
Slothful reduction

Michael Scott

MIRACL.com
mike.scott@miracl.com

Abstract. In the implementation of many public key schemes, there is
a need to perform modular arithmetic. Typically this consists of addi-
tion, subtraction, multiplication and (occasionally) division with respect
to a prime modulus. To resist certain side-channel attacks it helps if im-
plementations are “constant time”. As the calculations proceed there is
potentially a need to reduce the result of an operation to its remainder
modulo the prime modulus. However often this reduction can be delayed,
a process known as “lazy reduction”. The idea is that results do not have
to be fully reduced at each step, that full reduction takes place only occa-
sionally, hence providing a performance benefit. Here we extend the idea
to determine the circumstances under which reduction can be delayed to
the very end of a particular public key operation.

1 Introduction

It is generally accepted that a good first line of defense against side-channel
attacks is to ensure that our cryptographic code is “constant time”, that is its
execution profile is the same irrespective of the data it is processing. One way
to achieve this is to ensure that a single execution path is followed in all cases,
which implies as a bonus that testing will be simpler, as only one execution path
needs to be checked.

It has often been demonstrated in the past that it is perfectly possible to
write constant time code to implement elliptic curve cryptography. For a quick
illustration inspect the code here 1, which in a few hundred lines implements a
point multiplication on an Edwards curve over the field Fp, where p = 2521 − 1,
a Mersenne prime. It is striking that the code has no conditional branching in-
structions. All of the functions consist of “straight-line” compiler-friendly code.
All loops could be fully unrolled by an optimizing compiler. However this imple-
mentation is for a particular case, and does not suggest a general strategy that
would work in all cases. It is the purpose of this paper to suggest such a general
strategy, that leads to a cook-book approach that can be used by any competent
programmer, who may not have any particular cryptographic expertise.

What often hinders the delivery of constant time code is (a) the way in which
the finite field arithmetic is implemented, and (b) the elliptic curve arithmetic
may involve “exceptions”, which are special actions which may be required for

1 indigo.ie/~mscott/ed521.cpp



particular inputs. This latter issue can be dealt with by always implementing
elliptic curve crypto using an “exception-free” formulae for point addition and
doubling. Thankfully efficient exception-free formulations are now available [3],
[8], and so there is really no excuse not to always use them. Therefore here we
concentrate on the finite field arithmetic.

Say we were tasked with implementing elliptic curves over a 256-bit field. In
the past a plausible starting point would have been to represent 256-bit num-
bers as 16x16 bit words, or 8x32 bit words, or 4x64-bit words depending on our
processor (and its registers) being 16, 32 or 64 bits. Then implement the field
arithmetic (addition, subtraction, multiplication and occasional division) on top
of that. Multiplication would be implemented using the standard long multipli-
cation algorithm, followed by reduction modulo the field prime p, which may be
of an exploitable form which would facilitate fast reduction of a 512-bit product
modulo the 256-bit prime. Addition would require a simple digit-by-digit inte-
ger addition (with carry processing), and then maybe a correction to ensure that
the result was less than p. Subtraction might involve a digit-by-digit subtraction,
again maybe followed by a correction to ensure a result in the range 0 . . . p− 1.

But we would contend that it is impossible to make such an implementation
constant time. The modular reduction, and modular addition and subtraction
often require corrections, based on the data being processed. This will typically
take the form of a conditional subtraction by the modulus, to get the result into
the range 0 . . . p− 1.

A potential solution to this problem is to delay the corrections. This technique
is often called “lazy reduction”, that is we allow results to drift out of their range,
and only correct them sometime later. Taking this idea to the extreme, we would
ideally like to delay any correction right to the very end of an at-risk calculation
like a point multiplication.

Here we suggest a general strategy to achieve this, independent of the curve,
its size, or its parameterization. The basic idea is to tailor the finite field rep-
resentation to the particular curve, rather than try and force-fit the curve to a
predetermined format.

2 A basic observation

Consider a typical modular squaring operation. We require the square of x ∈ Fp,
that is x ← x2 mod p. Assume that x is such that x2 < pR, where R is some
value greater than or equal to p. Assume that the modular reduction algorithm
used is such that after completion x < 2p. In fact this is exactly how the well
known Montgomery reduction algorithm works [7] (unless a conditional final
subtraction is performed, and we do not want to do that).

