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Abstract. T-310 is an important Cold War cipher [95]. It was the prin-
cipal encryption algorithm used to protect various state communication
lines in Eastern Germany throughout the 1980s. The cipher seems to be
quite robust, and until now, no cryptography researcher has proposed an
attack on T-310. In this paper we provide a detailed analysis of T-310
in the context of modern cryptography research and other important or
similar ciphers developed in the same period. We introduce new nota-
tions which show the peculiar internal structure of this cipher in a new
light. We point out a number of significant strong and weak properties
of this cipher. Finally we propose several new attacks on T-310.

* This is our “master paper” on T-310. It can be seen as an extended version
of several papers which appear in Cryptologia in 2017 and 2018. This eprint
paper is our extended monography paper which shows how different questions
and different attacks are related and connected to each other. It contains a
substantial amount of additional research and technical details.
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1 Basic Facts and History of T-310

T-310/50 is an important historical cipher designed and built by mathematicians
and crypto engineers from East Germany in the 1970s. It is known to a larger
English-speaking public since a paper published in Cryptologia in 2006 [95]. It
was subsequently used to encrypt teletype communications during the last period
of the Cold War. T-310 is known as being probably the “most important” cipher
of that period and in 1989 there were some 3,800 cipher machines in active service
across all sorts of government, party and internal security services [57, 95].

1.1 Chronology on T-310

Based on [60, 48, 55] we present here a short chronology on the development of
T-310 cipher machines:

1973 First specification of the tactical technical requirements for the T-310[...]
Basic cryptological requirements: “Quasi-absolute security”.

1974 Construction of a new cryptographic algorithm. Two mathematician cryp-
tologists were commissioned for 1 year.

1976 T-310/50 teletype encryption device, T-310/80 data encryption device.
1980 Cryptological investigation of the security of the encryption process by cryp-

tologists of the ZCO and the Soviet cryptologists.
1982 Put into serial production.
1984 The average monthly output of the T-310/50 amounted to 60 devices.
1986 Between 1984-86 there were 290 repairs, of approx. 1400 delivered devices.
1987 Presentation of the T-310/50, as a national encryption device, at the meeting

of the ciphering services of the Warsaw Treaty.
07/89 Computer connection to the T-310/50 by telex card ATW in the BC 5120
11/89 There were in employment 3,835 machines of type T-310/50 and 46 machines

of type T-310/51.
1990 Last change of the long-term key, use of the LZS-33.
1990 25.07.1990 Publication of the T-310 in the city halls of Berlin with politics

and television.
1990 Analysis of the encryption algorithm by the BSI, unofficial statement: ex-

tremely secure. Official statement: not authorized to say anything about it.
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2 A Block Cipher in A Stream Cipher Mode

T-310 is a synchronous stream cipher which derives its keystream from the it-
eration of a relatively complex block cipher. In this section we provide a first
quick and informal description of the T-310 cipher.

Fig. 2.1. T-310 Encryption Process.

T-310 contains an LFSR. However we cannot really hope to apply attacks on
LFSR-based stream ciphers [28, 35], in T-310 the state of the LFSR is known to
the attacker and is used to expand the IV into a longer sequence. In addition, in
contrast to many LFSR-based stream ciphers, the main iterated component in
T-310 is non-linear. It is simply an iterated block cipher with a relatively simple
key schedule.

Overall, the main component to study in this paper is a keyed permutation
which also takes an IV which we will later call “the T-310 block cipher”. The
block size is only 36 bits, the secret key has 240 bits and the IV has 61 bits. The
block cipher is not used directly to encrypt, but it is iterated a large number of
times: Some 13 · 127 = 1651 rounds of the block cipher are performed1 in order
to extract as few as only 10 bits from the cipher’s internal state, which will be
used to encrypt just one 5-bit character of the plaintext.

It appears that many techniques which have been traditionally developed in
cryptanalysis of block ciphers cf. for example [13, 10, 38, 42, 36] should and will
to some extent apply to T-310. For example, there exist techniques which break
any cipher, if not too complex, cf. [13, 34, 35, 22, 98, 20]. Unhappily T-310 is quite
complex.

1 According to page 17 in [99], the round clocking frequency is 76.8 kHz which gives
an encryption speed of about 46.5 characters per second.
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2.1 A First Look At the T-310 Block cipher Internals

The “T-310 block cipher” is a keyed permutation on 36 bits with has potentially
unlimited number of rounds [depending how much data in encrypted]. Each
round depends also on 3 extra bits. Two come from the secret key of 240 bits,
and 1 bit comes from the IV. In Fig. 2.2 below we show a first glimpse of how
it looks like in the general case [the dotted connections are optional and do not
exist for most historical keys].

Fig. 2.2. Outline of one round of T-310

The wiring inside this permutation of the block cipher inside T-310 is the
same in each round, it is in general quite complicated and is implemented as a
small plug-in board inside the cipher machine. This board is the principal part of
the so-called “long-term key” and implements two functions D,P cf. Def. 4.1.1
page 13. More information about LZS notations used in this paper can be found
in Section 4.1 cf. also later Fig. 7.10 in Section 7.1.

The non-linear round “compression” component T will be specified in Section
9 and the non-linear Boolean function used inside will be specified in Section
10.1.

Fig. 2.3. A first look at the internal structure T () inside one round together with the
final XORs.
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3 Feistel and Generalized Feistel Ciphers vs. T-310

As a first approximation, and this is as we will see later, only a first vague (and
inexact) classification, it appears that this block cipher belongs to the family of
so-called “Contracting Unbalanced Feistel ciphers” with 4 branches, cf. [83] and
Fig. 4.5 below.

Fig. 3.4. A “Contracting Unbalanced Feistel” cipher with k Branches.

The construction of ciphers has a rich history which can be seen as developing
many different ways to produce key-dependent permutations from composition
of smaller building blocks which most of the time do not need to be permutations.
The original Feistel cipher2 had 2 branches and was invented around 1971 [64,
65]. Then East German cipher designers had already in the 1970s [48, 95, 60]
mandated a substantially more complex internal structure which can be seen as
a very peculiar sort of “Contracting Unbalanced Feistel” which should be studied
in the context of other similar ciphers known in crypto history and in academic
literature3.

3.1 T-310 vs. Other Contemporary Block Ciphers

An important historical example of exactly a “contracting” cipher with 4 branches
and a near-contemporary of T-310 is the RC2 cipher by Rivest which was de-
signed in 1989 cf. [77] with an (alleged) collaboration with the NSA. RC2 have
been very widely used worldwide for real-life communications security, first in

2 Which is to date, probably the most popular block cipher construction ever invented.
3 There exist countless generalizations and extensions of Feistel schemes, cf. [85, 83,

84, 73].
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Lotus Notes software and later also in S/MIME encrypted email standard of
1997. Another more academic example of (exactly) a compressing cipher with
4 branches is McGuffin cipher proposed by Bruce Schneier and Matt Blaze at
FSE’94 which cipher was immediately broken during the same conference [92].
The earlier RC2 has remained a trade secret for a longer time and only in
1997-1998 it was re-discovered and analysed (without great success) in crypto
community [77]. Another important historical cipher with a very large real-life
footprint which is still used today by millions of people is a block cipher which
is used inside the SHA-1 hash function. SHA-1 is “Contracting Unbalanced”
Feistel with 5 branches. It was developed by the US-government funded Cap-
stone project which began in 1993 and which aimed at developing a full suite
of long-term crypto algorithms with 80-bit security. The Capstone project has
also produced the well-known Skipjack algorithm. Skipjack is unique type of
cipher with 4 branches which are neither contracting nor expanding [84] sort
and more like local application of the basic Feistel with only two branches at
one time, with a lot of extra irregular structure [74]. A report from 2011 reveals
that Skipjack has been designed by the NSA earlier in the 1980s with “building
blocks and techniques that date back more than forty years” [7].

Skipjack and T-310 share the same characteristic of being so-called “Type
1” ciphers, which are intended to protect classified information and government
communications. The design and specification of such ciphers is expected to be
confidential4. However eventually ciphers will be declassified, e.g. Skipjack, their
spec leaks out, e.g. RC2, or they become obsolete and the spec can be found in
government archives, e.g. T-310. The overall result is that these ciphers can
eventually be studied by security researchers.

3.2 Weak or Strong - Cryptanalysis

The theory of “contracting” Feistel ciphers indicates that such ciphers update the
internal state quite slowly and therefore require a larger number of rounds to be
secure than Feistel ciphers with 2 branches [83]. With very strong round functions
this theory would recommend at least 8 rounds for a cipher with 4 branches [83],
which however is by far insufficient for any cipher build with more realistic
(simpler/faster and substantially weaker) components. Most of the ciphers we
have mentioned above have a very substantial number of rounds and to the
best of our knowledge they achieve a very decent level of security. Even though
Lotus Notes software has been an object of a number of controversies regarding
deliberate weakening by the NSA, no convincing attack has been published to
date against RC2 cipher [77]. Similarly, to this day there is no attack on the
full Skipjack cipher cf. [74] and the SHA-1 when used in encryption is also
quite robust [79]. Finally, until now, no attack of any sort whatsoever have been
published on the T-310 cipher. In this paper we provide a first analysis of T-310.

4 This means that they will be also subject to export restrictions, and also that publi-
cation of research articles or press reporting can be prohibited (e.g. with court orders
or under former UK DA rules).
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4 Feistel Ciphers and High-Level Structure of T-310

A classical unbalanced Feistel scheme in the contracting family [83] is as follows.

Fig. 4.5. A Contracting Unbalanced Feistel cipher with k = 4 branches.

Now T-310 is potentially a lot more complex. All depending on the so-called
“long-term key” or the internal wiring which takes a form of a plug-in card cf.
[55]. The original term is LZS which is an abbreviation of Langzeitschlüssel as
opposed to weeklykeys “ZS” of Zeitschlüssel which are perforated cards (with
holes punched in them). The LZS would be changed roughly once per year, cf.
[54] or only when “necessary” cf. [55].

The main part of an LZS (formal definition below) are two functions D and
P which specify two sets of connections. These D,P could be compared to the
P-box in DES (which however never changes) or to a Stecker in an Enigma
machine (which however would be changed daily). Interestingly, the P-box in
DES would be just an internal part at the output of a round function T (), while
here D and P have extra powers: a possibility to alter the structure of Fig. 4.5 in
a very substantial way 4.5. In T-310 D and P work on both inputs and outputs
of T (). Depending on the exact values of D and P , we will be deviating more
or less, or not at all, from a classical unbalanced contracting Feistel with four
branches in Fig. 4.5.

4.1 Long-Term Keys - Notation

In this paper we denote an interval of type {1, . . . , 9} by a short notation {1−9}.
Similar but different than the notation 1− 9 used in [99].

Definition 4.1.1 (LZS). We call an LZS which is an abbreviation of German
Langzeitschlüssel cf. Appendix A, a triple (D,P, α) where D : {1−9} → {0−36},
P : {1− 27} → {1− 36} and α ∈ {1− 36} which will be studied in Section 14.1.

In addition to basic functions D,P, T , in this paper we will also use notations
D, T and P which are derived or constructed from the D,P, T respectively and
the exact definition of which will be different in different parts of this paper. For
example in the next Section we have D : IF9

2 → IF9
2 cf. Fig. 4.6 which will be

D and which re-arranges the order of wires as specified by D. In most places in
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this paper we will actually have D : IF9+1
2 → IF9

2 as depicted on Fig. 5.7, but
will also consider for example D : IF9+3

2 → IF9
2 cf. Section 5.6. The main point

of these new notations is to rewrite the cipher description in a new way with
new particularly compact notations due precisely to introduction of D, T and
P, and the full formal description of how this works to define a round of a block
cipher in a typical setting will be done later in Section 7.1.

4.2 The Importance of Long-Term Keys

Different long-term key wiring functions D and P can make T-310 operate in
many different ways. There exist several classes or types of LZS. Historical doc-
uments shows clearly that similar to DES [12, 8], T-310 is an extremely carefully
designed cipher in terms of how the information propagates inside the cipher.

This is due to the LZS wiring precisely. The historical LZS literature contains
tens of pages of detailed analysis and many strong mathematical and combina-
torial properties are mandated or shown to hold for specific types of LZS. This
has a very strong effect on the entropy of LZS. Initially if we assume that D,P
should be injective5 the number of possibilities for P is 36!/9! and for D it is
36!/27!. Overall the entropy of an injective choice of (D,P ) is about 164.6 bits.
Interestingly, the designers have imposed so many very strong requirements on
(D,P ) cf. for example Appendix B, that they have reduced this space to at most
94 bits of entropy, cf. Section 8.6. There also exist a number of special anomalous
keys listed in [54]. In this paper we also consider some special keys in Section
E.8 and E.1.

4.3 Basic LZS Classification

In this paper many different parts are concerned with study of how the choice of
LZS affects the T-310 block cipher and it security. We first look at theory and
high-level structural questions here in Sections 4.4-5.6 below, then in Section 5.
Then in Section 8 we discuss main historical key classes KT1/KT2 used in the
real life with KT1 being the “main” historical version. Some further classification
of KT1 keys can be found in Sections 21.13 and 21.14. Then in Section 11,
Section 18 and in Appendix C and D we study how the choice of LZS affects the
properties of the round function. Finally we study also a number of anomalous
special keys in cf. Sections 4.5, Section 18, 19 and in Sections 21.4 and 22.5 and
in Appendix E and E.6. Some 7 keys of type KT1 have been used in practice in
the period of 1979-1990, cf. Section 8 and [54] cf. also Section 8.3 and Appendix
B.2.

5 This is in principle mandatory in T-310, cf. page 115 of [99]. Not true for the so-called
“testing key” 17 from 1979 which has P (25) = P (26), cf. [54].
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4.4 Unbalanced Feistel Reinforced with a Permutation
We start our study of potential and real LZS with a simple example of how a
Feistel cipher with 4 branches could be altered or re-wired. For example, we can
imagine that we want to reinforce the construction of Fig. 4.5 by a permutation
of wires D applied to I1.

Fig. 4.6. T-310 variant which is like a classical unbalanced Feistel reinforced by D.

Then P could also be a permutation on 27 wires and outputs of D and P
will be disjoint (at least in this case).

In particular, if D is just an identity permutation NOT erasing/replacing
any bits, and we already specify only bits from I2−4 in P , we are back with an
ordinary Unbalanced Feistel in Fig. 4.5.

4.5 Permutation D and Chosen Long-Term Key Attacks
There is no evidence the a simple bijective permutation of wires D applied to
I1 would ever6 be used in a real-life cipher T-310. This is a degenerate special
case which we have invented in order to show [later on] that T-310 designers
have intentionally and deliberately excluded this case. However it is easy to see
that this type of anomalous T-310 encryption as on Fig. 4.6 can be implemented
with standard T-310 hardware and that using it would have some very interesting
consequences.

A Weak LZS Attack
Imagine that we had D such that D corresponds7 to bijection between the set
{4 · 1, . . . , 4 · 9} and the set {4 · 1, . . . , 4 · 9}. This would make encryption round

6 Not without substantial additional differences, cf. Appendix F.1).
7 The actual way to define D is slightly different in [99, 95], it is defined as an appli-

cation D : {1, . . . , 9} → {4 ·1, . . . , 4 ·9} which is a perfectly equivalent definition and
we can use the same letter D. In this paper we will also use the notation D which
is the corresponding application D : IF9

2 → IF9
2 as on Fig. 4.6 which is induced by D

and which re-arranges the order of wires as specified by D. As already explained in
most parts of this paper we will have different sort of D for example D : IF9+1

2 → IF9
2.
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work exactly as on Fig. 4.6. Then we get an unexpected result. In such a
configuration the bit called v0 in [95] is not used. Consequently half of the
secret key, which are all the sm,1 will NEVER be used during the encryption.
Therefore we have discovered a particularly weak class of long-term keys where
the effective key size of a “weekly” key would be reduced from 240 to 120 bits.

Social Engineering Chosen-LZS Attack on T-310

It could be quite easy for an enemy to convince some employees of Eastern-
German state to use an alternative key based on some rumors of compromise of
the current key. If we allow such a key to be chosen be the enemy, we can reduce
the cipher key size to 120 bits (half of the key is never used).

More Chosen-LZS Attacks

In Section 20 we present another substantially stronger weak-LZS attack, which
is also in our opinion more realistic.

Divide And Conquer Attacks

More generally, the strict split of the key between s1 and s2 parts leads to many
other consequences. In Section 7.1 we will show how the description of the cipher
with our new notations D,P leads to a functional separation between two halves
of the secret key. Consequently, in Section 7.6 we will see that T-310 uses two
halves of the key in such substantially different way, so that the attacker can
hope to attack them separately.
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5 Alterations to the Unbalanced Feistel Construction

In this section we look at those types of T-310 long-term setup which are relevant
to the variants of T-310 which (according to the current knowledge) are known to
be either recommended by the designers or actually used practice in encryption.

5.1 Mainstream T-310: Non-Bijective D

In the most common T-310 cipher versions known from the literature, D is
NOT a bijection (however the round function will still be bijective cf. Section
11). Keys with bijective D such as considered in Section 4.4 just above would
NOT be compliant with the two classes of long-term keys KT1/KT2 described
in [99].

More precisely, both types of recommended T-310 keys D according to [99].
will always have following Section 2.2 page 115 that:

∃1≤i≤9 D(i) = 0

This requirement is mandatory for both standard types of T-310 keys known
as KT1 and KT2 which are described in pages 58 and 59 in [99]. Moreover for
the KT1 keys we always have D(1) = 0 cf. page 256 in [95] and page 55 in [99],
while for KT2 keys we always have D(i) = 0 for some 1 ≤ i ≤ 7, cf. page 59 of
[99].

5.2 Consequences of D(i) = 0

The fact that some D(i) = 0 has two important consequences. First, it excludes
the attack of Section 4.5. Secondly, it makes that one or more of the 4 · i values
is not attained by D. This corresponds to a more peculiar D : IF9+1

2 → IF9
2 as on

Fig. 5.7 which takes one additional input sometimes called v0, cf. [95] for which
D(i) = 0 is a place-holder. Then this one8 extra input will be9 substituted by
some key bit v0 ← sm,1 which is constant different in each round according to
one part of the secret key.

8 We can also have D with more than one additional inputs in the so-called KT2 case
cf. Section 5.6 below.

9 As we will see below, or at least in all historical cases known to us which are complaint
with [99], which could excludes some very special cases, cf. Section 8.
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5.3 Unbalanced Feistel vs. KT1 Keys (Most Common Case)

In KT1 case, the function D induces a “quasi-permutation” on 9 bits which we
will later call D most of which has the function to rearrange the order of bits in
I1, which would be just a way to improve the diffusion of bits inside each branch.
However, quite importantly, it is not a permutation and in fact removes 1 bit
out of 9 and adds one fresh bit which is a constant dependent on the key.

