracles as above. After \mathcal{A}_{2} returned the bit b^{\prime}, $\mathcal{A}_{\text {sPKE }}$ returns $b^{\prime \prime} \leftarrow b^{\prime}$. If $Q \cap V \cap \neg B_{E} \cap \neg B_{S}$ does not occur, $\mathcal{A}_{\text {sPKE }}$ runs $\bar{c} \leftarrow \operatorname{sPKE}$. $\operatorname{Enc}\left(e k_{0}^{\text {sPKE }}, \bar{m}\right)$ for an arbitrary fixed message \bar{m} and returns ($c_{0}:=\bar{c}, c_{1}:=\bar{c}$) to the challenger. After receiving back a sanitized ciphertext $c_{\tilde{b}}^{\prime}$, it returns a uniform bit $b^{\prime \prime} \longleftrightarrow\{0,1\}$.

Let $W_{\text {sPKE }}$ be the event that $\mathcal{A}_{\text {sPKE }}$ wins, i.e.,

$$
\left.\left.W_{\text {sPKE }}:=\left[b^{\prime \prime}=\tilde{b} \wedge \exists j, j^{\prime} \in\{0,1\} m_{0, j}^{\mathrm{sPKE}} \neq \perp \neq m_{1, j^{\prime}}^{\mathrm{sPKE}}\right)\right)\right],
$$

 does not occur, we have $m_{0,0}^{\mathrm{sPKE}}=m_{1,0}^{\mathrm{sPRE}}=\bar{m} \neq \perp$ by the correctness of sPKE, and thus

Next consider the case that $Q \cap V \cap \neg B_{E} \cap \neg B_{S}$ occurs. In this case, the view of \mathcal{A} is identical to the one in H_{4} with $b=\tilde{b}$, as long as the emulated \mathcal{O}_{G} never returns \perp. Moreover, if \mathcal{A} wins, we have $m_{0, j}^{H_{4}}=m_{1, j}^{H_{4}}=\perp$ for all $j \in J^{H_{4}}$, where the messages here refer to the ones in H_{4}, generated according to (6), and $J^{H_{4}}$ is the set of all j such that \mathcal{A}_{1} or \mathcal{A}_{2} issued the query (j, rec) to the oracle \mathcal{O}_{G}. Therefore, \mathcal{O}_{G} is never gets a query for which it returns \perp in this case. The event $Q \cap V \cap \neg B_{E}$ implies that the ciphertexts are encryptions of some message under $e k_{0}^{\text {sPKE }}$ or $e k_{1}^{\text {sPKE }}$. Correctness of sPKE now implies that $m_{0,0}^{\text {sPE }} \neq \perp \neq m_{1,0}^{\text {sPK }}$, i.e., the winning condition for $\mathcal{A}_{\text {sPKE }}$ is satisfied. We can conclude that

$$
\begin{equation*}
\operatorname{Pr}^{\mathrm{EXP} \mathrm{SPRKE}_{\text {SRE-San_-CCA }}^{\text {SARE }}}\left[W_{\text {sPKE }} \mid Q \cap V \cap \neg B_{E} \cap \neg B_{S}\right] \geq \operatorname{Pr}^{H_{4}}\left[W_{\mathrm{ACE}} \mid V \cap \neg B_{E} \cap \neg B_{S}\right] . \tag{10}
\end{equation*}
$$

Let

Putting our results together, we obtain

This implies

$$
\begin{align*}
& =\frac{1}{2 p_{G}} \cdot \operatorname{Adv}_{\mathrm{sPKE},, \mathrm{~A}_{\text {sPKE }}}^{\mathrm{SPKE}} \text {--CCA }+\frac{1}{2} . \tag{11}
\end{align*}
$$

Furthermore,

$$
\operatorname{Adv}_{\mathrm{ACE}, \mathcal{A}}^{\mathrm{ACE}-\mathrm{san}-\mathrm{CCA}}=2 \cdot \operatorname{Pr}^{H_{0}}\left[W_{\mathrm{ACE}}\right]-1 \stackrel{(2),(3)}{=} 2 \cdot\left(\operatorname{Adv}_{F, \mathcal{A}_{\text {PRF }}}^{\text {PRF }}+\operatorname{Adv}_{\mathrm{NIZK}, \mathcal{A}_{Z K_{1}}}^{\mathrm{NIIK}_{1}-\mathrm{Pr}_{1}}+\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{ACE}}\right]\right)-1 .
$$

Since $B_{E}, \neg B_{E} \cap B_{S}$, and $\neg B_{E} \cap \neg B_{S}$ partition the sample space, the law of total probability implies

$$
\begin{aligned}
\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{ACE}}\right]= & \operatorname{Pr}^{H_{3}}\left[W_{\mathrm{ACE}} \cap B_{E}\right]+\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{ACE}} \cap \neg B_{E} \cap B_{S}\right] \\
& +\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{ACE}} \cap \neg B_{E} \cap \neg B_{S}\right] \\
\leq & \operatorname{Pr}^{H_{3}}\left[B_{E}\right]+\operatorname{Pr}^{H_{3}}\left[B_{S}\right]+\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{ACE}} \cap \neg B_{E} \cap \neg B_{S}\right]
\end{aligned}
$$

Note that $W_{\text {ACE }}$ implies $c_{0}^{\prime} \neq \perp \neq c_{1}^{\prime}$ and thus also V because if the verification fails, ACE.San returns \perp. Hence,

$$
\begin{aligned}
& \operatorname{Pr}^{H_{3}}\left[W_{\mathrm{ACE}} \cap \neg B_{E} \cap \neg B_{S}\right]=\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{ACE}} \cap V \cap \neg B_{E} \cap \neg B_{S}\right] \\
& =\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{ACE}} \mid V \cap \neg B_{E} \cap \neg B_{S}\right] \cdot \operatorname{Pr}^{H_{3}}\left[V \cap \neg B_{E} \cap \neg B_{S}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(8)}{\leq}\left(q_{S_{1}}+q_{R_{1}}+q_{D_{1}}\right)^{2} \text {. }
\end{aligned}
$$

Therefore,

This implies

$$
\begin{aligned}
& +\left(q_{S_{1}}+q_{R_{1}}+q_{D_{1}}\right)^{2} \cdot \operatorname{Adv}_{\text {sPKE, }, A_{\text {sPKE }}}^{\text {sPKE-san-CCA }}+4\left(q_{R_{1}}+q_{R_{2}}\right) \cdot \operatorname{Adv}_{\text {SPKE }, \mathcal{A}_{\text {rob }}}^{\text {sPKE }}
\end{aligned}
$$

and concludes the proof.
We next prove ciphertext unpredictability, which directly follows from ciphertext unpredictability of the underlying sPKE scheme.

Theorem 6.6. Let ACE be the scheme from above and let \mathcal{A} be an attacker on the ciphertext unpredictability that makes at most q queries to the oracle \mathcal{O}_{G}. Then, there exist probabilistic algorithms $\mathcal{A}_{\text {PRF }}$ and $\mathcal{A}_{\text {SPKE }}$ (which are both roughly as efficient as emulating an execution of $\operatorname{Exp}_{\mathrm{ACE}, \mathcal{A}}^{\mathrm{ACE}}, \mathrm{Atx}$-unpred $)$ such that

$$
\operatorname{Adv}_{\mathrm{ACE}, \mathcal{A}}^{\mathrm{ACE}-\mathrm{Atx}-\text {-unpred }} \leq \operatorname{Adv}_{F, \mathcal{A}}^{\mathrm{PRFF}}+(q+1) \cdot \operatorname{Adv}_{\mathrm{sPKE}, \mathcal{A}_{\text {SPKE }}}^{\text {sPKE-ctxt-unpred }} .
$$

Proof. Let $H_{0}:=\operatorname{Exp} \mathrm{ACE} \mathrm{ACE}, \mathcal{A}$ At-unpred and H_{1} be as H_{0} where F_{K} is replaced by a truly uniform random function U. As in the proof of Theorem 6.3, one can show that there exists $\mathcal{A}_{\text {PRF }}$ such that

$$
\operatorname{Pr}^{H_{0}}[b=1]-\operatorname{Pr}^{H_{1}}[b=1]=\operatorname{Adv}_{F, \mathcal{A}_{\text {PRF }}}^{\mathrm{PRF}^{2}} .
$$

The adversary $\mathcal{A}_{\text {sPKE }}$ on input $\left(s p^{\text {sPKE }}, e k^{\text {sPKE }}, d k^{\text {sPKE }}\right)$, sets $i_{q_{0}} \leftarrow \perp, k_{q} \leftarrow 1$, chooses $q_{0} \leftarrow$ $\{0, \ldots, q\}$ uniformly at random, runs $\left(v k^{\mathrm{Sig}}, s k^{\mathrm{Sig}}\right) \leftarrow \operatorname{Sig} . \operatorname{Gen}\left(1^{\kappa}\right), c r s^{\mathrm{NIZK}} \leftarrow \operatorname{NIZK} . \operatorname{Gen}\left(1^{\kappa}\right)$, and gives $s p^{\mathrm{ACE}}:=\left(s p^{\mathrm{sPKE}}, v k^{\mathrm{Sig}}, \operatorname{cr}{ }^{\mathrm{NIZK}}\right)$ to \mathcal{A}. It emulates the oracle \mathcal{O}_{G} for \mathcal{A}_{1} as follows. On query (i, t), if $k_{q} \neq q_{0}$ and $i \neq i_{q_{0}}$, then generate an encryption key $e k_{i}^{\text {ACE }}:=$ $\left(v k^{\mathrm{Sig}}, e k_{i}^{\text {sPKE }}, v k_{i}^{\text {Sig }}, s k_{i}^{\text {Sig }}, \sigma_{i}^{\text {Sig }}, c r s^{\mathrm{NIZK}}\right)$ and a decryption key $d k_{i}^{\mathrm{ACE}}:=d k_{i}^{\text {SPE }}$ as H_{1} does, where $\left(e k_{i}^{\text {sPKE }}, d k_{i}^{\text {SPK }}\right)$ is obtained via \mathcal{O}_{G} and remembered for future queries. Return $e k_{i}^{\mathrm{ACE}}$ if $t=$ sen, and $d k_{i}^{\mathrm{ACE}}$ if $t=$ rec. If $k_{q}=q_{0}$ or $i=i_{q_{0}}$, replace $e k_{i}^{\mathrm{SPKE}}$ and $d k_{i}^{\text {sPKE }}$ by $e k^{\mathrm{SPKE}}$ and $d k^{\mathrm{SPKE}}$, respectively, and set $i_{q_{0}} \leftarrow i$. In both cases, set $k_{q} \leftarrow k_{q}+1$ at the end. When \mathcal{A} returns $\left(m, i, c=\left(\tilde{c}, \pi^{\mathrm{NIZK}}\right)\right), \mathcal{A}_{\text {sPKE }}$ returns (m, \tilde{c}).