Now if x is not fully reduced prior to the squaring, say if we can only be
sure that x < 8p, then as long as R > 64p, the output x is such that x <
2p. Therefore we contend that a calculation that consists of a combination of
modular additions, subtractions and multiplications may never need explicit

2



reduction, due to the tendency of the squaring/multiplication code to force an
implicit (albeit incomplete) reduction.

3 Finite field element representation

It is commonly assumed that a “packed-radix” representation is used for field
elements as described above, where numbers are represented to a base equivalent
to the word-length of the computer. But clearly to support any kind of lazy
reduction some kind of redundant representation must be used which allows
elements to increase beyond the bit length of the modulus. Indeed it is now
common for moduli to be proposed which are a few bits shy of the maximum
possible for a fixed length representation in computer words. For a justification in
the context of elliptic curve cryptography see [4]. For example rather than a 256-
bit modulus, a 254-bit modulus may be preferred for the two bits of redundancy
it allows. A disadvantage is the small loss of security that arises from using a
smaller modulus.

The required redundancy arises more naturally if a “reduced radix” repre-
sentation is used. Here elements are represented to a base somewhat less than
the full word-length. So for example on a 64-bit architecture a base of 260 might
be used. This brings its own advantages as carry propagation can be delayed as
well, a process which might be referred to as “lazy carrying”, which is essentially
a form of lazy reduction applied to individual digits. For more details see the
appendix to this paper. Also a faster method for modular multiplication applies
[9] when a reduced radix representation is used.

Our main point is that using a reduced radix representation, common mod-
ulus sizes will no longer have a tight fit into a fixed number of computer words.
So for example an element in Fp, where p is 256 bits, may be represented as four
60-bit least-significant digits, and a most significant digit of only 16-bits, leaving
a large amount of redundancy in the top word.

Note that our idea applies to any representation with sufficient redundancy
(but as we will see more than two bits of redundancy will be required). However
the method works best with a reduced-radix representation.

We refer to the extent that an element x has crept beyond its modulus as its
“excess” the integer E, where x < Ex.p.

The next issue is to fix the value of R. For multi-precision Montgomery
reduction the ideal choice is 2n where p < 2n, and n is a multiple of the base
of the representation. So for our 64-bit reduced-radix example above, a natural
choice would be 2300, where 300 = 5.60. For the packed-radix case the natural
choice would be 2256.

If Montgomery modular reduction is to work correctly then it is clearly suf-
ficient when multiplying x by y that Ex.Ey.p < R. Observe that numbers less
than R are representable using the same number of words as elements in Fp.

3



3.1 Special moduli

For elliptic curve cryptography often a prime of special form is used, for which a
faster reduction method applies. A common choice is a pseudo-Mersenne prime
of the form 2m − c. The product to be reduced is split into a lower and higher
part, with the lower part of length m bits. The top part is multiplied by c and
added to the lower part. Finally the small excess beyond m bits is extracted,
multiplied by c and added to the total. It is easy to see that the output may not
be fully reduced, but will certainly be less than 2p.

Now when the product is split, as long as it is less than pR, then the top
part will be less than R, and hence representable. So basically the same rule
applies as for Montgomery’s method: As long as the input is less than pR, then
the reduced output will be less that 2p.

4 Modular arithmetic

Multiplication has already been discussed. Addition is carried out without re-
duction. Therefore if calculating z = x + y, then (assuming the worst case)
Ez = Ex + Ey.

Subtraction is negation, followed by addition. To find −y we subtract y from
a suitable multiple r = Ey of p and then −y = r.p − y mod p. If calculating
z = x−y, then again Ez = Ex+Ey. Note that suitable multiples of the modulus
may be precalculated and stored. Obviously the fewer the better.

5 Edwards curves

As an example we will consider an implemention of point multiplication on the
Edwards curve [3],

x2 + y2 = 1 + dx2y2

using some kind of double-and-add algorithm. Using projective coordinates
the calculations for point doubling and point addition are a mixture of modular
additions, subtractions and multiplications. We want to determine the circum-
stances under which explicit reduction can be delayed until the very end of the
point multiplication (assuming that a fully reduced output is desired).

From the explicit formula database [6] we find formulae for point doubling of
an input point in projective coordinates (X,Y, Z). A common trick used when
deriving these formulae is to use the identity 2XY = (X + Y )2 − X2 − Y 2,
which swaps a multiplication for a squaring if X2 and Y 2 are already known.
However if using a reduced-radix representation, multiplications and squarings
have essentially the same complexity [9]. So we will not use this trick here, as it
has the unfortunate side-effect of artifically inflating the excesses.