Fig. 5.7. T-310 is NOT exactly a simple unbalanced Feistel scheme. In the common
KT1 case, the spec allows to use also bits from the leftmost branch I1 under a number
of highly technical conditions. It also disconnects11 ONE of the 9 bits in the left branch
and replaces it by a key-dependent constant sm,1 which is different in each round.

Here the second function is P : {1, . . . , 27} → {1, . . . , 36} will specify a subset
of 27 bits from all the 36 bits from I1−4 to be used as inputs of T . As already
explained P should be bijective. It appears that in the KT1 case there will always
be 8 values which are taken by both P and D.

5.4 The High-Level Structure of KT1 Keys

The long-term key D/P are not fully specified in [99, 95], instead a complex set
of constraints which D and P must satisfy is given. cf. Appendix B. Now, for
all KT1 keys of [99] we observe that just one10 bit from leftmost branch I1 gets
disconnected11 and it is replaced by a constant12 then it is possible to see that
P must include at least one input from the leftmost branch or 1 bit would be
lost and it would become impossible to build a bijection.

In addition, the criteria which the KT1 long-term key D/P should satisfy
described in [99, 95] guarantee that all the 9 bits from the leftmost branch will

10 In [95] it is also exactly one bit, and precisely the one with index equal to 4j8, which
number is part of one way to define a long-term key in [95].

11 This has many interesting consequences in general (discussed in the present section)
and in particular cf. later Thm. B.1.1 page 106.

12 This constant will be later seen to be one of the key bits and it will be different in
different rounds.
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be outputs of P () of type 4 · l and therefore must and will be used as inputs to
T . Therefore in a typical version of T-310 as per [95], T will have as many as
9 additional inputs from the leftmost branch J1, which interestingly are those
9 bits which would be traditionally forbidden to use in traditional unbalanced
Feistel ciphers, cf. Fig. 3.4 above. This means that there will be serious diffi-
culties in making sure that our “tweaked” generalized Feistel is still going to
be a bijection13. Depending on the choice of D,P in T-310 decryption14 is a
lot less trivial process enabled by additional properties. An additional internal
“triangular” structure is now badly needed in order to enable these 9 bits of I1

which “theoretically” now depend on themselves, to be computed - one by one
- in a specific order, cf. Section C. A detailed example of how inversion can be
performed for the KT1 keys is provided in Appendix C.9.

Overall these more or less important modifications which depart from a tra-
ditional Feistel structure impose a lot of strong constraints which are bound to
have, very important consequences for the cryptanalyst and will heavily limit the
complexity of T . This also makes the current Luby-Rackoff theory e.g. [83–85]
not exactly relevant to the security of this cipher or requires a more adapted
theory to be yet developed, and the cipher will rather require a substantially
larger15 number of rounds than other similar ciphers [e.g. RC2] to be provably
secure or secure against “generic” attacks.

5.5 Comparison to SKS Ciphers and How It Impacts T-310 Ciphers

The predecessor of T-310, SKS cipher already had the property that it was
disconnecting one bit of I(1), see Fig. 6.37 page 134 and Fig. 2.25 page 106.
This property is quite special. It turns out that many T-310 long-term keys
also mandate a similar quite strong structure. This property is unusual and
maybe even unnecessary and it is clear that it was NOT motivated exclusively
by the question of invertibility, cf. Appendix C.11 page 119. It is rather related
to the history of development of ciphers in Eastern Germany [60, 48]. It is about
imitating indeed the structure pertaining to SKS ciphers seen on Fig. 2.25. This
is illustrated in Fig. 2.26 page 106 and it is also the object of Thm. B.1.1 page
106.

13 This question is studied in Appendix C.
14 Decryption, in the sense of computing the previous states of the T-310 generalized

Feistel variant, is not needed in the normal operation of the cipher. However for
this cipher to be bijection, is needed as a structural property cf. our Appendix C. It
was clearly imposed by designers of T-310 starting from 1974, cf. page 109 in [60],
and this for some very good (security) reasons such as preventing the entropy of the
cipher state from being depleted by iteration.

15 The opposite could also be argued: Though the strong internal structure of T in
T-310 certainly leads to imperfect/poor diffusion, a well-chosen D - NOT required
by the theory such as [83] - could make it substantially stronger and avoid attacks
such as splitting the cipher in 2 loosely connected parts, cf. Fig. 3-4 in [42, 43].
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5.6 Alterations to the Unbalanced Feistel Construction with KT2
Keys

It seems rather obvious that replacing more than 1 bit by a constant would
weaken the cipher. It is also worth noting that for KT2 keys as described in
Section D.1 more then one bits can be disconnected, but again, only one is
replaced by a constant. This type of keys is less well understood.

Fig. 5.8. Connections of T-310 when using the KT2 key 15 from [54].

Comparison KT1 vs KT2. Keys of type KT1 and KT2 differ very substan-
tially. For example for the KT1 keys the outputs of D and P will have 8 numbers
in common. In contrast for KT2 keys the two sets of outputs of D and P will
always be disjoint, cf. Section D.1 or/and page 59 in [99].

An example of a real-life KT2 key is the key 15 from 1979 in [54] which we
have verified to satisfy all the conditions of Section D.1. In this example only 3
bits of I1 are used in T , while 9 are typically used for the KT1 long-term keys
(which are illustrated in Fig. 5.7). In KT1 we always have D : IF9+1

2 → IF9
2,

while in KT2 we may have D : IF9+3
2 → IF9

2 but also for example we could have
D : IF9+2

2 → IF9
2 cf. Appendix E.3.
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6 Detailed Description of T-310

Given Fig. 6.9 and Fig. 5.7, in order to fully specify the cipher T-310 we need:

1. To specify u0 the initial 36-bit state I1−4 of the block cipher which is a
constant equal to 0xC5A13E396, cf. [95].

2. To specify D,P fully, cf. Section 8 and how they affect the exact connections
inside one round of the block cipher φ, cf. Sections 7.5, 9 and Section 11)
which is further extended in Appendix C.

3. To specify the internals of the round function T : {0, 1}3×{0, 1}27 → {0, 1}9
cf. Section 9 below.

4. To specify the key/IV scheduling: how the 3 bits of the key and IV (fm, sm,1, sm,2),
m ≥ 1 used by D and T are generated, for each round m ≥ 1, cf. Section 13.

5. To specify the encryption component: how bits from the state of our iterated
block cipher are extracted, cf. Section 14.1 and used to encrypt the plaintext
5 bits a time, cf. Section 16.

On Fig. 6.9 below we show how all these things come together.
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Fig. 6.9. T-310 Cipher.
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7 Construction of One Encryption Round φ

We start by a high-level description where we introduce our new notations.

7.1 Compact High-Level Description of One Round φ

We denote by um,j the state of the block cipher after m rounds of encryption
m = 0, 1, . . . and j = 1 . . . 36. Then each round is computed as:

(um,1−36) = φ (sm,1, sm,2, fm; um−1,1−36) , m ≥ 1

Here φ : {0, 1}3 × {0, 1}36 → {0, 1}36 is one full round of encryption with 3
bits of key+IV per round which is written here using our new compact notations
as in Fig. 4.5 and Fig. 5.7:(

ui,I1−4

)
= φ

(
sm+1,1, sm+1,2, f ; um,I1 , um,I2 , um,I3 , um,I4

)
=(

um,I2 ; um,I3 ; um,I4 ; D(sm+1,1; um,I1)⊕T
(
f, sm+1,2, P(um,I1−4)

) )

Fig. 7.10. High-level internal structure of one round of T-310

Below we explain our new notations D, T and P not previously used for T-310.

7.2 Definition of P

Then P : {0, 1}36 → {0, 1}27 is a permutation of wires which also defines which
wires are not16 used (depending on cases). The k-th output of P is defined as:

Pk (um,1, um,2, um,3, . . . , um,36) = um,P (k) for any k = 1 . . . 27

If we denote the 27 outputs of P by v1−27 we have:

(v1, v2, v3, . . . , v27) =
(
um,P (1), um,P (2), um,P (3), . . . , um,P (27)

)
7.3 Definition of T

The definition of T : IF2+27
2 → IF9

2 is the same as T with order of outputs inversed,

i.e. Ti(f, s2, v1−27)
def
= T10−i(f, s2, v1−27), which function T : IF29

2 → IF9
2 will be

defined in Section 9.

16 Specific examples of missing bits are listed in Table 1 page 40 which leads to some
important differential properties, cf. Section 12.3.
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We should note that T has a complex internal structure which we will detail
later. On Fig. 7.11 below we provide a quick preview.

Fig. 7.11. Internal structure of T inside one round of T-310 adapted from an original
drawing from [57]. More details can be found in Section 9.

Quick explanation how P,D work on Fig. 7.11. For example P (26) = 5
would mean that we connect the second rightmost output U2 (or state bit 5
-here in green- from I4 on Fig. 5.8 a.k.a. u5) to v26 in the next round. Then
D(9) = 4 means that first bit u4 (in green) from I1 on Fig. 7.10 was XORed to
the state when computing U9, which U9 becomes bit 33 of I4 in the next round.
Furthermore let u0 = s1, 0 is not a state bit number but a placeholder for s1,
for example D(1) = 0 would mean that we would XOR s1 in computation of U1.

7.4 Definition of D

We focus primarily on KT1 case represented in Fig. 5.7. In this case, D is near-
permutation of 9 wires with one additional bit of input si,1 which is the bit17

which “replaces” the bit which18 is “removed” in the KT1 case.
In KT1 case (and not in KT2 case) we have a particularity that outputs of

D() are always expected to be multiples of 4, and are of the form D(a) = 4 · b
with b ∈ {0, . . . , 9}. Here we distinguish two types of inputs for D. First, the the
case b = 0, which corresponds to replacing one bit by a constant which is not
from I1 but equal to si,1. Then we have all of the other multiples 4 · b with b 6= 0
which are exactly a subset of those 8 out of 9 bits of I1 which are used.

Overall, our permutation D induces a function D : {0, 1}1×{0, 1}9 → {0, 1}9
defined as follows, where we use a quite unusual numbering of inputs to keep it
partly compatible with [95] and Fig. 5.7.

Di (s1; u4, u8, u12, . . . , u36) = s1 when D(i) = 0

Di (s1; u4, v8, u12, . . . , u36) = uD(i) when D(i) 6= 0

17 This bit was called v0 in [95].
18 It happens in fact at position equal to 4j8 following the notations used in [95].



Cryptographic Security Analysis of T-310 25

7.5 Summary: Main Part of φ

Putting it all together, we have 9 new bits created at each round which we will
call U1−9 as defined here below. We also recall that these 9 bits will be shifted
to branch I4 now, cf. Fig 5.7 and therefore we have for any m ≥ 0:

(um+1,1, um+1,5, um+1,9, . . . , um+1,29, um+1,33)
def
=

(U1, U2, U3, . . . , U8, U9)
def
=

D(sm,1; um,I1)⊕T
(
fm+1, sm+1,2, P(um,I1−4)

)
=(

um,D(1) ⊕ T9(fm+1, sm+1,2, um,P (1−27)),

um,D(2) ⊕ T8(fm+1, sm+1,2, um,P (1−27)), um,D(3) ⊕ T7(fm+1, sm+1,2, um,P (1−27)), . . .

...

. . . , um,D(8) ⊕ T2(fm+1, sm+1,2, um,P (1−27)), um,D(9) ⊕ T1(fm+1, sm+1,2, um,P (1−27))
)

where by convention input um,0
def
= sm+1,1, m ≥ 0

Fig. 7.12. Internal structure inside one round of T-310: computation of 9 outputs Ti
of T () which we will specify later in Section 9 is followed by 9 XORs (the Ui).

Moreover for most historical T-310 keys we have D(1) = 0 which gives:
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(um+1,1, um+1,5, um+1,9, . . . , um+1,29, um+1,33) =

D(sm,1; um,I1)⊕T
(
fm, sm,2, P(um,I1−4)

)
=(

sm+1,1 ⊕ T9(fm+1, sm+1,2, um,P (1−27)),

um,D(2) ⊕ T8(fm+1, sm+1,2, um,P (1−27)), . . .

. . . um,D(9) ⊕ T1(fm+1, sm+1,2, um,P (1−27))
)

Notes on notation: We use the letter φ following [95] and we consider that
φ : IF3+36

2 → IF36
2 . Similar but different notations are used in [99]: except that

it uses a capital letter Φ which is written in handwriting and which looks like
neither φ nor Φ which could lead to some confusion. Then this letter Φ and
other similar notations are used at many places in a very mathematical style
which privileges compact notations over trying to avoid any ambiguity19. In this
paper we will also privilege compact notations and when some 3 bits are fixed
in some particular encryption context we will consider that we have a function
φ : IF36

2 → IF36
2 which will typically be a permutation and which following the

habit of [99] will still be denoted by φ.

19 In [99] Φ will typically denote our permutation φ where the (s1, s2, f) bits are fixed,
OR when all possible 8 choices of (s1, s2, f) are considered. Given a fixed (P,D) we
have exactly 8 possible permutations which are sometimes denoted by Φ0, . . . , Φ7. At
other places the notation ΦT is used to distinguish the permutation Φ of the round
function of T-310 cipher from one defined for a different cipher, e.g. page 47 in [99].
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7.6 A Potential Serious Vulnerability - Divide And Conquer
Attacks on Key Space

There is something interesting which is revealed by our new notations D and
P. We observe that ONLY half of the key bits (120 bits) will ever be used to
form any of the si,1 used by D, and another disjoint half of key bits is used to
form the si,2 used in P. These two sets of bits never mix and permanently play
2 different [disjoint] roles inside our iterated block cipher process. We also can
observe on Fig. 7.11 that a change in S1 will flip just one bit, while a change in
S2 will flip 4 bits typically.

Fig. 7.13. The role of key (s1, s2) and IV bits (f) in one round in T-310 and also in
SKS ciphers adapted from an original drawing from [57].

This fact alone is potentially a serious design flaw in T-310 cipher (and
for the SKS cipher) and suggests there might be some divide-and-conquer or
guess-then-determine attack, where initially the attacker would guess only half
of the key bits etc and confirm this guess without knowing the other half. For
example:

1. It is easy to see that bits S2 affect more bits in one round, while S1 will
affect just one bit20.

2. Or we could work on statistics on how frequently flipping a bit i flips also
bit of the form i+4k for any number of the rounds of this cipher, and realize
that this depends on D primarily and if we guess this half of the key we
should get a specific recognizable pattern.

3. Or we we could design an attack on T9 [or on one output bit correlated with
uP (20)] following the observations of Section B.2 cf. Table 19 page 107 and
Conj. B.2.3.

We don’t know if such attack will be efficient - the attacker does NOT easily get
access to see all the flipped bits, cf. Section 14.1-16. Now it would be extremely
easy for the designers to avoid any such attack on T-310 by mandating a se-
quence derived from both halves of the key for both D and P. We are facing
here a strong vulnerability almost inevitably susceptible to lead to some inter-
esting attacks. Another interesting observation is that bits S2 is used twice each
in round, bit S1 only once and it is initially combined linearly. This makes that
sometimes key S1 will be “ineffective”, effectively shortening the effective key
size of T-310, cf. Thm. 12.4.1 page 42 or Section 12.4.

20 Eventually S1 will affect ALL state bits 1-36 in a certain order cf. App. C.13.
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8 Long Term Keys D, P

The long-term key D/P are not fully specified in [99, 95], however some historical
examples of D/P can be found in [54]. It appears that the “main” historical
versions of T-310 were primarily using KT1 keys. KT1 keys are defined in [99].
There is strong evidence in that some 7 keys of type KT1 have been used in
practice in the period of 1979-1990, cf. Section 8 and [54]. Then there exists
another substantially less popular class of long-term keys KT2. The sources and
[99, 54] list only 1 such key which is number 15 from 1979 and we are not sure if
this was ever actually used to encrypt any substantial volume of communications.

8.1 Example of D, P of Popular Type KT1
No example of actual long-term key D/P is given in [99, 95]. Instead a set of
peculiar constraints on D/P are specified. In [95] only the so-called KT1 class
of keys of [99] is specified and it is not specified21 exactly. In Appendix B we
provide a complete specification of this class. In [99], another class of keys KT2
is specified. Both these classes of keys are clearly meant to make Fig. 5.7 have
the desired properties such as invertibility and possibly other which need yet22

to be elucidated.
Several real-life historical examples of keys D/P from 1977-1990 can be found

in [54] which are given numbers23 of type Der Langzeitschlüssel 14: (1979).
In our research by default we will use the following real-life long-term key number
26 from [54]. We have carefully checked that key 26 belongs to the so-called KT1
class which is fully described in [99] also [not completely] described in [95].

//Der Langzeitschl\"{u}ssel 26: (1981)

D=0,28,4,32,24,8,12,20,16 P=8,4,33,

16,31,20,5,35,9,3,19,18,12,7,21,13,23,25,28,36,24,15,26,29,27,32,11,

alpha=4

We have also tested all of the other keys in [54] and we have verified that keys
which belong to class KT1 are only and exactly those numbered 14,21,26,30,31,32,33.

8.2 Properties of KT1 Keys
KT1 keys mandate a sort of total ordering on the outputs of D: there exist 8
pairwise distinct exist integers j1, . . . , j8 ∈ {2, . . . , 9} such that D(j1) = 4 and
D(jk) = 4jk−1 for any k = 2 . . . 8, cf. Appendix B and [99, 95]. Other important
properties of KT1 keys are studied in Section 5.3, Section 5.4 and in Appendix
C.
21 We demonstrate this fact in Section E.6.
22 At this moment we are far from being able to make the full assessment of the impact

of these criteria on the strength of T-310, and apparently there may exist other
alternative sets of rules, cf. [54].

23 It appears that only keys 14,15,21,26,30,31,32,33 found in [54] are for T-310. Other
are keys for different East German encryption machines other than T-310, which are
also studied in [54]. Circumstantial evidence shows that this key numbering should
be consistent with earlier documents, for example in page 42 of [99] we read that key
14 are of type KT1 and key 15 are of type KT2, which is also true for keys found in
[54].
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8.3 On Strength of Real-Life Cold War Keys

The real live KT1 keys 14,21,26,30,31,32,33 are expected to be particularly
strong choices of KT1 keys and until now no weakness whatsoever for these
keys have been reported. Here is one: in Table 19 page 107 we see that all except
the first of these keys have α ∈ 1− 4. Then, at the first sight, this is potentially
the strongest possible choice, due to the structure inside T () cf. Fig. 7.12, these
bits depend on all the inputs of all the 4 Boolean functions Z1-4, and on all the
key bits, and on the IV bit. However if we study some related-key differential
attacks, cf. Section 12.4, we see that strangely, bits 1-4 are very frequently those
which appear in such properties. No keys are exempt from RKDC properties as
far as we know. Moreover Table 19 page 107 also suggests that historical keys
could be vulnerable to correlation attacks on S1 bits specifically.

