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Abstract

We study the feasibility of two-message protocols for secure two-party computation in the
plain model, for functionalities that deliver output to one party, with security against malicious
parties. Since known impossibility results rule out polynomial-time simulation in this setting,
we consider the common relaxation of allowing super-polynomial simulation.

We first address the case of zero-knowledge functionalities. We present a new construc-
tion of two-message zero-knowledge protocols with super-polynomial simulation from any (sub-
exponentially hard) game-based two-message oblivious transfer protocol, which we call Weak
OT. As a corollary, we get the first two-message WI arguments for NP from (sub-exponential)
DDH. Prior to our work, such protocols could only be constructed from assumptions that are
known to imply non-interactive zero-knowledge protocols (NIZK), which do not include DDH.

We then extend the above result to the case of general single-output functionalities, showing
how to construct two-message secure computation protocols with quasi-polynomial simulation
from Weak OT. This implies protocols based on sub-exponential variants of several standard
assumptions, including Decisional Diffie Hellman (DDH), Quadratic Residuosity Assumption,
and N th Residuosity Assumption. Prior works on two-message protocols either relied on some
trusted setup (such as a common reference string) or were restricted to special functionalities
such as blind signatures. As a corollary, we get three-message protocols for two-output function-
alities, which include coin-tossing as an interesting special case. For both types of functionalities,
the number of messages (two or three) is optimal.

Finally, motivated by the above, we further study the Weak OT primitive. On the positive
side, we show that Weak OT can be based on any semi-honest 2-message OT with a short
second message. This simplifies a previous construction of Weak OT from the N th Residuosity
Assumption. We also present a construction of Weak OT from Witness Encryption (WE) and
injective one-way functions, implying the first construction of two-message WI arguments from
WE. On the negative side, we show that previous constructions of Weak OT do not satisfy
simulation-based security even if the simulator can be computationally unbounded.
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1 Introduction

There has been a long line of work on minimizing the round complexity of protocols for secure two-
party computation (see, e.g., [CCKM00, HK07, KO04, GMPP16, HV16] and references therein). In
the present work we continue the study of this question, focusing on protocols in the “plain model,”
which do not rely on any form of set-up, and where security is based on standard cryptographic
assumptions.

We will start by addressing the case of computing functions that depend on the inputs of the
two parties and deliver an output to one party. (The general case will be discussed later.) For
such single-output functions, it is clear that two messages are necessary: the first by the “receiver”
who receives the output and the second by the “sender.” The main question we ask is under
what assumptions two messages are also sufficient. Two-message protocols, also referred to as
“non-interactive secure computation” (NISC) protocols [IKO+11, AMPR14], have the qualitative
advantage of allowing one party to go offline (after sending its message) while waiting for the other
party to respond.

For security against semi-honest parties, the situation is well understood: such general two-
message protocols exist if a two-message oblivious transfer (OT) protocol with security against
semi-honest parties exists [Yao86, CCKM00]. This assumption is also necessary, since OT is a
simple special case of general secure computation.

The situation is far more complex when considering security against malicious parties. For pro-
tocols with black-box simulation, four messages are necessary and are also sufficient under standard
assumptions [GK96, KO04]. This can be improved to two messages by using standard setup assump-
tions such as a common reference string [CCKM00, HK07, IKO+11]. In the plain model, however,
two-message protocols that satisfy the standard notion of security are known not to exist, even when
allowing non-black-box simulation and even for the special of zero-knowledge [GO94, BLV03]. To
get around this impossibility, Pass [Pas03] suggested considering simulation whose running time is
super-polynomial, but not necessarily unbounded, and realized two-message zero-knowledge in this
model. General secure computation with super-polynomial simulation was first studied by Prab-
hakaran and Sahai [PS04] and by Barak and Sahai [BS05] in the context of concurrent security
(with protocols requiring multiple rounds of interaction).

Secure computation with super-polynomial simulation is motivated by the fact that it captures
the desirable security goals for the typical case of computing “non-cryptographic” functions, where
even an unbounded simulator does not get a meaningful advantage. Moreover, using complexity
leveraging, such protocols can be “as good” as standard protocols even for computing cryptographic
functions, provided that the level of security of the primitives or other protocols with which they
interact is sufficient to protect against an adversary with the same running time as the simulator.
See Section 1.2 for further details.

The above discussion motivates the following question:

Under what assumptions can we construct two-message secure computation protocols with
super-polynomial simulation in the plain model?

A natural first step is to study the above question for the special case of zero-knowledge, which
captures functions that take input from only one party. Zero-knowledge protocols with unbounded
simulation are equivalent to witness indistinguishable (WI) protocols. Two-message WI protocols
for NP (also called private coin ZAPs) can be constructed from non-interactive zero-knowledge
(NIZK) protocols [DN07]. These were used in [Pas03] to obtain 2-message zero-knowledge ar-
guments with quasi-polynomial simulation. They were further used in [GRS+11] to obtain two-
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message blind signatures in the plain model, which can be viewed as another instance of general
secure two-party computation.

While it is known that NIZK can be based on standard assumptions such as trapdoor permu-
tations and bilinear maps [BFM88, FLS99, CHK03, GOS06b], there are several other well studied
assumptions, such as the DDH assumption or even a strong assumption such as Witness Encryp-
tion [GGSW13], that are not known to imply NIZK or even 2-message WI arguments for NP. As
far as we know, all non-trivial instances of 2-message protocols in the plain model appearing in the
literature (even ones with unbounded simulation) require either NIZK or bilinear maps [GOS06a].

1.1 Our Contribution

We essentially settle the above question, showing that general two-message secure computation
in the plain model with super-polynomial simulation is implied by any (sub-exponentially secure)
“game-based” two-message OT protocol. Such a protocol is required to be secure with super-
polynomial simulation against a malicious receiver, and is only required to satisfy indistinguishability-
based security against the sender (i.e., the sender cannot distinguish between the two possible se-
lection bits of the receiver). From here on, we refer to such an OT protocol as Weak OT. Weak OT
protocols can be easily constructed from the DDH assumption [NP01, AIR01] (which is not known
to imply NIZK) and are also known to follow from the Quadratic Residuosity Assumption and the
N th Residuosity Assumption (i.e., the security of the Paillier cryptosystem) [HK12].

The above result essentially settles our main question, since Weak OT can be viewed as the
simplest analogue of two-message semi-honest OT for the case of security against malicious parties.
As a corollary of our main result, Weak OT implies 3-message protocols with super-polynomial
simulation in the plain model for functions that deliver outputs to both parties. This includes
(multi-output) coin-tossing as an important special case. Motivated by the usefulness of Weak OT,
we further study this primitive, obtaining several new positive and negative results.

We now give a more detailed account of our results.

1. We start by studying the Weak OT primitive described above (and formally defined in Sec-
tion 2) and explore the feasibility of using it for secure computation with super-polynomial
simulation. We show that Weak OT protocols may not even be secure with unbounded sim-
ulation. We demonstrate this by constructing a protocol (only a slight modification of the
protocol in [NP01, AIR01]) that achieves the game based notion but suffers from a real at-
tack. Concretely, we show a malicious sender strategy for this protocol such that even a single
instance of execution of the protocol with the malicious sender would suffer from the attack.
This is counter-intuitive because in a single instance of OT, any probabilistic mapping from
the receiver’s input to its output can be realized by a malicious sender in the ideal model, and
so simulation seems easy. However, in our attack, the receiver’s output becomes a value that
cannot be known to the sender. This attack not only violates the intuitive notion of correct-
ness and security, but it provably cannot be simulated even by an unbounded simulator. This
impossibility result shows that proving security using a super-polynomial simulator, which is
the setting in the rest of our work, is non-trivial and interesting.

2. Based on any (sub-exponentially secure) Weak OT, we construct a secure protocol for two-
message zero knowledge argument of knowledge with quasi-polynomial simulation in the plain
model. This implies the first such protocols, and even the first 2-message WI protocols, under
assumptions that are not known to imply NIZK. More precisely, we prove the following:

Theorem 1. Assuming the existence of sub-exponentially secure Weak OT, there exist two-
message zero knowledge arguments (with argument of knowledge) for NP in the plain model
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with quasi-polynomial simulation.

In particular, we get the following new corollary:

Theorem 2. Two-message witness indistinguishable arguments for NP can be based on the
sub-exponentially hard Decisional Diffie-Hellman Assumption.

3. Using a variant of the “GMW paradigm” [GMW87], we extend the above result to the case
of general secure computation. Concretely, we prove the following theorem:

Theorem 3. Two Message Secure Computation protocols with quasi-polynomial simulation in
the plain model for general single-output functionalities can be based on any sub-exponentially
secure Weak OT.

As a corollary, we get the first general 2-message protocols in the plain model.

Corollary 1. Two Message Secure Computation protocols with quasi-polynomial simulation
for general single-output functionalities can be based on any of the following sub-exponentially
hard assumptions: (1) Decisional Diffie-Hellman Assumption; (2) Quadratic Residuosity As-
sumption; (3) N th Residuosity Assumption.

While such protocols are not very hard to obtain from previous two-message zero-knowledge
protocols with super-polynomial simulation, we are not aware of such a result in the litera-
ture. Moreover, the DDH-based construction crucially depends on our new construction of
2-message zero-knowledge protocols.

Secure two-message protocols for single-output functionalities imply secure three-message
protocols for two-output functionalities. Concretely, we get the following corollary.

Corollary 2. Three-message secure protocols with quasi-polynomial simulation for general
two-output functionalities (satisfying “security with abort”) can be based on sub-exponentially
secure Weak OT, and in particular on sub-exponential DDH.

A particularly useful special case is that of (multi-bit) coin-tossing where neither party has
any input and both parties get a uniformly random string as output. Here quasi-polynomial
simulation seems enough for all natural applications. Despite the large body of work on
coin-tossing, we are not aware of any previous multi-bit coin-tossing protocol in the plain
model that provides a meaningful notion of security (even a game-based notion) with only 3
messages under standard assumptions. Our coin-tossing result should be compared with the
5-message protocol from [KO04] (which is optimal for standard black-box simulation) and
a recent 4-message protocol from [HV16] which is secure with inverse-polynomial simulation
error.

4. To further expand the class of assumptions on which we can base our general protocols, we
provide new constructions of Weak OT satisfying the game based notion.

The first construction is based on any high rate semi-honest secure OT which in turn can be
reduced to any high rate additively homomorphic encryption. Concretely, we need a semi-
honest one-out-of-two string-OT protocol in which the output length on a pair of strings
of length ` is smaller than c` for some constant c < 2. As a corollary, by instantiating
the high rate homomorphic encryption scheme using a construction of Damg̊ard and Jurik
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(DJ) [DJ01], we simplify the construction and analysis of Weak OT from the N th Residuosity
Assumption of Halevi and Kalai [HK12]. In particular, our construction only relies on the
semantic security of the DJ cryptosystem and simple “syntactic” properties (homomorphism
and ciphertext length) and does not involve smooth projective hash functions. This general
new construction of Weak OT could potentially lead to basing our general protocols on other
assumptions, such as lattice-based assumptions. The construction is presented in Section 6.

Our second construction of Weak OT builds on Witness Encryption (WE) [GGSW13] and
any injective one way function. This is described in Section 7. As a corollary, all of the results
discussed above can also be based on WE (and injective one-way functions).

At the heart of our two-message secure computation protocols is a two-message protocol for
zero-knowledge from sub-exponential security of game based OT. Note that this is contrast to
the construction of Pass [Pas03] who gave a construction based on NIZKs. Our alternative new
construction avoids the use of NIZKs and is what enables our new results that provide constructions
under alternative assumptions. This construction of zero-knowledge is provided in Section 4. The
construction of two-message secure computation using this zero-knowledge protocol is provided in
Section 5.

1.2 Discussion and Related Work

In this section we discuss the two key features of our protocols: super-polynomial simulation and
security in the plain model, and survey some related work.

What good is super-polynomial simulation? Intuitively speaking, the notion of super-
polynomial simulation (SPS) guarantees that the real world adversary does not learn anything more
than an ideal world adversary running in super-polynomial time. So, what does the SPS ideal world
adversary learn? For information theoretic functionalities (example, Yao’s millionaire problem), the
running time of the ideal-world simulator does not affect security in any sense. In particular the
computational power awarded to the ideal world adversary is useless for learning anything about
the input of the honest party. It does not rule out the possibility that the adversary learns some
super-polynomial function of its view but this is irrelevant for the task at hand. On the other
hand, for cryptographic functionalities, the adversary’s ability to run in super-polynomial time is
indeed problematic as it could potentially harm the security of the functionality itself. However, at
an often small cost to efficiency, it is almost always possible to choose a higher security parameter
for the cryptographic operations performed by the functionality such that meaningful security can
be obtained (see e.g. [GRS+11] for the example of blind signatures). SPS is commonly used in
cryptography. In fact, any zero knowledge protocol with super polynomial simulation is a witness
indistinguishable protocol.