Let Q be the event that $i_{q_{0}}=i$, or $q_{0}=0$ and \mathcal{A} does not make the query (i, sen) or (i, rec) to \mathcal{O}_{G}. Note that the probability of Q is $1 /(q+1)$ and since $b=\operatorname{ACE} . \operatorname{DMod}\left(s p^{\text {ACE }},\left(\tilde{c}^{*}, \pi^{\text {NIZK* }}\right)\right.$, $\left.\left(\tilde{c}, \pi^{\text {NIZK }}\right)\right)=1$ if and only if $\tilde{c}^{*}=\tilde{c}$, we have

Hence, we can conclude

$$
\begin{aligned}
& \operatorname{Adv}_{\text {ACE }, \mathcal{A}}^{\text {ACE-ctt-unpred }}=\operatorname{Pr}^{H_{0}}[b=1]=\operatorname{Adv}_{F, \mathcal{A}_{\text {PRF }}}^{\text {PRF }}+\operatorname{Pr}^{H_{1}}[b=1]
\end{aligned}
$$

We finally prove the uniform decryption and role-respecting properties.
Theorem 6.7. Let ACE be the scheme from above and let \mathcal{A} be an attacker on the uniformdecryption security that makes at most q_{R} queries of the form (\cdot, rec) to the oracle \mathcal{O}_{G}. Then, there exist probabilistic algorithms $\mathcal{A}_{\text {PRF }}, \mathcal{A}_{\mathrm{ZK}_{1}}, \mathcal{A}_{\mathrm{ZK}_{2}}, \mathcal{A}_{\mathrm{Sig}}$, and $\mathcal{A}_{\text {rob }}$ (which are all roughly as efficient as emulating an execution of $\operatorname{Exp}_{\mathrm{ACE}, \mathcal{A}}^{\mathrm{ACE}}$) such that

Proof. Note that we can assume without loss of generality that \mathcal{A} does not use the oracle \mathcal{O}_{E} since obtaining encryption keys from \mathcal{O}_{G} does not decrease the advantage. Let $H_{0}:=\operatorname{Exp} \operatorname{ACE}, \mathcal{A} A R$ and let $W_{\text {UDec }}$ be the event that \mathcal{A} wins the uniform-decryption game:

$$
W_{\mathrm{UDec}}:=\left[\exists j, j^{\prime} \in J m_{j} \neq \perp \neq m_{j^{\prime}} \wedge m_{j} \neq m_{j^{\prime}}\right] .
$$

As in the proof of Theorem 6.5, let H_{1} be as H_{0} with F_{K} replaced by a uniform random function U, let H_{2} be as H_{1} with $c r s^{\text {NIZK }}$ being generated by $E_{1}^{\text {NIZK }}$, and let H_{3} be as H_{2}, but after \mathcal{A} returns $c=\left(\tilde{c}, \pi^{\text {NIZK }}\right)$, a witness

$$
w:=\left(e k_{i_{w}}^{\mathrm{SPE}}, m_{w}, r_{w}, v k_{i_{w}}^{\mathrm{Sig}}, \sigma_{i_{w}}^{\mathrm{Sig}}, \sigma_{c, w}^{\mathrm{Sig}}\right)
$$

for the statement $x:=\left(v k^{\mathrm{Sig}}, \tilde{c}\right)$ is extracted from the proof π^{NIZK} by E_{2}^{NIZK}. We define the events $V:=\left[\mathrm{NIZK} . \operatorname{Ver}\left(\right.\right.$ crs $\left.\left.^{\text {NIZK }}, x, \pi^{\text {NIZK }}\right)=1\right], B_{E}:=[V \wedge(x, w) \notin R]$, and B_{S} as the event that $(x, w) \in R$ and $e k_{i_{w}}^{\text {sPKE }}$ is not contained in an answer from \mathcal{O}_{G} to \mathcal{A}. Is can be shown as in the proof of Theorem 6.5 that there exist $\mathcal{A}_{\text {PRF }}, \mathcal{A}_{\mathrm{ZK}_{1}}, \mathcal{A}_{\mathrm{ZK}_{2}}$, and $\mathcal{A}_{\mathrm{Sig}}$ such that

$$
\begin{aligned}
& \operatorname{Pr}^{H_{0}}\left[W_{\mathrm{UDec}}\right]-\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{UDec}}\right]=\operatorname{Adv}_{F, \mathcal{A}_{\text {PRF }}}^{\text {PRF }}+\operatorname{Adv}_{\mathrm{NIZK}, \mathcal{A}_{\text {IK }}}^{\mathrm{NIZK}},
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}^{H_{3}}\left[B_{S}\right] \leq \operatorname{Adv}_{\text {Sig }, \mathcal{A}_{\text {Sig }}}^{\text {Sig-EUF-CMA }},
\end{aligned}
$$

where the last inequality uses that \mathcal{A} does not query the oracle \mathcal{O}_{E}. Now let H_{4} be as H_{3} where for $j \in J, m_{j} \leftarrow \operatorname{ACE} . \operatorname{Dec}\left(\operatorname{ACE} . \operatorname{Gen}(m s k, j, r e c), c^{\prime}\right)$ is replaced by

$$
m_{j} \leftarrow \begin{cases}m_{w}, & e k_{j}^{\mathrm{sPKE}}=e k_{i_{w}}^{\text {sPE }} \text { for }\left(e k_{j}^{\text {sPKE }}, d k_{j}^{\mathrm{sPKE}}\right)=\operatorname{sPKE} \cdot \operatorname{Gen}\left(m s k^{\mathrm{SPKE}} ; U([j, 0])\right), \\ \perp, & \text { else. }\end{cases}
$$

One can show as in the proof of Theorem 6.5 that there exists a probabilistic algorithm $\mathcal{A}_{\text {rob }}$ such that

$$
\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{UDec}} \mid V \cap \neg B_{E} \cap \neg B_{S}\right]-\operatorname{Pr}^{H_{4}}\left[W_{\mathrm{UDec}} \mid V \cap \neg B_{E} \cap \neg B_{S}\right] \leq q_{R} \cdot \operatorname{Adv}_{\mathrm{sPKE}}^{\text {SPE }} \text {, } \mathcal{A}_{\text {rob }} \mathrm{UROB} .
$$

Note that \mathcal{A} cannot win in H_{4} since if $m_{j} \neq \perp \neq m_{j^{\prime}}$, then $m_{j}=m_{w}=m_{j^{\prime}}$. This implies that
 since otherwise $c^{\prime}=\perp$ and consequently $m_{j}=\perp$ for all $j \in J$. We therefore obtain

$$
\begin{aligned}
& \operatorname{Pr}^{H_{3}}\left[W_{\mathrm{UDec}}\right]=\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{UDec}} \cap V \cap B_{E}\right]+\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{UDec}} \cap V \cap \neg B_{E} \cap B_{S}\right] \\
& +\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{UDec}} \cap V \cap \neg B_{E} \cap \neg B_{S}\right] \\
& \leq \operatorname{Pr}^{H_{3}}\left[B_{E}\right]+\operatorname{Pr}^{H_{3}}\left[B_{S}\right]+\operatorname{Pr}^{H_{3}}\left[W_{\text {UDec }} \mid V \cap \neg B_{E} \cap \neg B_{S}\right]
\end{aligned}
$$

 proof.

Theorem 6.8. Let ACE be the scheme from above and let \mathcal{A} be an attacker on the role-respecting security that makes at most q_{S} queries of the form $\left(\cdot\right.$, sen) and at most q_{R} queries of the form (\cdot, rec) to the oracle \mathcal{O}_{G}, and at most q_{E} queries to the oracle \mathcal{O}_{E}. Then, there exist probabilistic algorithms $\mathcal{A}_{\mathrm{PRF}}, \mathcal{A}_{\mathrm{ZK}_{1}}, \mathcal{A}_{\mathrm{ZK}_{2}}, \mathcal{A}_{\mathrm{Sig}}$, and $\mathcal{A}_{\mathrm{rob}}$ (which are all roughly as efficient as emulating an execution of $\operatorname{Exp}_{\mathrm{ACE}, \mathcal{A}}^{\mathrm{ACE}} \mathrm{A}^{(\mathrm{URR}}$) such that

$$
\begin{aligned}
& \operatorname{Adv}_{\mathrm{ACE}, \mathcal{A}}^{\mathrm{ACE}-\mathrm{RR}} \leq \operatorname{Adv}_{F, \mathcal{A}_{\text {PRF }}}^{\mathrm{PRF}}+\mathrm{Adv}_{\mathrm{NIZK}, \mathcal{A}_{\mathrm{Zk}_{1}}}^{\mathrm{NIZK}-\mathrm{ext}_{1}}+\operatorname{Adv}_{\mathrm{NIZK}_{,} \mathcal{A}_{\mathrm{Zk}_{2}}}^{\mathrm{NIZK} \mathrm{ext}_{2}}+\left(q_{E}+1\right) \cdot \mathrm{Adv}_{\mathrm{Sig}, \mathcal{A}_{\mathrm{Sig}}}^{\mathrm{Sig}-\mathrm{EUF}-\mathrm{CMA}} \\
& +q_{R} \cdot \operatorname{Adv}_{\mathrm{sPKE}, \mathcal{A}_{\mathrm{rob}}}^{\mathrm{sPKE}}-\mathrm{USROB}+\left(q_{S}+q_{R}+q_{E}\right)^{2} \cdot \mathrm{Co}_{\mathrm{sPKE}}^{\mathrm{ek}} \cdot
\end{aligned}
$$

Proof. Let $H_{0}, \ldots, H_{4}, V:=\left[\operatorname{NIZK} . \operatorname{Ver}\left(\right.\right.$ crs $\left.\left.^{\mathrm{NIZK}}, x, \pi^{\mathrm{NIZK}}\right)=1\right]$, and $B_{E}:=[V \wedge(x, w) \notin R]$ for the statement $x:=\left(v k^{\mathrm{Sig}}, \tilde{c}\right)$ and the extracted witness $w:=\left(e k_{i_{w}}^{\mathrm{SPKE}}, m_{w}, r_{w}, v k_{i_{w}}^{\mathrm{Sig}}, \sigma_{i_{w}}^{\mathrm{Sig}}, \sigma_{c, w}^{\mathrm{Sig}}\right)$ be defined as in the proof of Theorem 6.7, and let W_{RR} be the event that \mathcal{A} wins the role-respecting game:

$$
W_{\mathrm{RR}}:=\left[c^{\prime} \neq \perp \wedge \mathrm{dct}=\mathrm{fal} \mathrm{se} \wedge \neg\left(\exists i \in I \forall j \in J\left(m_{j} \neq \perp \leftrightarrow P(i, j)=1\right)\right)\right]
$$

As in that proof, there exist $\mathcal{A}_{\mathrm{PRF}}, \mathcal{A}_{\mathrm{ZK}_{1}}$, and $\mathcal{A}_{\mathrm{ZK}_{2}}$ such that

$$
\begin{equation*}
\operatorname{Pr}^{H_{0}}\left[W_{\mathrm{RR}}\right]-\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}}\right]=\operatorname{Adv}_{F, \mathcal{A}_{\mathrm{PRF}}}^{\mathrm{PRF}}+\mathrm{Adv}_{\mathrm{NIZK}, \mathcal{A}_{\mathrm{ZK}}^{1}}, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Pr}^{H_{3}}\left[B_{E}\right] \leq \operatorname{Adv}_{\mathrm{NIZK}^{2}, \mathcal{A}_{\mathrm{ZK}_{2}}}^{\mathrm{NIZK}-\mathrm{ext}_{2}} \tag{13}
\end{equation*}
$$

Let E_{G} be the event that the extracted key $e k_{i_{w}}^{\mathrm{sPKE}}$ is contained in an answer from \mathcal{O}_{G} to \mathcal{A}. One can show similarly as in the proof of Theorem 6.5 that there exists an algorithm $\mathcal{A}_{\text {rob }}$ such that

$$
\begin{equation*}
\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}} \cap V \cap \neg B_{E} \cap E_{G}\right]-\operatorname{Pr}^{H_{4}}\left[W_{\mathrm{RR}} \cap V \cap \neg B_{E} \cap E_{G}\right] \leq q_{R} \cdot \operatorname{Adv}_{\mathrm{sPKE}, \mathcal{A}_{\mathrm{rob}}}^{\text {sPKE-USROB }} \tag{14}
\end{equation*}
$$

We first show that if $V, \neg B_{E}$, and E_{G} occur in H_{4}, \mathcal{A} can only win if two encryption keys generated by sPKE.Gen are equal, which happens only with small probability.