8.4 KT2 Key Class

This type of keys is not yet well understood. The specification of class KT2 is
substantially more complex than KT1, it is split in several parts which can be
found on pages 59-60,114-115 and 117 in [99]. We have checked that the only
known authentic key of type KT2 which 24 is key 15 from 1979 in [54] does
indeed belong to KT2. This key is as follows:

D=0,4,17,12,35,32,2,24,20 P=15,13,33,

34,6,8,5,3,9,18,14,22,28,30,21,31,7,25,26,16,27,11,23,29,19,1,36

It seems rather obvious that replacing more than 1 bit by a key-dependent
constant could weaken the cipher. It is also worth noting that for KT2 keys as
described in [99] more than one bit will be disconnected contrasting with KT1
keys, but in both KT1/KT2 cases only one is replaced by a constant.

The keys of type KT2 are also studied in Section 5.6, Appendix D and Ap-
pendix E.

8.5 Other Keys and Key Classes

We have tested all the keys which are indicated as keys for T-310 in [54] and
some such keys do not belong to neither of two classes KT1/2. Some of these
keys such as 27/28 are clearly indicated as “anomalous keys for testing”, others
such for example as key 29, look like other similar KT1 keys, yet do not satisfy all
the KT1 conditions enumerated in page 256 of [95]. In Appendix E.6 we present
another key which is also “almost” but not quite KT1. Similarly in Appendix
E.2 we present several keys which are “almost” but not quite KT2.

8.6 Key Sizes for the Long Term Keys

According to page 56 in [99], the entropy of (D,P ) belonging to class KT1 is
between 78.1 and 79.7 bits. For the class KT2 it would be between 76.1 and 89.2
bits. It appears that the designers have not attempted or had no capacity to
evaluate the sizes of these sets more precisely in the 1980s, for example due to

24 We also study this key in Fig. 5.8 of Section 5.6 page 20.
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a limited computing power. We need to add to this a third not yet studied part
of long-term key which is called α and is simply a number between 1 and 36,
cf. Section 14.1 below. However, the number of possibilities for α is reduced to
about 30 cf. page 117 in [99]. Therefore the entropy of α is only about 4.9 bits.

Overall, the union of both classes of KT1/KT2 keys with a specification of α
will have approximately between 283 and most 294 elements. Thus the effective
key size for the long-term key for T-310 is between 83 and 94 bits. A more
recent evaluation can be found in Section 5.4. of [47] the space of KT1 keys has
approximately 283.2 elements.

Remark: This is NOT very large compared to other historical ciphers.
For example the effective long-term key size for Enigma is hundreds of bits (88
bits per unknown rotor), and for GOST cipher it is about 354 bits, cf. [37]. This
small LZS key space suggests that cryptanalysts could also hope to break T-310
when the long-term settings are unknown to the attacker.

8.7 Long Term Keys vs. Security

It is clear that the choice of D,P is crucial for the security of this cipher, in
the same way as the choice of the bit permutation which occurs after the round
function is crucial for the security of DES, cf. slide [14] and in the same way as
a bad choice is what makes GOST weak, cf. [38], and leads to some very good
attacks, cf. again Fig. 3-4 in [43] and all the attacks of [42–44]. Several distinct
classes of particularly weak keys for T-310 are studied in this paper, see Section
22.
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9 Description of T

The standard method to define the compression component T () inside the round
function of T-310 is to define T : IF2+27

2 → IF9
2 as follows:

T1 (f ; s2; v1−27) = f

T2 (f ; s2; v1−27) = T1 ⊕ Z(s2, v1−5)

T3 (f ; s2; v1−27) = T2 ⊕ v6
T4 (f ; s2; v1−27) = T3 ⊕ Z(v7−12)

T5 (f ; s2; v1−27) = T4 ⊕ v13
T6 (f ; s2; v1−27) = T5 ⊕ Z(v14−19)⊕ s2

T7 (f ; s2; v1−27) = T6 ⊕ v20
T8 (f ; s2; v1−27) = T7 ⊕ Z(v21−26)

T9 (f ; s2; v1−27) = T8 ⊕ v27
Here Z : IF6

2 → IF2 is a Boolean function defined in Section 10.1.

Fig. 9.14. Internal structure of T inside one round of T-310.



32 N. T. Courtois et. al., eprint.iacr.org/2017/440/ May 29, 2018

9.1 Design of T and Alternative Descriptions

We recall the input naming of [95]: e0 = f , then e1 = s2, and then e2 = v1 up
to e28 = v27.

Fig. 9.15. A zoom inside the “complication unit” of SKS cipher [57] adapted for T-310,
and comparison of notations in the description of T () and ei notations of [95].

The origin of Fig. 9.15 reveals that the structure of T () was not quite designed
for T-310 but in fact comes from an earlier cipher SKS V/1 which we study in
Section F.

9.2 Design Criteria of T

We found an interesting document [58] which explains the origin why S2 is used
twice inside this component. More precisely on page 54 of [58] from 1973 we found
an earlier weaker design for the component T () where S2 is used only once, and
the authors report that there is “a certain restriction on the effectiveness of S2”.
More precisely we read that for exactly half of the inputs of the round function
φ, the 9-bit output will be independent of the input S2. This property is clearly
a property which the designers decided to remove.

9.3 Another Point of View on T and One Round φ

One can also view φ and T as a stateful system which operates on 9 bits:

Fig. 9.16. T-310 round function seen as a stateful component IF3+9
2 → IF9

2 with 36
memory bits, cf. page 119 in [99] which also mandates a certain subset W of 6 special
bits e.g. u5 and u33 cf. page 117 in [99] and Fig. 2.24 in Appendix B.
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9.4 Observations on T ()

In general, in Luby-Rackoff theory, for a block cipher to be secure it is required
for T to be very complex. What strikes us in T-310, is that the round function
T is extremely simple and highly structured, which again is clearly a sort of
inevitable consequence of the fact that the bits of I1 would need to be computed
in a specific order.

It is also something that reveals a highly regular internal structure with weak
diffusion properties [the diffusion is the job of D and P] and an inherently se-
quential character of T-310 computations. In the very definition of T () above,
there is exactly one natural order of computing the output bits T1, . . . , T9. Ac-
cordingly, T-310 can also be viewed as a complex stream cipher with non-linear
feedback which generates one new bit at one time, in a specific order.

9.5 Vulnerabilities of the Whole T Component

It possible to see that the amount of non-linearity or Multiplicative Complexity
[23] is quite low: there only four applications of Z for nine new ui,j state bits
generated. Each application of Z has MC at most 51, cf. Appendix I.14. The T
component is in fact not completely non-linear: it has linear I/O equations true
with probability 1, for example on Fig. 9.16 we see that w9 ⊕ w10 = v27. This
has important consequences in terms of linear cryptanalysis, as we will see in
Section 21.7.

In Section 12.2 below we show that there is a serious problem in all versions of
T-310: the round function will systematically omit to use some 9 bits regardless
of the long-term key. This has serious consequences for the security of T-310
against differential cryptanalysis, cf. Section 12 below.
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9.6 Observations on T () Combined with Final XORs

We can now combine together this “straight-line order” structure inside T with
the next step which is done after T () is computed: the XOR with bits of the left
branch I1 which leads to the creation 25 of 9 new bits denoted by Ui in Section
7.5. It is easy to see that these 9 bits are computed in the exact order U9, . . . , U1

and that the following equations hold:

u0
def
= s1

U9 = uD(9) ⊕ f
U8 = uD(8) ⊕ U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5))

U7 = uD(7) ⊕ U8 ⊕ uD(8) ⊕uP (6)

U6 = uD(6) ⊕ U7 ⊕ uD(7) ⊕Z2(uP (7−12))

U5 = uD(5) ⊕ U6 ⊕ uD(6) ⊕uP (13)

U4 = uD(4) ⊕ U5 ⊕ uD(5) ⊕Z3(uP (14−19))⊕ s2
U3 = uD(3) ⊕ U4 ⊕ uD(4) ⊕uP (20)

U2 = uD(2) ⊕ U3 ⊕ uD(3) ⊕Z4(uP (21−26))

U1 = uD(1) ⊕ U2 ⊕ uD(2) ⊕uP (27)

Here we distinguish Z1, Z2, Z3, Z4, which by definition are 4 copies of the
same Boolean function Z() defined in Section 10.1, and which are computed in
this exact order Z1−4.

25 These bits will become (u33, u29, . . . , u5, u1) = (U1, U2, . . . , U9) at the input of the
next round φ.
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Fig. 9.17. Computation of T () followed by 9 XORs with bits specified by D()

10 The Non-Linear Component of T-310

The only26 non-linear component in T-310 block cipher and keystream genera-
tion process is a simple Boolean Function Z with 6 inputs.

10.1 Description of the Boolean Function Z

Following page 113 in [99] we have:
Z(e1, e2, e3, e4, e5, e6) =

1⊕ e1 ⊕ e5 ⊕ e6 ⊕
e1e4 ⊕ e2e3 ⊕ e2e5 ⊕ e4e5 ⊕ e5e6 ⊕

e1e3e4 ⊕ e1e3e6 ⊕ e1e4e5 ⊕ e2e3e6 ⊕ e2e4e6 ⊕ e3e5e6 ⊕
e1e2e3e4 ⊕ e1e2e3e5 ⊕ e1e2e5e6 ⊕ e2e3e4e6 ⊕

e1e2e3e4e5 ⊕ e1e3e4e5e6
which is the same as for SKS cipher in page 39 of [102], and which is the same
as on page 256 in [95] except that the constant 1 is missing in [95].

Another Vulnerability. The fact that the same Boolean function is used
everywhere is of course a potential vulnerability. For example, using the same

26 Final “double” one-time pad character encryption module of T-310 is also non-
linear, cf. Section 16, which fact however will be out of scope for most of the security
analysis, as the main or final step in many attack will work starting from a pure
block cipher property.
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Boolean function many times in an LFSR-based stream cipher combined with
self-similarity properties which allow the whole inputs of these functions to re-
peat at a later time during the encryption process is known to lead to some
extremely fast key recovery attacks on certain ciphers. An example of such at-
tack can be found in [49] which attack was further improved in [67].

10.2 Implementation of the Boolean Function Z

This question is studied in Appendix I.14. As a result of this T-310 is substan-
tially more expensive than any other block cipher we have ever heard of. We
refer to Appendix I.15 for more details.

10.3 Design Criteria for the Boolean Function Z from 1973

In this section we list the design criteria which were mandated by Eastern-
German cryptologists in 1973 cf. [58]. These criteria were proposed for the
Boolean function Z() of the earlier SKS V/1 cipher, which was the father of
T-310 cipher. We have verified that both Boolean functions are identical. These
original design criteria are listed on page 53 of [58] as follows:

(1) |{X = (X1, X2, . . . , X6)∈{0, 1}6|Z(X) = 0}| = 25

(2) |{X ∈{0, 1}6|Z(X) = 0, HW (X) = r}| ≈
(
6
r

)
· 12 , r = 0..6

(3) |{X ∈{0, 1}6|Z(X1, .., Xi, .., X6) = Z(X1, .., Xi ⊕ 1, .., X6)}| ≈ 25, i = 1..6

(4) Z is not symmetric

It is noteworthy that the criterion (3) is related to Differential Cryptanal-
ysis which was only officially studied in 1990s and they come from the same
period of time when DES was designed [8, 12, 44]. This suggests that Differential
Cryptanalysis could have been studied in the Eastern Bloc countries at least as
early as in the U.S. and possibly earlier. This is confirmed by a detailed study
of differential and higher-order differential properties of T-310 Boolean function
found in [62].

10.4 Another Set of Design Criteria From 1975

We found another document from 1976, which gives a different detailed set of
points to study or criteria which the Boolean function Z should satisfy, cf. page
30 in [60]. It also clearly states that these properties were specified 1 year earlier
in 1975 and that they are studied in more detail in [62].

1. All derivations of Z were computed as Zhegalkin polynomials27 and as value
tables.

2. Frequency of the function result being ‘1’ with k fixed values was computed
for (k = 1, 2, 3).

27 This is the same as Algebraic Normal Form (ANF), and were initially invented by
a Russian mathematician Zhegalkin as early as in 1927. It is noteworthy to remark
that only 1936 an American mathematician Marshall Stone has reflected on the fact
that this is a very useful and simple method to “arithmetize” the Boolean algebra
which is of great interest and led Stone to substantially rewrite his paper, cf. [106].
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3. The statistic structure28 of the Boolean function was computed.
4. Z is not symmetric. This means that the function value changes if the argu-

ments are permuted, if one or several arguments are negated, if the function
is negated or if a combination of these three changes is applied.

Later the document also states that 1. and 2. are important requirements
for further examinations. Then it expands 3. saying that statistic structure did
not reveal any cryptographic advantages resulting from an approximation of the
function Z via Boolean functions. Finally it says (in relation to 4.) that due to
the asymmetry 29 of Z there are less equivalent long-term keys.

28 Examination of pages 17-18 in [62] makes it crystal clear that this about computing
linear characteristics of this Boolean function Z, and refers to a classified cryptog-
raphy course, see our later Section 21.1 for more details.

29 This property is demonstrated on pages 19-20 in [62].
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11 Properties of T-310 Round Function φ

The original documents on T-310 contain a great deal of claims about various
mathematical and cryptographic properties of φ and various combinations of
permutations derived from or based on φ. Here crucial properties to be studied
will be vulnerability to Differential Cryptanalysis (DC) cf. Section 12 below,
truncated differentials, linear cryptanalysis and bi-linear and multi-linear flavors
which will be particularly interesting here cf. [16, 14] and many other, ElimLin
and advanced variants thereof [13, 22, 98], etc. We plan to study all these in
future revisions of this paper as all of these deserve a serious consideration for a
serious government encryption systems such as T-310. For example on page 56
of [99] it is very clearly specified that φ should be a bijection, which question is
related to some strong DC attacks as we will see below.

11.1 Is One Encryption Round φ a Permutation?

From a purely functional engineering perspective nothing forces the round func-
tion to be invertible, and this property is simply not required for the normal
operation of the cipher. However it is possible to see that the security conse-
quences of φ being not a permutation would be severe, and comparable to some
spectacular so-called “Vanishing Differential Attacks” which have been for ex-
ample used a lot by hackers in the last 20 years to extract secret keys and clone
mobile phone SIM cards, see Appendix C.1. It is also clear that the designers
of T-310 and other East German ciphers in the 1970s have done a great deal of
effort to make sure that T-310 LZS always lead to a bijective round function φ.
Thus making powerful differential attacks with zero differentials impossible. In
this paper we show several30 examples of more or less devastating attacks which
can be mounted against T-310 with non-bijective LZS. In order to show that T-
310 was designed to resist this attack, in Appendix C we provide complete and
detailed mathematical proofs to show that all KT1/KT2 keys lead to a bijective
round φ, which also therefore proves the security of all known historical versions
of T-310 against “Vanishing Differential” attacks.

11.2 Another Result on φ

The following result is claimed to hold (apparently) for all long-term keys for
T-310, cf. page 49 in [99].

Theorem 11.2.1 (Local injectivity result for φ4). For four rounds φ4 if we
fix the block input u on 36 bits, and vary the 12 of the key and IV bits, we
obtain 212 pairwise distinct φ(u) values on 36 bits.

A similar result also holds for 1,2 and 3 rounds of T-310, with 23n images cf.
page 49 in [99]. Then it does NOT hold for 5 rounds, see Section 12.3 below.

30 See for example Section 20, Section 22.7 and Conj. 22.11.1 page 81. Cf. also Section
C.1.
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12 Differential Attacks and Vulnerabilities in T-310

Differential cryptanalysis is one of the oldest and one of the most powerful and
generally applicable attacks on block ciphers, cf. [15, 44, 12, 42]. We refer to [44]
for a survey and pointers on the “confidential” history of development of dif-
ferential cryptanalysis. In [95] we read that it is not clear if the designer knew
about linear and differential cryptanalysis (LC/DC). It is however clear that a
most basic form of Differential Cryptanalysis when the attacker flips just one
bit was already anticipated and explicitly defended against at the level of the
Boolean function Z(), and this already for the predecessor of T-310 not later
than in 1973, cf. the design criterion (3) in Section 10.3.

In this Section we give some first results on DC attacks on T-310. First we
are going to show there are good reasons to claim that all versions of T-310 are
vulnerable to DC and that the designers [cf. Section 10.3] have been mistaken
to assume that no obvious DC attacks can be mounted.

12.1 Structural Differential Attacks vs. S-boxes

An important point about differential cryptanalysis is that making components
such as S-boxes secure against Differential Cryptanalysis (DC), cf. again (3) in
Section 10.3, does NOT make a cipher secure against DC. Ciphers can contain
serious “loopholes” w.r.t. differential attacks which are not due to the S-boxes
but to the connections of the cipher. We will see a specific example below:
differential vulnerabilities due to the fact that some bits are not used in a round
function, cf. Section 12.2 below.

More generally in modern cryptanalysis it is very clear that Feistel schemes
are naturally susceptible to Differential Cryptanalysis (DC) and there exist many
differential attacks which are structural attacks primarily based on the way in
which the components are connected. In many such attacks and to some extent
we CAN ignore the exact content of the S-boxes cf. [85], or we can hope that
inevitably an attack will be found for any set of S-boxes, cf. [42–44]. However
for other ciphers, the properties of the S-boxes will be very important for DC
attacks. There exist also many more advanced forms of differential cryptanaly-
sis such Truncated DC, cf. [75, 42–44, 17]. DC with 3,4, and even 256 multiple
simultaneous differentials [38, 33, 70] and where DC can be combined with other
attacks such as software algebraic attacks [38, 36, 63]. Overall we need to un-
derstand that to insure the non-linear components of a cipher are somewhat
“secure” against DC does not give any guarantee that the whole cipher is secure
against DC.

12.2 Missing Bits - Serious Differential Vulnerability of T for Any
P

We observe that in the situation of T-310 in Fig. 5.7 there is no reason whatsoever
why the number of inputs of T would be limited to 27. Interestingly, even though
9 extra inputs to T have been added, the total number of inputs was kept at
27, i.e. some of the 27 inputs from I2−4 will not be used. This is clearly not a
good idea. Certain bits or differences on these bits have no effect on the output
of T and therefore less bits in subsequent rounds will be affected. Here are the
exact bits which are not used for different historical keys:
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Table 1. List of 9 bits which are NOT used by the round function T for different
long-term keys

LZS nb bits which are not P (j)

16 4,8,12,16,20,24,28,31,36

14 2,3,7,10,11,17,22,30,31

21 10,14,15,17,22,23,27,30,35

26 1,2,6,10,14,17,22,30,34

30 10,13,14,15,17,22,26,31,34

31 2,3,11,14,17,19,27,31,34

32 2,3,6,7,17,19,26,31,35

33 7,11,14,15,19,23,27,31,34

15 2,4,10,12,17,20,24,32,35

Conjecture 12.2.1 (Missing Bits in T-310). We conjecture that 9 bits are
systematically missing, which is clear for the KT1 keys due to criteria listed in
[95], and which is less evident for KT2 keys such as key 15.