Relation to concurrently secure computation. The notion of concurrently secure super-
polynomial simulation [PS04, BS05, GGJS12] and its variants [CLP10] have been extensively stud-
ied in the literature. This notion is known to be impossible [Lin04, BPS06, Goy12, AGJ+12,
GKOV12] to achieve with polynomial-time simulation. The notion of two-message secure compu-
tation that we study implies the notion of concurrently secure computation, in the restricted setting
where the adversary is allowed to play as a sender or as a receiver across all concurrent sessions
(the so-called “fixed-roles” setting). This improves on the round complexity of known solutions.

Recently, Dottling et al. [DFKS16] constructed two round two-party computation protocols for
certain functionalities that is secure against semi-honest senders and malicious receivers. However,
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they consider a game-based security notion against a malicious receiver and this is incomparable
to our setting.

Concurrent and subsequent work. Concurrent to our work, Jain et al. [JKKR17] construct
protocols that are similar to our two-round protocols. While their focus is on polynomial time
distinguisher-dependent simulation, we focus on super-polynomial simulation. Therefore, the only
result in common between the two papers is two-round witness indistinguishability for NP from
Weak OT. Our proof of WI is significantly simpler than theirs, because our analysis is via super-
polynomial simulation. Our paper also contains additional results on Weak OT (both negative and
positive) that simplify previous constructions and extend the set of assumptions on which both our
and their round-optimal protocols can be based.

Subsequent to our work, Khurana and Sahai [KS17] use our two-message secure computation
protocol crucially to build two-message non-malleable commitments with respect to commitment
from sub-exponentially hard DDH.

1.3 Technical Overview

The new 2-round SPS-Zero Knowledge protocol from 2-round Weak OT. The tech-
nical heart of our result is a new 2-round super-polynomial simulation secure zero knowledge
protocol(SPS-ZK) from a 2-round weak OT. The weak OT protocol we use has statistical sender’s
security but only T -chooser’s security. That is, the receiver’s choice bit is secure against all adver-
saries running in time T .poly(λ). Additionally, we will also use a T -time extractable commitment
protocol. To ease the exposition, let’s allow the simulator to run in exponential time. Then, by
running the protocol with an appropriately smaller security parameter, we can rely on just quasi-
polynomial simulation.

The main idea behind the new zero knowledge protocol is to “squash” a parallelized version of
Blum’s 3-round zero knowledge protocol for Hamiltonicity, by making use of the 2-round Weak OT
protocol. Our technique applies more generally to parallelized Σ-protocols with “special soundness”,
but here we will focus on Blum’s protocol for clarity. Recall that in Blum’s protocol, the prover
generates an initial message α, and prepares two responses γ0, γ1. The verifier then sends a random
bit β ∈ {0, 1}, and the prover responds with γβ.

To squash this protocol to two rounds, we first have the verifier choose β at the start, and then
use β as its input in the role of receiver in the Weak OT protocol. Note that this intuitively keeps
β hidden from the prover. Then, the prover sends α separately as part of its message, but also uses
γ0 and γ1 as its inputs in the role of sender in the Weak OT protocol. Thus, the verifier learns only
α and γβ and can then verify the original Blum proof. This protocol can be repeated in parallel
to boost soundness. We will now discuss how to establish SPS zero knowledge and computational
soundness separately.
Zero Knowledge: No rewinding allowed. First, observe that we can’t directly use the same
proof strategy as in Blum’s protocol as we can not rewind the adversary here. In our protocol,
since the verifier sends just one message, if we try rewinding the malicious verifier, it could just
keep sending the same message over and over. Thus, there is nothing to be gained from rewinding.

To establish zero-knowledge, we will use complexity leveraging to construct a super-polynomial
simulator running in time T1·poly(λ), where T1 > T , that can extract β from the verifier’s first
message in the Weak OT protocol. Now that the simulator knows β, simulation at first glance
appears to be straightforward, since it needs to place a correct value only in γβ. This can be done
by just invoking the zero knowledge simulator of Blum’s protocol. However, there is a subtle flaw
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in this argument due to the Weak OT protocol, as we discuss now in further detail.
Before we can see the flaw, we have to briefly discuss soundness. In order for soundness to

hold, we need that the prover cannot somehow “malleate” the verifier’s first OT message into a
successful second OT response by the prover. The way we will achieve such non-malleability is by
adding a weak commitment that can be extracted in time T < T1. Recall that it is impossible for
an adversary to take as input a T1-strong commitment CT1(m), and produce a T -weak commitment
CT (m′) in a way that causes m′ to depend on m. This is easy to see: An adversary running in time
T can anyway break CT (m′) and recover m′. It could then use m′ to predict m, thereby breaking
the T1-secure commitment CT1(m) – a contradiction to the stronger security of CT1 since T1 > T .

In the case of zero knowledge, recall that our simulator runs in time T1·poly(λ), where T1 > T .
Note that the OT protocol does not have receiver’s security against adversaries running in time
T1·poly(λ), since it needs to extract β from the first message of the weak OT. But then, it can
anyway break the commitment scheme since T1 > T . Therefore, now, in order for the commitment
to be stronger than the OT, we need T1 < T , whereas for proving soundness, we require that
T1 > T . (Since we require that the time taken to break the commitment is lesser than the time
taken to break the chooser’s security in the OT protocol.) This a fundamental contradiction that
suggests that perhaps our goal is impossible to achieve!

We fix this by exploiting the special structure of our protocol: Recall our observation that
a cheating verifier, which is without loss of generality deterministic, if rewound, would just keep
sending the same first message. Now, we want to exploit this fact to keep T1 > T as needed by
soundness, and argue zero knowledge in a different way: The simulation strategy itself is the same
as before. That is, the simulator runs in time T1·poly(λ) and extracts β from the first message of
the weak OT. It then invokes the simulator of Blum’s protocol and produces the prover’s message.
This second phase runs in polynomial time. Now, let’s consider the reduction that breaks the
commitment scheme by interacting with the malicious PPT verifier. The reduction, given the
commitment to be broken as an external challenge, includes it as part of the prover’s message
(more specifically, includes it as a commitment to γ1−β in the string α). Now, based on the PPT
verifier’s guess it breaks the commitment. The only stage in the reduction that runs in super-
polynomial time is when it breaks the initial message of the verifier to extract β. Therefore, let’s
consider the malicious verifier with the “best possible” initial message and fix this message. The
value β∗ extracted from this can just be given as auxiliary input (non-uniform advice) to the
reduction! So, now, the reduction is a non-uniform PPT machine. Therefore, if the PPT reduction
can now break the commitment scheme, we will achieve a contradiction. Note that the auxiliary
input is also given to the external challenger of the commitment scheme.
Soundness. To establish soundness of the protocol, we in fact prove a stronger property: that
our protocol is an argument of knowledge. (We will anyway need this later when we construct
the two message secure computation protocol for any general functionality). We will construct an
extractor, that, running in super-polynomial time T ·poly(λ), can extract out γ0 and γ1 from the
prover’s initial message by running the commitment extractor. Blum’s protocol is designed so that
α, γ0, and γ1 together yield knowledge of the Hamiltonian cycle in the original graph and hence
the extractor learns the witness. We will then show that if the extractor fails, but the malicious
prover succeeds in giving a correct proof, we can use this prover to break the T -chooser’s security
of the OT protocol by using the external OT challenge in the verifier’s first message against this
malicious prover. Several challenges arise when trying to establish soundness. We discuss them
now.

Recall that the aim is to show that if the malicious prover succeeds in giving a valid proof
but the extractor fails, then the reduction will break the T -chooser’s security of the OT protocol.
Note that the reduction can run in time T .poly(λ). The idea here was that the reduction interacts
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with the malicious prover and embeds the external OT challenge (of the OT receiver) in one of the
indices as part of the verifier’s first message. After checking that the proof is valid, the reduction
can extract both γ0 and γ1 from α by running the T -time commitment extractor and then run the
BlumExt to obtain the choice bit of the OT challenge. However, there is a subtle issue here that in
order to check that the proof is valid, the reduction needs to run the third stage OT algorithm to
recover γβ. But, since it did not generate the first OT message, the reduction does not have the
associated state that was used in that generation and hence cannot validate the proof (the state
output by the first OT algorithm will be needed as input for the third stage).

We fix this by using a simple combinatorial argument. We consider a new verifier strategy
where the verifier checks the proof at all indices except one and this choice is not revealed to the
prover. It can be easily seen that the success probability of the malicious prover is as much, if not
more, against this new verifier as well. Now, the reduction no longer needs to verify the proof at
the index where the OT challenge was embedded. Also, if the malicious prover has to produce a
valid proof, with probability close to 1, it still needs to produce a valid proof at every index since it
can guess the missed out index with very small probability. Therefore, the Blum extraction would
still work correctly on the embedded index and the reduction can break the OT receiver’s security.

Two message secure computation. Given any weak OT protocol and the two message
secure zero knowledge protocol from above, we compile them together using Yao’s garbled circuits
construction to produce a two message secure computation protocol for any general functionality. In
fact, we don’t need the full power of the zero knowledge protocol from above. In this construction,
we will only need the weaker notion of witness indistinguishability(WI) which is anyway implied
by SPS zero knowledge.

Consider a sender with input x and a receiver with input y and let the function they’re computing
be f . In the first round, the receiver, using each bit of his input, computes the first message of
the weak OT protocol and sends this across. In addition, he also initiates a WI protocol with the
sender and sends the first message of the verifier. Finally, he also sends the output of a one way
function OWF that is not invertible in time T.poly(λ) (but is invertible in time T1.poly(λ) where
T1 > T ). Looking ahead, this value will help the simulator against a cheating receiver to generate
a proof using the trapdoor statement. In response, the sender computes a garbled circuit that has
his input hardwired into it and then runs the OT algorithm using the garbled keys as his input
to the OT. Also, he computes a commitment c1 to his input and another commitment c2 to 0
which will prove to be useful for the simulator. He then computes a WI proof that he computed
the commitment c1 correctly, ran the OT algorithm correctly and computed the garbled circuit
correctly. It is easy to see that the receiver, after checking the validity of the proof, can recover the
garbled keys corresponding to his input using the OT and evaluate the garbled circuit to obtain the
output of the function. The trapdoor statement in the WI proof will basically say that the prover
knows the pre-image to the output of the OWF and the commitment c2 is a commitment to this
pre-image. Notice that we don’t need the full expressiveness of the zero knowledge property. It
is enough to have just witness indistinguishability and the simulator against a malicious receiver,
just extracts the pre-image of the one-way function OWF and uses the trapdoor statement to prove
that the pre-image is correct.

Similar to the proof of the zero knowledge protocol, the key tool in order to prove security is
complexity leveraging. The main obstacle we face is very similar to the one faced in the case of
the zero knowledge protocol. In particular, for proving security against a malicious receiver, we
will need to break the chooser’s security of the OT protocol and then reduce the security of our
protocol to the hiding of the commitment scheme. Therefore, we will need T1 < T . However, to
prove security against a malicious sender, we will require that T < T1, following a similar argument
as in the case of the soundness of the zero knowledge protocol. As in the case of our zero knowledge
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protocol, we fix this issue by considering an intermediate hybrid where non-uniform advice can
provide key information embedded in the malicious receiver’s fixed first message. This advice
allows us to consider experiments that do not incur the running time needed to actually extract
the information that was present in the first message of the receiver.

2 Preliminaries

Let λ denote the security parameter. We say that a function is negligible in the security parameter
λ, if it is asymptotically smaller than the inverse of any fixed polynomial. Otherwise, the function
is said to be non-negligible in λ. We say that an event happens with overwhelming probability if it
happens with a probability p(λ) = 1−ν(λ) where ν(λ) is a negligible function of λ. In this section,
we define the primitives studied in this paper. We will start by defining a weaker indistinguishability
based notion for oblivious transfer and then subsequently describe the simulation based notion for
general functionalities.

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs y. We write
y ← A(x) for the process of picking r at random and setting y = A(x; r). We also write y ← S for
sampling y uniformly at random from the set S. Some more primitives are defined in Appendix A.

Weak OT. In this paper, we consider a 1-out-of-2 Oblivious Transfer protocol (similar to [CCM98,
NP01, AIR01, DHRS04, HK12]) where one party, the sender, has input composed of two strings
(M0,M1) and the input of the second party, the chooser, is a bit c. The chooser should learn
Mc and nothing regarding M1−c while the sender should gain no information about c. We give a
definition for the setting where the sender is protected information theoretically while the chooser
is protected only computationally.