Claim 1. We have

$$
\operatorname{Pr}^{H_{4}}\left[W_{\mathrm{RR}} \cap V \cap \neg B_{E} \cap E_{G}\right] \leq\left(q_{S}+q_{R}+q_{E}\right)^{2} \cdot \text { Col }_{\mathrm{sPKE}}^{\mathrm{ek}} .
$$

Proof of claim. If $V, \neg B_{E}$, and E_{G} occur, then there is an $i_{0} \in I$ such that $e k_{i_{0}}^{\mathrm{sPKE}}=e k_{i_{w}}^{\mathrm{sPKE}}$ for $\left(e k_{i_{0}}^{\mathrm{sPKE}}, d k_{i_{0}}^{\mathrm{sPKE}}\right)=\operatorname{sPKE} . \operatorname{Gen}\left(m s k^{\mathrm{sPKE}} ; U\left(\left[i_{0}, 0\right]\right)\right)$. Using $P(i, j)=1 \leftrightarrow i=j$, we have that \mathcal{A} only wins if there exists $j \in J \backslash\left\{i_{0}\right\}$ such that $m_{j} \neq \perp$ or if $i_{0} \in J$ and $m_{i_{0}}=\perp$. Because in H_{4}, m_{j} for $j \in J$ is equal to m_{w} if $e k_{j}^{\mathrm{sPKE}}=e k_{i_{w}}^{\mathrm{sPKE}}$ for $\left(e k_{j}^{\mathrm{sPKE}}, d k_{j}^{\mathrm{sPKE}}\right)=\operatorname{sPKE} \cdot \operatorname{Gen}\left(m s k^{\mathrm{sPKE}} ; U([j, 0])\right)$, and \perp otherwise, we have $m_{i_{0}} \neq \perp$ if $i_{0} \in J$. Moreover, for $i_{0} \neq j \in J$, we have $m_{j}=\perp$ unless $e k_{j}^{\mathrm{sPKE}}=e k_{i_{0}}^{\mathrm{sPKE}}$. This means that \mathcal{A} can only win if sPKE.Gen generates the same encryption key for the randomness values $U\left(\left[i_{0}, 0\right]\right.$ and $U\left([j, 0]\right.$ for some $i_{0} \neq j \in J$. Since at most $q_{S}+q_{R}+q_{E}$ key pairs are generated in the experiment, there are at most $\left(q_{S}+q_{R}+q_{E}\right)^{2}$ pairs of encryption keys that could collide. For each such pair, the collision probability is bounded by Col ${ }_{\text {sPKE }}^{\mathrm{k}}$ because for $i \neq i^{\prime}, U([i, 0])$ and $U\left(\left[i^{\prime}, 0\right]\right)$ are independent and uniformly distributed. Hence, the claim follows.

Now let E_{E} be the event that \mathcal{A} made a query (i, \cdot) to \mathcal{O}_{E} such that $e k_{i}^{\mathrm{sPKE}}=e k_{i_{w}}^{\mathrm{sPKE}}$ and $v k_{i}^{\mathrm{Sig}}=v k_{i_{w}}^{\mathrm{Sig}}$ for $\left(e k_{i}^{\mathrm{SPKE}}, d k_{i}^{\mathrm{sPKE}}\right)=\operatorname{sPKE} . \operatorname{Gen}\left(m s k^{\mathrm{sPKE}} ; U([i, 0])\right)$ and $\left(v k_{i}^{\mathrm{Sig}}, s k_{i}^{\mathrm{Sig}}\right)^{w}=$ Sig. Gen $\left(1^{\kappa} ; U([i, 1])\right)$. We next show that if \mathcal{A} wins and $V \cap \neg B_{E} \cap \neg E_{G} \cap E_{E}$ occurs, \mathcal{A} forged a signature on \tilde{c}.

Claim 2. There exists a probabilistic algorithm $\mathcal{A}_{\mathrm{Sig}_{1}}$ such that

$$
\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}} \cap V \cap \neg B_{E} \cap \neg E_{G} \cap E_{E}\right] \leq q_{E} \cdot \mathrm{Adv}_{{\mathrm{Sig}, \mathcal{A}_{\mathrm{Sig}_{1}}}_{\mathrm{Sig}-E U F-C M A}}
$$

Proof of claim. On input $v k^{\mathrm{Sig}^{*}}, \mathcal{A}_{\mathrm{Sig}_{1}}$ initializes $i_{q_{0}} \leftarrow \perp, k_{q} \leftarrow 1$, chooses $q_{0} \leftarrow\left\{1, \ldots, q_{E}\right\}$ uniformly at random, generates $\left(s p^{\mathrm{sPKE}}, m s k^{\mathrm{sPKE}}\right) \leftarrow \operatorname{sPKE}$. Setup $\left(1^{\kappa}\right),\left(v k^{\mathrm{Sig}}, s k^{\mathrm{Sig}}\right) \leftarrow \operatorname{Sig} . \operatorname{Gen}\left(1^{\kappa}\right)$, and $\left(c r s^{\mathrm{NIZK}}, \xi^{\mathrm{NIZK}}\right) \leftarrow E_{1}^{\mathrm{NIZK}}\left(1^{\kappa}\right)$ as H_{3}, and gives $s p^{\mathrm{ACE}}:=\left(s p^{\mathrm{sPKE}}, v k^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ to \mathcal{A}. It emulates the oracles for \mathcal{A} as follows.
$\mathcal{O}_{G}(\cdot, \cdot)$: Generate the requested key exactly as H_{3} does and return it.
$\mathcal{O}_{E}(\cdot, \cdot)$: On query (i, m), if $k_{q} \neq q_{0}$ and $i \neq i_{q_{0}}$, generate an encryption key $e k_{i}^{\text {ACE }}$ as H_{3}, encrypt m using $e k_{i}^{\mathrm{ACE}}$, and return the resulting ciphertext. If $k_{q}=q_{0}$ or $i=i_{q_{0}}$, set $i_{q_{0}} \leftarrow i$, execute $\left(e k_{i}^{\mathrm{sPKE}}, d k_{i}^{\mathrm{sPKE}}\right) \leftarrow \operatorname{sPKE} . \operatorname{Gen}\left(m s k^{\mathrm{sPKE}} ; U([i, 0])\right), \sigma_{i}^{\mathrm{Sig}} \leftarrow \operatorname{Sig} . \operatorname{Sign}\left(s k^{\mathrm{Sig}},\left[e k_{i}^{\mathrm{sPKE}}, v k_{i}^{\mathrm{Sig}}\right] ;\right.$ $U([i, 2]))$, and set $v k_{i}^{\mathrm{Sig}}:=v k^{\mathrm{Sig} *}$. Then, sample randomness r and compute $\tilde{c} \leftarrow$ sPKE.Enc $\left(e k_{i}^{\text {sPKE }}, m ; r\right)$, query the signing oracle on \tilde{c} to obtain a signature $\sigma_{c}^{\text {Sig }}$, and run

$$
\pi^{\mathrm{NIZK}} \leftarrow \mathrm{NIZK} . \operatorname{Prove}\left(c r s^{\mathrm{NIZK}}, x:=\left(v k^{\mathrm{Sig}}, \tilde{c}\right), w:=\left(e k_{i}^{\mathrm{sPKE}}, m, r, v k_{i}^{\mathrm{Sig}}, \sigma_{i}^{\mathrm{Sig}}, \sigma_{c}^{\mathrm{Sig}}\right)\right)
$$

Finally, return the ciphertext $c:=\left(\tilde{c}, \pi^{\mathrm{NIZK}}\right)$. In all cases, set $k_{q} \leftarrow k_{q}+1$ at the end.
When \mathcal{A} returns $c=\left(\tilde{c}, \pi^{\mathrm{NIZK}}\right), \mathcal{A}_{\mathrm{Sig}_{1}}$ extracts a witness

$$
w:=\left(e k_{i_{w}}^{\mathrm{sPKE}}, m_{w}, r_{w}, v k_{i_{w}}^{\mathrm{Sig}}, \sigma_{i_{w}}^{\mathrm{Sig}}, \sigma_{c, w}^{\mathrm{Sig}}\right) \leftarrow E_{2}^{\mathrm{NIZK}}\left(c r s^{\mathrm{NIZK}}, \xi^{\mathrm{NIZK}}, x:=\left(v k^{\mathrm{Sig}}, \tilde{c}\right), \pi^{\mathrm{NIZK}}\right)
$$

It finally returns the forgery attempt $\left(\tilde{c}, \sigma_{c, w}^{\text {Sig }}\right)$.
Note that if \mathcal{A} wins the role-respecting game, $\mathrm{ACE} . \operatorname{DMod}\left(s p^{\mathrm{ACE}}, \hat{c}, c\right)=0$ for all \hat{c} that \mathcal{O}_{E} has returned. Since ACE.DMod checks for equality of sPKE ciphertexts, this means that $\mathcal{A}_{\mathrm{Sig}_{1}}$ has not issued the query \tilde{c} to its signing oracle. Furthermore, if the extraction and verification succeed, $\sigma_{c, w}^{\mathrm{Sig}}$ is a valid signature for \tilde{c}. Let Q be the event that $e k_{i_{q_{0}}}^{\mathrm{sPKE}}=e k_{i_{w}}^{\mathrm{sPKE}}$ and $v k_{i_{q_{0}}}^{\mathrm{Sig}}=v k_{i_{w}}^{\mathrm{Sig}}$. If Q and $V \cap \neg B_{E} \cap \neg E_{G} \cap E_{E}$ occur, \mathcal{A} has not requested $e k_{i_{q_{0}}}^{\mathrm{ACE}}$ from \mathcal{O}_{G} and hence $\mathcal{A}_{\mathrm{Sig}_{1}}$ perfectly emulates H_{3}. This implies

$$
\operatorname{Pr}^{\mathrm{Exp}_{\mathrm{Sig}, \mathcal{A}_{\mathrm{Sig}}^{1}}} \underset{\mathrm{Sig-EUF}-\mathrm{CMA}}{ }\left[W_{\mathrm{Sig}} \mid V \cap \neg B_{E} \cap \neg E_{G} \cap E_{E} \cap Q\right] \geq \operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}} \mid V \cap \neg B_{E} \cap \neg E_{G} \cap E_{E}\right],
$$

where $W_{\text {Sig }}$ denotes the event that $\mathcal{A}_{\mathrm{Sig}_{1}}$ wins in the signature forgery game. We further have

This implies for $p_{G}:=\operatorname{Pr}{ }^{\text {Exp }_{\text {Sig }, \mathcal{A}_{\text {Sig }}}^{\text {Sig-EUF-CMA }}} \quad\left[V \cap \neg B_{E} \cap \neg E_{G} \cap E_{E} \cap Q\right]$,

$$
\begin{aligned}
& \geq \operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}} \mid V \cap \neg B_{E} \cap \neg E_{G} \cap E_{E}\right] \cdot p_{G} \\
& =\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}} \cap V \cap \neg B_{E} \cap \neg E_{G} \cap E_{E}\right] \cdot \frac{p_{G}}{\operatorname{Pr}^{H_{3}}\left[V \cap \neg B_{E} \cap \neg E_{G} \cap E_{E}\right]} .
\end{aligned}
$$

which implies the claim.
Finally, we show that if \mathcal{A} wins and $V \cap \neg B_{E} \cap \neg E_{G} \cap \neg E_{E}$ occurs, \mathcal{A} forged a signature on $\left[e k_{i_{w}}^{\mathrm{SPKE}}, v k_{i_{w}}^{\mathrm{Sig}}\right]$.
Claim 3. There exists a probabilistic algorithm $\mathcal{A}_{\mathrm{sig}_{2}}$ such that

$$
\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}} \cap V \cap \neg B_{E} \cap \neg E_{G} \cap \neg E_{E}\right] \leq \mathrm{Adv}_{\mathrm{Sig}^{2}, \mathcal{A}_{\mathrm{Sig}}^{2}} \mathrm{sig}-E \mathrm{~F}-\mathrm{MA} .
$$

Proof of claim. The algorithm $\mathcal{A}_{\mathrm{Sig}_{2}}$ on input $v k^{\mathrm{Sig}^{*}}$ runs $\left(s p^{\text {sPKE }}, m s k^{\text {sPKE }}\right) \leftarrow \operatorname{sPKE}$.Setup $\left(1^{\kappa}\right)$ and $\left(c r s^{\mathrm{NIZK}}, \xi^{\mathrm{NIZK}}\right) \leftarrow E_{1}^{\mathrm{NIZK}}\left(1^{\kappa}\right)$, and gives $s p^{\mathrm{ACE}}:=\left(s p^{\mathrm{PKEE}}, v k^{\mathrm{Sig} *}, c r s^{\mathrm{NIZK}}\right)$ to \mathcal{A}. It emulates the oracles for \mathcal{A} as follows.
$\mathcal{O}_{G}(\cdot, \cdot)$: Generate the requested key as H_{3}, but obtain the signature $\sigma_{i}^{\text {Sig }}$ via a query to the signing oracle. Remember the signature and when asked again for the same i, reuse $\sigma_{i}^{\text {Sig }}$ instead of issuing another query. This ensures that the oracle behaves as the one in H_{3} and returns the same key for repeated queries.
$\mathcal{O}_{E}(\cdot, \cdot)$: On query (i, m), generate an encryption key as for a query $(i$, sen $)$ to \mathcal{O}_{G}, encrypt m using that key, and return the resulting ciphertext.