Remark: This property of 9 missing bits seems to be an artefact of the his-
torical process which has lead to the development of T-310 such as backwards
compatibility or/and the temptation to design a cryptosystem which is sim-
ple/elegant/ or about which some interesting properties can be shown to hold,
cf. for example Section 1.5 in [99]. It is possibly due to the fact that the state in
earlier SKS cipher had only 27, not 36 bits, and due to some engineering or cost
considerations in the engineering or production phase.

12.3 Missing Bits - Applications

This property of Table 1 and Conjecture 12.2.1 is very likely to weaken the cipher
against various differential attacks such as [42, 43] and in general.

Missing Bits - Applications - Example 1

If the reader doubts whether the fact of not using all available bits in each round
T degrades the security against differential cryptanalysis, consider the following
example.

Fact 12.3.1 (A 3R Property for key 30). For example it is easy to see that
for key 30, if we flip bit 13, only one bit 16 is flipped after 3 rounds.

This is an extremely rare example of a differential where the number of active
bits does not grow.

Missing Bits - Applications - Example 2

Our missing bits property can also have positive consequences, for example it can
be used to prove the certain correlation attacks will not work, see for example
Thm. 26.0.1 page 91.
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12.4 Missing Bits - Application to Related-Key Differential Attacks

These missing bits play an important role in related key attacks on T-310. For
example we have found the following KT1 key which we will call 716 and another
similar key 722:

716: P=16,6,33,11,20,24,5,13,9,7,31,19,36,12,21,30,34,

25,17,32,23,28,4,29,26,8,3 D=0,4,16,28,12,20,36,24,8

722: P=15,11,33,28,27,8,5,30,9,24,35,22,16,34,21,18,7,

25,12,36,14,20,4,29,32,1,17 D=0,4,28,32,12,20,16,8,24

For these keys there exist differentials on the key which can be annihilated
leading to no difference on the full 36-bit state of the cipher, this for only 5
rounds.

Table 2. Missing bits for some keys vulnerable to related-key differential attacks

LZS nb bits which are not used in P (j)

716 1, 2, 10, 14, 15, 18, 22, 27, 35

722 2, 3, 6, 10, 13, 19, 23, 26, 31

For simplicity we focus on key 716. The exact form of internal differential
that eventually is annihilated by a difference on a key bit is 1 > 2 > 3 > 4 or if
take into account also key and IV bits it is s1 > 1 > 2 > 3, s1 > 4, s1.

A Detailed Explanation for LZS 716

More precisely we have the following sequence of events for 5 rounds:

1. In the 1st round, the difference on key bit s1 becomes a difference on U1 = u1,
cf. Fig. 9.17 page 35.
A formal explanation is as follows: we have U1 = uD(1)⊕U2⊕uD(2)⊕uP (27)

following the last 10th equation in Section 9.6 Then we have s1 = u0 and
D(1) = 0 and we obtain the equation denoted as (1) in Appendix C.10: we
have U1⊕s1 = U2⊕uD(2)⊕uP (27). The right hand side does not change and
a flip on key bit s1 in round 1 will affect bit u1 at the input of the second
round. Accordingly bit 1 and only this bit is flipped after the first round.

2. Then inside round 2, according to Table 2 this input bit 1 is NOT used, it
does NOT enter the found function, and it simply becomes bit 2 [this is a
substantial weakness]. Thus only bit 2 is flipped after the 2nd round.

3. Then in round 3, according to Table 2 this bit 2 is still NOT used otherwise
than it becomes bit 3. Thus only bit 3 is flipped after the 3nd round. We
have the following differential characteristic s1 > 1 > 2 > 3.

4a Then in round 4, we have P (27) = 3 and bit 3 is used. Again we have
U1⊕ s1 = U2⊕uD(2)⊕uP (27) so the only thing a difference 1 on bit 3 would
do is to flip the bit T9 = U2 ⊕ uD(2) ⊕ uP (27) which flip will be annihilated
by a flip in bit s1 inside the same round and overall the bit u1 is not flipped
after round 4. We have s1 > 1 > 2 > 3, s1.
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4b At the same time, the flip will still be copied from wire u3 which becomes
u4 now. We have s1 > 1 > 2 > 3, s1 > 4.

5a Then in round 5, we have a difference on bit 4 entering. The construction
of T-310 prevents this from beign cancelled too easily. We have P (23) = 4
which is one of the inputs s4 of Z4 in 4th round. A detailed examination of
the truth table of Z() shows that the difference on bit s2 is cancelled with
probability close to 1/2 and this no matter what are all the other 5
input bits in each case, systematically and uniformly31 over such choices.

5b At the same time we have D(2) = 4. In the fifth round the bit 4 has another
effect: it would normally flip u1, except that we have again U1 ⊕ s1 = U2 ⊕
uD(2)⊕uP (27), and this modification can be cancelled by flipping bit s1 inside
the 5th round.

!! Overall our differential is extinguished with probability 1/2 over 5 rounds as
follows: s1 > 1 > 2 > 3, s1 > 4, s1.

Comments. This property is quite unusual and 716 is an example of an
exceptionally weak KT1 key where this sort of property holds for 5 rounds. This
sort of properties were a subject of considerable care for the designers of T-310
in the 1970s, see Thm. 11.2.1, which states that the same result should not hold
for 4 rounds. Our simulations indicate that for other “typical” or random KT1
keys this property will be substantially weaker. It will typically be observed for
10 or more rounds, and almost never for less than 9 rounds, and also typically
with substantially worse/lower propagation probabilities32. than 1/2.

A General Result

From the above we see immediately that:

Theorem 12.4.1 (A 5-round Related-Key Differential). The extinguish-
ing related-key differential property s1 > 1 > 2 > 3, s1 > 4, s1 works for
each long term key such that D(1) = 0, D(2) = 4, P (23) = 4 and such that
∀jP (j) /∈ {2, 3}. For such LZS, the property is triggered by imposing the s1
key difference for 5 rounds is 0x19, and for any s2 key, for any IV, and for any
cipher state on 36 bits and the differences are extinguished after 5 rounds with
probability almost exactly equal to 1/2, cf. requirement (3) above.

Remark. A similar yet weaker result could be obtained for key 722. In this
case the differential property is rather s1 > 1 > 2 > 3 > 4, s1 and the difference
on s1 key bits is 0x11 which has only 2 active bits as we do longer need to flip a
bit at round 4 as P (27) 6= 3 and bit 3 is not used. The propagation probability
is 1/4, half of the previous result, due to the fact that in round 2 bit 1 is used
as input of Z4 with P (26) = 1, therefore the property (3) is used twice.
31 This is quite surprising, and due to the requirement (3) listed on page 53 of [58], (cf.

also Section 10.3 and Section 3.3. of [47]) which is exactly as follows:
(3) |{X ∈{0, 1}6|Z(X1, .., Xi, .., X6) = Z(X1, .., Xi ⊕ 1, .., X6)}| ≈ 25, i = 1..6

32 These events and their relative probability will be conditioned/depending on the IV
in these rounds, the keys s1, s2 in these rounds, and on the initial state on 36 bits.
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12.5 Examples of Differential Attacks on T-310

In this section we consider ordinary differentials ont he cipher state without
modification of the key bits. Our student Matteo Scarlata (also another UCL
student Mario D’Onghia has developed a different fast/parallel tool) has devel-
oped a software tool written in Python cf. Section I.13 and [94] for discovery of
differential attacks on T-310. Here are some preliminary results for key 26.

Table 3. Some “good” differential properties for T-310.

LZS nb rounds input → output proba

26 4 [22] → [18] 2−1.95

26 7 [1] → [1,12] 2−3.19

26 8 [6] → [18] 2−5.85

26 10 [30] → [36] 2−6.8

26 13 [25] → [18] 2−9.9

26 17 [26] → [11,23] 2−16

738 2 [5] → [7] 2−1

738 4 [5] → [1,5,9] 2−2

738 8 [5] → [17,21,25,29] 2−6.7

738 16 [5] → [2,6,9] 2−22

925 8 [7] → [19] 2−4.6

925 8 [16] → [32] 2−5.9

925 8 [28] → [1,5,9] 2−4.2

925 16 [7] → [3,7] 2−23.3

12.6 Differential Vulnerabilities with Different IVs

More possibilities for stronger attacks exist if we allow two different IVs. We
have for example discovered that:

Fact 12.6.1 (A chosen-IV differential property for T-310 block cipher).
Consider 2 parallel encryptions with the T-310 block cipher and our example of
a long-term key specified in Section 8. Consider two encryptions with the same
key, same input and two different IV, one IV is composed of all 0s (∀ifi = 0)
and the other IV is all 1s. Then the probability that the outputs difference has
HW equal to 35 out of 36 bits (strong result, the output differential is almost
fixed) for 4 rounds is as low as 2−8.1 instead of around 36 · 2−36 expected for an
ideal block cipher.

Related Research: The designers have clearly mandated that to flip 0 bits
(have a collision) for 4 rounds and for 2 different IVs cannot happen, cf. Thm.
11.2.1. Now it seems also that 36 bit difference does not happen either.

12.7 Sets Of Differentials

It is possible to see that for some KT1 keys, there exists large invariant sets of
differentials [11] which propagate with probability 1. These will be straightfor-
ward consequences of linear approximations true with probability 1 which we
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study in Section 21.7 and Section 21.11. In addition these invariant properties
do no longer depend in any way on key or IV bits.

For example the set of 226 − 1 non-zero differences which satisfy simulta-
neously 10 linear parity equations for key 784 cf. Table 17 is invariant for any
number of iterations of φ, and the output difference also belongs to this set.
These 10 parity equations are:

[1,3,5], [2,4,6],

[9,13], [10,14], [11,15], [12,16],

[25,29,33], [26,30,34], [27,31,35], [28,32,36]

Here state bits are numbered 1, 2, . . . 36 as in [95, 99] and the notation [1, 3, 5]
means that we XOR bits 1,3 and 5 together.
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13 Key and IV Scheduling Parts in T-310

13.1 Basic Facts About T-310 Keys

According to [55] the long-term keys LZS of T-310 take a form of plug-in cards
and are changed only “when necessary”, for example once per year. Daily keys
“ZS” are implemented as punched cards and are changed weekly.

13.2 Key Scheduling and sm,1−2

The key scheduling in T-310 is simply a periodic repetition every 120 rounds
and following [95] we have:

sm+120,1−2 = sm,1−2.

The initial key is s1−120,1−2 which is 240 bits.

13.3 On Parity Bits

According to [95, 99] 10 out of 240 bits of the weekly/daily key ZS can be used
as parity bits. It is very clear that such parity bits were initially specified by the
designers of T-310 [99]. The exact specification of the parity check equations can
be found in [95, 99]. However based on informations provided by Jörg Drobick, cf.
[54, 55, 57] parity bits were never used in any real-life encryption. Therefore
we will always assume that the key size in T-310 is 240 bits.

13.4 IV Generation and Transmission in T-310

According to [95] the IV is chosen at random in T-310 operation. It is then
transmitted in cleartext in a form of a certain special sequence of characters
called SYF (synchronization sequence) which has 25 characters, it is prefixed
to the cipher message, and it is automatically recognized at the other end as a
beginning of a transmission, cf. pages 15-17 in [99].

13.5 IV Expansion and fm

The fm sequence is obtained with an LFSR and it starts at f−60, . . . , f0 which
is the 61-bit IV which according to [95] is chosen at random. These bits are not
used in encryption and the first bit used is f1. The LFSR is defined by:

fi = fi−61 ⊕ fi−60 ⊕ fi−59 ⊕ fi−56.
This corresponds to the polynomial x61 = x5 + x2 + x1 + 1, cf. [57]. The

period of this LFSR is 261 − 1 which is a prime.

13.6 A Zero-Attack on IV Expansion and fm

We outline here a simple attack on T-310 if we have an access to a decryption
oracle. We send a message where all the 61 IV bits are at 0 which is normally
forbidden by the spec (cf. page 34 in [99]). Then we get a block cipher which has
all IV bits at 0 and which will be subject to various self-similarity attacks: slide
attacks, fixed point attacks, etc: the permutation is now the same and repeats
every 120 rounds. We do not know if this attack is practical: how an original
machine behaves in this case.
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14 T-310 Keystream Generation Process

T-310 is a cipher in which hundreds of rounds of a relatively complex block
cipher are used to produce just a handful of bits of keystream. This keystream is
produced and used in several stages: first some [extremely few] bits of the state
ui,j are extracted and become bits of intermediate state ai, which are further
decimated a proportio of 10/13 of these bits will be used in actual encryption
which we study later in Section 16.

14.1 Bit Selection For Encryption
T-310 has another part of long-term key called α which is simply a constant
integer called α ∈ {1, . . . , 36} here and in [95] (and called d in [54]) which
governs the extraction of one bit every 127 rounds:

ai
def
= u127·i,α, i = 1, 2, 3, . . .

Then for each 127 · 13 consecutive rounds we discard 3 bits out of the 13 and
we use 10 for encryption in a way specified in the next Section 16.

It is important to note that NOT every value α is permitted, some 6 values
are excluded, α /∈ W where W = {5, 9, 21, 25, 29, 33}, cf. Section B and D and
page 117 in [99].

Remark. A basic observation is that a relatively large proportion of 10/13
of these bits will actually be used and conversely these bits are those for which
the attacker may hope to have some access to.

14.2 Discussion - Low-Rate Extraction
This selection of extremely few bits is rather (at least at first sight) where T-310
appears to be a particularly strong33 cipher design. It seems that it is actually
potentially stronger34 than other ciphers we have compared it to, such as RC2,
DES, and Skipjack,. This is also what was intended by the designers in 1973 and
this is also bellived to be a conclusion of the BSI report from 1990, cf. Section
1.1.

The main point is that only one bit of the state of the cipher per 127 rounds
of the block cipher is extracted for the actual encryption and could eventually be
available to the attacker. This is an incredibly low quantity and the cryptanalytic
literature knows extremely few examples where a cipher could actually be broken
under such difficult circumstances.

One major example is the so-called “Dark Side Attack” on MiFare classic
[33, 70], one of the most widely used security device on our planet, with ap-
proximately 2 billion RFID smart cards sold. In this attack the attacker obtains
only 4 bits from each encryption [33, 70]. Here we can obtain only 1 bit for each
127 rounds of encryption, and though there is no limit on how many round
we could have, the more rounds, the harder it becomes to develop any sort of
cryptographic attack.
33 Of course it could also easily be made yet a lot stronger, for example if a one-

way function was used to format the outputs, or if we used a large size stateful
filter/combiner such as on Fig. 2. in [28].

34 Stronger, unless these ciphers would also be used in some specific “very careful”
mode, with very few bits used for actual encryption, such as in T-310, cf. also [76].
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15 Estimating the Strength of T-310 Against Direct
Software Algebraic Attacks

A natural question is how robust is T-310 against software algebraic attacks,
techniques which as already explained do in a certain sense break any cipher,
if not too complex, cf. [13, 34, 35, 22, 20, 38, 88]. Here the security of T-310 can
be compared to KeeLoq, also a block cipher which locally looks like a stream
cipher, and which has hundreds of rounds. General-purpose software key recovery
attacks on KeeLoq with a SAT solver can recover the key for about 160 rounds
only, cf. [29–31] for attacks running within hours/days on a PC, and having
access to 32 bit of information per encryption. This would maybe scale up to
200 rounds for 1 CPU year. The complexity of KeeLoq is lower than T-310: in
KeeLoq we have 1 Boolean function with 5 inputs per round, in T-310 we have 4
evaluations of a Boolean function with 6 inputs per round. In this respect T-310
remains more robust than KeeLoq35 and is maybe comparable to Simon [22, 36,
20] which is a cipher of remarkable simplicity and extremely low multiplicative
complexity [23]. Overall we do not expect that a SAT solver can break more
than say 127 rounds of T-310 block cipher.

15.1 Attacks on 1 Bit - How to Access u127,α

Unhappily, in most cases, the attacker will dispose of only of up to 1 bit of
information per 127 rounds and frequently less. The best possible case would be
that the attacker disposes of u127,α. This is very difficult to obtain. Below we
outline several possible scenarios which are studied later.

1. Even though the first 4 characters (or 20 bits) of the plaintext are always
known to the attacker in real life situations. cf. Section 17.2 and Appendix
I.5, this does NOT yet give access to the values u127,α, due to double one-time
pad cf. Section 16.

2. Then it may seem that the attacker has little choice other than to work
on the first character of the ciphertext C1 and try to develop an attack on
11 · 127 = 1397 rounds simultaneously.

3. A possible solution could be our later “Zero-Value” attack and how it com-
bines with KPA of Section 17.2. This does not work well, and gives one bit
after 889 rounds, see paragraph KPA Attack? inside Section 17.4.

4. Better attacks can be designed if the attacker has access to a decryption
oracle, see Section 23.

15.2 Attacks on Full State or P/C Pairs

In this paper show that there exists non-trivial methods which allow the attacker
to generate full Plaintext/Ciphertext (P/C) pairs for less rounds, with 36 bits
of information, in some36 scenarios for as little as 120 rounds only37. It may be

35 KeeLoq is really a bad example, a particularly weak cipher which can broken with
time complexity as low as 228 [29] and even 223 for 15 % of keys, cf. [30].

36 For example due to slide attacks.
37 In some cases yet fewer rounds, for example due to faulty LZS e.g. in Appendix C.4.
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indeed reasonable to expect that a SAT solver CAN break 120 rounds of the
T-310 block cipher in a similar way as it can break 8 rounds of GOST, see [25]
and Table 1, Section 9.1. in [38].

15.3 Computer Simulations

Our students Om Bhallamudi, Matteo Scarlata and Killian Davitt, has developed
an open source software solution for implementing software algebraic attacks on
T-310. This software is described in Appendix I.10.
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16 Encryption in T-310 - Double One-Time Pad

As already explained, from the iterated block cipher we extract just 1 bit per
127 rounds: u127,α, u254,α, u3·127, . . . , u1651,α and for every 13 bits we discard 3
and use 5+5 bits. More precisely we number characters j = 1.. and put:

Cj = (Pj ⊕Bj) ·Mrj ,

where Pj/Cj is the plaintext/ciphertext character on 5 bits, respectively,
then Bj = (a7+13(j−1), . . . , a11+13(j−1)) are 5 consecutive bits out of the 13
previously discussed and rj is a “stepping” output which is derived from the
FIRST consecutive 5 bits out of the 13 as follows:

rj =

0 if Rj = (0, 0, 0, 0, 0)
0 if Rj = (1, 1, 1, 1, 1)
31− r if Rj ·Mr = (1, 1, 1, 1, 1)

where Rj
def
= (a1+13(j−1), . . . , a5+13(j−1)) and

M =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

 , which is such that M31 = Id.