Definition 1 (Weak OT). The chooser runs the algorithm OT1 which takes 1λ and a choice bit
c ∈ {0, 1} as input and outputs (ot1, state). Chooser then sends ot1 to the sender, who obtains ot2
by evaluating OT2(1

λ, ot1,M0,M1), where M0 and M1 (such that M0,M1 ∈ {0, 1}λ) are its inputs.
The sender then sends ot2 to the chooser who obtains Mc by evaluating OT3(1

λ, ot2, state).

- Perfect correctness. For every choice bit c ∈ {0, 1} of the chooser and input messages M0

and M1 of the sender we require that, if (ot1, state)← OT1(1
λ, c), ot2 ← OT2(1

λ, ot1,M0,M1),
then OT3(1

λ, ot2, state) = Mc with probability 1. We speak of statistical correctness if this
probability is overwhelming in λ.

- Chooser’s security. We require that for every non-uniform polynomial-time adversary A,
|Pr[A(OT1(1

λ, 0)) = 1]− Pr[A(OT1(1
λ, 1)) = 1]| is negligible in λ.

We speak of T -chooser’s security if the above condition holds against all non-uniform adver-
saries A running in time T · poly(λ).

- Statistical sender’s security. We define an unbounded 1 time extractor OTExt such that
OTExt on any input ot1 outputs 0 if there exists some random coins such that OT1(1

λ, 0)
outputs ot1, and 1 otherwise.

Then for any value of ot1, and any K0,K1, L0, L1 with KOTExt(ot1) = LOTExt(ot1), we have that

OT2(1
λ, ot1,K0,K1) and OT2(1

λ, ot1, L0, L1) are statistically indistinguishable. We speak of
computational sender’s security if for all non-uniform polynomial time adversaries A we have
that |Pr[A(OT2(1

λ, ot1,K0,K1)) = 1]− Pr[A(OT2(1
λ, ot1, L0, L1)) = 1]| is negligible in λ.

1Note that fixing the parameters of the scheme, we can bound the running time of the extractor by some sub-
exponential function but we avoid it to keep notation simple and avoid unnecessary parameters.
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T -secure Weak OT. Finally, we define T -secure Weak OT to be a Weak OT protocol with
T -chooser’s security. Note that we can claim that any Weak OT protocol with chooser’s security
based on a set of assumptions Υ, is also a T -secure Weak OT protocol if each assumption in Υ is
additionally assumed to be secure against all non-uniform adversaries running in time T · poly(λ).
Note that this additionally relies on the fact that the security reduction for proving chooser’s
security of the underlying protocol is tight up to a multiplicative polynomial factor, in the security
parameter.

Naor-Pinkas and Aiello et al. [NP01, AIR01] provided a construction of a Weak OT proto-
col based on the Decisional Diffie-Hellman assumption. Subsequently, Halevi and Kalai [HK12]
provided an instantiation based on any smooth projective hash function. Further, note that the
above definition is not a simulation-based definition but rather an indistinguishability-based one.
Although it is a meaningful notion and is sufficient for some applications, it is still weaker than the
simulation-based (described next) notion.

Two Message Secure Computation via super-polynomial simulation. The simulation-
based definition compares the “real world,” where the parties (the sender and the receiver) execute
the protocol, to an “ideal world,” where no message is exchanged between the parties; rather, there
is a trusted party that takes an input from both parties, computes the output of the functionality on
these inputs, and sends the corresponding output to each party. Loosely speaking, the simulation
(resp., super-polynomial simulation)-based definition asserts that for every efficient adversary A
(controlling either the sender or the receiver) in the real world there exists an efficient (resp.,
super-polynomial) simulator S, controlling the same party in the “ideal world,” so that the outputs
of the parties in the ideal world are computationally indistinguishable from their outputs in the
real world. In particular, the simulator S needs to simulate the view of the adversary A in a
computationally indistinguishable manner.

Next, we formally define a Two Message Secure Computation protocol 〈S,R〉, between a sender
S with input x and a receiver R with input y. The receiver should learn f(x, y) and nothing else2

while the sender should gain no information about y. More formally we will define this notion by
comparing a two-round realization in the real-world with an ideal world scenario.

Real World. A Two Message Secure Computation protocol 〈S,R〉 is defined by three probabilistic
algorithms (NISC1,NISC2,NISC3) as follows. The receiver runs the algorithm NISC1 which takes the
receiver’s input y ∈ {0, 1}λ as input and outputs (nisc1, state). The receiver then sends nisc1 to the
sender, who obtains nisc2 by evaluating NISC2(nisc1, x), where x ∈ {0, 1}λ is the sender’s input.3

The sender then sends nisc2 to the receiver who obtains f(x, y) by evaluating NISC3(nisc2, state).
At the onset of the computation the real world adversary A corrupting either the sender S

or the receiver R, receives some auxiliary information z. Next, the computation proceeds as
described above where the honest party sends messages as prescribed by the protocol and the
adversary A sends arbitrary messages on behalf on the corrupted party. At the end of the com-
putation the uncorrupted party outputs whatever is specified in the protocol. The corrupted
party outputs any arbitrary PPT function of the view of A. The overall output of the real-
world experiment consists of all the values output by all parties at the end of the protocol,

and this random variable is denoted by REAL
〈S,R〉
A (1k, x, y, z). Let REAL

〈S,R〉
A denote the ensem-

ble {REAL〈S,R〉A (1k, x, y, z)}k∈N,x,y∈{0,1}λ,z∈{0,1}∗ .

2Unlike Weak OT in which the sender is protected information theoretically this notion will provide only compu-
tational security for the sender.

3For simplicity of notation we denote the lengths of the inputs of the sender and the receiver by λ. In general
they could be arbitrary polynomials in the security parameter λ.
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Ideal World. In the ideal world experiment, the sender S and the receiver R interact with a
trusted party for computing a function f : {0, 1}λ×{0, 1}λ → {0, 1}λ. The ideal world computation
in presence of the ideal world adversary S corrupting either the sender S or the receiver R, and
an (incorruptible) trusted party F , proceeds as follows. First, as in the real-life model, S gets
auxiliary information z. Next, the ideal world adversary S generates any arbitrary input on behalf
of the corrupted party, which it sends to the trusted party F . The honest party sends its input
to the trusted party F . At this point the ideal functionality evaluates the output and sends it
to the receiver. The honest receiver outputs this value. The adversarial receiver S outputs an
arbitrary value. Note that S is allowed to run in super-polynomial time. In this work, we will
focus by default on simulators running in quasi-polynomial time - i.e npoly(log(n)) where n is the
security parameter. (See Definition 6 in [Pas03] for a definition of quasi-polynomial simulation in
the context of zero-knowledge protocols.)

The overall output of the ideal process consists of all the values that are output by all parties
at the end of the protocol. Let this random variable be denoted by IDEALFS (1k, x, y, z) and let
IDEALFS denote the ensemble {IDEALFS (1k, x, y, z)}k∈N,x,y∈{0,1}λ,z∈{0,1}∗ .

Equivalence of Computations. Informally, we require that executing a protocol 〈S,R〉 in the
real world roughly emulates the ideal process for evaluating f .

Definition 2. Let f be any polynomial time computable function on two inputs and let 〈S,R〉 be a
protocol between a sender S and a receiver R. We say that 〈S,R〉 two-message securely evaluates
f if for every PPT real world adversary A there exists an ideal world adversary S, such that

REAL
〈S,R〉
A

c
≈ IDEALFS .

Stricter Simulation. As described above the ideal world adversary is allowed to execute in
super-polynomial time. We will consider a stricter notion of simulation under which a simulator
is allowed to execute in super-polynomial time prior to its interaction with the ideal functionality.
The simulator is subsequently restricted to be polynomial time. More formally, the ideal world
adversary is modeled by two machines S = (S1,S2). First, as in the real-life model, S1 gets
auxiliary information z. Next, the ideal world adversary S1 gets to execute for a super-polynomial
amount of time, and generates any arbitrary input on behalf of the corrupted party, which it sends
to the trusted party F , and a state of polynomial length. The honest party sends its input to the
trusted party F . At this point the ideal functionality evaluates the output and sends it to the
receiver. The honest receiver outputs this value. The adversarial receiver S2 outputs an arbitrary
PPT function of the received value and state. All the results in this paper obtain this stricter
notion described above, and throughout this paper we will use the term Two Message Secure
Computation to always imply this stricter notion.

Now, we define the notion of Two Message Secure Computation for two specific functionalities,
namely, zero-knowledge and Parallel OT.

Zero-Knowledge. A Two Message Secure Computation for the zero-knowledge functionality can
be described by three PPT algorithms (ZK1,ZK2,ZK3). Consider a prover, who holds a witness w
for some statement x ∈ L and wants to convince a verifier about it. The verifier first computes
(zk1, zkst) ← ZK1(1

λ) and sends zk1 to the prover (zkst is the verifier’s state). Then, the prover
computes zk2 ← ZK2(1

λ, zk1, x, w) and sends zk2 to the verifier. Finally, the verifier accepts if the
the computation ZK3(1

λ, zk2, x, zkst) outputs 1. We require that the first message of the verifier
depends just on the size of the theorem being proven4 and not on the theorem itself. This allows
the prover to choose its theorem after receiving the first message of the verifier.

4We can write ZK1 to take an additional input specifying the size of the theorem proven. To keep notation simple
we avoid it and upper bound the size of the theorem proven by λ.
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We stress that while a witness indistinguishable argument scheme is already a zero knowl-
edge scheme with unbounded simulation, it is not necessarily a zero knowledge scheme with a
super-polynomial time simulator with running time bounded by a quasi-polynomial function of
the security parameter. Thus, zero knowledge with quasi-polynomial simulation is a strictly more
powerful notion than witness indistinguishability. This follows immediately from the fact that the
notion of witness indistinguishability is meaningless in the setting of unique witness, but the notion
of quasi-polynomial simulation is still meaningful.

Parallel OT. A Two Message Secure Computation protocol for the functionality that performs k-
parallel invocations of oblivious transfer where k = poly(λ) will be denoted by Parallel OT through-
out this paper.

3 Difficulties in constructing Two Message Secure Computation pro-
tocols

Goldreich and Oren [GO94] showed that it is impossible to construct 2-round zero-knowledge ar-
guments for languages outside BPP. As explained in [DJKL12], this result extends in a straightfor-
ward manner to show the impossibility of constructing 2-round T -zero-knowledge5 arguments for
T -hard languages, that are sound against cheating provers running in time T ·poly(λ). More recent
works [DJKL12, CLMP12] gave a black-box impossibility result ruling out 2-round zero-knowledge
sound against polynomial-time cheating provers (based on T -hard falsifiable assumptions). Note
that since Two Message Secure Computation for OT implies 2-round zero-knowledge arguments we
can obtain analogous impossibility results for Two Message Secure Computation for OT. It is also
interesting to note that the positive result for Two Message Secure Computation for OT obtained
in this paper assume that the underlying assumption is T ′-hard for T ′ that is strictly more than
the running time of the distinguisher. Thus, these results are essentially tight.

The aforementioned impossibility result only rules out black-box reductions to falsifiable as-
sumptions. As a starting point, based on the premise that known instances of Weak OT protocols
such as [NP01, AIR01, HK12] are not known to be susceptible to any attacks in the simulation
setting, one may conjecture that that in fact all Weak OT protocols can be proven secure under
a simulation based definition when unbounded simulation is allowed and we are willing to make
strong (possibly non-falsifiable) assumptions.

In fact, it is argued in [HK12] (Section 3) that any Weak OT protocol provides simulation-based
security in the standard sense for the case of a malicious sender, assuming that the simulator is
allowed to reset the sender. This is argued as follows. The simulator (who does not know the
choice bit of the actual receiver) simulates the (honest) receiver first with choice bit b = 0, and
then it resets the sender and simulates the honest receiver with choice bit b = 1. This way the
simulator extracts both messages M0 and M1 from the corrupted sender. It then gives (M0,M1)
to the trusted party. Then the simulator uses the view of the cheating sender in the first execution
(with the choice-bit b = 0). They argue that this view is indistinguishable from the “real world”
view based on the receiver’s security of the Weak OT protocol, and from the fact that the sender
does not receive any output from the trusted party. On the other hand, they argue that Weak
OT does not give standard simulation-based guarantee in the case that the receiver is corrupted,
because a malicious receiver is not guaranteed to “know its own choice bit b,” and therefore the
simulator does not know which input bit to send to the trusted party. However, they point out
that this does guarantee an exponential time simulation of the receiver’s view of the interaction.