The formula is broken down into atomic operations, and simplified for our
purposes. See Table 1. On each line the excess of the output value is recorded.

4



We can assume that the curve constant d is fully reduced. For reasons that will
become clear we assume that the initial excesses of X, Y and Z are all equal to
2.

Operation Excess Note

A = X 2
B = Y 2
C = Z 2
D = A2 2 M = 4
B = B2 2 M = 4
C = C2 2 M = 4
C = C + C 4
D = B +D 4
B = B +B 4
B = D −B 8 r = 4
A = X.Y 2 M = 4
A = A+A 4
C = D − C 8 r = 4
X = A.C 2 M = 32
Y = B.D 2 M = 32
Z = C.D 2 M = 32

Table 1. Edwards Point doubling

Some observations: This operation is stable, in that the excesses of the out-
puts are the same as those of the inputs. Therefore multiple doubling operations
can follow one another without affecting the worst case excesses recorded here.
In the Notes column of the table, for subtractions we note the multiple of the
modulus required when negating. Here 4p will work in all cases. After each mul-
tiplication or squaring we note the product of the excesses of the inputs. The
maximum value for M is significant here – it will determine the minimum value
for R.

Next is the point addition formula (Table 2). Again the overall operation is
stable, and again we see that any combination of additions and doublings will not
change these values. In this case a precomputed 2p is sufficient for all negations.

Overall the maximum value for M is 32, or 25. Now if R = 2n and p < 2m,
then we can conclude than as long as n −m is greater than or equal to 5 bits,
then these functions when combined to calculate a point multiplication, will
work correctly. For a packed-radix representation, a 251-bit modulus is therefore
a better choice than 256-bits or 254 bits. For a reduced-radix representation it
is not difficult to meet this constraint for any size of modulus.

It might be regarded as inconvenient to have to precompute both 2p and
4p. In fact 4p can be used for all the negations that arise in the point addition
formula without increasing the maximum value of M .

To be concrete, to implement any Edwards curve modulo a 256-bit prime on
a 32-bit processor, choose a base of 229 in which case nine digits are required

5



Operation Excess Note

A = X1 2
B = Y1 2
C = Z1 2
D = X2 2
E = Y2 2
F = Z2 2
C = C.F 2 M = 4
G = A+B 4
H = D + E 4
A = A.D 2 M = 4
B = B.E 2 M = 4
G = G.H 2 M = 16
G = G−A 4 r = 2
G = G−B 6 r = 2
G = G.C 2 M = 12
H = A.B 2 M = 4
H = d.H 2 M = 2
B = B −A 4 r = 2
B = B.C 2 M = 8
C = C2 2 M = 4
A = C −H 4 r = 2
C = C +H 4
X3 = A.G 2 M = 8
Y3 = B.C 2 M = 8
Z3 = C.A 2 M = 16

Table 2. Edwards Point addition

6



to represent field elements. Setting R = 29.29 = 2261 our conditions are met, as
32 = 2261−256. In all cases modular subtraction of x − y can be calculated as
4p − y + x. Since explicit reduction is never required, reduction is not merely
lazy, it is slothful. Conditional subtractions by the modulus are never required,
and therefore the code can easily be made constant time, independent of the
data being processed.

6 Weierstrass curves

For a more challenging example we consider the exception-free formulae for arith-
metic on a prime-order Weierstrass curve

y2 = x3 − 3x+ b

as recently described by Renes, Costello and Batina [8]. We start with point
doubling (Table 3). In this case the output values are not the result of modular
multiplications, and so we cannot assume that the calculation is necessarily
stable. However for an input point (X,Y, Z) with input excesses of 4, 4 and
4 respectively, the outputs have the same excesses (or less), and therefore we
conclude that this function is stable.

