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Abstract. Linear cryptanalysis makes use of statistical models that
consider linear approximations over block cipher and random permu-
tation as binary random variables. In this note we develop conditions
under which linear independence of binary random variables and sta-
tistical independence of their correlations are equivalent properties. As
an application we obtain that the correlations of linear combinations of
the components of a random n-bit to m-bit transformation are statis-
tically independent if and only if these linear combinations are linearly
independent.
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1 Introduction

Linear cryptanalysis is a method that is used for distinguishing a block cipher
from a random permutation and can be extended to key recovery attacks in
practical applications.

To this end, the cryptanalyst builds a statistical model of the correlations
of linear approximations over the cipher, on the one hand, and over a random
permutation, on the other hand. Sometimes only the latter is used.

The goal of this short note is to clarify the issues between linear and statistical
independence of linear approximations seen as random Boolean functions. It
is clear that linearly dependent linear approximations cannot be statistically
independent. On the other hand, it would be important to know what kind of
independence assumptions are required for a set of linear approximations that
is used in multiple linear cryptanalysis.

In the context of linear cryptanalysis, a linear approximation of a transfor-
mation F from Fn

2 to Fm
2 is a Boolean function in Fn

2 defined by two vectors
a, b ∈ Fn

2 as follows
x 7→ a · x+ b · F (x).

In the statistical setting, a linear approximation is considered as a binary random
variable X over the given space of transformations with a probability density



function defined by

Pr(X = 0) = #{x ∈ Fn
2 | a · x+ b · F (x) = 0}.

So we can writeX = a·x+b·F (x). In the algebraic setting, a linear approximation
a ·x+ b ·F (x) is identified with the vector (a, b) in the linear space Fn

2 ×Fn
2 over

F2.

2 Independence of Binary Random Variables

In this section, we consider binary random variables X, which form a linear
space X over F2, and their statistical and linear independence. We show that
under the condition of pairwise statistical independence of all variables, random
variables in any subset of X are statistically independent if and only if they are
linearly independent.

We first recall the classical Xiao-Massey lemma [4]. For a short proof, see [1].

Lemma 1. (Xiao-Massey lemma) A binary random variable Y is independent
of the set of k independent binary variables X1, . . . , Xk if and only if Y is
independent of the linear combination λ1X1 + · · · + λkXk for every choice of
λ1, . . . , λk, not all zero, in F2.

Let us now state the main result.

Theorem 1. Let X be a linear space of binary random variables over F2 such
that any two different variables in X are statistically independent. Then lin-
early independent random variables in X are also statistically independent. The
converse holds for nonzero random variables in X .

The proof of the theorem goes by induction, where the main step is given by the
following lemma.

Lemma 2. Let X be a linear space of binary random variables over F2 such
that any two different variables in X are statistically independent. Assume that
the binary random variables X1, . . . , Xk in X are linearly and statistically inde-
pendent. If given Y ∈ X the variables X1, . . . , Xk, Y are linearly independent,
then they are also statistically independent.

Proof. Assume that X1, . . . , Xk, Y are statistically dependent. Since X1, . . . , Xk

are independent, it means that Y is dependent of the set X1, . . . , Xk. By the
Xiao-Massey lemma, this can happen only if there exist λ1, . . . , λk not all zero
in F2 such that Y and λ1X1 + · · ·+λkXk are statistically dependent. Since both
of these variables are in X it follows that Y and λ1X1 + · · · + λkXk must be
equal, and therefore X1, . . . , Xk, Y are linearly dependent. ut

Proof. (Proof of Theorem 1) Assume first that the variables X1, . . . , Xm in X
are linearly independent. For 2 ≤ k < m let us state the induction hypothesis
as follows: If X1, . . . , Xk are linearly independent, then they are statistically



independent. Since linear independence of any two of them implies that they are
different, they are also statistically independent by the assumption. Hence the
induction hypothesis holds for k = 2.

Let us assume that the induction hypothesis holds for k, and let X1, . . . , Xk+1

be linearly independent. Then X1, . . . , Xk are linearly independent and hence by
the induction hypothesis also statistically independent. By Lemma 2 it follows
that X1, . . . , Xk+1 are statistically independent.