5Recall that in T -zero-knowledge protocols the simulator and the distinguisher run in time T · poly(λ).
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Note that the argument from [HK12] is only applicable when the view of a cheating sender or the
view of a cheating receiver is considered by itself. We show that if (as per standard definitions) joint
distributions of the outputs of both parties are considered, then proving simulation based security
for a Weak OT protocol even when unbounded simulation is allowed is very problematic. We
demonstrate this by constructing a protocol that can be proved to be Weak OT under reasonable
assumptions but suffers for a real attack under a simulation based definition. In particular, we
show a malicious sender strategy such that even a single instance of execution of the protocol with
a malicious sender can not be simulated by any unbounded simulator.

The protocol that we construct is only a slight modification of known protocols [NP01, AIR01]
and highlights at the very least, the obstacles that we face even in proving security of specific
protocols. We start by recalling the ElGamal encryption scheme abstractly. Let G be a multiplica-
tive subgroup of Z∗q of order p, where p and q are primes and p is of length λ that divides q − 1.
Let g be the generator of this group G. The public key for ElGamal encryption is generated by
sampling x← Z∗p and setting the public key to be (p, q, g, h) where h = gx. The encryption proce-
dure Enc((p, q, g, h),m) is defined follows: Choose r ∈ Z∗p and output (gr,m · hr). The decryption
procedure Dec((u, v), x) outputs v

ux . Let e(·) be some invertible encoding function mapping Zp to
G. Then circular security of ElGamal implies that the encryption scheme remains semantically
secure even when an encryption of e(x) is given to the adversary. In particular semantic security is
preserved when Enc((p, q, g, h), e(x)) is included in the public key. As pointed out in [BHHO08],
it is unlikely that it would follow from the DDH assumption.

Lemma 1. Assuming that ElGamal is circularly secure, there exists a Weak OT protocol and a
real world cheating sender S∗ strategy for this protocol such that it can not be simulated by any
(unbounded) ideal world simulator.

Proof. We will start by giving the protocol. The protocol used in our counter example is very
similar to the DDH based Weak OT protocols from [NP01, AIR01]. The only difference being that
our protocol includes an encryption E of e(a) along with its first message. This value is not used
by the protocol itself but however will be useful for the malicious sender that we will construct.

1. (ot1, state) ← OT1(c): Sample a, b ← Zp. Compute x := ga, y := gb, z := gab+c and
E = (gr, e(a) · gbr). The output ot1 is then the tuple (x, y, z, E).

2. ot2 ← OT2(ot1,M0,M1): sample t0, s0, t1, s1 ← Zp. For each i ∈ {0, 1}, compute wi := xsigti

and ui :=
(
z · g−i

)si ytiMi. The output ot2 is then the tuple (w0, u0, w1, u1).

3. OT3(ot2, state): Compute Mc as uc · w−bc .

The above protocol is a Weak OT protocol. The argument follows directly from the proof
of [NP01, AIR01] except that in our case the chooser’s security will be based on the circular
security of ElGamal.

We will now provide an attack that specifies a particular cheating strategy for a malicious sender
(in a single instance of execution of the protocol) that can not be simulated by any unbounded
simulator. In particular we will provide an efficient malicious sender strategy such that for every
unbounded simulator we have that the joint distributions of the sender’s view and the receiver’s
output in the real world and the ideal world are efficiently distinguishable.

Our cheating sender proceeds as follows: On receiving the message (x, y, z, E) it proceeds by
setting ot2 to be the tuple (E,E). On receiving this message R, regardless of the value of b, outputs
e(a). Note that in the real world the joint distribution of the view of the sender and the output
of the honest receiver ((x, y, z, E), e(a)) is sufficient for the distinguisher to efficiently compute the
input of the honest receiver. The distinguisher computes the honest receiver’s input c as follows:
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• Given : (x, y, z, E, a)

• Compute gab as ya. (since y = gb)

• Then, compute c as z
gab

(since z = gab+c).

However no unbounded simulator can simulate this distribution in the ideal world.

The protocol used in describing the above attack is a simple modification of the Naor-Pinkas/Aiello-
Ishai-Reingold protocol where the honest receiver with its first message includes an encryption of
the secret key. It is reasonable to assume that ElGamal is indeed circularly secure. Furthermore if
it was possible to efficiently obtain an encryption of the secret key given the public key then the
counterexample presented above would extend to the Naor-Pinkas/Aiello-Ishai-Reingold protocol.
We do not believe that such a procedure exists. But it seems likely that the existence of such a pro-
cedure that efficiently concocts an encryption of the secret key can not be ruled out under the DDH
assumption alone. Based on this conjecture we can claim that Naor-Pinkas/Aiello-Ishai-Reingold
protocol can not be proved secure with an unbounded simulator under the DDH assumption. We
stress that we do not make any of these speculative assumptions elsewhere in the paper. We use
them here just to possibly explain obstacles in coming up with proofs for known protocols under
reasonable assumptions.

4 Zero-Knowledge from Weak OT

In the following two sections, we will prove that a secure realization of T -secure Weak OT protocol
(Weak OT with T -chooser’s security), where T is an appropriate super-polynomial function in the
security parameter, suffices for realizing Two Message Secure Computation for any functionality.
We will provide this construction in two steps. First, in this section, we will show that a T -secure
Weak OT protocol suffices for constructing a Two Message Secure Computation protocol for the
zero-knowledge functionality. In the next section, we will show that zero-knowledge and Weak
OT suffice for realizing Two Message Secure Computation for any functionality. More efficient
constructions can be obtained by first realizing Parallel OT and then using it to instantiate the
protocols of Ishai et al. [IPS08, IKO+11].

Before we describe the protocol, let’s list the primitives used. Let T, T1 be some super-
polynomial functions in the security parameter λ with T < T1.
Parameters:

• (OT1,OT2,OT3) be functions corresponding to a T-secure Weak OT protocol. That is, it is
secure against all adversaries running in time T .poly(λ), but can be broken by adversaries
running in time T1.poly(λ).

• C = (Com,Open) be a non-interactive T -extractable commitment scheme with non-uniform
hiding. (see Definition 6 in Appendix A).

The construction of the protocol appears in Figure 1.

Notation for (modified) Blum’s Hamiltonicity Protocol.

- The distribution D(·, ·) on input x and witness w generates (α, γ0, γ1) as follows. Sample
(a, b0, b1) such that a is the first message of Blum’s Hamiltonicity protocol (instantiated
with commitment C) and b0 and b1 are the response on challenges 0 and 1 respectively.
Let α = (a, c0, c1) where c0 = Com(b0; r0) and c1 = Com(b1; r1) and let γ0 = (b0, r0) and
γ1 = (b1, r1).
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- Let VBlum be the (modified) verification algorithm for the Blum’s Hamiltonicity protocol.
More specifically, VBlum on input (x, α, β, γ) outputs 1 if it the underlying transcript is an
accepting transcript of the Blum’s Hamiltonicity protocol.

- SBlum on input (x, β) generates a simulated accepting transcript (α, β, γ0, γ1) such that it is
computationally indistinguishable from a real transcript.

- Finally, we will also use the extractor for Blum’s Hamiltonicity protocol, denoted by BlumExt.
The extractor on input x, α, γ0 and γ1 outputs the Hamiltonian cycle in x or (⊥, β) such that
for no value of γ, VBlum(x, α, 1− β, γ) = 1. The extractor BlumExt runs in time T .poly(λ).

πZK

Common Input: A graph x.
Auxiliary Input for P : w such that w is a Hamiltonian cycle in the graph x.

1. (zk1, zkst)← ZK1(1λ):

• For each i ∈ [λ], V samples βi ← {0, 1} and generates (ot1,i, statei)← OT1(βi).

• It sets zk1 := {ot1,i}i∈[λ] and zkst := {statei}i∈[λ].

2. zk2 ← ZK2(1λ, zk1, x, w):

• P parses zk1 as {ot1,i}i∈[λ].

• For each i ∈ [λ], P generates (αi, γ
0
i , γ

1
i )← D(x,w), ot2,i ← OT2(ot1,i, γ

0
i , γ

1
i ).

• It then sets zk2 := {ot2,i, αi}i∈[λ].

3. ZK3(1λ, zk2, x, zkst):

• V parses zkst as {statei}i∈[λ] and zk2 as {ot2,i, αi}i∈[λ].

• For each i ∈ [λ], V obtains γβi

i as OT3(ot2,i, statei) and checks to see if

VBlum(x, αi, βi, γ
βi

i ) = 1.

• Output 1 if all the checks pass and 0 otherwise.

Figure 1: Two Message Secure Computation for Zero-Knowledge

Lemma 2. Assuming that (OT1,OT2,OT3) is a 2λ
ε
-secure Weak OT protocol and C = (Com,Open)

is a 2λ
ε
-extractable and non-uniformly hiding non-interactive6 commitment scheme for some con-

stant 0 < ε < 1, we have that the protocol πZK described in Figure 1 is a two message zero-knowledge
argument for NP with quasi-polynomial simulation.

This lemma immediately implies the following theorem.

Theorem 4. Two round protocols for the zero-knowledge functionality with quasi-polynomial sim-
ulation can be based on sub-exponentially hard Decisional Diffie-Hellman Assumption.

6Note that we present our protocol in terms of non-interactive commitments (implied by one-to-one OWFs) just
for simplicity of notation. We can instead use Naor’s two round commitment scheme [Nao91] that can be based
on one-way functions. The only difference being that Naor’s commitment is statistically binding instead of being
perfectly binding. All claims which rely on this lemma will be stated keeping this simplification in mind.
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4.1 Security Proof

The correctness of the scheme follows from the correctness of Blum’s Hamiltonicity protocol. We
will now give proofs for the simulation of the prover (argument of knowledge) and of the verifier
(zero-knowledge).

Remark: In the security proofs in this section and the next, the simulator will run in time
T1 ·poly(λ). Notice that when we instantiate the primitives, T = 2λ

ε
and T1 = 2λ. This corresponds

to an exponential time simulator whereas we require the simulator to only run in quasi-polynomial
time. We will use the standard trick of using a smaller security parameter to address this. Let λ =
log2(k). We will now use k as the security parameter in our protocols. Note that the assumptions
are still sub-exponentially secure with respect to λ. However, the simulator now runs in time
2log

2(k) = klog(k) which is quasi-polynomial in the security parameter k.

4.1.1 Argument of Knowledge

First, we note that arguing argument of knowledge also implicitly captures soundness of the pro-
tocol. In order to argue the argument of knowledge property, we need to construct an extrac-
tor Ext with the following property: we require that for any PPT malicious prover P∗ such that
(zk2, x

∗)← P∗(1λ, zk1) and ZK3(1
λ, zk2, x

∗, zkst) = 1 where (zk1, zkst)← ZK1(1
λ) we have that the

extractor algorithm Ext running in time T · poly(λ) on input (zk2, x
∗, zkst) outputs a Hamiltonian

cycle in the graph x∗. The extractor is described in Figure 2.

Input: (zk2, x
∗, zkst).

The extractor does the following:

• For each i ∈ [λ], recall that αi = (ai, c
0
i , c

1
i ) where c0i and c1i are commitments to strings

γ0i and γ1i respectively. Run the T -time extractor ComExt on inputs c0i and c1i to obtain
γ0i and γ1i .

• For each i ∈ [λ], execute the T -time extractor BlumExt on input (α, γ0i , γ
1
i ). If BlumExt

outputs a Hamiltonian cycle in graph x∗, then abort everything else and output the
extracted cycle. On the other hand, if BlumExt outputs (⊥, ·) for every i ∈ [λ], then
output ⊥.

Figure 2: Extraction strategy against a malicious prover

Now we will argue that this extraction procedure described above successfully extracts a cycle
in x∗ with overwhelming probability. We will prove this by reaching a contradiction. Lets assume
that there exists a PPT cheating prover P∗ such that it succeeds in generating accepting proofs
even though the extraction of the witness fails. More formally, lets P∗ be a PPT adversary such
that, ε = Pr[ZK3(1

λ, zk2, x
∗, zkst) = 1

∧
Ext(zk2, x

∗, zkst) = ⊥ : (zk1, zkst) ← ZK1(1
λ), (zk2, x

∗) ←
P∗(1λ, zk1)] is non-negligible.

Then we will use such an adversarial prover P ∗ and construct an adversary contradicting T -
chooser’s security of the Weak OT protocol. We proceed with the following hybrids:

- H0: This is the real game with the guarantee that ε is non-negligible.

- H1: Recall than in H0 ZK3 outputs 1 only if VBlum(x, αi, βi, γ
βi
i ) = 1 for every i ∈ [λ].