When \mathcal{A} returns $c=\left(\tilde{c}, \pi^{\mathrm{NIZK}}\right), \mathcal{A}_{\mathrm{Sig}_{1}}$ extracts a witness

$$
w:=\left(e k_{i_{w}}^{\mathrm{SPK}}, m_{w}, r_{w}, v k_{i_{w}}^{\mathrm{Sig}}, \sigma_{i_{w}}^{\mathrm{Sig}}, \sigma_{c, w}^{\mathrm{Sig}}\right) \leftarrow E_{2}^{\mathrm{NIZK}}\left(c r s^{\mathrm{NIZK}}, \xi^{\mathrm{NIZK}}, x:=\left(v k^{\mathrm{Sig}}, \tilde{c}\right), \pi^{\mathrm{NIZK}}\right) .
$$

It finally returns the forgery attempt ($\left[e k_{i_{w}}^{\mathrm{SPKE}}, v k_{i_{w}}^{\text {Sig }}\right], \sigma_{i_{w}}^{\text {Sig }}$). Note that if $W_{\mathrm{RR}} \cap V \cap \neg B_{E} \cap$ $\neg E_{G} \cap \neg E_{E}$ occurs, $\sigma_{i_{w}}^{\text {Sig }}$ is a valid signature for $\left[e k_{i_{w}}^{\text {sPKE }}, v k_{i_{w}}^{\text {Sig }}\right]$ and $\mathcal{A}_{\text {Sig }_{2}}$ has not requested a signature for this value from the signing oracle. Therefore, $\mathcal{A}_{\mathrm{sig}_{2}}$ wins the forgery game and thus the probability of that event is bounded by $\mathrm{Adv}_{\mathrm{Sig}_{\mathrm{S}}, \mathcal{A}_{\mathrm{Sig}}^{2}} \mathrm{Sig}$-UUF-CMA.

Combining Claims 2 and 3, we obtain

$$
\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}} \cap V \cap \neg B_{E} \cap \neg E_{G}\right] \leq q_{E} \cdot \operatorname{Adv}_{\mathrm{Sig}_{2}, \mathcal{A}_{\mathrm{Sig}_{1}}}^{\text {Sig-CMA }}+\operatorname{Adv}_{\mathrm{Sig}_{2}, \mathcal{A}_{\mathrm{Sig}_{2}}}^{\text {Sig }}
$$

Let $\mathcal{A}_{\mathrm{Sig}}$ be the algorithm that runs $\mathcal{A}_{\text {Sig }_{1}}$ with probability $\frac{q_{E}}{q_{E}+1}$ and $\mathcal{A}_{\text {Sig }_{2}}$ with probability $\frac{1}{q_{E}+1}$. We then have

$$
\begin{align*}
\operatorname{Adv}_{\mathrm{Sig}, \mathcal{A}_{\mathrm{Sig}}}^{\text {Sig-EMA }} & =\frac{q_{E}}{q_{E}+1} \cdot \operatorname{Adv}_{\mathrm{Sig}^{2}, \mathcal{A}_{\mathrm{Sig}_{1}}}^{\text {sig-EMA }}+\frac{1}{q_{E}+1} \cdot \operatorname{Adv}_{\mathrm{Sig}_{2}, \mathcal{A}_{\mathrm{Sig} 2}}^{\text {Sig-CMA }} \tag{15}\\
& \geq \frac{1}{q_{E}+1} \cdot \operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}} \cap V \cap \neg B_{E} \cap \neg E_{G}\right] .
\end{align*}
$$

Note that W_{RR} implies $c^{\prime} \neq \perp$ and therefore V, i.e., the events W_{RR} and $W_{\mathrm{RR}} \cap V$ are equal. Thus,

$$
\begin{aligned}
& \operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}}\right]=\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}} \cap B_{E}\right]+\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}} \cap V \cap \neg B_{E} \cap E_{G}\right]+\operatorname{Pr}^{H_{3}}\left[W_{\mathrm{RR}} \cap V \cap \neg B_{E} \cap \neg E_{G}\right] \\
& \stackrel{(13),(14),(15)}{\leq} \operatorname{Adv}_{\mathrm{NIZK}, \mathcal{A}_{\mathrm{Zk}_{2}}}^{\mathrm{NIZK}-\mathrm{ext}_{2}}+q_{R} \cdot \operatorname{Adv}_{\mathrm{sPKE}, \mathcal{A}_{\mathrm{rob}}}^{\mathrm{sPKE}}+\operatorname{Pr}^{H_{4}}\left[W_{\mathrm{RR}} \cap V \cap \neg B_{E} \cap E_{G}\right] \\
& +\left(q_{E}+1\right) \cdot \operatorname{Adv}_{\text {Sig }, \mathcal{A}_{\text {Sig }}}^{\mathrm{Sig}-E U F-C M A} .
\end{aligned}
$$

Combined with Claim 1 and equation (12), this concludes the proof.

6.2 Lifting Equality to Disjunction of Equalities

We finally show how an ACE scheme for equality, as the one from Section 6.1, can be used to construct a scheme for the policy $P_{\mathrm{DEq}}: \mathcal{D}^{\ell} \times \mathcal{D}^{\ell} \rightarrow\{0,1\}$ with

$$
P_{\mathrm{DEq}}\left(\mathbf{x}=\left(x_{1}, \ldots, x_{\ell}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{\ell}\right)\right)=1: \Longleftrightarrow \bigvee_{i=1}^{\ell} x_{i}=y_{i}
$$

where \mathcal{D} is some finite set and $\ell \in \mathbb{N} .^{8}$ This policy can for example be used to implement the no read-up and now write-down principle $(P(i, j)=1 \Leftrightarrow i \leq j)$ from the Bell-LaPadula model [BL73] via an appropriate encoding of the roles [FGKO17].

The intuition of our construction is as follows. A key for a role $\mathbf{x}=\left(x_{1}, \ldots, x_{\ell}\right)$ contains one key of the ACE scheme for equality for each component x_{i} of the role vector. To encrypt a message, this message is encrypted with each of these keys. To decrypt, one tries to decrypt each ciphertext component with the corresponding key. If at least one component of the sender and receiver roles match (i.e., if the policy is satisfied), one of the decryptions is successful. So far, the construction is identical to the one by Fuchsbauer et al. [FGKO17]. That construction is, however, not role-respecting, since a dishonest sender with keys for more than one role can arbitrarily mix the components of the keys for the encryption. Moreover, the construction does not guarantee uniform decryption, because different messages can be encrypted in different components. We fix these issues using the same techniques we used in our construction of the scheme for equality, i.e., we add a signature of the key vector to the encryption keys, sign the ciphertexts, and require a zero-knowledge proof that a valid key combination was used to encrypt the same message for each component and that all signatures a valid.

Our construction. Let $A C E=$ be an $A C E$ with modification detection scheme for the equality predicate on $\mathcal{D} \times[\ell]$, let Sig be a signature scheme, let F be a PRF, and let NIZK be a NIZK proof of knowledge system for the language $L:=\{x \mid \exists w(x, w) \in R\}$, where the relation R is defined as follows: for $x=\left(v k^{\mathrm{Sig}}, c_{1}, \ldots, c_{\ell}\right)$ and $w=\left(e k_{\left(x_{1}, 1\right)}^{\mathrm{ACE}_{=}}, \ldots, e k_{\left(x_{\ell}, \ell\right)}^{\mathrm{ACE}}, m, r_{1}, \ldots, r_{\ell}, v k_{\mathbf{x}}^{\mathrm{Sig}}, \sigma_{\mathbf{x}}^{\mathrm{Sig}}, \sigma_{c}^{\mathrm{Sig}}\right)$, $(x, w) \in R$ if and only if

$$
\begin{gathered}
\bigwedge_{i=1}^{\ell} c_{i}= \\
\mathrm{ACE}_{=} \cdot \operatorname{Enc}\left(e k_{\left(x_{i}, i\right)}^{\mathrm{ACE}}=m ; r_{i}\right) \wedge \operatorname{Sig} \cdot \operatorname{Ver}\left(v k_{\mathbf{x}}^{\mathrm{Sig}},\left[c_{1}, \ldots, c_{\ell}\right], \sigma_{c}^{\mathrm{Sig}}\right)=1 \\
\wedge \operatorname{Sig} \cdot \operatorname{Ver}\left(v k^{\mathrm{Sig}},\left[e k_{\left(x_{1}, 1\right)}^{\mathrm{ACE}_{=}}, \ldots, e k_{\left(x_{\ell}, \ell\right)}^{\mathrm{ACE}_{=}}, v k_{\mathbf{x}}^{\mathrm{Sig}}\right], \sigma_{\mathbf{x}}^{\mathrm{Sig}}\right)=1
\end{gathered}
$$

[^6]We define an $A C E$ scheme $A E_{D E q}$ as follows:
Setup: On input a security parameter 1^{κ} and the policy P_{DEq}, the algorithm $\mathrm{ACE}_{\mathrm{DEq}}$.Setup picks a random key K for F and runs

$$
\begin{aligned}
\left(m s k^{\mathrm{ACE}_{=}}, s p^{\mathrm{ACE}_{=}}\right) & \leftarrow \mathrm{ACE}=\operatorname{Setup}\left(1^{\kappa}\right), \\
\left(v k^{\mathrm{Sig}}, s k^{\mathrm{Sig}}\right) & \leftarrow \operatorname{Sig} \cdot \operatorname{Gen}\left(1^{\kappa}\right), \\
c r s^{\mathrm{NIZK}} & \leftarrow \operatorname{NIZK} \cdot \operatorname{Gen}\left(1^{\kappa}\right) .
\end{aligned}
$$

It outputs the master secret key $m s k^{\mathrm{ACE}} \mathrm{DEq}:=\left(K, m s k^{\mathrm{ACE}}=, v k^{\mathrm{Sig}}, s k^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ and the sanitizer parameters $s p^{\mathrm{ACE}_{\mathrm{DEq}}}:=\left(s p^{\mathrm{ACE}_{=}}, v k^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$.
Key Generation: The algorithm $\mathrm{ACE}_{\text {DEq }}$. Gen on input a master secret key $m s k^{\mathrm{ACE}_{\mathrm{DEq}}}=$ $\left(K, m s k^{\mathrm{ACE}}=, v k^{\mathrm{Sig}}, s k^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$, a role $\mathbf{x} \in \mathcal{D}^{\ell}$, and the type sen, generates

$$
\begin{aligned}
e k_{\left(x_{i}, i\right)}^{\mathrm{ACE}_{=}} & \leftarrow \mathrm{ACE}_{-} \cdot \operatorname{Gen}\left(m s k^{\mathrm{ACE}}=,\left(x_{i}, i\right), \text { sen }\right) \quad(\text { for } i \in[\ell]), \\
\left(v k_{\mathbf{x}}^{\mathrm{Sig}}, s k_{\mathbf{x}}^{\mathrm{Sig}}\right) & \leftarrow \operatorname{Gen}\left(1^{\kappa} ; F_{K}\left(\left[\left(x_{1}, 1\right), 0\right]\right)\right), \\
\sigma_{\mathbf{x}}^{\mathrm{Sig}} & \leftarrow \operatorname{Sig} . \operatorname{Sign}\left(s k^{\mathrm{S}_{\mathrm{Si}}^{2}},\left[e k_{\left(x_{1}, 1\right)}^{\mathrm{ACE}}, \ldots, e k_{\left(x_{i}, \ell\right)}^{\mathrm{ACE}=}, v k_{\mathbf{x}}^{\mathrm{SCg}}\right] ; F_{K}\left(\left[\left(x_{1}, 1\right), 1\right]\right)\right),
\end{aligned}
$$