Operation Excess Note Operation Excess Note

1. t0 = X2 2 M = 16 2. t1 = Y 2 2 M = 16
3. t2 = Z2 2 M = 16 4. t3 = X.Y 2 M = 16
5. t3 = t3 + t3 4 6. Z3 = X.Z 2 M = 16
7. Z3 = Z3 + Z3 4 8. Y3 = b.t2 2 M = 2
9. Y3 = Y3 − Z3 6 r = 4 10. X3 = Y3 + Y3 12
11. Y3 = X3 + Y3 18 12. X3 = t1 − Y3 20 r = 18
13. Y3 = t1 + Y3 20 14. Y3 = X3.Y3 2 M = 400
15. X3 = X3.t3 2 M = 80 16. t3 = t2 + t2 4
17. t2 = t2 + t3 6 18. Z3 = b.Z3 2 M = 4
19. Z3 = Z3 − t2 8 r = 6 20. Z3 = Z3 − t0 10 r = 2
21. t3 = Z3 + Z3 20 22. Z3 = Z3 + t3 30
23. t3 = t0 + t0 4 24. t0 = t3 + t0 6
25. t0 = t0 − t2 12 r = 6 26. t0 = t0.Z3 2 M = 360
27. Y3 = Y3 + t0 4 28. t0 = Y.Z 2 M = 16
29. t0 = t0 + t0 4 30. Z3 = t0.Z3 2 M = 120
31. X3 = X3 − Z3 4 r = 2 32. t0 = t0 + t0 8
33. t1 = t1 + t1 4 34. Z3 = t0.t1 2 M = 32

Table 3. Weierstrass Point Doubling

For point addition (Table 4) on the same curve, we assume the same input
excesses for (X1, Y1, Z1) and (X2, Y2, Z2) of 4, 4 and 4 respectively, as the inputs
may be result of previous doubling operations.

7



Operation Excess Note Operation Excess Note

1. t0 = X1X2 2 M = 16 2. t1 = Y1Y2 2 M = 16
3. t2 = Z1Z2 2 M = 16 4. t3 = X1 + Y1 8
5. t4 = X2 + Y2 8 6. t3 = t3t4 2 M = 64
7. t4 = t0 + t1 4 8. t3 = t3 − t4 6 r = 4
9. t4 = Y1 + Z1 8 10. X3 = Y2 + Z2 8
11. t4 = t4X3 2 M = 64 12. X3 = t1 + t2 4
13. t4 = t4 −X3 6 r = 4 14. X3 = X1 + Z1 8
15. Y3 = X2 + Z2 8 16. X3 = X3Y3 2 M = 64
17. Y3 = t0 + t2 4 18. Y3 = X3 − Y3 6 r = 4
19. Z3 = bt2 2 M = 2 20. X3 = Y3 − Z3 8 r = 2
21. Z3 = X3 +X3 16 22. X3 = X3 + Z3 24
23. Z3 = t1 −X3 26 r = 24 24. X3 = t1 +X3 26
25. Y3 = bY3 2 M = 6 26. t1 = t2 + t2 4
27. t2 = t1 + t2 6 28. Y3 = Y3 − t2 8 r = 6
29. Y3 = Y3 − t0 10 r = 2 30. t1 = Y3 + Y3 20
31. Y3 = t1 + Y3 30 32. t1 = t0 + t0 4
33. t0 = t1 + t0 6 34. t0 = t0 − t2 12 r = 6
35. t1 = t4Y3 2 M = 180 36. t2 = t0Y3 2 M = 360
37. Y3 = X3Z3 2 M = 676 38. Y3 = Y3 + t2 4
39. X3 = t3X3 2 M = 156 40. X3 = X3 − t1 4 r = 2
41. Z3 = t4Z3 2 M = 156 42. t1 = t3t0 2 M = 72
43. Z3 = Z3 + t1 4

Table 4. Weierstrass Point addition

In this case the maximum M = 676 and so R would need to be 10 bits
greater than the prime modulus to permit slothful reduction. Using a reduced
radix representation this is an easy condition to meet on a 64-bit processor. On
a 32-bit computer 256-bit field elements could be represented as ten digits to
a base of 227, which allows R = 2270 with a comfortable safety margin. There
is a small cost here given that the field element representation has increased
from nine to ten digits. But this may be regarded as a worthwhile trade-off for
a constant time implementation.

For this example more multiples of the modulus are required to support
modular negation in all cases. Again with care some r multiples can be adjusted
upwards to coincide with others, without increasing the maximum value of M ,
so that less multiples may be needed. Experimentally we determined that by
rounding up some of the r multiples, values from the set 2, 4, 8, 32 are sufficient,
and increase the maximum M to only 884, so no extra bits are required for the
representation. Since the members of the set are all powers of 2, the required
multiples of p can be formed by simple shift operations.

7 Extension field arithmetic

Slothful reduction may also find application in extension field arithmetic, as
required in pairing-based cryptography. Consider for example powering in the

8



extension field Fp2 using some square-and-multiply algorithm. Assuming p is con-
gruent to 3 mod 4, then -1 will always be a quadratic non-residue, and elements
can be represented as u+ iv, where u, v ∈ Fp, and i =

√
−1.