In H1 we modify ZK3 and denote it by ZK′3. ZK′3 samples a random subset S ⊂ [λ] such
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that |S| = (λ − 1) and check VBlum(x, αi, βi, γ
βi
i ) = 1 for all i ∈ S (as opposed to all

i ∈ [λ]). We have that, Pr[ZK′3(1
λ, zk2, x

∗, zkst) = 1
∧
Ext(zk2, x

∗, zkst) = ⊥ : (zk1, zkst) ←
ZK1(1

λ), (zk2, x
∗)← P ∗(1λ, zk1)] is at least ε.

Let R ⊆ [λ]\S, be a set such that j ∈ R if VBlum(x, αj , βj , γ
βj
j ) = 1. Clearly, 0 ≤ |R| ≤ 1 since

there is only one index not in S. Further, let E be the event such that |R| = 1. Now, its easy to see
that the only way |R| could be 0 is if the malicious prover P∗ was able to guess S correctly. This
can happen with probability at most 1

λ (i.e probability that P∗ correctly guesses which random
index was not part of S). Therefore, Pr[¬E] = 1

λ and so, Pr[E] = (1 − 1
λ). That is, probability

that the other index not part of set S belongs to set R is at least (1− 1
λ).

Using this malicious prover P∗, we will construct an adversaryA that contradicts the T -chooser’s
security of the Weak OT protocol. Note that commitments can be broken in time T.poly(λ) but
the chooser’s bit in the OT protocol is assumed to be secure against adversaries running in time
T.poly(λ). The adversary A obtains an external challenge OT1(b) for a random b ∈ {0, 1}, and it
needs to guess b. It does the following:

• Invoke P∗ and embed the challenge in one of the random locations i∗ ← [λ]. That is, as
part of the first message of the verifier, for index i∗, set the external challenge OT1(b) as
ot1,i∗ and statei∗ = i∗. For all other indices i ∈ [λ], choose a random bit βi and compute
(ot1,i, statei)← OT1(βi).

• Set zkst := {statei}i∈[λ] and send zk1 = {ot1,i}i∈[λ].

• Obtain the message zk2 from P∗ and run the algorithm ZK′3 on input (1λ, x∗, zk2, zkst) using
the random set S to be [λ]\{i∗}.

• If the algorithm ZK′3 outputs 0 then A outputs a random bit.

• On the other hand if ZK′3 outputs 1, similar to the extractor described above, A first runs
ComExt to extract γ0i∗ and γ1i∗ . Then, it outputs b′ where (⊥, b′) is the output of BlumExt on
input (α∗i , γ

0
i∗ , γ

1
i∗).

Analysis :
When ZK′3 outputs 0 (which happens with probability 1− ε) then A’s guess about b will be correct
with probability at least 1

2 . On the other hand when ZK′3 outputs 1, we will have that with
probability at least (1 − 1

λ) i∗ ∈ R and hence b′ where (⊥, b′) is the output of BlumExt on input
(α, γ0i∗ , γ

1
i∗) will be the correct guess for b. Compiling together the two cases we have that A guesses

the bit b correctly with probability at least (1−ε).1/2+ε(1− 1
λ) = 1

2 + ε
2−

ε
λ which is non-negligible

if ε is non-negligible. This contradicts the T-chooser’s security of the OT protocol.
This completes the proof of argument of knowledge.

Remark: The reason we had to switch to a new hybrid where for one index we don’t run the
Blum verifier (essentially the target index where we embed the external OT challenge) is that for
the index where we embed the external challenge, in order to run the verifier, the adversary A
needs the state that was generated when the algorithm OT1 was run to generate the first message.
However, since A got that externally, it doesn’t have the state in its possession and hence can’t
run the Blum verifier for this index.
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4.1.2 Zero-Knowledge

In order to show zero-knowledge (or simulating a malicious verifier V∗) we need to construct a
simulator S satisfying Definition 2. Let’s consider a malicious verifier V∗ described using a pair of
algorithms (V∗1,V

∗
2). The simulation strategy is described in Figure 3. Note that the simulator runs

in time T1.poly(λ).

Common Input: A graph x.

1. (zk1, zkst) ← V∗1(x, 1λ): The malicious verifier runs V∗1 computes its first message zk1
to be sent to the prover and some associated state zkst.

2. The simulator S does the following:

• Parse zk1 as {ot1,i}i∈[λ].
• For each i ∈ λ, run OTExt(ot1,i) to extract the challenge bit βi of the verifier. By

the sender’s security in the OT protocol, we know that the extraction succeeds
with non negligible probability. Note that this requires time T1.poly(λ).

• For each i ∈ λ, run SBlum on input (x, βi) to produce (αi, γ
0
i , γ

1
i ). (where γ1−bi is

in fact a dummy message)

• Compute ot2,i ← OT2(ot1,i, γ
0
i , γ

1
i ).

• Set zk2 := {ot2,i, αi}i∈[λ] and send it to the verifier.

3. V∗2(x, λ, zkst, zk2): The malicious verifier runs V∗2 outputs either 0 or 1.

Figure 3: Simulation strategy against a malicious verifier

Claim 1. The simulation strategy described in Figure 3 is secure against a malicious verifier.

Proof. Using a series of hybrid arguments, we will show that the view of the malicious verifier in
the ideal world is computationally indistinguishable from its view in the real world.

Let’s assume to the contrary that there exists a PPT malicious verifier V∗ = (V∗1,V
∗
2) that has a

non negligible probability ε of distinguishing its view in the real world from the ideal world. Let’s
consider the “best possible” initial message of the verifier - i.e the output of the algorithm V∗1 that
produces the highest distinguishing probability between the views in the real and ideal worlds.
Let’s fix this message as the initial message zk∗1 of the verifier. That is, consider V∗1 to be a de-
terministic algorithm that takes as input the randomness used to output this best possible message.

Essentially, given any PPT malicious adversary R̂∗ that can distinguish the two views with
non-negligible probability ε, we are transforming it into a new deterministic adversary R∗ such that
the randomness used to produce this best possible initial message is hardwired inside it. Therefore,
even R∗ can distinguish the two views with probability at least ε.

Using this malicious verifier, we can construct a non-uniform PPT adversary A that breaks
either the hiding property of the commitment scheme or the sender’s security of the OT protocol.
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Note that the commitment scheme is secure against all PPT adversaries (it is only assumed to
be broken by an adversary running in time T.poly(λ)) and the OT protocol in fact has statistical
security and hence is secure against all PPT adversaries. Thus, this would lead to a contradiction.
In our reduction, the non-uniform advice (or auxiliary input) given to the adversary A is the set of
challenge bits {β∗i }i∈[λ] of the verifier V∗1 that was used to generate the fixed first message (observe
that this is exactly what the simulator in the ideal world extracts in the first step by running the
OTExt algorithm). These challenge bits are also accessible to the second stage verifier V∗2 as part
of the state - zkst that is output by V∗1. We will now describe the reduction. A acts as the prover
in its interaction with the malicious verifier V∗.

1. Hybrid 0: This is the real experiment where the message sent to the verifier zk2 = {ot2,i, αi}i∈[λ]
is computed using the algorithm ZK2(1

λ, zk∗1, x, w). Here, αi = (ai, c
0
i , c

1
i ) where c0i =

Com(b0i ; r
0
i ), c

1
i = Com(b1i ; r

1
i ), γ

0
i = (b0i , r

0
i ) and γ1i = (b1i , r

1
i ). Also, ot2,i ← OT2(ot1,i, γ

0
i , γ

1
i ).

2. Hybrid 1: For each i ∈ λ, compute γ
(1−β∗i )
i = (⊥,⊥).

3. Hybrid 2: For each i ∈ λ, compute c
(1−β∗i )
i = Com(⊥; r

(1−β∗i )
i ). Observe that this is same

as the ideal world experiment since the simulator would do exactly this: replace the entries
corresponding to the positions not challenged by the verifier (i.e positions (1− β∗i )) using ⊥.

We will now argue indistinguishability of the hybrids. Note that the auxiliary input is also
given to the external challenger of the primitive we are trying to break in every pair of hybrids.

Lemma 3. Assuming statistical sender’s security of the OT protocol, Hybrid 0 is indistinguishable
from Hybrid 1.

Proof. In both hybrids, the receiver’s choice bits in the OT protocol are the set of β∗i ’s. (which
was fixed as the non-uniform advice given to the adversary A generating the hybrids). The only

difference in the two hybrids is the way in which the values (γ
(1−β∗i )
i ) that are part of the sender’s

input to the OT protocol are generated. In hybrid 0, they are generated as γ=i (b
(1−β∗i )
i , r

(1−β∗i )
i )

while in hybrid 1, they are generated as γ
(1−β∗i )
i = (⊥,⊥). Therefore, if the malicious verifier V∗

can distinguish between the two hybrids with non-negligible probability ε, the non-uniform PPT
adversary A can break the sender’s security of the OT protocol with non-negligible probability ε
which would be a contradiction. (In fact, it is enough to assume that the OT protocol has just
computational security instead of statistical.)

Lemma 4. Assuming computational hiding of the commitment scheme, Hybrid 1 is indistinguish-
able from Hybrid 2.

Proof. In both hybrids, the receiver’s choice bits in the OT protocol are the set of β∗i ’s. (which
was fixed as the non-uniform advice given to the adversary A generating the hybrids). The only

difference in the two hybrids is the way in which the commitments (c
(1−β∗i )
i ) are generated. In hybrid

1, they are generated as c
(1−β∗i )
i = Com(b

(1−β∗i )
i ; r

(1−β∗i )
i ) while in hybrid 2, they are generated as

c
(1−β∗i )
i = Com(⊥; r

(1−β∗i )
i ). Therefore, if the malicious verifier V∗ can distinguish between the two

hybrids with non-negligible probability ε, the non-uniform PPT adversary A can break the hiding
property of the commitment with non-negligible probability ε which would be a contradiction.

This completes the proof of zero knowledge.
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5 Two Message Secure Computation from Weak OT

In this section, we show that Weak OT together with two message witness indistinguishability gives
an immediate construction of Two Message Secure Computation for the general functionality. This
construction is obtained by compiling the Yao’s garbled circuit construction (see Section A.3) and
Weak OT protocol with our zero-knowledge protocol. Note that the zero knowledge protocol from
Section 4 already satisfies this requirement. (and gives a much stronger functionality).

Let’s consider two parties : the sender S with input x and the receiver R with input y that
wish to securely compute any general function f . Before we describe the protocol, let’s list the
primitives used. Let T, T1 be some super-polynomial functions in the security parameter λ with
T < T1.
Parameters:

• (OT1,OT2,OT3) be functions corresponding to a T-secureWeak OT protocol. That is, its
secure against all adversaries running in time T .poly(λ), but can be broken by adversaries
running in time T1.poly(λ).

• (WI1,WI2,WI3) be a two message secure computation protocol for the witness indistinguisha-
bility functionality. This protocol is secure against all adversaries running in time T .poly(λ),
but can be broken by adversaries running in time T1.poly(λ).

• (Garble,GCEval) be the algorithms corresponding to Yao’s garbled circuit construction that
is secure against all adversaries running in time T .poly(λ), but can be broken by adversaries
running in time T1.poly(λ).

• com be a commitment scheme that is extractable in time T .poly(λ).

• let OWF be a one-way function that is not invertible in time T .poly(λ) but can be inverted
by an attacker AOWF running in time T1.poly(λ).

In Figure 4 we describe the construction of our Two Message Secure Computation protocol. We
will next prove its security.

Lemma 5. If (OT1,OT2,OT3) is a sub-exponentially secure Weak OT protocol, (WI1,WI2,WI3)
is a sub-exponentially secure two message witness indistinguishable argument for NP and sub-
exponentially secure one-way functions exist, the protocol presented in Figure 4 is a Two Message
Secure Computation protocol with quasi-polynomial simulation for any general function.

This lemma immediately implies the following theorem.

Theorem 5. Two Message Secure Computation protocols with quasi-polynomial simulation for
general functionalities can be based on any of the following sub-exponential assumptions: (1) De-
cisional Diffie-Hellman Assumption; (2) Quadratic Residuosity Assumption; (3) N th Residuosity
Assumption; or (4) Witness Encryption (together with one-to-one one-way functions).

We can easily transform the above protocol to a setting where both parties are required to
receive outputs by adding an extra round. Now, for the special case of coin tossing, we get the
following corollary:

Corollary 3. Three round secure coin tossing protocols with quasi-polynomial simulation can be
based on any of the following sub-exponential assumptions: (1) Decisional Diffie-Hellman Assump-
tion; (2) Quadratic Residuosity Assumption; (3) N th Residuosity Assumption; or (4) Witness
Encryption (together with one-to-one one-way functions)
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〈S,R〉

Inputs: The sender S gets input x and the receiver R gets input y. Both S and R get the function f
they want to evaluate as input.
Output: R expects to receive f(x, y) as output.