 $\left.c r s{ }^{\mathrm{NIZK}}\right)$; on input $m s k^{\text {ACE }}{ }_{\mathrm{DEq}}$, a role $\mathbf{y} \in \mathcal{D}^{\ell}$, and the type rec, it generates for $i \in[\ell]$,

$$
d k_{\left(y_{i}, i\right)}^{\mathrm{ACE}}=\mathrm{ACE}_{=} \cdot \operatorname{Gen}\left(m s k^{\mathrm{ACE}_{=}},\left(y_{i}, i\right), \mathrm{rec}\right),
$$

and outputs the decryption key $d k_{\mathbf{y}}^{\mathrm{ACE}_{\mathrm{DEq}}}:=\left(d k_{\left(y_{1}, 1\right)}^{\mathrm{ACE}}, \ldots, d k_{\left(y_{e}, \ell\right)}^{\mathrm{ACE}} \overline{=}\right)$.
Encrypt: On input an encryption key $e k_{\mathbf{x}}^{\mathrm{ACE}_{\mathrm{DEq}}}=\left(v k^{\mathrm{Sig}}, e k_{\left(x_{1}, 1\right)}^{\mathrm{ACE}}, \ldots, e k_{\left(x_{\ell}, \ell\right)}^{\mathrm{ACE}}=v k_{\mathbf{x}}^{\mathrm{Sig}}, s k_{\mathbf{x}}^{\mathrm{Sig}}, \sigma_{\mathbf{x}}^{\mathrm{Sig}}\right.$, crs ${ }^{\mathrm{NIZK}}$) and a message $m \in \mathcal{M}^{\text {ACE }}{ }_{\mathrm{DEq}}$, the algorithm $\mathrm{ACE}_{\mathrm{DEq}}$. Enc samples randomness r_{1}, \ldots, r_{ℓ} and computes

$$
\begin{aligned}
& c_{i} \leftarrow \mathrm{ACE}_{=} \cdot \operatorname{Enc}\left(e k_{\left(x_{i}, i\right)}^{\mathrm{ACE}}, m ; r_{i}\right) \quad(\text { for } i \in[\ell]), \\
& \sigma_{c}^{\mathrm{Sig}} \leftarrow \operatorname{Sig} \cdot \operatorname{Sign}\left(s k_{\mathbf{x}}^{\mathrm{Sig}},\left[c_{1}, \ldots, c_{\ell}\right]\right), \\
& \pi^{\mathrm{NIZK}} \leftarrow \operatorname{NIZK.Prove}(c r)^{\mathrm{NIZK}}, x:=\left(v k^{\mathrm{Sig}}, c_{1}, \ldots, c_{\ell}\right), \\
&\left.w:=\left(e k_{\left(x_{1}, 1\right)}^{\mathrm{ACE}=}, \ldots, e k_{\left(x_{\ell}, \ell\right)}^{\mathrm{ACE}}, m, r_{1}, \ldots, r_{\ell}, v k_{\mathbf{x}}^{\mathrm{Sig}}, \sigma_{\mathbf{x}}^{\mathrm{Sig}_{2}}, \sigma_{c}^{\mathrm{Sig}}\right)\right) .
\end{aligned}
$$

It outputs the ciphertext $c:=\left(c_{1}, \ldots, c_{\ell}, \pi^{\mathrm{NIZK}}\right)$.
Sanitizer: On input sanitizer parameters $s p^{\mathrm{ACE}_{\mathrm{DEq}}}=\left(s p^{\mathrm{ACE}_{=}}, v k^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ and a ciphertext $c=\left(c_{1}, \ldots, c_{\ell}, \pi^{\text {NIZK }}\right)$, the algorithm ACE DEq .San first checks whether NIZK.Ver $\left(c r s^{\text {NIZK }}\right.$, $\left.x:=\left(v k^{\mathrm{Sig}}, c_{1}, \ldots, c_{\ell}\right), \pi^{\mathrm{NIZK}}\right)=1$. If this is the case, it runs $c_{i}^{\prime} \leftarrow \mathrm{ACE}_{=} \cdot \operatorname{San}\left(c_{i}\right)$ for $i \in[\ell]$. If $c_{i}^{\prime} \neq \perp$ for all $i \in[\ell]$, it outputs the sanitized ciphertext $c^{\prime}:=\left(c_{1}^{\prime}, \ldots, c_{\ell}^{\prime}\right)$. If the verification fails or any of the sanitized ciphertexts is \perp, it outputs \perp.

Decrypt: On input a decryption key $d k_{\mathbf{y}}^{\mathrm{ACE}_{\mathrm{DEq}}}=\left(d k_{\left(y_{1}, 1\right)}^{\mathrm{ACE}}, \ldots, d k_{\left(y_{e}, \ell\right)}^{\mathrm{ACE}}\right)$ and a sanitized ciphertext $c^{\prime}:=\left(c_{1}^{\prime}, \ldots, c_{\ell}^{\prime}\right)$, the algorithm $\mathrm{ACE}_{\mathrm{DEq}}$.Dec computes for $i \in[\ell]$ the message $m_{i} \leftarrow \mathrm{ACE}_{=} \cdot \operatorname{Dec}\left(d k_{\left(y_{i}, i\right)}^{\mathrm{ACE}}, c_{i}^{\prime}\right)$. If $m_{i} \neq \perp$ for some $i \in[\ell], \mathrm{ACE}_{\mathrm{DEq}}$. Dec outputs the first such m_{i}; otherwise it outputs \perp.

Modification detection: On input sanitizer parameters $s p^{\mathrm{ACE}_{\text {DEq }}}:=\left(s p^{\mathrm{ACE}_{=}}, v k^{\mathrm{Sig}}, c r s^{\mathrm{NIZK}}\right)$ and two ciphertexts $c=\left(c_{1}, \ldots, c_{\ell}, \pi^{\mathrm{NIZK}}\right)$ and $\tilde{c}:=\left(\tilde{c}_{1}, \ldots, \tilde{c}_{\ell}, \tilde{\pi}^{\mathrm{NIZK}}\right)$, the algorithm $\mathrm{ACE}_{\mathrm{DEq}}$. DMod checks for $i \in[\ell]$ whether $\mathrm{ACE}_{=} \cdot \operatorname{DMod}\left(s p^{\mathrm{ACE}_{=}}, c_{i}, \tilde{c}_{i}\right)=1$. If this is the case for some $i \in[\ell]$, it outputs 1 ; otherwise, it outputs 0 .

Weak and strong anonymity. As we show below, our scheme enjoys weak anonymity. It is easy to see that it does not have strong anonymity: Given a decryption key for the role $(1,2)$, one can decrypt ciphertexts encrypted under a key for the roles $(1,1)$ and $(2,2)$. One does, however, also learn which of the two components decrypted successfully. If it is the first one, the sender role must be $(1,1)$, if it is the second one, the sender role must be $(2,2)$.

A similar construction can be used to achieve strong anonymity for less expressive policies: If a sender role still corresponds to a vector $\left(x_{1}, \ldots, x_{\ell}\right) \in \mathcal{D}^{\ell}$ but a receiver role only to one component $(j, y) \in[\ell] \times \mathcal{D}$, one can consider the policy that allows to receive if $x_{j}=y$. Now, we do not need several components for the decryption key and the problem sketched above disappears.

We first show that correctness and detectability of our scheme is implied by the correctness and detectability of the underlying schemes.

Lemma 6.9. Let $\mathrm{ACE}_{\mathrm{DEq}}$ be the scheme from above and let \mathcal{A} be a probabilistic algorithm. Then, there exist probabilistic algorithms $\mathcal{A}_{\mathrm{corr}}, \mathcal{A}_{\mathrm{dtct}}$, and $\mathcal{A}_{\mathrm{dtct}}^{\prime}$ such that

Proof. We first prove correctness. Let $(m, \mathbf{x}, \mathbf{y})$ with $P_{\mathrm{DEq}}(\mathbf{x}, \mathbf{y})=1$ be the output of \mathcal{A} in an execution of $\operatorname{Exp}_{\mathrm{ACE}}^{\mathrm{ACEq}, \mathcal{A}} \mathrm{A}$. Correctness of the signature scheme and completeness of the NIZK imply that the verification in the sanitizer algorithm succeeds with probability 1. Note that $P_{\mathrm{DEq}}(\mathbf{x}, \mathbf{y})=1$ implies that there exists $i \in[\ell]$ with $x_{i}=y_{i}$. Let i_{0} be the first such i. Then, \mathcal{A} only wins the correctness game if either $\operatorname{ACE}=. \operatorname{Dec}\left(d k_{\left(y_{i_{0}}, i_{0}\right)}^{\mathrm{ACE}_{=}}, c_{i_{0}}^{\prime}\right) \neq m$, or $\operatorname{ACE}_{=} . \operatorname{Dec}\left(d k_{\left(y_{i}, i\right)}^{\mathrm{ACE}_{=}}, c_{i}^{\prime}\right) \neq \perp$ for some $i<i_{0}$. The probability of the former event is bounded by $\operatorname{Adv}_{\mathrm{ACE}_{=}, \mathcal{A}_{\text {corr }}}^{\mathrm{ACE}}$ where $\mathcal{A}_{\text {corr }}$ emulates this experiment and returns $\left(m,\left(x_{i_{0}}, i_{0}\right),\left(y_{i_{0}}, i_{0}\right)\right)$. For the latter event, note that there are at most $\ell-1$ such i, so the probability that $A C E_{=}$. Dec returns a message different from \perp for any of them can be bounded by $(\ell-1) \cdot \operatorname{Adv}_{\mathrm{ACE}}^{\mathrm{ACE}} \mathrm{dtct}, \mathcal{A}_{\text {dtct }}$ for the adversary $\mathcal{A}_{\text {dtct }}$ that emulates the experiment and returns $\left(m,\left(x_{i}, i\right),\left(y_{i}, i\right)\right)$ for a uniformly chosen $i<i_{0}$.

For detectability, the adversary $\mathcal{A}_{\text {dtct }}^{\prime}$ emulates an execution of $\operatorname{Exp}_{\mathrm{ACE}}^{\mathrm{ACE}} \mathrm{EDEq}_{\mathrm{DE}, \mathcal{A}}$ and when \mathcal{A} returns $(m, \mathbf{x}, \mathbf{y}), \mathcal{A}_{\mathrm{dtct}}^{\prime}$ outputs $\left(m,\left(x_{i}, i\right),\left(y_{i}, i\right)\right)$ for a uniformly chosen $i \in\{1, \ldots, \ell\}$. Note that \mathcal{A} only wins if $P_{\mathrm{DEq}}(\mathbf{x}, \mathbf{y})=0$, which implies that $x_{i} \neq y_{i}$ for all $i \in[\ell]$. In this case, \mathcal{A} wins if any of the ciphertext components decrypt to something different from \perp. Thus, $\mathcal{A}_{\mathrm{dtct}}^{\prime}$ also wins if the component i was guesses correctly, which happens with probability $1 / \ell$.

The following theorem summarizes the security properties we prove for our scheme.
Theorem 6.10 (Informal). The lifted ACE scheme is secure, i.e., all efficient adversaries have only negligible advantage in breaking the privacy, (weak) anonymity, sanitization, role-respecting, uniform decryption, or ciphertext-unpredictability properties, if the underlying ACE scheme for equality is secure, the signature scheme is unforgeable, the proof system provides zero-knowledge and extractability, and if the function F is pseudo-random.