To find the square of an element, we calculate u← (u+v)(u−v) and v ← 2uv.

Operation Excess Note

A = u 4
B = v 6
C = A.B 2 M = 24
D = A+B 10
E = A−B 10 r = 6
u = D.E 2 M = 100
v = C + C 4
Table 5. Squaring in Fp2

To multiply two elements u1+ iv1 and u2+ iv2 a Karatsuba method applies,
and u3 = u1.u2 − v1.v2 and v3 ← (u1 + v1)(u2 + v2)− (u1.u2 + v1.v2).

First we take the same approach as above. To achieve stability we must it
seems assume initial excesses for u and v of 4 and 6 respectively. See Tables 5
and 6.

Operation Excess Note

A = u1.u2 2 M = 16
B = v1.v2 2 M = 36
C = u1 + v1 10
D = u2 + v2 10
E = C.D 2 M = 100
F = A+B 4
u3 = A−B 4 r = 2
v3 = E − F 6 r = 4
Table 6. Multiplication in Fp2

But this is not the best approach. Aranha et al. [1] have described in detail
a potentially faster way in which to do multiplication in Fp2 , which involves the
use of lazy reduction in a different sense to which we have used it here. The idea
is that if required to calculate say ab+cd mod p, then it makes sense to delay the
reduction until after the addition, so that only one reduction is required rather
than two. This is particularly true if reduction following multiplication is slow,
as would be the case for a p of no exploitable special form, as for example arises
in pairing-based cryptography.

9



First we re-describe squaring with smaller initial excesses for u and v of 2 and
2 respectively, but for which the Aranha et al. idea does not apply. See (Table
7). We also re-order the instructions to our advantage.

Operation Excess Note

A = u 2
B = v 2
C = A+A 4
C = C.B 2 M = 8
D = A+B 4
E = A−B 4 r = 2
u = D.E 2 M = 16
v = C 2
Table 7. Squaring in Fp2

Next we apply our methodology to the Aranha et al. method for multiplica-
tion (Table 8).

Operation Excess Note

1. A = u1.u2 4
2. B = v1.v2 4
3. C = u1 + v1 4
4. D = u2 + v2 4
5. E = C.D 16
6. F = A+B 8
7. A = A−B 8 r = 4
8. E = E− F 16
9. u3 = A 2 M = 8
10. v3 = E 2 M = 16

Table 8. Faster Multiplication in Fp2

In this table double precision numbers are represented in bold-face. The
product of two values x and y with excesses of Ex and Ey respectively results
in a double precision product z = x.y, where z < Ex.Ey.p

2, and so the double
precision excess is Ez = Ex.Ey.

Modular subtraction in line 7 is calculated as A−B = 4p2−B+A (and so 4p2

should be precalculated), but the modular subtraction in line 8 clearly requires
only simple non-modular subtraction (as E > F ). Note that the maximum M
value is now reduced to 16. The delayed double-precision reduction takes place
in lines 9 and 10.

10



7.1 Application to pairings

When implementing pairing based crypto, multiplication in Fp2 can arise in a
number of different contexts. It may for example arise at the bottom of a tower
of extensions, or it may arise in the context of point multiplication in the group
G2 on, for example, a BN curve [2]. Therefore the input excesses may not be
fixed in advance. In this case for the modular subtraction in line 7 of Table 8 it
may be difficult to determine which multiple of p2 is appropriate.

So we suggest a different approach. Simply calculate T = A − B = A +
(pR − B). Now in this case for A,B < pR, then clearly T < 2pR which may
be outside of the correct range for certain reduction methods, as it would be for
Montgomery reduction [7]. However Montgomery reduction does not fail in this
case, rather the output value is no longer guaranteed to be less than 2p, in this
case it will be less than 3p, so the only impact is that the output worst case
excess is slightly increased.

The objection may be raised that a number < 2pR may not be representable.
Luckily, using a reduced radix representation, there will always be a few bits “to
spare” at the top of the most significant word, and so this is not a problem in
practise.