1. (nisc1, state)← NISC1(1λ, y):

• R generates (ot1,i, statei)← OT1(yi) for each i ∈ [λ] and (wi1,wist)←WI1(1λ).

• R chooses a random string z ← {0, 1}λ and computes Z = OWF(z).

• It sets nisc1 := (ot1,1, . . . , ot1,λ,wi1, Z),
state = (state1, . . . , stateλ,wist, z, Z) and sends nisc1 to S.

2. nisc2 ← NISC2(nisc1, x):

• S parses nisc1 as (ot1,1, . . . , ot1,λ,wi1, Z).

• It computes c1 = com(x; r1) and c2 = com(0; r2) using randomness r1, r2 respectively.

• S samples a 2λ key tuple K = {Ki,b}i∈[λ],b∈{0,1}, where Ki,b ∈ {0, 1}λ and generates a

garbled circuit GC := Garble(K,C;ω) where Cx(y) is a circuit that evaluates f(x, y) on
input y.

• Then, S generates ot2,i := OT2(ot1,i,Ki,0,Ki,1;ωi) for each i ∈ [λ].

• After that, S computes wi2 ←WI2(1λ,wi1, (ot2,1, . . . , ot2,λ, GC, c1, c2, Z),
(ω, {ωi}i∈[λ], x, r1,⊥,⊥)) for the statement (ot2,1, . . . , ot2,λ, GC, c1, c2, Z)
∈ L, where L contains tuples for which there exists
either a witness Ω = (K,C, ω, ω1, . . . , ωλ, x, r1) such that:

(1) GC := Garble(K,C;ω)
∧
c1 = com(x; r1)

∧
∀i ∈ [λ], ot2,i = OT2(ot1,i,Ki,0,Ki,1;ωi)

(OR) there exists a witness Ω2 = (z, r2) such that:

(2) OWF(z) = Z
∧
c2 = com(z; r2)

• Finally, S sets nisc2 := (ot2,1, . . . , ot2,λ, GC,wi2, c1, c2) and sends it to R.

3. NISC3(nisc2, state):

• R parses nisc2 as (ot2,1, . . . , ot2,λ, GC,wi2, c1, c2) and state as (state1, . . . , stateλ,wist, z, Z).

• If WI3(1λ,wi2, (ot2,1, . . . , ot2,λ, GC, c1, c2),wist) = 0 then R outputs ⊥.

• Otherwise, for each i ∈ [λ] it obtains Ki,yi = OT3(ot2,i, statei) and outputs
GCEval(Ky, GC).

Figure 4: Two Message Secure Computation for a general function f

In order to get better efficiency we can use the Two Message Secure Computation protocol in
Figure 4 and obtain a protocol (Parallel OT) for realizing the functionality that allows for poly(λ)-
parallel oblivious transfer invocations. We can then use this protocol in order to instantiate the
protocols of Ishai et al. [IPS08, IKO+11].
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5.1 Security Proof

In this section, we prove Lemma 5. That is, we prove the security of our two message secure
computation protocol from Figure 4.

The correctness of the scheme easily follows from the correctness of the OT protocol, the
commitment scheme, the one way function, the zero knowledge proof and the garbled circuit.
We will now give proofs for the simulation of the malicious sender and the malicious receiver
respectively.

Remark: Note that the one way function f used in the protocol is assumed to be secure against
all adversaries running in time T.poly(λ) whereas, the commitment scheme used (which is built on
some other one way function) is assumed to be secure only against non-uniform PPT adversaries
and in particular, can be broken by an adversary running in time T.poly(λ).

5.1.1 Malicious Sender

We need to construct a simulator S satisfying Definition 2. Let’s consider a malicious sender
S∗. The simulation strategy is described in Figure 5. Note that the simulator runs only in time
T.poly(λ) and not T1.poly(λ).

1. S does the following:

• Generate (ot1,i, statei)← OT1(0) for each i ∈ [λ] and (wi1,wist)←WI1(1
λ).

• Choose a random string z ← {0, 1}λ and computes Z = OWF(z).

• Set nisc1 := (ot1,1, . . . , ot1,λ,wi1, Z),
state = (state1, . . . , stateλ,wist, z, Z) and send nisc1 to S.

2. The malicious party S∗ sends nisc2 to S.

3. S does the following:

• Parse nisc2 as (ot2,1, . . . , ot2,λ, GC,wi2, c1, c2).

• If WI3(1
λ,wi2, (ot2,1, . . . , ot2,λ, GC, c1, c2),wist) = 0 then, output ⊥.

• Else, run the T -time extractor ComExt on input c1 to obtain x∗.

• Send x∗ to the ideal functionality as the input of the malicious sender.

Figure 5: Simulation strategy against a malicious sender

Claim 2. The simulation strategy described in Figure 5 is secure against a malicious sender.

Proof. From the chooser’s security of the OT protocol, the view of the malicious prover is indistin-
guishable in both the real and ideal worlds. Therefore, let’s now focus on the output of the honest
receiver R. If we show that the simulator S extracts the input of the malicious sender correctly
with overwhelming probability, then the output of R in the real and ideal worlds would be the same.

First, observe that if the algorithm WI3 outputs 0 in step 3 of the simulation (the simulator
outputs ⊥), the proof didn’t verify and so even in the real world, the receiver would output ⊥ and
hence the views are identical.
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Now, let’s analyze the probability that the value x∗ sent by the simulator S to the ideal
functionality is not equal to the malicious sender’s input x, given that the algorithm WI3 out-
put 1 (i.e verified that the proof wi2 is correct). That is, let’s assume there exists a cheat-
ing sender S∗ that can cause the simulator to output a value x∗ with non-negligible probabil-
ity ε such that f(x∗, y) 6= f(x, y) where y is the input of the honest receiver. That is, ε =
Pr[WI3(1

λ,wi2, (ot2,1, . . . , ot2,λ, GC, c1, c2),wist) = 1
∧
f(S(nisc2, state), y) 6= f(x, y)] is non-negligible.

First, observe that from the argument of knowledge property proved in Section 4 about the proof
system, if the proof verifies correctly (i.e the algorithm WI3 outputs 1), then with overwhelming
probability, there exists a valid witness. In other words, similar to the argument of knowledge
property proved in Section 4, we can break the T -chooser’s security of the OT scheme if the
malicious sender is able to generate a valid proof, but the extractor is unable to extract a witness.
Now, we will use the malicious sender S∗ and construct an adversary A that can invert the one-way
function OWF in time T.poly(λ) which would contradict our assumption that OWF is not invertible
in time T.poly(λ). The adversary A works as follows:

• Receives as an external challenge a value Z∗ that is the output of the one-way function OWF.

• Interacts with the malicious sender S∗. Sends the first message of the protocol nisc1 - where
the value Z that is part of nisc1 is set to be Z∗.

• Receives nisc2 = (ot2,1, . . . , ot2,λ, GC,wi2, c1, c2) from S∗. (Note : we are given that the
algorithm WI3 outputs 1).

• Runs the extractor of the witness indistinguishable proof system to obtain a valid witness.
This takes time T.poly(λ).

• Note that if the output of the extractor is a valid witness for statement (1) in protocol Figure 4,
then by the correctness of the extractor ComExt, the garbling scheme, the OT protocol and
the witness indistinguishable proof, ComExt(c1) = x∗ such that f(x∗, y) = f(x, y) which
would contradict the assumption we started with.

• Therefore, the witness obtained from the witness indistinguishable proof system extractor is
a valid witness for statement (2). In particular, the witness is (z, r2) such that c2 = com(z; r2)
and OWF(z) = Z∗.

• Output z as the preimage of Z∗.

Therefore, the adversary A runs in time T .poly(λ) and inverts the one way function OWF leading
to a contradiction.

5.1.2 Malicious Receiver

We need to construct a simulator S satisfying Definition 2. Let’s consider a malicious party R∗

described using a pair of algorithms (R∗1,R
∗
2). The simulation strategy is described in Figure 6.

Note that the simulator runs in time T1.poly(λ).

Claim 3. The simulation strategy described in Figure 6 is secure against a malicious receiver.
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1. (nisc1, state) ← R∗1(y, 1
λ): The malicious party runs R∗1 to compute its first message

nisc1 to be sent to S and some associated state state.

2. The simulator S does the following:

• Parse nisc1 as (ot1,1, . . . , ot1,λ,wi1, Z).

• For each i ∈ λ, run OTExt(ot1,i) to extract the challenge bit yi of R∗. By the
sender’s security in the OT protocol, we know that the extraction succeeds with
non negligible probability. Concatenate all of them to recover input y of R∗.

• Run the attacker of the one way function AOWF on input Z to invert it and
produce z. That is, OWF(z) = Z. For the sake of simplicity, let’s assume that
the one way function is onto - i.e every element in its co-domain has a pre-image.
Therefore, a malicious receiver can’t send a string in the co-domain that doesn’t
have an inverse. We know that this succeeds with overwhelming probability since
the attacker, running in time T1.poly(λ) succeeds with overwhelming probability.

• Send the input y to the ideal functionality to receive back the output of the
function - f(x, y).

• Compute c1 = com(0; r1) and c2 = com(z; r2) using randomness r1, r2 respectively.

• Sample a 2λ key tuple K = {Ki,b}i∈[λ],b∈{0,1}, where Ki,b ∈ {0, 1}λ.

• Run the simulator of the garbled circuit construction SGC on input (K, f(x, y))
to generate a simulated garbled circuit GC.

• Compute ot2,i := OT2(ot1,i,Ki,0,Ki,1;ωi) for each i ∈ [λ].

• Run the algorithm WI2 to compute wi2 for the statement
(ot2,1, . . . , ot2,λ, GC, c1, c2, Z) ∈ L, using the witness (⊥,⊥,⊥,⊥, z, r2). That is,
use the witness to prove that the statement (2) is true.

• Finally, set nisc2 := (ot2,1, . . . , ot2,λ, GC, zk2, c1, c2) and send it to R∗.

3. R∗2(nisc2, state)): The malicious party runs the algorithm R∗2 and produces some output.

Figure 6: Simulation strategy against a malicious receiver

Proof. Since the honest sender has no output from the ideal functionality, it is enough to focus on
just the view of the malicious receiver. Using a series of hybrid arguments, we will show that the
view of the malicious receiver in the ideal world is computationally indistinguishable from its view
in the real world.

Let’s assume to the contrary that there exists a PPT malicious receiver R∗ = (R∗1,R
∗
2) that has

a non negligible probability ε of distinguishing its view in the real world from the ideal world. Let’s
consider the “best possible” initial message of the receiver - i.e the output of the algorithm R∗1
that produces the highest distinguishing probability between the views in the real and ideal worlds.
Let’s fix this message as the initial message nisc∗1 of the receiver. That is, consider R∗1 to be a de-
terministic algorithm that takes as input the randomness used to output this best possible message.

Essentially, given any PPT malicious adversary R̂∗ that can distinguish the two views with
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non-negligible probability ε, we are transforming it into a new deterministic adversary R∗ such that
the randomness used to produce this best possible initial message is hardwired inside it. Therefore,
even R∗ can distinguish the two views with probability at least ε.

Using this malicious party R∗, we can construct a non-uniform PPT adversary A that breaks
one amongst the hiding property of the commitment scheme, the security of the garbling scheme,
the witness indistinguishability property of the proof system and the sender’s security of the OT
protocol. Note that all the above listed primitives are secure against even non-uniform PPT adver-
saries and thus, this would lead to a contradiction. In our reduction, the non-uniform advice (or
auxiliary input) given to the adversary A is the set of challenge bits {y∗i }i∈[λ] of the party R∗1 that
was used to generate the ot1,i’s as part of the fixed first message and the preimage z of the value
Z sent as part of the initial message. (observe that this is exactly what the simulator in the ideal
world extracts by running the OTExt algorithm and the one-way function inverter AOWF). These
challenge bits are also accessible to the second stage algorithm R∗2 as part of the state - state that
is output by R∗1. We will now describe the reduction. A acts as the party Alice in its interaction
with the malicious party R∗.

1. Hybrid 0: This is the real experiment where the message sent to R∗ is (ot2,1, . . . , ot2,λ, GC,wi2, c1, c2).
Here, wi2 is computed using the algorithm WI2 for the statement (1).

2. Hybrid 1: In this hybrid, compute c2 = com(z; r2).

3. Hybrid 2: In this hybrid, compute wi2 by running WI2 using the witnes (z, r2) to prove that
statement (2) is true.

4. Hybrid 3: Recall that till now, ot2,i is computed as ot2,i := OT2(ot1,i,Ki,0,Ki,1;ωi) for each
i ∈ [λ]. In this hybrid, for each i ∈ λ, compute Ki,(1−y∗i ) = ⊥.