We prove this theorem in a sequence of theorems proving the individual properties. We begin by showing that privacy and weak anonymity of the scheme follow from the corresponding properties of the underlying scheme for equality and the zero-knowledge property of the NIZK. Note that security of the PRF is not needed for this step since it is only used for the signatures, which are irrelevant here.

Theorem 6.11. Let $\mathrm{ACE}_{\mathrm{DEq}}$, be the scheme from above, let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be a probabilistic algorithm. Then, there exist probabilistic algorithms $\mathcal{A}_{\text {PRF }}, \mathcal{A}_{\text {ZK }}, \mathcal{A}_{\text {ACE }}, \mathcal{A}_{\text {PRF }}^{\prime}, \mathcal{A}_{\text {ZK }}^{\prime}$, and $\mathcal{A}_{\text {ACE }}^{\prime}$ (which are all roughly as efficient as emulating an execution of $\left.\operatorname{Exp}_{\mathrm{ACE}}^{\mathrm{ACE}-\text {-priva }, \mathcal{A}} \mathrm{A} \mathrm{A}-\mathrm{CCA}\right)$) such that

Proof. We only prove the statement about the privacy advantage. The proof for weak anonymity is completely analogous. We assume without loss of generality that \mathcal{A} ensures $\mathbf{x}^{0}=\mathbf{x}^{1}$ and $P\left(\mathbf{x}^{0}, \mathbf{y}\right)=0$ for all $\mathbf{y} \in J$, since doing otherwise can only decrease the privacy advantage. Let $H_{0}:=\operatorname{Exp}_{\mathrm{ACE}}^{\mathrm{ACE}-p r i v A n o n} \mathbf{A}-\mathrm{CCA}$ and let H_{1} be as H_{0} where we replace $\operatorname{crs}^{\mathrm{NIZK}} \leftarrow$ NIZK.Gen $\left(1^{\kappa}\right)$ by $\left(c r s^{\mathrm{NIZK}}, \tau^{\mathrm{NIZK}}\right) \leftarrow S_{1}^{\mathrm{NIZK}}\left(1^{\kappa}\right)$ in ACE $_{\text {DEq }}$. Setup, and for the generation of the challenge ciphertext c^{*}, we replace $\pi^{\mathrm{NIZK}} \leftarrow \operatorname{NIZK}$. Prove $\left(\operatorname{crs}^{\mathrm{NIZK}}, x, w\right)$ in ACE DEq . Enc by $\pi^{\mathrm{NIZK}} \leftarrow S_{2}^{\mathrm{NIZK}}\left(c r s^{\mathrm{NIZK}}, \tau^{\mathrm{NIZK}}, x\right)$. It can be shown as in the proof of Theorem 6.3 that there exist probabilistic algorithms $\mathcal{A}_{\text {PRF }}$ and $\mathcal{A}_{\mathrm{ZK}}$ such that

$$
\begin{equation*}
\operatorname{Pr}^{H_{0}}\left[b^{\prime}=b\right]-\operatorname{Pr}^{H_{1}}\left[b^{\prime}=b\right]=\operatorname{Adv}_{\text {NIZK }}^{\text {NIZK }}, \mathcal{A}_{Z K} . \tag{16}
\end{equation*}
$$

For $k \in\{0, \ldots, \ell\}$, we define $H_{2, k}$ as follows. It is identical to H_{1} except that after \mathcal{A} returns ($m_{0}, m_{1}, \mathbf{x}^{0}, \mathbf{x}^{1}, s t$), we replace the ciphertext components in c^{*}

$$
\begin{array}{ll}
c_{i} \leftarrow \mathrm{ACE}_{=} \cdot \operatorname{Enc}\left(e k_{\left(x_{i}^{0}, i\right)}^{\mathrm{ACE}}, m_{0} ; r_{i}\right) & (\text { for } 1 \leq i \leq k), \\
c_{i} \leftarrow \mathrm{ACE}_{=} \cdot \operatorname{Enc}\left(e k_{\left(x_{i}^{1}, i\right)}^{\mathrm{ACE}}, m_{1} ; r_{i}\right) & (\text { for } k<i \leq \ell) .
\end{array}
$$

Note that $H_{2,0}$ corresponds to H_{1} with $b=1$ and $H_{2, \ell}$ corresponds to H_{1} with $b=0$. Now consider the adversary $\mathcal{A}_{\text {ACE }}$ that on input $s p$ chooses $k_{0} \longleftarrow\{1, \ldots, \ell\}$ uniformly at random and emulates an execution of H_{1}. It emulates the oracle \mathcal{O}_{G} by obtaining all the required sub-keys from its own oracle \mathcal{O}_{G}. To emulate the oracle $\mathcal{O}_{S D}$, it first checks the NIZK proof as ACE $_{\text {DEq }}$.San and if the verification succeeds, it uses its oracle $\mathcal{O}_{S D}$ to sanitize and decrypt all ciphertext components. As $A C E_{D E q}$.Dec, it outputs the first message different from \perp, or \perp if no such message exists.

When \mathcal{A} returns ($\left.m_{0}, m_{1}, \mathbf{x}^{0}, \mathbf{x}^{1}, s t\right), \mathcal{A}_{\text {ACE }}$ generates the challenge ciphertext c^{*} by encrypting m_{0} under the key $e k_{\left(x_{i}, i\right)}^{\mathrm{ACE}} \overline{=}$, to obtain c_{i} for $1 \leq i<k_{0}$, and by encrypting m_{1} under the key $e k_{\left(x_{i}^{1}, i\right)}^{\mathrm{ACE}} \mathrm{=}$ for $k_{0}<i \leq \ell$, where these keys can obtain from \mathcal{O}_{G} without changing the advantage. For the k_{0}-th component, it returns ($m_{0}, m_{1}, x_{k_{0}}^{0}, x_{k_{0}}^{1}$) to the challenger and uses the obtained challenge ciphertext as $c_{k_{0}}$. It then proceeds with the emulation of H_{1}. It emulates the oracle \mathcal{O}_{G} as above and the oracle $\mathcal{O}_{S D^{*}}$ as $\mathcal{O}_{S D}$ with the difference that if its own oracle returns test for any of the components, it returns test as well. Finally, when \mathcal{A}_{2} returns $b^{\prime}, \mathcal{A}_{\mathrm{ACE}}$ returns $b^{\prime \prime} \leftarrow b^{\prime}$. Note that if $b=0$ or $b=1, \mathcal{A}_{\text {ACE }}$ perfectly emulates an execution of $H_{2, k_{0}}$ or $H_{2, k_{0}-1}$, respectively. Further note that since \mathcal{A} by assumption does not query \mathcal{O}_{G} on a decryption key
for any \mathbf{y} with $P\left(\mathbf{x}^{0}, \mathbf{y}\right)=1, \mathcal{A}_{\text {ACE }}$ also does not ask for a decryption that could decrypt the challenger ciphertext. Hence, $\mathcal{A}_{\text {ACE }}$ wins if $b^{\prime \prime}=b$ and we have

$$
\begin{aligned}
& =\sum_{k=1}^{\ell} \frac{1}{\ell} \operatorname{Pr}^{H_{2, k-1}}\left[b^{\prime}=1\right]-\sum_{k=1}^{\ell} \frac{1}{\ell} \operatorname{Pr}^{H_{2, k}}\left[b^{\prime}=1\right] \\
& =\left(\operatorname{Pr}^{H_{2,0}}\left[b^{\prime}=1\right]-\operatorname{Pr}^{H_{2, \ell}}\left[b^{\prime}=1\right]\right) / \ell \\
& =\left(\operatorname{Pr}^{H_{1}}\left[b^{\prime}=1 \mid b=1\right]-\operatorname{Pr}^{H_{1}}\left[b^{\prime}=1 \mid b=0\right]\right) / \ell .
\end{aligned}
$$

We therefore have that $2 \cdot \operatorname{Pr}^{H_{1}}\left[b^{\prime}=1\right]-1=\ell \cdot \operatorname{Adv}_{\text {ACE }}^{=, \mathcal{A}_{\text {ACE }}}$ ACCA . Combining this with equation (16) concludes the proof.

Next, we prove sanitization security, which directly follows from the sanitization security of the underlying scheme for equality.
Theorem 6.12. Let $\mathrm{ACE}_{\mathrm{DEq}}$, be the scheme from above and let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be an attacker on the the sanitization security. Then, there exists a probabilistic algorithm \mathcal{A}^{\prime} (which is roughly as

 until \mathcal{A}_{1} returns $c^{0}=\left(c_{1}^{0}, \ldots, c_{\ell}^{0}, \pi_{0}^{\mathrm{NIZK}}\right), c^{1}=\left(c_{1}^{1}, \ldots, c_{\ell}^{1}, \pi_{1}^{\mathrm{NIZK}}\right)$, and st. Then, c^{00} and c^{1} are obtained as before by sanitizing the given ciphertexts, but \mathcal{A}_{2} instead of $c^{\prime b}$ receives $\left(c_{1}^{\prime}, \ldots, c_{\ell}^{\prime}\right)$ with $c_{i}^{\prime} \leftarrow \mathrm{ACE}=. \operatorname{San}\left(c_{i}^{0}\right)$ for $1 \leq i \leq k$ and $c_{i}^{\prime} \leftarrow \mathrm{ACE}=. \operatorname{San}\left(c_{i}^{1}\right)$ for $k<i \leq \ell$. Note that H_{0} is
 $c^{0} \neq \perp$.

Now consider the adversary \mathcal{A}^{\prime} that on input $s p^{\text {ACE }}=$ chooses $k_{0} \leftarrow\{1, \ldots \ell\}$ uniformly at random and emulates an execution of $\operatorname{Exp}_{\mathrm{ACE}}^{\mathrm{ACE}-\mathrm{seq}, \mathcal{A}} \mathrm{CCA}$. The oracle queries by \mathcal{A} are answered using the oracles of \mathcal{A}^{\prime}. It gives the sanitized ciphertext $\left(c_{1}^{\prime}, \ldots, c_{\ell}^{\prime}\right)$ to \mathcal{A}_{2} where $c_{i}^{\prime} \leftarrow \mathrm{ACE}=. \operatorname{San}\left(c_{i}^{0}\right)$ for $1 \leq i<k_{0}, c_{i}^{\prime} \leftarrow \mathrm{ACE}=. \operatorname{San}\left(c_{i}^{1}\right)$ for $k_{0}<i \leq \ell$, and $c_{k_{0}}^{\prime}$ is obtained from the challenger by submitting $\left(c_{k_{0}}^{0}, c_{k_{0}}^{1}\right)$. When \mathcal{A}_{2} returns a bit $b^{\prime}, \mathcal{A}^{\prime}$ returns $b^{\prime \prime} \leftarrow b^{\prime}$. Note that if $b=0, \mathcal{A}^{\prime}$ perfectly emulates $H_{k_{0}}$, and if $b=1, \mathcal{A}^{\prime}$ perfectly emulates $H_{k_{0}-1}$. Further note that if \mathcal{A} wins, then $c^{0} \neq \perp \neq c^{\prime 1}$ and $m_{0, \mathbf{y}}=m_{1, \mathbf{y}}=\perp$ for all $\mathbf{y} \in J$. Since a sanitized ciphertext is only not \perp if all components do not sanitize to \perp, and a message is \perp if all components are, this means that the ciphertext components submitted by \mathcal{A}^{\prime} also satisfy the winning condition if the ciphertexts from \mathcal{A} do. Hence, we can conclude that $\operatorname{Adv}_{\mathrm{ACE}}^{\mathrm{ACE}} \mathrm{DEq}_{\mathrm{DE}, \mathcal{A}} \leq \ell \cdot \operatorname{Adv}_{\mathrm{ACE}}^{\mathrm{ACE}} \mathrm{A}=\mathcal{A}^{\prime} \mathrm{CCA}$.

Ciphertext unpredictability directly follows from ciphertext unpredictability of the underlying ACE scheme.