16.1 On the Choice of α

The choice of α plays an important role in many attacks in this paper, for
example in Section 25.1 page 85 and Table 15 page 71. Important observations
about the choice of α in principal historical keys can be found in Section B.3. In
almost all historical keys we have α ∈ {1, 2, 3, 4} which is very strange.
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17 Basic Observations and Basic Attacks on T-310
Encryption Process

17.1 Timing and Side Channel Attacks on T-310

In the formula rj = Rj ·Mr we see that T-310 implements essentially an LFSR
with variable number of steps. This will be a serious vulnerability IF imple-
mented incorrectly. If the timing of this operation is NOT constant, this will
leak to the attacker one bit of information on the state after ONLY38 127
rounds of encryption, and probably even less, because of the poor diffusion,
most bits are created earlier than after 127 rounds. Then we can recover the key
by some form39 of a simple automated software algebraic attack [13, 34, 22, 20,
88]. However of course in historical teletype systems the timing was probably
constant, so this remains a theoretical40 attack.

Remark 1. There exists nowadays formal software methods for automati-
cally synthesizing small size implementations for arbitrary small-size problems
such as here, see [23, 101]. Such methods are used on both sides, for defen-
sive [constant-time] optimizations, which would be needed here, and for improv-
ing/enhancing cryptanalytic attacks such as proposed above and elsewhere in
this paper. Therefore evaluation the actual complexity of such an attack takes
some serious work on the S-box representation side, see for example [13, 24, 23,
38]. Exact complexity of such attacks will be studied in future updates of this
paper. Our first software solver was developed by our students cf. Section 15.3
and until now it provides all the basic functionality of a software algebraic attack
except (not as of yet) these advanced optimizations in the line of [23, 89, 101].

Remark 2. Using extremely few bits of a state of an iterated block cipher
in a protocol is a good practice in security engineering. It can also be used as a
strong defence against other side-channel attacks such as DPA, and it is used a
lot in the industry and subject to patents, see in particular [76].

17.2 A Known Plaintext Attack on T-310

In Appendix I.5 we show that the first 4 characters (or 20 bits) of the plaintext
are always known to the attacker in real life situations.

38 An attack on more than 127 rounds would be difficult, cf. Section 15
39 We expect that a SAT solver attack will be suitable, and also an ElimLin-style attack

[22, 98, 20] or/and also a correlation attack, cf. Section 15.
40 It could be different if T-310 was re-implemented and used over more modern packet-

switched networks.
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17.3 The Zero Value Attacks on T-310

The Zero-Value attack is a well-known folklore41 attack in side channel crypt-
analysis [51, 71]. The key vulnerability is nicely summarized in the PhD thesis by
Matthieu Rivain [93], where we read that “multiplicative masking has a serious
drawback: it does not mask the zero value”. We have exactly the same problem
here with ·Mr masking in the T-310! We recall the encryption formula from
Section 16:

Cj = (Pj ⊕Bj) ·Mrj ,

Theorem 17.3.1 (Zero-Value Vulnerability in T-310 block cipher). If
Cj = 05 on 5 bits, then Pj = Bj regardless of what the Rj/rj values are.
The converse also holds: if Pj = Bj on 5 bits, then we must have Cj = 0.

Note. This property shows that the “double” one-time pad of Section 16 has a
security flaw, and shows it could become equivalent of a “single” one-time pad,
if we restrict our attention to a subset of encrypted characters.

17.4 Bad News - Tentative Applications of Zero-Value Attack

Unhappily, the designers of T-310 did well to make a number of attacks based
on thm. 17.3.1 relatively unattractive. Following Section 16, the first bit of Bj
comes from a7, which comes from round as high as 7 · 127 = 889. Breaking T-
310 with bit output after 889 rounds seems ambitious Below we discuss some
possible attack scenarios.

KPA Attack? According to Section 17.2, the attacker knows the first 4
characters encrypted. We combine this with Thm. 17.3.1 If we observe a cipher-
text character with 5 bits at 0, we know that Pj = Bj on 5 bits. From the first
character of the plaintext, which will be LS or 31 in decimal with all bits at 1,
cf. Appendix I.5, we deduce that Bj = 11111 also. Unhappily again the earliest
of these 5 bits is a7, extracted from round as high as 7 · 127 = 889.

Cube Attack? However, possibly, 889 relatively simple rounds would not
be out of reach for cube attacks [103, 53]. Cube attacks are also perfectly suit-
able when the attack can access only one bit of a state inside the block cipher.
Unhappily, here the attacker does not have access to encryptions with different
plaintexts u0 that he could control. Only the IV can be variable. So we could
consider a cube attack where the IV bits are considered as plaintext, and u0 is
fixed. However even in this case, the attacker still cannot apply the attack: it
is difficult to imagine that the attacker will dispose of encryptions with several
expanded IVs 889 bits long each, such that they would form a cube.

ElimLin+ Attack. An attack which will be more suitable for T-310 will be
an ElimLin+ attack, which is an ElimLin attack where the attacker generates
additional equations which can be generated by interpolation for example when
the plaintext+IV are fixed to some value [98]. Here the attacker will fix the
plaintext to u0 and generate equations for several IVs observed in the wild.

41 It is typically attributed to Golic and Tymen [71, 93, 86] however the attack was
known to ourselves and other researchers before, and while Golic and Tymen have
developed one specific solution to this problem [71], other very different solutions
exist cf. [51, 86].
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What is expected that for every Nr there will exist a number K such that
there exist linear equations which relate bits after Nr rounds from K different
IV encryptions and for EVERY key. This will also work if we are allowed to
use ONLY one bit per encryption, for example when Nr = 127 we would use
a7 = u889,α only for many different IVs. This in the light of Zero-Value attack
above we get an attack on T-310 for which it is easy to mathematically prove it
will work using the ANF of a7 seen as a Boolean function of the IV bits and key
bits, cf. [97]. The “only” problem again, is that 889 is a large number.

Cheating - modifying the Spec of T-310. It is possible to see that if
you invert the roles of rj and Bj , the attacker would get access to bits at round
127. Such a modified T-310 would be a lot easier to break.
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18 Preliminary Analysis for Correlation Attacks and the
Space Shrinking Properties

In this section we establish a number of basic facts useful for our later correlation
attacks on T-310.

18.1 Useful Natural Language Statistics

In this paper we need some basic facts about the bias on individual bits for
German language plaintexts encoded with Baudot code or ITA-2 which is used by
T-310. For example we look at the bit known as bit I in standard Baudot-Murray
ITA-2 code. The question is then what is the probability that this bit is equal
to 0 for a long plaintext. In general such probabilities are almost always biased.
In the table below we report the exact biases we need based on simulations on
750 Mbytes of German language corpus downloaded from the online archives of
Zeit magazine from 1980-2000, cf. www.zeit.de.

Table 4. Statistics for the bias on different bits which occur for German language with
5-bit Baudot-Murray ITA-2 code (upper table) older Baudot 1888 code (middle table)
and 8-bit Ascii coding (lower table).

P (bit I = 0) P (bit II = 0) P (bit III = 0) P (bit IV = 0) P (bit V = 0)

1/2+2−2.32 1/2−2−3.67 1/2+2−4.06 1/2−2−3.89 1/2+2−2.27

P (bit I = 0) P (bit II = 0) P (bit III = 0) P (bit IV = 0) P (bit V = 0)

1/2 + 2−2.82 1/2− 2−3.98 1/2− 2−3.35 1/2 + 2−4.19 1/2 + 2−3.65

P (b0 = 0) P (b1 = 0) P (b2 = 0) P (b3 = 0) P (b4 = 0) P (b5 = 0) P (b6 = 0) P (b7 = 0)

1/2−2−4.46 1/2+2−3.59 1/2−2−3.50 1/2+2−2.83 1/2+2−2.33 1/2−2−1.19 1/2−2−1.07 1/2+2−1.06

These statistics are done for letters and numbers, with spaces and special
characters removed. In addition in the Baudot case only, we have converted all
letter to lowercase, and we have converted the “umlaut” accented characters to
as follows: German ü becomes ue, etc, while ß becomes ss. We see that the ITA-2
code for German language is MORE vulnerable to correlation attacks than the
original 19th century Baudot code.

In the ASCII case we keep the capital letters, and we have ignored special
characters such as 0xC3 and only looked at statistics for the actual characters,
for example ü can be encoded as 0xC3 0xBC and in this case we kept only
the last character. An interesting remark is that for most bits and for German
language, ASCII coding produces larger biases. However in this paper we need
to use the Baudot ITA-2 code which is the one originally used with T-310.
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18.2 Correlation Attack vs. Weak Keys in T-310

The question of whether an LZS will make φ bijective in T-310 is one of the cen-
tral questions in this paper cf. Section 11.1 and Appendix C.6. These questions
are closely related to the question of correlation attacks on T-310. There exists
potentially many different correlation attacks in symmetric cryptanalysis.

In this paper we study several different sorts of such attacks. In this Section
[and also in Section 22.7] we study one type of 1-bit biases at the possibility of
one single bit of the current state Ualpha being biased, aiming at a certain type
of ciphertext-only attacks which are later studied in Section 20. In Section 23
and in Appendix G we will study some very different sorts of 2-bit correlations
between two bits Ualpha inside the T-310 block cipher.

18.3 A Specific Reason Why Correlations Exist

In this paper we are going to show that 1-bit biases are bound to happen for one
specific reason: when the space shrinks when φ is not bijective. Moreover, the
bias which we are going to obtain can be predicted, and depends essentially on
the entropy of the output distribution for φ imposed by the long-term key LZS.
In the following pages we will show that for example, if we consider some keys
such as defined in Appendix E.2, the bias will be weaker, and we generate keys
which obey to a substantially smaller subset of the conditions, cf. later Section
18.8, the bias will be yet stronger, and moreover it appears that the bias will
be at least as good as expected from the shrinking properties, sometimes better,
and we will see that bias will happen for any α for all the weak keys we consider.

18.4 A Method for Fast Estimation of Output Space

In this paper we will use a fast and inexact method for estimation of the output
space size which is based on birthday paradox [104] and which is closely related
to the notions of entropy and collision entropy. It is a well known result that
collision entropy is at most equal to the Shannon’s entropy and it cannot be too
small, cf. Table 1 page 3 in [96] for a precise result. The key question is how to
measure the entropy of the output distribution of φ in approximation without
doing 236 encryptions. This is needed in order to be able to quickly evaluate the
comparative strength of different long-term keys LZS against correlation attacks
which will study later.

We are facing the problem of efficiently approximating the entropy from
observation using an oracle access, which problem is studied in detail in [1]. In
this paper we need a fast method for approximating the result which will allow
us to check many different long-term keys in a short time. In order to simplify
the problem, we can for example assume that we sample the output space more
or less uniformly with some M frequent values obtained by φ, and that all of the
other values occur less frequently and we neglect their existence. This question of
estimating the collision probability from Ω(

√
M) samples is mentioned on page

1 in [1] and the basic idea is that estimating Shannon’s entropy is possible from
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the the collision probability each time the Min-Entropy is large, i.e. we do not
have any 42 events occurring with probability substantially higher than 1/M .

In this paper we apply the birthday paradox to estimate the size of M
from observation of the collision probability exactly. More precisely, we make
an important simplifying assumption that if the entropy is equal to log2(M),
we assume that our output distribution behaves as a uniform distribution for
M events, and that other events other than the M most frequent events, do
not happen very frequently. Then we can draw the outputs at random in a way
similar as in Thm. 21 in [1], until a collision occurs. We stop at 1 collision, and
we measure the average expected time n for a first collision to occur. Then,
under our simplifications assuming that M events are nearly equi-probable, and
following [104] the average expected time n for a first collision to occur for a
population of M is governed by the following approximation where we neglect
negligible quantities in 1/M or smaller, and which is due to Ramanujan:

n ≈ 1 +

√
πM

2
− 1

3
Accordingly we can obtain n by running a few hundred simulations stop at

the first collision and restart, and we can then estimate the size of output space
M quite precisely as follows:

M ≈ 2(3n− 2)2

9π
This method have been verified to give highly accurate results in practice

and will be used below for different LZS.

42 This is what we expect here or we would have a different sort of attack on T-310
with guessing the full state on 36 bits
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18.5 Space Shrinking - Original Keys vs. Special Keys

The main idea in our later correlation attacks is that correlations are going
to occur because the output space shrinks for many (weaker) long-term keys.
In the pages which will follow, we study how much exactly the image of type
φk({1, . . . , 36}) shrinks for certain weak long-term keys (weak LZS). We start
by looking at some original long-term keys found in [54]. We compare it to a
special key we 208 have generated in Appendix E.2 as a counter-example in our
proof that KT2 are bijective, it satisfies all the conditions of KT2 of Appendix
D.1 except the “Matrix” which has rank = 8 instead of 9, cf. Appendix D.4.

Table 5. Space shrinking properties: comparison of a regular KT2 key 15 with bijective
φ, some anomalous keys from [54] and our “Rank Deficient” key 208. In these results
we ignore bits ⊆ 1-36 which are never used.

LZS nb D P |φ0({0,1}36)| |φ40({0,1}36)| |φ160 ({0,1}36)| |φ240 ({0,1}36)|

15 0,4,17,12,35,32,2,24,20 15,13,33,34,6,8,5,3,9,18,
14,22,28,30,21,31,7,25,26,
16,27,11,23,29,19,1,36

236.0 236.0 236.0 236.0

29 0,36,28,20,24,16,4,12,8 28,8,33,23,11,12,5,10,9,30,
19,18,4,31,21,24,13,25,22,
32,20,36,27,29,7,16,15

236.0 236.0 236.0 236.0

16 0,35,19,23,27,11,3,15,31 14,19,33,18,23,15,5,6,9,2,
34,1,30,11,21,3,22,25,17,
7,32,10,27,29,26,35,13

227.0 227.0 227.0 227.0

17 0,4,8,12,16,20,24,28,32 22,23,33,11,26,12,5,4,9,3,
2,1,19,10,21,8,7,25,6,35,
32,31,30,29,17,17,34

233.9 232.5 231.2 230.3

27 8,3,5,2,4,6,7,9,1 10,21,18,4,5,8,16,12,6,24,
2,7,3,25,17,26,9,14,22,1,
20,11,19,15,13,23,27

223.9 218.8 216.1 215.2

28 8,3,5,2,4,7,6,9,1 21,8,11,15,5,1,19,24,12,
14,17,6,3,10,26,13,25,22,
9,16,2,18,20,23,7,4,27

225.1 221.2 218.7 217.8

208 17,0,2,32,35,4,12,20,24 13,15,33,10,18,8,5,30,9,6,
3,14,16,22,21,31,7,25,26,
28,27,11,23,29,19,1,36

235.1 233.6 232.1 231.6

On Notation φ0. The meaning of φ0 is this table is that all the 3 key/IV bits
in each round are fixed to 0 in each round. More precisely we recall from Section
C.5 that each φ depends on has 3 key/IV bits s1, s2, f which makes that T-310
operates with non-commutative combinations of exactly 8 fixed permutations on
36 bits which are called φ0, . . . , φ7 in Section 1.5 in [99]. For example we can
have φ3 ◦ φ2 ◦ φ7 ◦ φ4 with four rounds. The document also calls G(P,D) the
group generated by these 8 permutations and contains a number of results about
composition of these permutations. The question of how much the shrinking
results depend of which φs we will compose with each other is studied below.

18.6 Shrinking vs. Choice of Key and IV Bits - Key 208

For example potentially if we just compose φK0 for some K with all bits at 0. It
is then important to see that the case φK0 will not43 occur in a real life attack.
Nevertheless we can study how the space shrinks also in this44 case.

43 If it does occur we would probably be able to exploit its periodic structure in various
slide or self-similarity attacks [29, 38].

44 This case does not differ from the general case in practice as we will see later
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In Table 6 below we present some results for φK0 space size and key 208 as
defined in Table 21 and using the fast method of Section 18.4. On the left in
Table 6 we have all bits at 0, and on the right we look at random sequences
of type φ3 ◦ φ2 ◦ φ7 ◦ φ4 or similar, which is more realistic compared to how a
real attack would operate. In fact no difference of practical importance was ever
observed. The results are very similar for every key and for every IV.

Table 6. Output space size for key 208 with all key/IV bits at 0 with φK0 (left) and
for φKs (tight) with a randomly chosen sequence s ∈ {0− 7}K

LZS nb K output space

208 0 236.0

208 1 235.0

208 2 234.4

208 4 233.6

208 8 233.0

208 16 232.1

208 32 231.2

LZS nb K output space

208 0 236.0

208 1 235.0

208 2 234.5

208 4 233.8

208 8 233.0

208 16 232.2

208 32 231.3

Overall we see that for key 208, the shrinking property is not very strong,
and it is not true that we can shrink the space more substantially by increasing
the number of iterations.

18.7 Weaker Rank-Deficient Keys in KT2b Style

An interesting question is whether we can generate some keys weaker than 208.
In this sub-section we present one method to do this, which is not yet very
good, another method will be studied in Section 18.8 below. For example we can
try to generated weaker keys starting from KT2b conditions which are already
potentially SUFFICIENT for T-310 to be totally secure, cf. Thm. D.6.1, except
that we allow the rank to be deficient and lower than 9.

Table 7. New key 308 based on class KT2b except for matrix rank condition M9.

LZS nb D P rank of B

308 0,16,2,8,24,20,11,32,4 6,35,33,17,26,13,5,27,9,10,19,18,12,30,21,15,34,25,23,36,31,14,22,29,3,1,28 8

15 0,4,17,12,35,32,2,24,20 15,13,33,34,6,8,5,3,9,18,14,22,28,30,21,31,7,25,26,16,27,11,23,29,19,1,36 9
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We can now compare how the space shrinks with key 308 compared to 208:

Table 8. Space shrinking comparison of keys 208 and 308 with φKs , random s.

LZS nb K output space

208 0 236.0

208 4 233.8

208 16 232.2

208 64 230.2

LZS nb K output space

308 0 236.0

308 4 233.7

308 16 231.9

308 64 229.8

We see that key 308 is only slightly weaker than key 208. The idea that we
need to give up on to KT2 and used a greatly reduced set of conditions KT2b in
order to generate weak keys for T-310 does not seem to work well. Alternatively
we need to remove even more conditions, cf. Section 18.8 below. More precisely,
in the following sub-sections we will see that we can find substantially weaker
keys than 308 also if we follow absolutely all of some 40 rules mandated for KT2
keys, except (again) for the rank condition, cf. Section 18.9 below. We will also
see that if we really want to produce the weakest possible keys we should rather
try indeed random keys which satisfy a really minimal set of conditions KT3d,
cf. Section 18.8 below.

18.8 Class KT3d - More Weak LZS Keys Generated At Random

An interesting question is: if we generate D,P at random with a really minimal
number of conditions, such as and we are still avoiding any sort of “anomalous”
situation such as such as key 17 which has P (25) = P (26), cf. [54], how secure
this would be? For this we are going to define our own class of keys called KT3d
with a set of conditions which we consider a strict minimum, we define:

(P,D) ∈ KT3d⇔ all of the following hold:D and P are injective
∀(i, j) ∈ {1, . . . , 27} × {1, . . . , 9} : Pi 6= Dj

∃j1 ∈ {1, . . . , 7} : Dj1 = 0

Remark. KT2 and KT2b are included in the class KT3d, but KT1 are not,
because they have repeated entries of type P (13) = D(7).