5. Hybrid 4: In this hybrid, the garbled circuit GC is computed as the output of the simulator
SGC on input (K, f(x, y∗)).

6. Hybrid 5: In this hybrid, compute c1 = com(0; r1). Observe that this is same as the ideal
world experiment.

We now prove the indistinguishability of the hybrids. Note that the auxiliary input is also given
to the external challenger of the primitive we are trying to break in every pair of hybrids.

Lemma 6. Assuming computational hiding of the commitment scheme, Hybrid 0 is indistinguish-
able from Hybrid 1.

Proof. The only difference in the two hybrids is the way in which the commitment c2 is generated.
Therefore, if the malicious party R∗ can distinguish between the two hybrids with non-negligible
probability ε, the non-uniform PPT adversary A can break the hiding property of the commitment
with non-negligible probability ε which would be a contradiction.

Lemma 7. Assuming that (WI1,WI2,WI3) is a secure protocol for witness indistinguishability,
Hybrid 1 is indistinguishable from Hybrid 2.

Proof. The only difference in the two hybrids is the way in which the second message of the witness
indistinguishability protocol wi2 is generated. In hybrid 1, it is generated by proving that statement
(1) is correct, while in hybrid 2, it is generated by proving that statement (2) is correct.
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Therefore, if the malicious party R∗ can distinguish between the two hybrids with non-negligible
probability ε, the non-uniform PPT adversary A can break the witness indistinguishability property
of the proof system with non-negligible probability ε which would be a contradiction.

Lemma 8. Assuming statistical sender’s security of the OT protocol, Hybrid 2 is indistinguishable
from Hybrid 3.

Proof. In both hybrids, the receiver’s choice bits in the OT protocol are the set of y∗i ’s. (which
was fixed as the non-uniform advice given to the adversary A generating the hybrids). The only
difference in the two hybrids is the way in which the values (Ki,(1−y∗i )) that are part of the sender’s
input to the OT protocol are generated. Therefore, if the malicious verifier V∗ can distinguish
between the two hybrids with non-negligible probability ε, the non-uniform PPT adversary A can
break the sender’s security of the OT protocol with non-negligible probability ε which would be a
contradiction. (in fact, it is enough to assume that the OT protocol has just computational security
instead of statistical).

Lemma 9. Assuming that (Garble,GCEval) is a secure garbling scheme, Hybrid 3 is indistinguish-
able from Hybrid 4.

Proof. The only difference in the two hybrids is the way in which the garbled circuit is generated. In
hybrid 3, it is generated honestly by running the Garble algorithm, while in hybrid 4, it is generated
using the simulator SGC . Therefore, if the malicious party R∗ can distinguish between the two
hybrids with non-negligible probability ε, the non-uniform PPT adversary A can break the security
of the garbling scheme with non-negligible probability ε which would be a contradiction.

Lemma 10. Assuming computational hiding of the commitment scheme, Hybrid 4 is indistinguish-
able from Hybrid 5.

Proof. The only difference in the two hybrids is the way in which the commitment c1 is generated.
Therefore, if the malicious party R∗ can distinguish between the two hybrids with non-negligible
probability ε, the non-uniform PPT adversary A can break the hiding property of the commitment
with non-negligible probability ε which would be a contradiction.

This completes the proof of security against a malicious receiver.

6 Weak OT from High Rate Semi-Honest OT

In this section, we first give a generic construction of two message Weak OT from any high rate
two message semi-honest OT.

As defined earlier, let λ be the security parameter. Consider a sender S with inputs (m0,m1) ∈
{0, 1}n where n = poly(λ) and a receiver R with choice bit b who wish to run a Weak OT protocol.
Let OTsh = (OTsh1 ,OT

sh
2 ,OT

sh
3 ) be a two message semi-honest secure OT protocol with high rate

c (> 0.5). Recall that the rate of the OT protocol is defined as the ratio of the size of one of

the sender’s input strings to the size of the sender’s message. That is, rate = |m0|
|OTsh2 (m0,m1,OTsh1 (b))| .

Let Ext : { 0, 1 }s(n) × { 0, 1 }d → { 0, 1 }n be a (k, ε) strong seeded randomness extractor as defined
in Appendix A, where d = O(log(s(n))) and s(n) = c∗n

(2c−1)∗(1−O(1)) . Recall that we know how to

construct such a strong seeded extractor for n = k ∗ (1−O(1)). We prove the following theorem.
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Theorem 6. Assuming OTsh = (OTsh1 ,OT
sh
2 ,OT

sh
3 ) is a high rate (> 0.5) two message semi-honest

OT protocol, the protocol in Figure 7 securely realizes the Weak OT functionality.

The construction of the Weak OT protocol is as follows.

πWeakOT

1. (ot1, state)← OT1(b):

• Compute (otsh1 , state) = OTsh1 (b).

• Set the output ot1 = otsh1 .

2. ot2 ← OT2(ot1,m0,m1):

• Pick two random strings (r0, r1) ∈ {0, 1}4n and two random seeds s0, s1 ∈ {0, 1}d.
• Compute otsh2 = OTsh2 (ot1, r0, r1).

• Compute S0 = m0 ⊕ Ext(r0, s0) and S1 = m1 ⊕ Ext(r1, s1).

• Output ot2 = (otsh2 ,S0, s0,S1, s1).

3. OT3(ot2, state):

• Parse ot2 as (otsh2 ,S0, s0,S1, s1)

• Compute rb = OTsh3 (otsh2 , state).

• Compute the output mb = (Sb ⊕ Ext(rb, sb)).

Figure 7: Weak OT from semi-honest OT

Correctness: The correctness of the protocol can be observed easily from the correctness of the
semi-honest secure OT scheme OTsh and the correctness of the extractor Ext.

Chooser’s Security We need to show that for every non-uniform polynomial-time adversary
A, |Pr[A(OT1(1

λ, 0)) = 1] − Pr[A(OT1(1
λ, 1)) = 1]| is negligible in λ. Recall that the output of

OT1(1
λ, b)) is (OTsh1 (1λ, b)). We will now show if such an adversary A exists, then we can use

A to break the chooser’s security of the semi-honest secure OT protocol OTsh which will be a
contradiction.

Consider an adversarial sender AOTsh for the semi-honest secure protocol that interacts with a
challenger COTsh . AOTsh plays the role of the receiver in the Weak OT protocol with the adversary
A. AshOT receives the challenge otsh1 from the challenger. It now forwards this to A as the first
message ot1 of the OT protocol. AshOT receives a guess b′ as the output of A and forwards this as
its output to CshOT. It is easy to see that AshOT has broken the chooser’s security of the semi-honest
secure OT protocol OTsh which is a contradiction.

Remark: Note that we can also give a simulation-based guarantee if we allow a resetting
simulator. The simulator (who does not know the choice bit of the actual receiver) first simulates
the (honest) receiver with choice bit b = 0. Then, it resets the sender and simulates the honest
receiver with choice bit b = 1. This way, the simulator can extract both messages m0 and m1 from
the corrupted sender and then give them to the trusted party.

Statistical Sender’s Security We now construct an unbounded time Simulator Sim that interacts
with a malicious receiver R∗ in the ideal world and show that the receiver’s view is statistically
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indistinguishable in the real and ideal worlds. Let the honest sender have inputs (m0,m1). The
strategy for the simulator SimR against a malicious receiver is described in Figure 8.

Upon receiving a message ot∗1 from R∗, Sim does the following:

1. Consider two random variables r0, r1 such that the support of each of them consists of
all strings of length s(n).

2. Let otsh2 = OTsh2 (ot∗1, r0, r1).

3. Since OTsh is a high rate OT, we know that |r0|
|otsh2 |

= c where c > 0.5.

4. Therefore, given (otsh2 , ot
∗
1), there must exist a b such that H∞(rb) > (2s(n)− s(n)/c).

5. Query the ideal functionality Fot with (1− b) and receives as output m1−b.

6. Pick two random seeds s0, s1 ∈ {0, 1}d.

7. Compute Sb as a uniformly random string of length n and S1−b = m1−b⊕Ext(r1−b, s1−b).

8. Output ot2 = (otsh2 ,S0, s0,S1, s1)).

Figure 8: Simulation strategy against a malicious receiver.

The view of the adversary is the tuple ot2. Notice that the only difference in the real and
ideal world is the way the string Sb is computed. In the real world, Sb = mb ⊕ Ext(rb, sb)
whereas in the ideal world, it is computed as a uniformly random string. Observe that on ex-
panding s(n), H∞(rb) = n/(1 − O(1)). Therefore, from the definition of strong seeded extrac-
tors, recall that since H∞(rb) = n/(1 − O(1)) and sb is a uniformly random string of length (d),
SD ((Ext(rb, Ud), Ud), (Un, U

′
d)) ≤ ε where ε is a negligible function in λ. Thus, Ext(rb, sb) is statis-

tically indistinguishable from a uniformly random string and hence Sb in the real and ideal worlds
are statistically indistinguishable and this completes the proof.

6.1 Weak OT from High Rate Linear Homomorphic Encryption

In this section, we first show how to construct two message semi-honest OT from any linear ho-
momorphic encryption. Let LHE = (Setup,Enc,Dec,Add,Const.Mul) be any linear homomorphic
encryption scheme as defined in Appendix A.7. We prove the following theorem.

Theorem 7. Assuming LHE is a high rate (> 0.5) linear homomorphic encryption scheme, the
protocol in Figure 9 securely realizes the OT functionality with semi-honest security.

We now describe the construction of the two message semi-honest OT protocol.

Correctness: The correctness of the protocol can be observed easily from the correctness of the
encryption scheme LHE. Also, observe that if the encryption scheme has high rate, so does the OT
protocol.

Chooser’s Security Recall that OT1(1
λ, b)) = (pk,Encpk(b)). The simulation strategy in the

ideal is pretty simple: the simulator runs the setup of the encryption algorithm and just outputs
(pk,Encpk(0)) as his first message. We will now show if there exists an adversarial sender A that
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πOTsh

1. (otsh1 , state)← OTsh1 (b):

• Generate (sk, pk)← Setup(1λ) for the encryption scheme.

• Compute the output otsh1 := (pk,Encpk(b; r)) usign randomness r. Let state be (b, pk, sk).

2. otsh2 ← OTsh2 (ot1,m0,m1):

• Compute ct0 = Const.Mul(ot1,m1).

• Let ct1,1 = Const.Mul(Encpk(1; r′),m0) where r′ is a random string. Let ct1,2 =
Const.Mul(ot1,−1) and ct1,3 = Const.Mul(ct1,2,m1).

• Compute ct1 = Add(ct1,1, ct1,3).

• Compute ct = Add(ct0, ct1). That is, ct = Encpk(b ·m1 + (1− b) ·m0).

• Output ot2 = ct.

3. OT3(ot2, state):

• Parse state as (b, pk, sk) and ot2 as (ct)

• Compute the output mb = Decsk(ct).

Figure 9: OTsh from linear homomorphic encryption

can distinguish between the real and ideal worlds, then we can use A to break the security of the
encryption scheme LHE which will be a contradiction.

First, observe that if the receiver’s input b = 0, then the views are identical in both the worlds
and hence can’t be distinguished. Therefore, let’s consider the scenario where b = 1. Consider an
adversary ALHE for the encryption scheme that interacts with a challenger CLHE. ALHE plays the
role of the receiver in the Weak OT protocol with the adversary A. ALHE sends (0, 1) to Clhe and
receives the public key pk and the challenge ciphertext Encpk(b

′)). It now forwards both of these
(pk,Encpk(b

′)))to A as the first message ot1 as the OT protocol. Notice that b′ = 0 corresponds to
the ideal world and b′ = 1 corresponds to the real world. ALHE receives a guess as the output of
A and forwards this as its output to CLHE. Thus, ALHE has broken the security of the encryption
scheme which is a contradiction.

Statistical Sender’s Security We now construct a simulator Sim that interacts with a semi-
honest receiver R∗ with input b in the ideal world and show that the receiver’s view is statistically
indistinguishable in the real and ideal worlds. Let the honest sender have inputs (m0,m1). The
strategy for the simulator SimR against a malicious receiver is described in Figure 10.

The view of the adversary is the tuple ot2. Notice that in both worlds, it is computed identically
as an encryption of mb. Hence, the view in the real and ideal worlds are statistically indistinguish-
able and this completes the proof.