Assume then that the variables X1, . . . , Xm are nonzero and linearly depen-
dent. W.l.o.g it can be assumed that there exist a relation

X1 = X2 + · · ·+Xk

where X2, . . . , Xk are linearly independent and k ≤ m. By the first part of the
proof it then follows that X2, . . . , Xk are statistically independent. Now by the
Xiao-Massey lemma, Lemma 1, the variable X1 must be statistically dependent
of X2, . . . , Xk. Hence X1, . . . , Xm are not statistically independent. ut

3 Independence of Correlations

Given a binary random variable X its correlation cor(X) is defined as

cor(X) = Pr(X = 0)− Pr(X = 1) = 2 Pr(X = 0)− 1.

It is clear that independence of variables implies independence of their corre-
lations. The converse statement is not necessarily true. Next we show that in the
setting of Theorem 1 also the converse holds. Moreover, we prove equivalence be-
tween linear independence of pairwise independent binary random variables and
statistical independence of their correlations. We start by proving the following
result.

Proposition 1. Let X be a linear space of binary random variables over F2 such
that any two different variables in X are statistically independent. Let A be a set
of elements in X such that E(cor(X)) = 0 and E(cor(X)2) 6= 0 for all X ∈ A. If
then the correlations of random variables in A are statistically independent, the
variables are linearly independent.

Proof. Let A = {X1, . . . , Xm}. To prove that the variables X1, . . . , Xm are lin-
early independent, let us assume the contrary. Since their expected correlation
is equal to zero, they are all nonzero. Then, as in the proof of Theorem 1 it can
be assumed w.l.o.g that there exist a relation

X1 = X2 + · · ·+Xk

where X2, . . . , Xk are linearly independent and k ≤ m. Then we can use Theo-
rem 1 to obtain that the variables X2, . . . , Xk are statistically independent. By
the Piling-up lemma [3], we then have

cor(X2 + · · ·+Xk) = cor(X2) · · · cor(Xk).



Now we consider the expectation of the product of correlations of X1, . . . , Xk

and get

E(cor(X1) · · · cor(Xk)) = E(cor(X1)2) 6= 0.

On the other hand,

E(cor(X1)) · · ·E(cor(Xk)) = 0,

from where it follows that the correlations cor(X1), . . . , cor(Xk), and hence the
correlations cor(X1), . . . , cor(Xm), are not statistically independent. ut

By combining the results of Proposition 1 with Theorem 1 we get the follow-
ing corollary.

Corollary 1. Let X be a linear space of binary random variables over F2 such
that any two different variables in X are statistically independent. Let A be a
subset in X such that E(cor(X)) = 0 and E(cor(X)2) 6= 0 for all X ∈ A. Then
the following three conditions are equivalent.

(i) The variables in A are statistically independent.
(ii) The correlations of variables in A are statistically independent.
(iii) The variables in A are linearly independent.

4 Applications

The natural applications of these results are sets in the linear space of ran-
dom Boolean functions in Fn

2 . The correlation of a random Boolean functions in
Fn
2 is normally distributed with mean 0 and variance 2−n, see e.g., [2]. Hence

Corollary 1 applies and we obtain the following result.

Corollary 2. Let A be a set of pair-wise independent random non-zero Boolean
functions in Fn

2 . Then the following are equivalent.

(i) The correlations of the functions in A are statistically independent.
(ii) The correlations of the functions in A are jointly normally distributed.
(iii) The functions in A are linearly independent.

The equivalence of (i) and (ii) follow from the fact that normally distributed
pairwise independent random variables are jointly normally distributed if and
only if they are independent.

A random n-bit to m-bit transformation is comprised of m independent ran-
dom Boolean functions of n variables as its components. In particular, any two
different linear combinations of the components of such a transformation are in-
dependent random Boolean functions. Hence a special case of a set A for which
Corollary 2 holds is a set of different non-zero linear combinations of the com-
ponents of a random transformation.
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