Now the question is how secure are these keys w.r.t. to the space shrinking
properties such as in Table 6. In Table 9 we provide several examples of keys
of type KT3d. For comparison purposes we also include key 16 of [54] which
according to [99] is a special key which emulates a permutation on 27 bits of
the so-called SKS cipher. Finally, we include several previously studied “Rank-
Deficient” keys in KT2 or KT2b style, and regular key 15 of [54] which is of type
KT2.
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Table 9. Examples of keys of type KT3d and their space shrinking properties

LZS nb D P |φ0({0,1}36)| |φ40({0,1}36)| |φ160 ({0,1}36)| |φ240 ({0,1}36)|

934 0,4,20,12,14,9,19,7,10 21,3,16,25,28,30,26,11,1,
5,6,32,36,29,24,2,23,33,
27,34,8,18,17,31,35,13,22

232.8 227.7 224.3 223.5

930 18,19,0,23,21,10,25,20 33,34,28,31,32,35,6,24,9,
16,15,30,29,3,14,26,11,
27,5,2,4,8,36,22,7,12,17

230.3 223.6 221.0 220.0

912 11,34,2,0,9,26,3,7,33 31,17,28,25,29,30,13,5,10,
24,14,23,36,21,15,22,18,
27,35,12,16,20,6,19,8,4,1

231.2 224.0 218.2 217.2

911 34,11,2,9,0,26,3,7,33 25,17,28,32,29,30,13,5,10,
23,14,24,21,36,15,22,18,
27,35,12,16,20,6,19,8,4,1

230.3 223.1 218.4 217.3

206 4,0,32,2,35,17,12,20,24 15,13,33,18,34,8,5,6,9,30,
22,14,16,3,21,31,7,25,26,
28,27,11,23,29,19,1,36

235.1 234.0 232.9 232.3

407 0,24,20,8,16,2,11,32,4 17,7,33,6,10,13,5,27,9,26,
22,18,12,30,21,15,34,25,23,
36,31,14,19,29,3,1,28

234.0 232.4 230.1 229.5

207 0,24,20,8,16,2,11,32,4 7,6,33,26,17,13,5,19,9,10,
27,18,12,30,21,15,34,25,23,
36,31,14,22,29,3,1,28

234.0 232.2 230.3 229.3

15 0,4,17,12,35,32,2,24,20 15,13,33,34,6,8,5,3,9,18,
14,22,28,30,21,31,7,25,26,
16,27,11,23,29,19,1,36

236.0 236.0 236.0 236.0

Observations. We see that the vulnerability of keys in the class KT3d
against space shrinking attacks varies very substantially for different keys in
KT3d. The image space size of a typical KT3d key is less than 235 and by trial
and error, we have NOT been able to generate a single key of type KT3d with
image size of 235, even though we know that such keys exist, for example 208
except that these subclasses do NOT occur at random with a sufficiently large
probability.

18.9 How Output Space Reduction Produces Bias

In this paper we apply the following heuristic:

Conjecture 18.9.1 (Bias As a Result of Output Space Reduction). If
for every sequence s of IV bits and key bits, φks does reduces the size of the
output space to M frequent elements of IF36

2 , the we expect that for very α the
output Uα will be biased with the same probability distribution as for a choice
of M random elements of IF36

2 .

Justification: This is unlikely to be true in general, for example if φ is a mapping
IF36

2 → IF36
2 which copies 25 bits and fixes the last bit to 0, for all α 6= 36, and

we have a very strong bias for the last bit. However we expect that this should
be true in practice, and this will be the basis to estimate the bias as a function
of M which we expect to be approximately O(

√
1/M).

Below we present some experimental results for one key and IV sequence
chosen at random for several weak long-term keys we have generated. This sign
of the bias changes for another pair of IV,key, and the number of secret key bits
used is limited to 2k for φk therefore it is realistic to expect that the attacker
can guess these bits. In this table we average the bias for several different keys,
while keeping the same fixed IV. The keys used here defined in Table 9 and in
Table 21.
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Table 10. Simulations for φ16 which shows the average bias in absolute value for the
Uα bit of cipher state after 16 rounds and with 32 key bits known, for one well-chosen
αbest, and averaged for any α ∈ {1− 36} and over many keys.

LZS Mφ16 αbest |P (Uαbest = 0)− 1/2| average(α∈{1− 36},keys)

206 232.9 6 2−16.6 2−17.9

208 232.2 10 2−15.2 2−17.4

407 230.5 15 2−14.4 2−15.4

207 230.2 31 2−14.3 2−15.8

17 231.2 32 2−15.6 2−16.4

27 216.1 9 2−8.4 2−9.3

28 218.7 17 2−9.4 2−10.6

934 224.3 23 2−10.5 2−12.9

930 221.0 23 2−11.5 2−12.1

912 218.2 1 2−10.6 2−10.7

911 218.4 29 2−9.8 2−11.0

925 230.6 25 2−5.4 2−8.4

We observe that the bias is quite substantial for any value of α and for any
weak key studied. Moreover in many cases we observed that it follows a simple
law O(

√
1/M) which is what we would expect for a random function with M

possible outputs. This is except for key 925 which is an outlier and a weaker key
for which the bias substantially worse than

√
1/M .

Note: Non-bijective LZS keys can be further substantially WEAKER than
exhibiting just some biases on the internal state bits when key bits for one or
several rounds are known. These state bits could be for example correlated to
some secret key bits, see Table 18 page 79 and Section 22.11.
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18.10 Application to SKS V/1

The same weak-key vulnerabilities and resulting biases on individual key bits
can be observed in the SKS cipher. To see this we have against attempted to
generate various T-310 keys by mutations while at the same time restricting
them to satisfy the following all the conditions of class KS0 or KS1 which are
the restrictions we defined in Section F.4 in order to design long-term keys for
T-310 which could make it operate like an SKS cipher. With these restrictions
wee have evolved some new special keys which are similar to LZS-16 except not
bijective as follows:

Table 11. Examples of weak LZS keys for SKS emulation with T-310

LZS nb D P |φ80({0, 1}27| |φ160 ({0, 1}27| |φ240 ({0, 1}27|
161 0,19,35,27,23,11,3,15,31 23,19,33,18,14,15,5,34,9,

2,6,7,30,11,21,3,22,25,17,
1,32,10,27,29,26,35,13

223.1 221.8 221.4

162 0,3,23,19,11,7,35,15,31 6,34,33,18,23,15,5,14,9,
2,19,1,13,31,21,3,22,25,17,
7,12,10,27,29,26,35,30

223.5 222.6 222.1

For these keys we look at biases of different bits after 16 rounds:

Table 12. Average bias in absolute value for the Uα bit of SKS cipher state after
8 rounds and with 16 key bits known, for one well-chosen αbest, and averaged over
α ∈ {1− 36} and α 6= 4k over many keys.

LZS Mφ8 αbest |P (Uαbest = 0)− 1/2| average(α∈{1− 36},keys)

161 223.1 9 2−11.7 2−13.6

162 223.5 18 2−11.9 2−13.4

These results also confirm the O(
√

1/M) rule.
In Section 20.3 we will show how to use these properties in a ciphertext-only

attack on SKS V/1 with weak keys.
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19 On Chosen LZS Attacks

In this section we look at the question what kind of attacks are possible given all
the properties studied in the previous section. An actual attack will be described
in the next section.

19.1 A Problematic LZS Question

The key question is as follows: the function φ in T-310 is meant to be bijective.
This question was not considered in [95] because this property is NOT required
in the normal operation of the cipher, see Section 11.1. Yet it is more or less
clearly stated inside page 56 [99]. Now we have several interesting questions:

1. Is there a plausible scenario for a real-life attack where the LZS would not be
bijective? Could it for example be quite difficult or cumbersome for German
security services employees to detect that some long-term key is faulty, and
therefore it could be used for some time without anyone noticing?

2. What are the consequences of an LZS have non-bijective φ? Is there a really
fast attack significantly faster than 2240?

3. Is there an attack faster than say 250 feasible to execute in practice on a
PC?

4. Is the attack scenario realistic: or for example all that we would get would
be some sort of attack with repeated IV such as one previously outlined in
Section C.4? Therefore just another45 attack with repeated IVs would not
be a game changer.

5. Could we have something like a ciphertext only attack? This is a rare thing
in cryptanalysis research, cf. [69, 87].

In what follows we are going to see that the answer is yes to all these questions.

19.2 On Rank Deficiency of Some Otherwise Well-Formed Keys

So of the keys such as 207 we have studied above have some interesting proper-
ties. We define a “Rank-Deficient” KT2 long-term key as follows:

Definition 19.2.1 (Rank-Deficient KT2 key).
It will be any key which satisfies all of the some 40 technical conditions of KT2

[as specified in pages 59-60,114-115 and 117 in [99] and also transcribed fully
in Appendix D.1 on page 122 of the present paper], except just one, the very
last rank condition about the matrix B of page 60 of [99], which we detail in
Appendix D.4 page 123.

Remark. If a key is “Rank-Deficient KT2” it is likely that this would be
unnoticed. The condition which the KT2 keys must satisfy are numerous and
very tedious to check. We definitely should expect that these properties will
be checked by government employees in charge with approval of long-term keys.

45 For sure the designers of T-310 knew about such attacks cf. [99, 57] have re-engineered
the process to avoid them, and would not agree that this is a realistic attack. More-
over we already have developed several attacks with repeated IVs, for example in
Section 23 and another in Appendix G.
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However the original documents do NOT mention if KT2 have been proven to be
bijective [99] and if they are actually necessary for the cipher to be secure. Even
today cryptologists can have serious doubts if it is useful for all these properties to
hold, which properties are really required, and which properties potentially just
do not matter. Our current understanding is that not all properties are equally
important, see Appendix D and Thm. D.6.1 in particular, which definitely does
not require all the properties mandated for KT2 keys to hold.

Moreover out of all the conditions, this last condition could be the one which
employees could systematically omit to verify. The reason for that that the ma-
trix is NOT fully specified in [99]. The statement is highly ambiguous and does
not meet the standard of a routine check people should run frequently. This ma-
trix statement is poorly written with a high degree of ambiguity, and a reader
could initially be puzzled by this condition, rather than accept it and just check
it. This is because it is NOT at all obvious that such a matrix should exist in the
first place, which we show in Lemma D.4.1 page 124. Moreover this condition
requires a computer simulation and just cannot 46 be checked manually by a
sort of person which would have the skills and understanding to check the other
conditions which are written in elementary maths language. Overall, we believe
that this check could possibly be disregarded47 in real-life situations.

46 To check this condition require slightly different skills and set of mind. It could only
be checked through a complex computation which is prone to errors if done by hand,
where the object of the study is not described in a readable way, and which could
only plausibly be done with a computer algebra software such as NTL/Maple/SAGE
we have used. Yet most East-German security personnel in the 1980s would not have
access neither to any computers of any sort, nor to computer algebra software we
take for granted today.

47 We have ourselves skipped this check for a long time until we discovered keys with
bad properties actually exist, cf. Section E.5.
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20 A Ciphertext-Only Faulty LZS Correlation Attack

In this section we describe an interesting new attack on T-310. This attack
has potentially a very low complexity and we believe that this a practical48

attack which very significantly undermines a confidence in T-310 algorithm. It
is a non-standard form of attack, not one which appears frequently in crypto
literature. Yet is also an attack which is likely to have a significant impact
on the real-life security of this government encryption system which will be
shown potentially highly vulnerable49. It combines four major vulnerabilities
of T-310 we have previously uncovered: the Zero-Value attack of Section 17.3,
the plausibility of a weak key being used in the real life studied in Section 19,
the correlations of Table 10, and the plaintext statistics of Table 4. In the light
of these vulnerabilities, another property of T-310 comes to light as a serious
vulnerability the importance of which has been heavily underestimated so far.

20.1 On Key Scheduling in T-310

More precisely T-310 has an extremely weak50 key schedule, and it should not
be used, because there is a significant risk of a serious attack. To be honest,
for a long time we did not think that anything was really wrong with T-310
key scheduling. In the same way, nobody thought for more than 20 years that
the highly-regular key scheduling in GOST could lead to any significant attacks
and until 2010 there was simply no attack on GOST, which is clearly stated
in [91]. Then attacks on GOST have literally exploded, cf. [38, 42] for pointers
to abundant 200+ pages long recent research paper on this topic which also
contains pointers to other papers by the same and other authors.

Initially we thought that, in contrast with GOST, nothing could go wrong
with a perfectly periodic key schedule in T-310, because the strongly aperiodic
character of the IV handling in T-310 which makes that we do never obtain
identical permutations for a very large number of rounds. We were wrong as we
are going to see below. This is due to a new attack scenario which we have not
anticipated.

48 It could lead to decryption of communications encrypted by T-310 in the real life
and in the ciphertext-only scenario as we will show later.

49 It does not really matter whether this attack could have happened or if it has actually
happened. The fact alone that this sort of attack is possible at all shows that T-310
is not a good cipher. Even though very clearly, in theory T-310 has been designed
to avoid also this type of attack, cf. two theorems about KT1/KT2 in Appendix
C.10 and D.6, there is serious problem. The mathematical foundations which make
the cipher resistant to this attack, do not make it resistant to it in practice. An
enemy could exploit the excessive complexity of how LZS are specified, or play on
their over-confidence about the security of their cipher machines, and try to convince
people to use a faulty key and it will be hard to check if it is deficient.

50 Such as many other ciphers which were badly broken in the past cf. for example [10,
38, 42, 29–31] and this would a certainly be a good reason for a cipher to be rejected
as a candidate for an encryption standard, cf. [10, 38, 42].



Cryptographic Security Analysis of T-310 65

20.2 A Ciphertext-Only Correlation Attack on T-310

In this section we show how to combine the biases of φk output in Table 10 and
biases on the plaintext due to Table 4 and Thm. 17.3.1 in order to decrypt T-310
communications in the ciphertext-only scenario.

1. We apply the Zero-Value attack and we exploit a proportion of 2−5 of the
available ciphertext data. We discard other ciphertext data.

2. We recall from Section 17.3 that if Cj = 05 we have Pj = Bj .
3. We can now express certain, but not all, bits of the plaintext as a function

of the internal state bits as
Pj,I−V = Bj,0−5

which equation holds for all ciphertext characters Cj = 0 we selected.
4. We can then approximate the 5 bits of Bj knowing that

Bj,0−5 = (a7+13(j−1), . . . , a11+13(j−1))

and all these bits are biased using Table 10.
5. We know the expected average value of the bias but we do not know the

sign of the bias. The sign of the bias depends on the values of the key and
IV bits preceding any of the (a7+13(j−1), . . . , a11+13(j−1)) which by definition
are equal to u127(7+13(j−1)),α, . . . , u127(11+13(j−1)),α. We know the IV bits at
any location, we just need to guess key bits at certain locations.

6. In our attack we are going to guess a window of say 48 keys bits for a window
of 24 consecutive rounds. The same window of 48 bits is repeated every 120
rounds, (with different IVs which are known to the attacker).

7. We will work on individual bits, and if we want to be able to know the
sign of a bias reported in Table 10, we need to know the 32 key bits for
16 rounds preceding the actual bit extracted which are um,α with m =
127(B + 13(j − 1)) with five possible B ∈ {7− 11}.

8. We assume that the attacker disposes of a pre-computed table which indi-
cates the sign σK,IV = +1 or −1 for the bias for any 32 bits of key and any
16 bit IV for φ16s . This table requires only 1 Terabyte of storage (248 bits).

9. We have a window of 24 rounds where the key bits are known and it is
repeated with a period of 120 rounds. We consider that positions of type
m = 127(B + 13(j − 1)) span the interval 0− 119 uniformly at random. We
are interested in positions where key bits are known for at least 16 rounds
before m, i.e. the window m− 15, . . . ,m must fall within our window of 24
rounds. The probability of this is (24− 16)/120 ≈ 2−3.9.

10. Accordingly, the probability that any Bj,0−5 we want to compute, can be
approximated as a biased bit of type say 1/2− 2−5.8 with the sign known to
the attacker, is equal to 2−3.9.

11. For simplicity, we will only work on plaintext bits I and V in upper part of
Table 4 which have a bias of approximately ±2−2.3. We need to pay attention
to the signs; let σI = +1 and σIII = −1 for these two bits.

12. The attacker will now compute many biased bits which are all more likely
to be 0 than 1, and which combine the biases due to the plaintext and due
to φ16. Then he will count 0s and 1s and if the bias is sufficiently large he
will be able to confirm if his choice of 48 was correct.
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13. The attacker assumes that Bj,0 = (1 + σK,IV )/2 which is true with proba-
bility of about 0.5+β where β is a positive value from Table 10, for example
for LZS-27 we have β ≈ 2−8. Similarly we have Bj,2 = (1 + σK,IV )/2 for a
different choice of 32 key bits and 16 IV bits which pertain to this position.

14. We know that Bj,0 = Pj,I and Bj,2 = Pj,III for all ciphertext positions with
Cj = 05 selected. The sequence of bits the attacker produces will be simply
all the (1+σIσK,IV )/2 or (1+σIIIσK,IV )/2 for all the cases considered. We
call these bits available to the attacker “the B − I set”.

15. We apply Matsui’s piling-up lemma [81] and we see that the overall bias for
our bits which are (1 + σIσK,IV )/2 or (1 + σV σK,IV )/2 is going to be equal
to γ = 2−2.3β.

16. In order to distinguish these biased distributions and have results which is
stronger than 8 standard deviations we need to generate about 82γ−2 ≈
216+4.6β−2 biased bits in “the B − I set”.

17. We need to work with 8 standard deviations exactly: we apply the Gauss
Error function cf. [43, 82] which leads to a probability of 2−49.5 of a false
positive which is sufficient to confirm if our 48-bit key is correct.

18. We get 2 bits for our “the B−I set” when we have ciphertext character with
Cj = 05 which happens with probability 2−5 AND when simultaneously the
window of 32 bits needed is contained within our window of 48 bits which
happens with probability 2−3.9.

19. Therefore we need overall 216+4.6+3.9+5β−2/2 ≈ 228.5β−2 of encrypted char-
acters in order to recover 48 bits of the key in time which is approximately
248+28.5−5−3.9β−2 ≈ 268β−2. Here −5− 3.9 comes from the fact the we can
pre-select ciphertext bytes and m values for the attack independently of the
key depending on the window position.

20. Once we have a plausible candidate for 48 key bits, we can re-do the whole
attack with a different and preferably overlapping interval of 24 consecutive
rounds and 48 key bits. Making these intervals overlap with those where key
bits are already known makes that these extra steps will be substantially
faster and easier and their cost can be neglected.

Application using key 206: With our “Rank-Deficient” key 206, we have
β = 2−15 and the attacker can recover the full 230-bit encryption key in a time
of 298 given about 259 characters of encrypted data in ciphertext-only scenario.