Finally, as a corollary of the Theorem 6 and Theorem 7, we get a construction of Weak OT
from any high rate linear homomorphic encryption scheme. Formally:

Corollary 4. Assuming LHE is a high rate (> 0.5) linear homomorphic encryption scheme, the
protocol in Figure 7 securely realizes the Weak OT functionality.
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Input: (b,mb)
Upon receiving a message otsh1 from R∗, Sim does the following:

1. If b = 1, output otsh2 = Add(Const.Mul(ot1,m1),Encpk(0; r0)) where r0 is a random
string.

2. If b = 0, let ct1,1 = Const.Mul(Encpk(1; r′),m0), ct1,2 = Const.Mul(ot1,−1) and ct1,3 =
Const.Mul(ct1,2, r1) where r′, r1 are random strings. Output otsh2 = Add(ct1,1, ct1,3).

Figure 10: Simulation strategy against a malicious receiver.

6.2 Weak OT from N th Residuosity Assumption

Finally, we instantiate the high rate linear homomorphic encryption scheme using a construction
where the size of the ciphertext is λ more than the size of the plaintext. Such an encryption
scheme can be built based on the Nth Residuosity Assumption [DJ01, IP07]. As a result, we get
the following corollary:

Corollary 5. Assuming the Nth Residuosity Assumption holds, the protocol in Figure 7 securely
realizes the Weak OT functionality.

An earlier construction of Weak OT based on the N th Residuosity Assumption appeared in
[HK12]. In that construction, they first construct Weak OT from any smooth projective hash
function which is then instantiated based on the N th Residuosity Assumption using a complex
transformation. Our construction and analysis are arguably simpler.

7 Weak OT from Witness Encryption

In this section, we give a new construction of Weak OT based on any injective one-way function
along with witness encryption.

In this subsection we show that a T -extractable non-interactive commitment scheme C = (
Com,Open) with non-uniform hiding and a non-uniform witness encryption scheme7 (EncWE,DecWE)
(defined in Appendix A.5) can be used to realize a Weak OT protocol. Recall that the non-
interactive commitment scheme can be based on injective one way functions. We next provide
the construction of Weak OT which is very similar to the construction from indistinguishability
obfuscation given in [SW14].

Lemma 11. Assuming injective one-way functions exist and a non-uniform witness encryption
scheme exists, the protocol described above is a secure Weak OT protocol.

Proof. The proof is very similar to the one in Section 5.7 of [SW14] and hence is not written in
more detail here.
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πWeakOT

• (ot1, state)← OT1(c): Let the output ot1 := Com(c; r), where r are the random coins. Let state
be (c, r).

• ot2 ← OT2(ot1,M0,M1): For each β ∈ {0, 1}, compute uβ as EncWE(1λ, xβ ,Mβ) where xβ if the
following NP-statement:

∃s such that ot1 = Com(β; s)

The output ot2 is then the tuple (u0, u1).

• OT3(ot2, state): Parse state as (c, r) and compute Mc as DecWE(uc, r).

Figure 11: Weak OT from Witness Encryption
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A Required Primitives

In this section we review some of the required primitives. Most definitions are standard, except
that in some cases we require security against superpolynomial adversaries. In these cases we write,
e.g., T -one-wayness and mean one-wayness against adversaries running in time T · poly(λ). We will
now review those primitives and security definitions that are not standard.

A.1 One-Way Functions.

The standard notion of one-wayness of functions is defined as follows. Let A be an adversary and
define OW-advantage for a function f : {0, 1}λ 7→ {0, 1}λ as

Advowf,A(λ) = Pr
[
f(z) = y : x← {0, 1}λ ; y ← f(x) ; z ← A(y)

]
.

Definition 3. A function f is non-uniform one-way if Advowf,A is negligible for any non-uniform
PPT algorithm A.

A.2 Non-interactive Commitment Scheme.

A commitment scheme consists of a pair of efficient algorithms C = (Com,Open) where: Com takes
as input 1λ and m ∈ {0, 1}λ and outputs (decom, com) ← Com(1λ,m), where decom and com are
both of length {0, 1}λ; the algorithm Open(decom, com) outputs a message m or ⊥ if com is not a
valid commitment to any message.

It is assumed that the commitment scheme is complete, i.e., for any message m ∈ {0, 1}λ and
(decom, com) ← Com(1λ,m), we have Open(decom,Com(m)) = m with overwhelming probability
in λ ∈ N.
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Commitment schemes must satisfy two properties: hiding and binding. Hiding means that
no adversary can distinguish which of two messages are locked in the commitment. Let A be a
non-uniform adversary against C and define its hiding-advantage as

Advhid
C,A(λ) = 2 · Pr

[
b = b′

∣∣∣∣ (m0,m1, st)← A(1λ); b← {0, 1};
(decom, com)← Com(mb); b

′ ← A(com, st)

]
− 1 .

Definition 4. C is non-uniform hiding if the advantage function Advhid
C,A is a negligible function for

all non-uniform adversaries A running in time poly(λ).

Binding says that the adversary cannot open the commitment in two different ways. Here, we
define the strongest variant known as perfectly binding.

Definition 5. C is perfectly binding if there exist no values (com,m0,m1, decom0, decom1) with
distinct messages m0 6= m1 such that Open(com, decom0) = m0 and Open(com, decom1) = m1.

In addition to these requirements we assume that the commitment scheme is extractable in
superpolynomial time T , i.e., there exists an algorithm that gets as input a commitment and
outputs the contained message. More formally:

Definition 6. A commitment scheme C is extractable in time T , if there exists an algorithm ComExt
running in time T · poly(λ) such that for any com, decom with Open(com, decom) = m 6= ⊥, we
have ComExt(com) = m with overwhelming probability.

Such a commitment scheme can be instantiated [GL89] by any permutation f that is T -one-way
and a hard-core predicate B of f . To commit to a bit b, the sender computes (f(Uλ), B(Uλ)⊕ b),
where Uλ is the uniform distribution over {0, 1}λ. It can also be based on injective one way
functions[Blu82]

A.3 Yao’s garbled circuit.

We start by recalling the Yao’s construction of garbled circuit as formalized in Theorem 4 in
[BHHI10]. Notice that we state their theorem for non-uniform security (as in [GRS+11]) while it
has been stated for uniform security in [BHHI10].

Theorem 8 (Garbled Circuits [BHHI10]). Suppose that non-uniformly secure one-way functions
exist. Then there is a pair of polynomial-time randomized algorithms (Garble,GCEval) that for
security/input parameter λ, output parameter m, and circuit size parameter s satisfy the following:

- Syntax. Garble takes a 2λ key tuple K = {Ki,b}i∈[λ],b∈{0,1}, where Ki,b ∈ {0, 1}λ, and a

size s circuit describing a function h : {0, 1}λ → {0, 1}m, and outputs a “garbled circuit”
GC. GCEval takes an input x ∈ {0, 1}λ, a λ key tuple, and a garbled circuit GC and outputs
y ∈ {0, 1}m.

- Correctness. We require that if GC = Garble(K,h) then GCEval(Kx, GC) = h(x), where
we define Kx = {(xi,Ki,xi)}i∈[λ].8

8For ease of notation we assume that the input x is included in the description of Kx. This is needed to guarantee
correctness even when a pair of keys happen to be identical. Alternatively, we could avoid giving x as input to GCEval
by either settling for statistical correctness or allowing the keys to be correlated.
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- Security against receiver. For every polynomials s(λ),m(λ), every x ∈ {0, 1}λ and every
h : {0, 1}λ → {0, 1}m(λ) of size s(λ) there exists a PPT simulator SGC such that if K is
chosen at random then

Kx‖Garble(K,h)
c
≈ Kx‖SGC(K,h(x))

Here
c
≈ denotes non-uniform computational indistinguishability.

- Security against outsider. For every polynomials s(λ), m(λ) and every h, h′ : {0, 1}λ →
{0, 1}m(λ) of size s(λ), if K is chosen at random then

Garble(K,h)
c
≈ Garble(K,h′)

A.4 Other Definitions

Definition 7 (Statistical Difference). Let X and Y be two distributions with supports in { 0, 1 }k.
The statistical difference between X and Y , SD(X,Y ) is given by,

SD(X,Y ) =
1

2

∑
x∈{ 0,1 }k

|Prob[X = x]− Prob[Y = x]| .

Definition 8 (Min-Entropy). For a random variable X, the min-entropy of X, H∞(X) is defined
as,

H∞(X) = min
x

{
1

log(Prob[X = x])

}
.

A random variable with min-entropy at least k is called a k-source.

Definition 9 (Extractors). A function Ext : { 0, 1 }m × { 0, 1 }d → { 0, 1 }n is called a (k, ε)-strong
extractor if for every k-source X with support in { 0, 1 }m,

SD
(
(Ext(X,Ud), Ud), (Un, U

′
d)
)
≤ ε,

where Ud, U
′
d are independent uniform distributions over { 0, 1 }d, and Un is uniform over { 0, 1 }n.

In particular, we know [ILL89, GUV09, TU12, DKSS13] how to construct strong seeded ex-
tractors with negligible ε for any entropy k >= log2(m) with seed length d = O(logm) and
n = (1−O(1)) ∗ k output bits. We use them in our constructions in Section 6.

A.5 Witness Encryption

Very recently, Garg et. al. introduced the notion of witness encryption [GGSW13] and provided
a construction based on the Decision Multilinear No-Exact-Cover Assumption instantiated with
multilinear maps [GGH13, CLT13].

Definition 10. A witness encryption scheme for an NP language L (with corresponding witness
relation R) consists of the following two polynomial-time algorithms:

Encryption. The algorithm EncWE(1λ, x,M) takes as input a security parameter 1λ, an
unbounded-length string x, and a message M ∈ M for some message space M, and outputs
a ciphertext CT.
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Decryption. The algorithm DecWE(CT, w) takes as input a ciphertext CT and an unbounded-
length string w, and outputs a message M or the symbol ⊥.

These algorithms satisfy the following two conditions:

• Correctness. For any security parameter λ, for any M ∈ M, and for any x ∈ L such that
R(x,w) holds, we have that

Pr
[
DecWE

(
EncWE(1λ, x,M), w

)
= M

]
= 1− neg(λ)

• Soundness Security. For any x /∈ L, for any PPT adversary A and messages M0,M1 ∈M,
there exists a negligible function neg(·), such that:∣∣∣Pr

[
A(EncWE(1λ, x,M0)) = 1

]
− Pr

[
A(EncWE(1λ, x,M1)) = 1

]∣∣∣ < neg(λ)

A.6 High Rate Oblivious Transfer

Let (ot1, ot2, ot3) be a two message 1-out-of-2 oblivious transfer protocol between a sender S with
inputs (M0,M1) and a receiver R with choice bit b. We say that the protocol has a rate c if, for
any security parameter λ, there exists d such that for all senders’s inputs (M0,M1) where each Mi

is of length s(λ) > λd, |Mi|
|ot2(M0,M1,ot1(b))| > c. Here, i ∈ {1, 2}.

In this paper, we are interested in two message semi-honest OT protocols with high (> 0.5)
rate.

A.7 Linear Homomorphic Encryption

A linear homomorphic encryption scheme LHE = (Setup,Enc,Dec,Add,Const.Mul) consists of the
following 5 algorithms.

• Setup(1λ) : The setup algorithm takes as input a security parameter λ and outputs a public
key-private key pair (pk, sk).

• Encpk(m) : The encryption algorithm takes as input the public key pk and a plaintext message
m with size n = poly(λ). It outputs a ciphertext ct.

• Decsk(ct) : The decryption algorithm takes as input the secret key sk and a ciphertext ct. It
outputs a string y or ⊥.

• Add(ct1, ct2) : The evaluation algorithm takes as input two ciphertexts ct1 and ct2. It outputs
a new ciphertext ct that is an encryption of the addition of the two plaintexts underlying in
ct1 and ct2. That is, ct = Encpk(m1 + m2) where ct1 = Encpk(m1) and ct2 = Encpk(m2).

• Const.Mul(ct1, c) : The constant multiply algorithm takes as input a ciphertext ct1 and a
constant c. It outputs a new ciphertext ct such that ct = Encpk(c ·m) where ct1 = Encpk(m).

Correctness and security are defined similarly as in any public key encryption scheme.

Definition 11. (Rate:) We say that a linear homomorphic encryption encryption scheme has
a rate c if, for any security parameter λ, there exists d such that for all plaintext messages m of
length s(λ) > λd, |m|

|Encpk(m)| > c.

We will be interested in high rate (> 0.5) linearly homomorphic encryption schemes. Damgard
and Jurik [DJ01] show how to build such an encryption scheme based on the N th Residuosity
Assumption where the size of the ciphertext is only λ more than the size of the plaintext being
encrypted.
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