8 Unstable calculations

Unfortunately not all algorithms are stable in the sense used here. Consider for
example the application of our original methodology to the fast algorithm for
squaring in the cyclotomic subgroup of sixth degree extensions, as proposed by
Granger and Scott [5].

a← 3a2 − 2ā

b← 3
√
i.c2 − 2b̄

c← 3b2 − 2c̄

Consider now a sequence of squarings of some initial value. Observe that
2ā contributes to the new value of a after each squaring. So clearly after each
sequential squaring, the excess of a increases monotonically. Therefore in this
case explicit reduction will be required, and fully slothful reduction will not be
possible.

9 Conclusion

We have described a simple cook-book methodology that could be used to assist
a programmer in implementing certain cryptographic functions efficiently, and
in constant time. We are not claiming that this is the only way to achieve this
outcome. Basically we tailor the representation of finite field elements to fit the
needs of the cryptographic algorithm, rather than force an algorithm unto a
predetermined form of representation.

11



The method applies also to other moduli types, in particular to generalised
Mersenne primes. The bound on the output of a product, that it be less than 2p,
can be significantly tightened in particular cases. For example for Montgomery
reduction if Ex.Ey.p is much less than R, then 2p can be reduced to δ.p for some
δ < 2.

References

1. D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. Lopez. Faster explicit
formulae for computing pairings over ordinary curves. In Eurocrypt – 2011, volume
6632 of Lecture Notes in Computer Science, pages 48–68. Springer-Verlag, 2011.

2. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In
Selected Areas in Cryptology – SAC 2005, volume 3897 of Lecture Notes in Computer
Science, pages 319–331. Springer-Verlag, 2006.

3. D. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In
Asiacrypt – 2007, volume 4833 of Lecture Notes in Computer Science, pages 29–50.
Springer-Verlag, 2007.

4. J. Bos, C. Costello, P. Longa, and M. Naehrig. Selecting elliptic curves for cryptog-
raphy: an efficiency and security analysis. Journal of Cryptographic Engineering,
6(4):259–296, 2016.

5. R. Granger and M. Scott. Faster squaring in the cyclotomic subgroup of sixth
degree extensions. In PKC – 2010, volume 6056 of Lecture Notes in Computer
Science, pages 209–223. Springer-Verlag, 2010.

6. T. Lange. Explicit formula database. http://hyperelliptic.org/EFD/.
7. Peter L. Montgomery. Modular multiplication without trial division. Mathematics

of Computation, 44(170):519–521, 1985.
8. J. Renes, C. Costello, and L. Batina. Complete addition formulas for prime order

elliptic curves. In Eurocrypt – 2016, volume 9665 of Lecture Notes in Computer
Science, pages 403–428. Springer-Verlag, 2016.

9. M. Scott. Missing a trick: Karatsuba variations. Cryptography and Communications,
2017. https://link.springer.com/article/10.1007%2Fs12095-017-0217-x.

Lazy carrying

Basically by lazy carrying we mean lazy reduction applied to individual digits
of a big number, when using a reduced radix representation. Assume a number
base of 2b, where b is a little less that the wordlength w of the processor, and
further assume that each digit is stored as a signed integer. Then to add two
such numbers we can simply add digit-by-digit and delay the carry propagation.
This is quite commonly done, and will be very fast on a modern superscalar
architecture and in hardware, as all digits can be added in parallel. However the
extent to which we can do this without causing overflow is limited, so we must
proceed with caution.

We can assume that when subtraction is required in the context of modular
arithmetic as described above, that a smaller number is being subtracted from a
bigger number. Nevertheless individual digits may become negative. Eventually
a simple carry-propagation (or normalisation) process will restore the number

12



to its proper base 2b representation, if required, in constant time. But for per-
formance purposes we would like to avoid normalisation where possible.

It is not hard to see that up to 2w−b−1 normalised numbers can be added
without causing additive overflow, and the same applies to subtraction. When
multiplying two such numbers a stability criteria, as for example described in
[9], may be impacted by the larger digits that arise as a result of lazy carrying.
The impact will depend on the particulars of the method used for multiplication
(for example whether or not a product-scanning or operand-scanning algorithm
is used). This may require that arguments are normalised prior to a modular
multiplication. We do assume that the output of a modular multiplication is
fully normalised, so where the output of a multiplication feeds into the input of
another, normalisation would not be required.

For 256-bit Edwards and Weierstrass curves implemented on a 32-bit pro-
cessor and using the exception free formulae as described above, and the recom-
mended number bases of 229 and 227 respectively, we observe that all modular
additions and subtractions can proceed without explicit normalisation. The same
outcome is easy to achieve on a 64-bit processor, using for example a base of 256.

13