Application using key 27: With the original key 27 from [54], we have
β = 2−8.0 and we can recover the full 240-bit encryption key in a time of 284

given about 245 characters of encrypted data in ciphertext-only scenario.
Note - Generalized Non-Uniform Attacks: This attack can be further

optimized in several ways. A better attack will no longer be uniform where
different sorts of events are counted in the same way. If we dispose of more
data we can start with the number of key bits guessed smaller than 48 bits. If
we dispose of less data, we need to guess more bits and time complexity will
increase. In addition, for many locations we know the key for more than 16
rounds before, up to 24 rounds. Therefore the attack could have additional pre-
filtering steps based on stronger biases obtained for (smaller) subset of locations
where the bias is stronger. Finally we could use all the 5 bits of the ciphertext.
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20.3 A Ciphertext-Only Correlation Attack on SKS V/1

We refer to Section F and also Section F.1 for a detailed description of SKS
V/1 and to see how it differs from T-310. It is possible to see that given a weak
long-term key for51 SKS V/1, we can mount a ciphertext-only attack which
recovers the secret key in a way which is simpler than for T-310. We do not
need any “Zero-Value” vulnerability such as in Thm. 17.3.1 and we do need to
only consider parts of ciphertext with Cj = 0. For example, we can cryptanalyse
T-310 with key 162 which emulates the SKS V/1 cipher as follows.

– We assume that we have a ciphertext in German language, encoded on 5 cf.
Table 4 page 53. This implies that some 16/41 of encrypted plaintext bits
are equal to 0 with probability 1/2± 2−3 and they occur at positions which
are known to the attacker, and the signs of these biases are known.

– For key 162, each of these bits is XORed with a bit with a bias equal to 2−13

approximately, cf. Table 12 page 61. This gives a combined bias of ε = 2−16

for a percentage of 16/41 keystream bits Wi if we apply Matsui’s piling-up
Lemma [81].

– We guess 16=8+8 key bits in the 16 rounds preceding the round at which
the key bits are extracted, which is round p − 16 mod 104 and is the same
every 104 rounds, see Section F. Moreover the key bits are the same for
every bit and for every 104 rounds, and all windows with key bits used are
aligned exactly and we can exploit a guess of 16 key bits to the full extent
by predicting biases on the bits after 8 rounds which are always perfectly
aligned, this is due to the fact that in SKS V/1 the periodic structure which
repeats every 104 rounds is such that keystream bits are always extracted
simply at the end of each block of 104 rounds. cf. Section F.

– Again, as in Section 20.2 in order to confirm 16 key bits we need to see if our
statistics is outside of the interval of 4 standard deviations. This is due to the
Gauss error function, we need less than one false positive in 216 experiments,
1− erf(z/sqrt2) < 2−16, which leads to z ≈ 4, cf. Table in [105]. This leads
to data complexity of about k = 41/16 · 42 · ε−2 with ε = 2−16 encrypted
ciphertext bits. This is approximately k ≈ 237 bits.

– For each key on 16 bits we need to go examine these k ≈ 237 bits. The time
complexity is approximately T ≈ 237+16 = 251.

– Once we have the last 16 key bits used in last 8 rounds out of 104, we can
then guess few more key bits, predict a slightly stronger bias will occur in the
attack and recover more key bits with lower data complexity. The complexity
of these additional steps is expected to be substantially less than the first
main step with 16 key bits and 237 bits of ciphertext, therefore we ignore
these extra steps.

Overall we see that with a faulty LZS for SKS V/1 cipher machine such as
162, the attacker can recover the full 208-bit key in a time of about 251 given
about 237 bits of encrypted data.

51 which in this paper [for simplicity] are replaced by weak-long-term keys for T-310
emulating SKS V/1, cf. Section F.4.
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21 T-310 and Linear Cryptanalysis

In this section we study the resistance of T-310 against Linear Cryptanalysis
(LC).

21.1 Historical Background

There is no doubt that the topic of Linear Cryptanalysis (LC) was somewhat
known and studied by Cold War cryptography specialists. It was known under
the name of “Statistische Struktur” cf. page 30 of [60]. On we find a computation
of a complete set of linear characteristics of the non-linear component of T-310.

Fig. 21.18. Fragment of Table 3.1-2 in page 18 of [62] dated 1976 which contains a
complete set linear characteristics of Z.

The document [62] suggests that the study of resistance of a cipher compo-
nent against linear and differential cryptanalysis was a routine task in Eastern
block cryptography in the 1970s. A precise definition is provided on page 17 of
[62]. The table a fragment of which we reproduce above contains all the possible
values ∆Z

α for any α ∈ {0, 1}6 and which is defined exactly as:

∆Z
α = 26−1 − ||Z(x)−

6∑
i=1

αixi||

where ||g(x)|| is the number of times g(x) = 1. We can also remark that

∆Z
α = t− 26−1

where t is the number of times g(x) = 0 with g(x) = Z(x) −
∑6
i=1 αixi as

above
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Moreover it also very clearly indicated that this definition comes from an ear-
lier Eastern block written source, namely Section 2 inside Chapter 2 “Boolean
Functions” from a classified course or lecture notes on cryptography which ap-
parently was delivered by Soviet specialists, known under reference number 2243,
and is not dated.

On Modern Notion of Non-Linearity. From here standard cryptographic
literature would define the nonlinearity of the Boolean function Z as the Ham-
ming distance from the set of all affine functions. The earliest reference in the
open academic literature which contains this definition is Pieprzyk and Finkel-
stein, cf. Def. 7 page 326 in [90] from 1987/88.

21.2 Application to Several Rounds of T-310

In this section we give some linear characteristics of T-310. They allow the
reader to see that the resistance of T-310 against Linear Cryptanalysis (LC)
[81] for various long-term keys. The last column contains a rough estimation
of the probability that the exact propagation probability/bias we report in the
previous column holds for a random key and IV pair.

Table 13. Some linear characteristics for T-310

LZS nb rounds input → output bias proba

14 5 [17] → [34] 2−1.0 1.0
14 10 [17] → [27,31] 2−1.0 1.0
14 12 [19] → [23,31,33] 2−2.6 0.1
14 12 [19] → [23,31,33] 2−3.0 0.4
14 15 [17] → [24,32,34] 2−3.00 1.0

15 6 [17] → [35] 2−1.00 1.0

21 5 [30] → [35] 2−1.00 1.0
21 8 [2,18] → [34] 2−2.97 0.8

26 8 [3,31,35] → [27,31,35] 2−1.00 1.0
26 8 [4] → [28] 2−8.0 0.2
26 8 [1] → [25] 2−8.5 0.1

30 5 [14] → [35] 2−1.00 1.0
30 6 [13] → [35] 2−1.00 1.0
30 8 [4,12,32] → [12,16,32] 2−3.00 0.4

31 7 [17] → [36] 2−1.00 0.3
31 10 [19] → [25,29,35] 2−3.00 0.3
31 12 [17] → [25,29,35] 2−3.00 0.3
31 12 [5,13,25,29] → [5,13,25,29] 2−8.3 0.5
31 24 [5,13,25,29] → [5,13,25,29] 2−15.5 ≥ 0.2

33 12 [2,7] → [12,19,31] 2−5.0 TBC

We see that the resistance of T-310 against LC depends strongly on the long-
term key and some historical keys are stronger than other historical keys. For
example we see in Table 13 that very clearly (earlier) key 14 is substantially less
secure against LC compared to (later) key 31, while both keys are real-life keys
cf. [54].
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21.3 Invariant Linear Characteristics for T-310

Some linear characteristics are particularly interesting: this is when the set of
bits used at the input and at the output are the same. Such characteristics can
be joined with themselves and lead to periodic linear properties which propagate
for an arbitrary number of rounds. We give some examples below.

Table 14. Some invariant linear characteristics for T-310

LZS nb rounds input → output bias proba

31 12 [5,13,25,29] → [5,13,25,29] 2−8.3 0.5
31 24 [5,13,25,29] → [5,13,25,29] 2−15.5 ≥ 0.2

606 1 [1-6] → [1-6] 2−1.00 1.0
607 1 [1-7] → [1-7] 2−1.00 1.0

702 8 [17,21] → [17,21] 2−1.00 1.0
704 4 [17,21,33] → [17,21,33] 2−1.00 1.0
703 2 [1,3,5] → [1,3,5] 2−1.00 1.0

783 2 [1,3,5] → [1,3,5] 2−1.00 1.0
784 8 [12,16] → [12,16] 2−1.00 1.0
785 1 [9-16,25-36] → [9-16,25-36] 2−1.00 1.0

In Table 14 only key 31 is an actual historical key. All other keys are weak
LZS which we have created and which are listed below. For these keys, the linear
properties are particulary strong. Moreover in Section 21.11 we show that some
of these keys have several such properties.

21.4 Generating Very Weak Long Term Keys for LC

The keys such as 606 or 784 can be seen as long-term LZS keys which are some-
what backdoored: they have invariant linear characteristics true with probability
1 which can therefore propagate for an arbitrary number of rounds. We have the
following definition:

Definition 21.4.1 (LC-weak keys).
We say that a long-term key LZS is LC-weak if it exhibits at least one invariant
linear characteristics true with probability 1.

Such keys are extremely weak w.r.t. Linear Cryptanalysis and the invariant
property can be extended for an arbitrary number of rounds. Here are several
examples of such keys:

606: P=32,7,33,30,12,36,5,4,9,27,19,2,16,11,21,1,8,25,20,28,
24,23,35,29,15,31,6 D=0,4,32,12,24,8,16,36,20
607: P=28,8,33,22,16,36,5,2,9,15,1,24,32,10,21,23,34,25,35,
12,26,4,18,29,31,20,7 D=0,4,16,28,8,20,32,36,24
702: P=22,24,33,32,14,4,5,28,9,11,27,18,36,16,21,15,20,25,35,
8,1,6,23,29,19,12,13 D=12,16,0,36,28,32,24,4,20
703: P=7,14,33,23,18,36,5,2,9,16,30,12,32,26,21,1,13,25,20,8,
24,15,22,29,10,28,6 D=0,4,24,12,16,32,28,36,20
704: P=24,34,33,32,14,4,5,28,9,26,27,18,36,16,21,15,20,25,35,
8,1,6,23,29,19,12,13 D=28,16,12,36,24,0,32,4,20
783: P=8,32,33,11,1,20,5,26,9,24,4,7,12,2,21,34,28,25,3,36,31,
13,18,29,19,16,6 D=0,4,8,32,28,16,12,20,24
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784: P=3,1,33,11,32,20,5,26,9,2,4,7,12,24,21,34,31,25,8,
36,28,13,18,29,19,16,6 D=0,4,32,28,24,8,12,20,16
785: P=28,12,33,20,27,24,5,32,9,4,26,22,36,10,21,2,11,25,8,16,
19,13,30,29,17,23,31 D=0,4,28,12,8,20,36,24,32
787: P=3,24,33,27,36,20,5,4,9,7,30,13,12,16,21,34,8,25,23,28,
17,1,26,29,19,32,6 D=0,4,36,32,24,8,12,20,16
788: P=26,19,33,36,4,20,5,27,9,17,2,11,12,31,21,22,1,25,7,
28,16,24,32,29,8,30,34 D=0,4,36,32,24,8,12,20,16
789: P=36,19,33,15,23,20,5,22,9,4,11,3,12,16,21,24,8,25,26,
28,17,35,32,29,27,2,7 D=0,4,36,32,24,8,12,20,16

These examples were generated by trial and error and linear algebra [test-
ing for linear equations true with probability 1] or by a dedicated “imitation”
technique described in Section 21.8 below.

21.5 LC-Weak Keys with One-Bit Correlations

A special case is keys with correlations with HW=1 suitable for slide attacks of
Section 24 specifically. Such keys are more rare but they still do exist as we are
going to show now. For example we have generated by trying millions of different
keys at random, the following key 701 with an invariant property for 7 rounds52.
Similarly, by trying large numbers of different KT1 keys, we found a similar key
741 which has the additional property of being of type KT153.

701: P=31,10,33,6,32,8,5,3,9,15,13,26,19,28,21,7,16,25,34,12,

22,17,35,29,30,23,4 D=4,2,17,32,12,35,0,24,20

741: P=15,24,33,27,19,12,5,22,9,31,3,7,8,34,21,36,32,25,18,28,

35,20,4,29,16,14,2 D=0,36,24,4,32,16,8,12,20

Table 15. Some one-bit invariant correlations in T-310

LZS nb rounds input → output bias prop./keys

701 7 [30] → [30] 2−11.2 0.2

701 7 [36] → [36] 2−8.7 TBC

741 7 [29] → [29] 2−4.4 1.0

741 7 [30] → [30] 2−4.4 1.0

741 7 [31] → [31] 2−4.4 1.0

741 7 [32] → [32] 2−4.4 1.0

27 7 [30] → [30] 2−6.7 TBC

14 24 [11] → [11] 2−17.8 TBC

These two results can be compared to a result which we discovered acciden-
tally for one ”faulty” historical key 27 from [54] and a weaker result obtained
also accidentally for a regular KT1 historical key 14.

52 For this key the round function is not bijective
53 Therefore the round function is bijective cf. Thm. C.10.1 page 117
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21.6 A Short Explanation for Key 741

Here is a short explanation why key 741 has the properties stated above. First
we observe that [29]→ [30]→ [31]→ [32]. Then we are going to show that:

Table 16. A Detailed Explanation for key 741

LZS nb rounds input → output bias prop./keys

741 3 [29] → [32] 2−4.4 1.0
741 1 [32] → [10,17,25] 2−3.0 1.0
741 3 [10,17,25] → [29] 2−2.4 1.0

Fig. 21.19. One round of T-310 for key 741.

1. Let X(j) denote values inside round j.

2. We observe that P (13) = D(7) = 8 therefore v13 = u
(1)
8 = uD(7). Then

D(5) = 32. We have:

u
(2)
25 ⊕ u

(1)
8 ⊕ Z2(1)(v7− v12)⊕ u(1)8 ⊕ u

(1)
32 = u

(2)
17

here u
(1)
8 appears twice and is eliminated, and we have

Z2(1)(v7− v12) = u
(2)
25 ⊕ u

(1)
32 ⊕ u

(2)
17

now we add u
(1)
9 on both sides

Z2(1)(v7− v12)⊕ u(1)9 = u
(2)
25 ⊕ u

(1)
32 ⊕ u

(2)
17 ⊕ u

(1)
9

and observe that this bit becomes number 10 in the next round:

Z2(1)(v7− v12)⊕ u(1)9 = u
(2)
25 ⊕ u

(1)
32 ⊕ u

(2)
17 ⊕ u

(2)
10
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finally we observe that Z2 is correlated to u
(1)
9 which is one of its inputs, cf.

Table Fig. 21.18. Therefore the following expression is biased:

u
(1)
32 ⊕ u

(2)
10 ⊕ u

(2)
25 ⊕ u

(2)
17

3. Thus we have shown that we have [32]→ [10, 17, 25] in round 1.
4. It remains to see that [10, 17, 25]→ [29] in 3 rounds.

Fig. 21.20. Internal structure of T inside one round of T-310.

5. After first 2 rounds bits u
(1)
10 , u

(1)
17 , u

(1)
25 become u

(3)
12 , u

(3)
19 , u

(3)
27 which are v6, v5, v4

inside 3rd round. Furthermore D(8) = 12 = P (6). The output of Z1(3) is

correlated to XOR of 2 of its inputs u
(3)
19 ⊕ u

(3)
27 .

6. Moreover f (3) ⊕ Z1(3) ⊕ u(3)12 = u
(4)
29 . Thus we have

Z1(3) ⊕ u(3)19 ⊕ u
(3)
27 = u

(4)
29 ⊕ f (3)

and if the left hand side is biased, the right hand also.
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21.7 A Toy Example of How T-310 Can Be Weak w.r.t. LC

In this section we show in detail HOW LC-weak keys work in detail in one specific
case. It works for LZS number 703, 783, 788 and 888 as specified in Section 21.4
and which are LC-weak keys exhibiting exactly the same property as explained
below.

We recall the last equation of Section 9.6:

um+1,1 = uD(1) ⊕ um+1,5 ⊕ uD(2) ⊕uP (27)

We have D(1) = 0 which makes that um,0 = sm+1,1 and D(2) = 4 and
P (27) = 6. Therefore we have

um+1,1 = sm,1 ⊕ um+1,5 ⊕ um,4 ⊕ um,6,
and this leads to the following linear approximation for one round:

[4, 6]→ [1, 5] 1R P = 1

Fig. 21.21. For convenience we show the bits involved here, cf. also Fig. 7.11.

Using that fact that bits 6= 4k are just shifted in our Feistel with 4 branches,
this can be trivially extended for one earlier round as follows:

[3, 5]→ [1, 5] 2R P = 1

Finally it is trivial to see that [1] → [2] → [3] for two rounds also with
certainty, which property can be combined with the previous one and we obtain
finally:

[1, 3, 5]→ [1, 3, 5] 2R P = 1

It follows that the same linear characteristic works for any even number of
rounds. It is also easy to see that

[2, 4, 6]→ [2, 4, 6] 2R P = 1

21.8 Can More KT1 Keys be Pathological?

From here we are tempted to generate a regular KT1 key such that D(2) = 4
and P (27) = 6 in order to obtain a linear approximation true with probability 1.
A quick examination of the KT1 rules cf. Appendix B suggests that this should
be possible if j1 = 2. It is however a non-trivial task to generate a KT1 key
with or without this extra property. A plausible method to find such a key is to
first generate one very weak key, then investigate what properties make this key
weak, and finally find a key of type KT1 which also has these properties. This
is exactly what we did. Below we detail all the steps performed.
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1. First we generated about a million of totally random keys and selected several
which had linear approximations true with probability 1 for 8 rounds.

2. Inside those, we found one key called 703 where this [accidentally] worked
also for 2 rounds.

3. Then we investigated why this property is true, cf. Section 21.7 and found
that this was because D(1) = 0, D(2) = 4 and P (27) = 6 and that these
conditions are sufficient conditions.

4. Then we examined the KT1 rules cf. Appendix B and found that D(1) = 0 is
always satisfied, and D(2) = 4 should be possible if j1 = 2 and also nothing
seems to prevent P (27) = 6 given that 6 6= 0 mod 4.

At this stage we are able to propose an efficient algorithm method for gen-
erating the KT1 keys which we need.

21.9 Generation of KT1 Keys [General or LC-Weak]

Here is a simple method for generating weak KT1 keys:

1. We generate about a million of permutations {j1, j2, . . . , j7, j8} of the set
{2, 3, . . . , 9} with an added condition j1 = 2.

2. For each permutation we observe that D() is defined uniquely following the
rules of Appendix B. We recover D() and check if (D(5), D(6)) ∈ {8, 12, 16}×
{20, 28, 32} ∪ {24, 28, 32} × {8, 12, 16}, if not OK, we restart.