Theorem 6.13. Let $\mathrm{ACE}_{\mathrm{DEq}}$, be the scheme from above and let \mathcal{A} be an attacker on the the ciphertext unpredictability. Then, there exists a probabilistic algorithm \mathcal{A}^{\prime} (which is roughly as efficient as emulating an execution of $\operatorname{Exp}_{\mathrm{ACE}_{\mathrm{DEq}}, \mathcal{A}}^{\mathrm{ACE}-\mathrm{A}} \mathrm{A}^{\mathrm{A}}$) such that

$$
\mathrm{Adv}_{\mathrm{ACE}}^{\mathrm{DEq}, \mathcal{A}} \mathrm{ACE-ctxt-unpred} \leq \ell \cdot \operatorname{Adv}_{\mathrm{ACE}_{=,, \mathcal{A}^{\prime}}^{\mathrm{ACE}}}^{\mathrm{ACtxt}-u n p r e d}
$$

Proof. Let \mathcal{A}^{\prime} emulate an execution of $\operatorname{Exp}_{\mathrm{ACE}}^{\mathrm{DEq}, \mathcal{A}} \mathrm{ACE-cxt-unpred}$, using \mathcal{O}_{G} to answer oracle queries from \mathcal{A}. When \mathcal{A} returns $\left(m, \mathbf{x}, c=\left(c_{1}, \ldots, c_{\ell}, \pi^{\mathrm{NIZK}}\right)\right), \mathcal{A}^{\prime}$ chooses $k \leftrightarrow\{1, \ldots, \ell\}$ uniformly at random, and returns $\left(m,\left(x_{k}, k\right), c_{k}\right)$. If \mathcal{A} wins, c is detected as a modification of a fresh encryption of m under \mathbf{x}. Since encryption and modification detection are defined component-wise, this means that there exists a component k_{0} such that $c_{k_{0}}$ is detected to be a modification of a fresh encryption of m under $\left(x_{k_{0}}, k_{0}\right)$. Hence, \mathcal{A}^{\prime} also wins if additionally $k=k_{0}$, which happens with probability $1 / \ell$.

We finally prove role-respecting and uniform decryption security.
Theorem 6.14. Let $\mathrm{ACE}_{\mathrm{DEq}}$, be the scheme from above and let \mathcal{A} be a probabilistic algorithm that makes at most at most q_{E} queries to the oracle \mathcal{O}_{E}. Then, there exist probabilistic algorithms $\mathcal{A}_{\mathrm{PRF}}, \mathcal{A}_{\mathrm{ZK}_{1}}, \mathcal{A}_{\mathrm{ZK}_{2}}, \mathcal{A}_{\mathrm{Sig}}$, and $\mathcal{A}_{\mathrm{ACE}}$ (which are all roughly as efficient as emulating an execution of $\operatorname{Exp}_{\mathrm{ACE}}^{\mathrm{ACE}} \mathrm{DEq}, \mathcal{A}$) such that

Proof Sketch. As in the proof of Theorem 6.8, we define hybrids $H_{0}:=\operatorname{Exp}_{\mathrm{ACE}_{\mathrm{DEq}}, \mathcal{A}}^{\mathrm{ACE}}, H_{1}$ as H_{0} where F_{K} is replaced by a uniform random function U, H_{2} as H_{1} where $c r s^{\text {NIZK }}$ is generated by $E_{1}^{\mathrm{NIZK}}, H_{3}$ as H_{2} where a witness $w=\left(e k_{\left(x_{1}, 1\right)}^{\mathrm{ACE}_{=}}, \ldots, e k_{\left(x_{\ell}, \ell\right)}^{\mathrm{ACE}}, m, r_{1}, \ldots, r_{\ell}, v k_{\mathbf{x}}^{\mathrm{Sig}}, \sigma_{\mathbf{x}}^{\mathrm{Sig}}, \sigma_{c}^{\mathrm{Sig}}\right)$ is extracted from $\pi^{\text {NIZK }}$ by $E_{2}^{\text {NIZK }}$ after \mathcal{A} returned $c:=\left(c_{1}, \ldots, c_{\ell}, \pi^{\text {NIZK }}\right)$. We can bound the probability that no valid witness is extracted even though $\pi^{\text {NIZK }}$ is a valid proof by the knowledge extraction advantage of a suitable adversary, and the probability that a valid witness was extracted and the contained encryption key was not obtained via an oracle call by the signature forgery advantage of another adversary as in the proof of Theorem 6.8. If these events do not occur, the ciphertext c is an encryption of the message m under a valid key that was returned by \mathcal{O}_{G}. Hence, \mathcal{A} can in this case only win the role-respecting game or the uniform decryption game if some ciphertext component violates one of these properties. We can construct an adversary $\mathcal{A}_{\text {ACE }}$ that emulates the execution, guesses this component, and uses the corresponding ciphertext component to win the game for the underlying scheme for equality.

7 Conclusion and Directions for Future Work

In this paper, we have critically revisited existing notions for access control encryption, proposed stronger security definitions, and presented a new scheme that provably achieves our strong requirements. The need for stronger notions is not only a theoretical one as we have shown: In particular, we have described a practical attack based on the observation that a semi-honest sanititzer might leak an unsanitized ciphertext to a dishonest party.

An important question is whether all realistic attacks are excluded by our definitions. Furthermore, we would like to understand the fundamental limits of ACE. This includes investigating in which scenarios it can or cannot be used. To settle these questions, the authors are currently working on a theoretical model to capture the use case of ACE in a simulation-based framework. Another interesting research direction is to find more efficient schemes for useful policies.

A Standard Cryptographic Primitives and Games

A. 1 Pseudorandom Functions

Definition A.1. For $\kappa \in \mathbb{N}$, let $\mathcal{K}_{\kappa}, \mathcal{X}_{\kappa}$, and \mathcal{Y}_{κ} be finite sets and let $F_{\kappa}: \mathcal{K}_{\kappa} \times \mathcal{X}_{\kappa} \rightarrow \mathcal{Y}_{\kappa}$ be a function. For $K \in \mathcal{K}_{\kappa}$, we use the notation $F_{K}:=F_{\kappa}(K, \cdot)$. Further let \mathcal{A} be a probabilistic algorithm and consider the experiment in which \mathcal{A} outputs a bit after interacting with an oracle that either corresponds to F_{K} for a uniformly chosen $K \in \mathcal{K}_{\kappa}$, or to a uniformly chosen function $U: \mathcal{X}_{\kappa} \rightarrow \mathcal{Y}_{\kappa}$. We define the pseudorandom function advantage of \mathcal{A} as

$$
\operatorname{Adv}_{F, \mathcal{A}}^{\mathrm{PRF}}:=\operatorname{Pr}\left[\mathcal{A}^{F_{K}(\cdot)}\left(1^{\kappa}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}^{U(\cdot)}\left(1^{\kappa}\right)=1\right],
$$

where the first probability is over the random coins of \mathcal{A} and the choice of K, and the second probability is over the random coins of \mathcal{A} and the choice of U.

A. 2 Decisional Diffie-Hellman

Definition A.2. Let $G=\langle g\rangle$ be a prime-order group of order q and let g be its generator. Let \mathcal{A} be an adversary that on input q, g, and three elements $X, Y, T \in G$ returns a bit d. Let $\mathrm{DDH}_{\mathcal{A}, g, q}^{\text {real }}$ be the experiment where \mathcal{A} is given two random group elements $X=g^{a}, Y=g^{b}$, and the value $T=g^{a b}$. Let $\mathrm{DDH}_{\mathcal{A}, g, q}^{\mathrm{rand}}$ be the experiment where \mathcal{A} is given three random group elements $X=g^{a}$, $Y=g^{b}$, and $T=g^{c}$. We define the decisional Diffie-Hellman (DDH) advantage of \mathcal{A} as

$$
\operatorname{Adv}_{\mathcal{A}, g, q}^{\mathrm{DDH}}:=\operatorname{Pr}^{\mathrm{DDH}_{\mathcal{A}, g, q} \mathrm{rana}, q}[d=1]-\operatorname{Pr}^{\mathrm{DDD}} \mathrm{~A}_{\mathcal{A}, q, q}^{\mathrm{rand}}[d=1] .
$$

A. 3 Public-Key Encryption

Definition A.3. A public-key encryption (PKE) scheme consist of the following three PPT algorithms:

Key Generation: The algorithm Gen on input a security parameter 1^{κ}, outputs a public key ek and a private key $d k$.

Encryption: The algorithm Enc on input a public key $e k$ and a message $m \in \mathcal{M}$, outputs a ciphertext c.

Decryption: The algorithm Dec on input a private key $d k$ and a ciphertext c, outputs a message $m \in \mathcal{M} \cup\{\perp\}$.
We require for all $(e k, d k)$ in the range of Gen and all $m \in \mathcal{M}$ that

$$
\operatorname{Dec}(d k, \operatorname{Enc}(e k, m))=m
$$

with probability 1.
Definition A.4. Let $\mathcal{E}=\left(\right.$ Gen, Enc, Dec) be a PKE scheme and let $\mathcal{A}=\left(\mathcal{A}_{1}, \mathcal{A}_{2}\right)$ be a pair of probabilistic algorithm.s Consider the experiment Exp $\mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\text {PKEIND-CPA }}$ in Figure 4 . We define the ciphertext indistinguishability under chosen-plaintext attacks advantage of \mathcal{A} as

$$
\operatorname{Adv} \mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\text {PE-IND-CPA }}:=2 \cdot \operatorname{Pr}\left[b^{\prime}=b \wedge\left|m_{0}\right|=\left|m_{1}\right|\right]-1
$$

where the probability is over the randomness in $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\mathrm{PKE}}$-IND-CPA .

Experiment Exp ${ }_{\mathcal{E}, A}^{\text {PKE-IND-CPA }}$

Input: 1^{κ}
$(e k, d k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$
$\left(m_{0}, m_{1}, s t\right) \leftarrow \mathcal{A}_{1}(e k)$
$b \varangle\{0,1\}$
$c^{*} \leftarrow \operatorname{Enc}\left(e k, m_{b}\right)$
$b^{\prime} \leftarrow \mathcal{A}_{2}\left(s t, c^{*}\right)$

Experiment Exp $\mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\text {Sig-EUF-CMA }}$

Input: 1^{κ}

$$
\begin{aligned}
& (v k, s k) \leftarrow \operatorname{Gen}\left(1^{\kappa}\right) \\
& (m, \sigma) \leftarrow \mathcal{A}^{\operatorname{Sign}(s k, \cdot)}(v k)
\end{aligned}
$$

Figure 4: Experiments for the security definitions of public-key encryption and digital signature schemes.

A. 4 Digital Signature Schemes

Definition A.5. A (digital) signature scheme consist of the following three PPT algorithms:
Key Generation: The algorithm Gen on input a security parameter 1^{κ}, outputs a public key $v k$ and a private key sk.

Signing: The algorithm Sign on input a private key $s k$ and a message $m \in \mathcal{M}$, outputs a signature σ.

Verification: The algorithm Ver is deterministic and on input a public key $v k$, a message m, and a signature σ, outputs a bit b (where $b=1$ means "valid" and $b=0$ means "invalid").

We require for all $(v k, s k)$ in the range of Gen and all $m \in \mathcal{M}$ that

$$
\operatorname{Ver}(v k, m, \operatorname{Sign}(s k, m))=1
$$

with probability 1 .
Definition A.6. Let $\mathcal{E}=($ Gen, $\mathrm{Sign}, \mathrm{Ver})$ be a signature scheme and let \mathcal{A} be a probabilistic algorithm. Consider the experiment $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\text {Sig-EUF-CMA }}$ in Figure 4 and let Q be the set of queries \mathcal{A} issued to its oracle. We define the existential unforgeability under adaptive chosen-message attacks advantage of \mathcal{A} as

$$
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\text {sig-EUF-CMA }}:=\operatorname{Pr}[\operatorname{Ver}(v k, m, \sigma)=1 \wedge m \notin Q],
$$

where the probability is over the randomness in $\operatorname{Exp}_{\mathcal{E}, \mathcal{A}}^{\text {Sig-EUF-CMA }}$.

A. 5 Non-Interactive Zero-Knowledge Proofs

We define non-interactive zero-knowledge proofs following Groth [Gro06].
Definition A.7. Let R be an efficiently computable binary relation and consider the language $L:=\{x \mid \exists w(x, w) \in R\}$. A non-interactive proof system for L consists of the following three PPT algorithms:

Key Generation: The algorithm Gen on input a security parameter 1^{κ}, outputs a common reference string crs.

Proving: The algorithm Prove on input a common reference string crs, a statement x, and a witness w, outputs a proof π.

Verification: The algorithm Ver on input a common reference string crs, a statement x, and a proof π, outputs a bit b (where $b=1$ means "accept" and $b=0$ means "reject").

We require perfect completeness, i.e., for all $c r s$ in the range of Gen and for all $(x, w) \in R$, we have

$$
\operatorname{Ver}(c r s, x, \operatorname{Prove}(c r s, x, w))=1
$$

with probability 1.
Definition A. 8 (Soundness). Let $\mathcal{E}=($ Gen, Prove, Ver) be a non-interactive proof system for a language L and let \mathcal{A} be a probabilistic algorithm. We define the soundness advantage of \mathcal{A} as

$$
\operatorname{Adv} \mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\operatorname{NIK}-\text { snd }}:=\operatorname{Pr}{ }^{c r s} \leftarrow \operatorname{Gen}\left(1^{\kappa}\right) ;(x, \pi) \leftarrow \mathcal{A}(c r s)[x \notin L \wedge \operatorname{Ver}(c r s, x, \pi)=1] .
$$

Definition A. 9 ((Unbounded) computational zero-knowledge). A non-interactive zero-knowledge (NIZK) proof system for a relation R is a non-interactive proof system $\mathcal{E}=($ Gen, Prove, Ver) for R together with a pair of PPT algorithms $S=\left(S_{1}, S_{2}\right)$, called simulator. Let $S^{\prime}(c r s, \tau, x, w)=$ $S_{2}(c r s, \tau, x)$ for $(x, w) \in R$, and $S^{\prime}(c r s, \tau, x, w)=$ failure for $(x, w) \notin R$. We define the zero-knowledge advantage of a probabilistic algorithm \mathcal{A} as

Definition A. 10 (Knowledge extraction). A non-interactive proof of knowledge system for a relation R is a non-interactive proof system $\mathcal{E}=($ Gen, Prove, Ver) for R together with a pair of PPT algorithms $E=\left(E_{1}, E_{2}\right)$, called knowledge extractor. We define the knowledge extraction advantages of a probabilistic algorithm \mathcal{A} as

$$
\begin{aligned}
& \operatorname{Adv}_{\mathcal{E}, E, \mathcal{A}}^{\text {NIZK }^{2} \operatorname{ext}_{1}}:=\operatorname{Pr}^{c r s \leftarrow \operatorname{Gen}\left(1^{\kappa}\right)}[\mathcal{A}(c r s)=1]-\operatorname{Pr}^{(c r s, \xi) \leftarrow E_{1}\left(1^{\kappa}\right)}[\mathcal{A}(c r s)=1] \text {, } \\
& \operatorname{Adv}_{\mathcal{E}, E, \mathcal{A}}^{\text {NIZK-ext }} \boldsymbol{2}:=\operatorname{Pr}^{(c r s, \xi) \leftarrow E_{1}\left(1^{\kappa}\right) ;(x, \pi) \leftarrow \mathcal{A}(c r s) ; w \leftarrow E_{2}(c r s, \xi, x, \pi)}[\operatorname{Ver}(c r s, x, \pi)=1 \wedge(x, w) \notin R] \text {. }
\end{aligned}
$$

Definition A. 11 ((Unbounded) simulation soundness). Let $\mathcal{E}=\left(\right.$ Gen, Prove, Ver, $\left.S_{1}, S_{2}\right)$ be a NIZK proof system for a language L and let \mathcal{A} be a probabilistic algorithm. Consider the experiment Exp $\mathcal{E}_{\mathcal{E}, \mathcal{A}}^{\text {NIZKim-snd }}$ that executes $(c r s, \tau) \leftarrow S_{1}\left(1^{\kappa}\right)$ and $(x, \pi) \leftarrow \mathcal{A}^{S_{2}(c r s, \tau,)}($ crs $)$. Further let Q be set of all $\left(x^{\prime}, \pi^{\prime}\right)$ such that \mathcal{A} queried x^{\prime} to its oracle and received π^{\prime} as a response. We define the simulation soundness advantage of \mathcal{A} as

$$
\operatorname{Adv}_{\mathcal{E}, \mathcal{A}}^{\text {NIIK-sim-snd }}:=\operatorname{Pr}[(x, \pi) \notin Q \wedge x \notin L \wedge \operatorname{Ver}(c r s, x, \pi)=1] .
$$

Note that in the above definition, \mathcal{A} is allowed to issue queries $x^{\prime} \notin L$ to its oracle. This means that soundness is preserved even if an adversary sees simulated proofs of false statements.

References

[ABN10] M. Abdalla, M. Bellare, and G. Neven, "Robust encryption," in Theory of Cryptography: 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, D. Micciancio, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 480-497. DOI: 10.1007/978-3-642-11799-2_28.
[BL73] D. E. Bell and L. J. LaPadula, "Secure computer systems: Mathematical foundations," MITRE, Tech. Rep. MTR-2547, 1973.
[BBDP01] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval, "Key-privacy in public-key encryption," in Advances in Cryptology - ASIACRYPT 2001: 7th International Conference on the Theory and Application of Cryptology and Information Security Gold Coast, Australia, December 9-13, 2001 Proceedings, C. Boyd, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 566-582. Doi: 10.1007/3-540-45682-1_33.
[BSW11] D. Boneh, A. Sahai, and B. Waters, "Functional encryption: Definitions and challenges," in Theory of Cryptography: 8th Theory of Cryptography Conference, TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings, Y. Ishai, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 253-273. DOI: 10.1007/978-3-642-19571-6_16.
[CKN03] R. Canetti, H. Krawczyk, and J. B. Nielsen, "Relaxing chosen-ciphertext security," in Advances in Cryptology - CRYPTO 2003: 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003. Proceedings, D. Boneh, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 565-582. Doi: 10.1007/978-3-540-45146-4_33.
[DHO16] I. Damgård, H. Haagh, and C. Orlandi, "Access control encryption: Enforcing information flow with cryptography," in Theory of Cryptography: 14th International Conference, TCC 2016-B, Beijing, China, October 31-November 3, 2016, Proceedings, Part II, M. Hirt and A. Smith, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 547-576. DOI: 10.1007/978-3-662-53644-5_21.
[Elg85] T. Elgamal, "A public key cryptosystem and a signature scheme based on discrete logarithms," IEEE Transactions on Information Theory, vol. 31, no. 4, pp. 469-472, Jul. 1985. DOI: 10.1109/TIT.1985.1057074.
[FLPQ13] P. Farshim, B. Libert, K. G. Paterson, and E. A. Quaglia, "Robust encryption, revisited," in Public-Key Cryptography - PKC 2013: 16th International Conference on Practice and Theory in Public-Key Cryptography, Nara, Japan, February 26 March 1, 2013. Proceedings, K. Kurosawa and G. Hanaoka, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 352-368. DOI: 10.1007/978-3-642-363627_22.
[FGKO17] G. Fuchsbauer, R. Gay, L. Kowalczyk, and C. Orlandi, "Access control encryption for equality, comparison, and more," in Public-Key Cryptography - PKC 2017: 20th IACR International Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31, 2017, Proceedings, Part II, S. Fehr, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 88-118. DOI: 10.1007/978-3-662-54388-7_4.
[GJJS04] P. Golle, M. Jakobsson, A. Juels, and P. Syverson, "Universal re-encryption for mixnets," in Topics in Cryptology - CT-RSA 2004: The Cryptographers' Track at the RSA Conference 2004, San Francisco, CA, USA, February 23-27, 2004, Proceedings, T. Okamoto, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 163-178. DOI: 10.1007/978-3-540-24660-2_14.
[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters, "Attribute-based encryption for fine-grained access control of encrypted data," in Proceedings of the 13th ACM Conference on Computer and Communications Security, ser. CCS '06, Alexandria, Virginia, USA: ACM, 2006, pp. 89-98. DOI: 10.1145/1180405.1180418.
[Gro04] J. Groth, "Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosystems," in Theory of Cryptography: First Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004. Proceedings, M. Naor, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152-170. DOI: 10.1007/978-3-540-24638-1_9.
[Gro06] - ,"Simulation-sound NIZK proofs for a practical language and constant size group signatures," in Advances in Cryptology - ASIACRYPT 2006: 12th International Conference on the Theory and Application of Cryptology and Information Security, Shanghai, China, December 3-7, 2006. Proceedings, X. Lai and K. Chen, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 444-459. DOI: 10.1007/11935230_ 29.
[Lin06] Y. Lindell, "A simpler construction of CCA2-secure public-key encryption under general assumptions," Journal of Cryptology, vol. 19, no. 3, pp. 359-377, 2006. Doi: 10.1007/s00145-005-0345-x.
[NY90] M. Naor and M. Yung, "Public-key cryptosystems provably secure against chosen ciphertext attacks," in Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing, ser. STOC '90, Baltimore, Maryland, USA: ACM, 1990, pp. 427-437. DOI: $10.1145 / 100216.100273$.
[PR07] M. Prabhakaran and M. Rosulek, "Rerandomizable RCCA encryption," in Advances in Cryptology - CRYPTO 2007: 27th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007. Proceedings, A. Menezes, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 517-534. DoI: 10.1007/978-3-540-74143-5_29.
[Sah99] A. Sahai, "Non-malleable non-interactive zero knowledge and adaptive chosenciphertext security," in 40th Annual Symposium on Foundations of Computer Science, 1999, pp. 543-553. DOI: 10.1109/SFFCS.1999.814628.
[SW05] A. Sahai and B. Waters, "Fuzzy identity-based encryption," in Advances in Cryptology - EUROCRYPT 2005: 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings, R. Cramer, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 457-473. DOI: $10.1007 / 11426639 _27$.
[TZMT17] G. Tan, R. Zhang, H. Ma, and Y. Tao, "Access control encryption based on LWE," in Proceedings of the 4 th ACM International Workshop on ASIA Public-Key Cryptography, ser. APKC '17, Abu Dhabi, United Arab Emirates: ACM, 2017, pp. 43-50. DOI: 10.1145/3055504.3055509.

[^0]: ${ }^{1}$ The scheme \mathcal{E} can be called correct if $\operatorname{Adv} v_{\mathcal{E}, \mathcal{A}}^{\text {ACE-corr }}$ is negligible for all efficient \mathcal{A}. As mentioned in Section 2.2, we do not state this as part of the definition since we follow a concrete security treatment.

[^1]: ${ }^{2}$ For anonymity, we adopt here the definition of [DHO16], which is stronger than the one used by Fuchsbauer et al. [FGKO17] since there, anonymity is not guaranteed against parties who can decrypt.

[^2]: ${ }^{3}$ Looking ahead, we note that obtaining encryption keys is not problematic in the sanitization game, since the winning condition is not restricted regarding the obtained encryption keys.

[^3]: ${ }^{4}$ This probability is bounded by the ciphertext-unpredictability advantage.
 ${ }^{5}$ Looking ahead, we note that obtaining encryption keys is not problematic in the privacy game since the winning condition is not restricted regarding the obtained encryption keys.

[^4]: ${ }^{6}$ Note that we assume that the underlying PKE scheme has no decryption error

[^5]: ${ }^{7}$ Note that robustness is only defined for encryption and decryption keys generated by sPKE.Gen. Hence, it is important to also condition on $\neg B_{S}$.

[^6]: ${ }^{8}$ In this section, we denote roles by \mathbf{x} and \mathbf{y} instead of i and j. To be compatible with our definitions that consider policies $[n] \times[n] \rightarrow\{0,1\}$, one needs to identify elements of \mathcal{D}^{ℓ} with numbers in $[n]$. We will ignore this technicality to simplify the presentation.