3. Now we try to generate suitable P () initially ensuring the following condi-
tions P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25, P (24) = 29
and P (20) = 4j8 and P (6) = D(8), P (13) = D(7), and ∀1≥l≥9∃1≥i≥26P (i) =
4 · l and D(3) ∈ {P (1), P (2), P (4), P (5)}.

4. For all of the other conditions including the matrix condition we counted on
luck: we restart generation of ji’s until a valid KT1 key is found.

After generating KT1 keys as above, we check if they are weak. A basic
version of this method was used to generate our special key 783. It satisfies all
the conditions in KT1. All these keys are specified in Section 21.4.

Further weak keys. By a similar method and with more patience we also
generated keys 606 784 and 787 and few other which also are both of type KT1
and have invariant linear characteristics true with probability 1, cf. Table 14
above.

21.10 More Complex Periodic Properties

We have observed that various KT1 keys exhibit various invariant linear patterns
with periods of 1,2,3,4,6 and 8 rounds. Here is one example where the period is
equal to 6 together with full internal details of the linear approximation:

706: P=8,2,33,4,13,20,5,14,9,22,30,31,16,19,21,32,3,25,28,36,

27,11,23,29,12,24,10 D=0,28,8,4,24,12,16,20,32

[1,5,15,33]-s1f->[2,6,16,34]->[3,7,25,29,35]->[4,8,26,30,36]->

[9,13,27,31]->[10,14,28,32]->[1,5,15,33]
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21.11 Strongly Pathological LC-Weak Keys

It is possible to see that for some KT1 keys there are more than one linear
invariant properties such as in Table 14. Below we give some examples.

Table 17. KT1 keys with multiple invariant linear characteristics for T-310

LZS nb rounds solutions

606 4 6
607 4 5
783 2 2
785 4 4
706 6 6
788 8 8
789 8 9
784 8 10
787 8 10

Currently the most pathological KT1 key known is 784. This key 784 can be
characterized in a very simple way as follows. It exhibits simultaneously a very
similar type of 8-round periodic linear characteristic as key 702 [which was not
KT1], AND exactly the same 2-round periodic linear characteristic as key 783.
Moreover all these concern a disjoint set of linear combinations with 10=8+2
total of linear invariant properties which happen to work with probability 1 for
all keys and IVs. In addition here are full internal details about these periodic
linear properties which are self-explanatory:

key 784:

[1,3,5]-s1->[2,4,6]->[1,3,5]

[9,13]->[10,14]->[11,15]->[12,16]->[25,29,33]-f->

[26,30,34]->[27,31,35]->[28,32,36]->[9,13]

21.12 On Frequency of LC-Vulnerable KT1 Keys

We have approximately 283.2 KT1 keys total, cf. Section 8.6 and [47]. Our com-
puter simulations on generating and testing vast quantities of KT1 keys at high
speed indicate that about 3.0 % of all KT1 keys are LC-weak. Inside these, some
10% or 0.3 % of the total are those with D(1) = 0, D(2) = 4 and P (27) = 6
which precisely those studied in Section 21.7 and in a recent paper [47]. In ad-
dition we found that there exist many other similar classes of keys for a total of
3.0 % of all KT1 keys.

21.13 First Classification of LC-Weak KT1 Keys

We recall from Section 21.7 that when D(1) = 0, D(2) = 4 and P (27) = 6 we
have a weak key w.r.t. LC. The property D(1) = 0 is obligatory in all KT1 keys.
What are other possible values for D(2) and P (27)? We observed that there is
a large number of LC-weak keys with D(2) = 4, below are two examples:
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D(2)=4 P(27)=3
D=0,4,16,36,24,8,12,20,32, P=16,8,33,15,18,20,5,32,9,11,7,26,12,31,21,13,35,25,19,28,4,27,36,29,23,24,3,
D(2)=4 P(27)=7
D=0,4,24,28,8,20,32,12,16, P=4,24,33,31,8,12,5,3,9,23,16,18,32,11,21,13,35,25,19,36,28,15,26,29,27,20,7,
D(2)=4 P(27)=18
D=0,4,28,32,8,20,36,24,16, P=32,28,33,31,16,24,5,11,9,3,19,27,36,35,21,26,4,25,8,12,15,13,20,29,23,7,18,
...
D(2)=4 P(27)=35
D=0,4,32,12,8,20,16,24,28, P=32,4,33,31,8,24,5,19,9,13,15,7,16,23,21,28,27,25,3,36,11,12,20,29,18,26,35,

There also exist many cases with D(2) 6= 4. Overall there are 168=8*21
possible values for pairs (D(2), P (27)) for KT1 keys, cf. Fact C.14.2 page 121,
and computer simulations show that 126 out of 168 are compatible with LC-weak
keys. Below we show some examples:

D(2)=12 P(27)=7
612: P=15,19,33,28,18,36,5,27,9,3,35,13,16,24,21,26,20,25,11,
32,8,12,23,29,4,31,7 D=0,12,28,4,24,8,16,36,20
[1-7,9-16,25-32]-s1->[1-7,9-16,25-32]

D(2)=36 P(27)=7
636: P=15,13,33,28,18,12,5,27,9,26,3,31,8,16,21,23,24,25,11,
20,35,19,4,29,32,36,7 D=0,36,28,32,24,16,8,12,4,
[1-7,33-36]-s1f->[1-7,33-36]

21.14 A More Detailed Classification of LC-Weak KT1 Keys

We have found by long and extensive computer simulations that among all pos-
sible 8! = 40320 values for {j1, j2, . . . , j7, j8} there exist exactly 4549 weak per-
mutations which are compatible with LC-weak keys.

21.15 How to Avoid LC-Weak KT1 Keys

This suggests a very simple method to avoid weak keys: avoid the 4549 cases54

which leads to avoiding a proportion of about 11 % of 40320 cases. We recom-
mend55 this method.

54 The full list of cases to be excluded can be downloaded from
http://www.nicolascourtois.com/equations/block/t310/T310 JinsideWeakKT1LCTaken.txt.

55 This method leads to avoiding all the 3.0 % LC-weak KT1 keys and about 8.0 % of
additional keys which are potentially OK but will be excluded by this method. By
this method we will obtain approximately 0.887 · 283.2 ≈ 283.0 KT1 keys. cf. Section
8.6 and [47].
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22 Weak LZS Keys and Backdoors

In this section we study the question of malicious or accidental selection of a
long-term key LZS such that it is unusually weak. We also recall major weak
key attacks studied in other parts of this paper.

22.1 Weak Keys for Related-Key Differential Attacks
One example of this is given in Section 12.4. One major reason why such attack
are possible, starting from 5 rounds, are the observation that the round function
of T-310 uses too few bits in each round for no reason, this is definitely a property
which degrades the security of the cipher, cf. Section 12.2. No keys are exempt
from such attacks, not ever KT1 keys, cf. Thm. 12.4.1 page 42. Even historical
keys (subject to even more careful selection) are vulnerable, though for a larger
number of rounds at most 16.

22.2 Weak Keys With Shrinking Properties
Many weak keys for T-310 are non-bijective. Such keys typically shrink the
output space, cf. Section 18.5 and lead almost inevitably to powerful correla-
tion attacks cf. Section 18.9 for almost every bit inside the cipher. The actual
ciphertext-only attack on T-310 which exploits this is studied in Section 20.2.

22.3 Weak Keys With One Bit Correlations and Sliding Attacks
Such keys lead to decryption oracle sliding attacks studied in Section 25. These
keys are also moderately weak w.r.t. LC but not extremely weak, see keys 701
(not KT1) and 741 (KT1) in Section 21.5.

22.4 Strongly Weak Keys for LC - Open Problems
It is an open problem to see if an how the weak keys such as 606 or 786 listed
in Table 14, here invariant properties have more than 1 active bit, could (at all)
be exploited in a key recovery attack. These are clearly super-pathological keys
with respect to Linear Cryptanalysis, yet it is not clear if communications with
T-310 can be decrypted with these keys. Currently no such attack in known and
we conjecture that in many cases such keys could be secure or secure enough in
practice to protect communications.

However as a precaution we recommend to avoid LC-weak keys totally, and
one practical method to achieve this which does not degrade the space of possible
KT1 keys is proposed in Section 21.15.

22.5 Weak Keys Which Combine Several Properties
Future research will show IF or HOW various weak keys can be exploited to
design interesting key recovery attacks on T-310. The answer is almost cer-
tainly that many of these properties alone do no suffice to decrypt commu-
nications and that the cipher remains robust. In order to actually break T-
310 we need to combine more than one vulnerability in one single long-term
key. To illustrate this we found that there exist keys which are simultaneously
very weak w.r.t. LC and RKDC, for example 718: D=0,4,36,12,24,16,20,8,32,
P=3,18,33,12,36,8,5,27,9,19,14,23,20,16,21,26,7,25,31,28,32,15,4,29,24,22,6.
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22.6 Weak LZS Which Leak The Encryption Key - Kleptography

It is relatively easy to generate LZS for which the internal keystream ai is
strongly correlated to the key bit s2 at a given location. More precisely, by
simple random search we generated the following keys:

925: P=34,24,33,26,14,4,5,28,9,32,12,18,36,16,21,15,8,25,35,

20,1,6,23,29,19,27,13 D=0,16,36,12,32,28,4,8,24

929: P=14,34,33,4,24,32,5,8,9,26,27,18,36,16,21,15,20,25,35,

28,1,6,23,29,19,13,12 D=0,36,20,32,8,4,12,24,16

921: P=28,16,33,26,23,12,5,20,9,31,4,13,36,6,21,17,8,25,10,

30,32,34,3,29,18,24,2 D=0,24,8,32,4,20,36,12,16

For these keys one bit of the cipher state, which can be α is correlated to a
simple function of s2 which is the bits used at the current rounds, and f , which
is the IV bit which will be known to the attacker.

Table 18. Examples of weak LZS where information about key leaks to the attacker
directly. We also show examples of conditional bias when bits s1, s2, f are fixed.

LZS nb sum α Pr[uα = sum]

929 s2+f 29 1/2 -2−3.4

925 s2+f 25 1/2+2−5.6

921 s2+f 21 1/2+2−8.6

LZS nb s1 s2 f α Pr[uα = 0]

929 1 0 0 29 1/2 -2−3.0

925 0 1 0 25 1/2 -2−5.0

921 0 0 0 21 1/2+2−8.2

22.7 Key Recovery With Weak Keys of Type 929

With these keys it is EXTREMELY easy to break T-310: every 120·127 steps the
same key bit s2i is used again. Each bit of type s2 can be recovered at different
places. In the known plaintext attack, we can recover this s2i bit by majority
voting [after subtracting f value for each step]. Data complexity will be only
thousands of encrypted characters.

In the ciphertext-only scenario we apply Thm. 17.3.1 which allows us to
recover 5 bits out of 13 in 1/32 of cases where Cj = 0. Then we know that
Pj = Bj on 5 bits. This combined with plaintext bit biases such as in Table
4 we can recover the key using maybe 100,000 characters of ciphertext [rough
estimation].

Remark. In Section B we read that α /∈W and therefore α = 25 and α = 29
are forbidden. This is however illusory: in the next round the same internal state
bit is at α = 26, then at α = 27 and α = 28, after which this bit will be forgotten.
These bits can be used for encryption and for example we can have α = 27 which
is not forbidden and this is subject to the same correlation attacks as for α = 25
except that they involve key bits 2 round earlier.

22.8 Detailed Investigation of Certain Weak Keys of Type 929

It is easy to see why key 929 works: inputs of Z2 are s2, P (1− 5) cf. Fig. 22.22
below. and the output of Z2 is XORed with bit D(8). For key 929 we have D(8) =
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24 = P (5) which is the last inputs of Z1. Our backdoor correlation property is
simply due to the fact the output of the Boolean function Z(e1, e2, e3, e4, e5, e6)⊕
e6 is correlated to the first input e1 = s2 and knowing that f is known to the
attacker.

For key 925 it similar yet less simple: we have and D(7) = 4 = P (6) there-
fore bit 25 is equal to Z1 ⊕ f . Here we need to see that s2 is correlated to
Z(s2, e2, e3, e4, e5, e6).

Applicability. None of these two pathological situations can happen with
KT1 keys. In the first case we had for key 929 that D(8) = P (5), however for the
KT1 keys we have always P (6) = D(8). For key 925 we had D(7) = P (6) however
for the KT1 keys we always have P (13) = D(7). This makes that historical KT1
keys do not fall to our attack. Moreover, these keys are not-bijective cf. Table
9. It is an open problem if KT2 keys or any sort of bijective LZS would be
vulnerable to this attack.

Fig. 22.22. For convenience we show the bits involved here, cf. also Fig. 7.11.

22.9 Can Bits S1 also be Recovered and 2R Correlation Attacks

It is possible to see that in order to find biases which involve S1 bits, one round
of encryption is not sufficient and we need at least 2 rounds. For example the
following key 942 has output 21 correlated to prevS1+f by which we mean the
s1i bit used in the previous round XORed with the f bit used in the current
round.

942: P=2,27,33,14,1,19,5,11,9,17,12,10,34,22,21,6,8,25,24,32,

36,26,18,29,31,13,3 D=0,16,36,20,32,4,12,28,24

22.10 Further Correlation Attacks on S1

We outline some additional correlation attacks on S1 which could work for 4 or
more rounds in Appendix B.3 and in Appendix C.13.

22.11 More Rounds, More Correlation Attacks, Attacks Without
Correlations and General “Random Non-Bijective” LZS Case

Looking at Table 18 the reader might consider that we have found something
which is a class of particularly weak keys with some very strong correlations cf.
which do not have any practical importance. In this section we claim that, on
the contrary, a simple attack described in Section 22.7 can be easily generalized
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and will work almost always for arbitrary long-term keys(!) provided that they
are not bijective.

In addition, this attack has already been studied in a lot of detail in this
paper, see Sections 18 through 20. In general we do not need to use a correlation
attack and we do not need correlations. More generally we will have a conditional
correlation attack or just an attack with a conditional bias, which can work
nevertheless in many cases when no correlations exist whatsoever. The reason
for that is that biases for some bit uα can exist for particular values for key bits
K in say last 4 rounds, even though if you average that over all K the biases are
compensated and we frequently get no correlation at all. We have the following
general attack:

Conjecture 22.11.1 (General Attack For Arbitrary Random Non-Bijective
LZS). We conjecture that if we generate a non-bijective LZS key at random,
and almost always [with overwhelming probability close to 1], after a few rounds,
if the key bits used in these rounds are fixed, the internal state uα will exhibit
biases for every alpha.

Justification: Examples of such biases can be found in Table 10 page 60. Moreover
our experiments show that this attack obey a relatively simple law with bias
≈ O(

√
1/M), see Section 18.9 where M is the output space size. The only keys

known for which this formula is not correct are keys which are substantially
weaker such as 925. Overall we see that what is exceptional for φ1 cf. Table 18
above, is already systematic for φ16, see Table 10 in Section 18.2. We conjecture
that very few non-bijective long-term keys exist which can resist this attack.
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23 Decryption Oracle Attacks and Keystream Recovery

A plausible attack scenario is that the attacker would have access to a decryption
oracle. The attacker can send any IV and the ciphertext and can recover the
plaintext. We will assume that α is known or we guess it (it has low entropy and
many choices are substantially weaker). In this case we are going to show (over
the next few pages) that the cipher is not secure.

We will fist look at the first encrypted character Cj with j = 1. For example
the attacker can send several messages with the same IV with:

C1 = P1 ·Mr1 ⊕B1 ·Mr1

Then in all these encryptions r1 and B1 will be the same. So for two encryp-
tions with the same IV we have:

C1 ⊕ C ′1 = (P1 ⊕ P ′1) ·Mr1

and more generally if ciphertexts submitted to the oracle have length k char-
acters

Cj ⊕ C ′j = (Pj ⊕ P ′j) ·Mrj for all 1 ≤ j ≤ k.
This allows to recover Mrj uniquely in a proportion of 1-1/32 of cases where

Cj 6= C ′j . In addition the attacker could chose ciphertexts such that Cj 6= C ′j .
Moreover we recall following Section 16, that Mrj does almost always [but not
always] allow to determine Rj :

r0 =

0 if Rj = (0, 0, 0, 0, 0)
0 if Rj = (1, 1, 1, 1, 1)
31− r if Rj ·Mr = (1, 1, 1, 1, 1)

Therefore we need to discard the proportion of 1/32 of the cases where rj is
0 modulo 31, which cases create an ambiguity on the bits Rj .

For example, for j = 1 we can determine R1 = a1−5 with probability at
least 30/32, as one of the two problematic events happens with overall proba-
bility at most 2/32. Overall in at least 30/32 of the cases over all possible pairs
P/C, P ′/C ′, we have the 5 bits of R1 = a1−5 which are uniquely determined
and r1 6= 0 (only in case r1 = 0 we cannot determine R1, i.e. decide whether
R1 = (0, 0, 0, 0, 0) or R1 = (1, 1, 1, 1, 1)).

Theorem 23.0.1 (Decryption Oracle Attack on u127). For every IV cho-
sen by the attacker, given at most about 2·32/30 ≈ 2.13 “Chosen IV and Random
Ciphertext” (CIVRC) queries on average, the attacker can obtain a1 = u127,α
with a negligible computation effort. Moreover, with “Chosen IV and Chosen Ci-
phertext” (CIVCC) queries, we only need about 2 ·32/31 ≈ 2.06 CIVCC queries
where the attacker can make sure that C1 6= C ′1 for any pair.

Proof: The result is straightforward and all these steps were already give above.
In the CIVCC case the attacker can make sure that C1 6= C ′1 for any pair by
selecting up to 32 chosen ciphertexts with different C1. This cannot be done for
more than 32 of the cases, however the probability that the attacker would ever
need more than 32 calls to the decryption oracle (due to the fact that for each

pair he would get r1 = 0 is extremely small, of the order of (1/31)(
32
2 ) ≈ 2−2457.



Cryptographic Security Analysis of T-310 83

Key Recovery Step. Access56 to many values of a1 = u127,α for many
different IVs should maybe be sufficient to recover the T-310 key with a SAT
solver cf. Section 15 and [13] or ElimLin+ attack [98] in a similar way as for 160
of KeeLoq cf. [29, 30]. The exact time and data complexity of this attack will be
studied in a future update of this paper.

23.1 General Black-Box Decryption Oracle Attack

We generalize the same attack for recovering most of the a1, a2, a3, . . . , a13k for
k characters. It should be noted that we cannot hope to recover aj with j ≡ 0, 6,
or 12 modulo 13, because these aj are never used for encryption. We can however
recover all these which are used for encryption (a proportion of 10/13 of all the
ai). We will now consider only the (stronger) CIVCC attack, as we find it hard to
imagine a scenario where an attacker could do CIVRC and not CIVCC. We also
make a deliberate choice NOT to recover all the ai which could be recovered,
in order to minimize the data [decryption oracle query] complexity of our later
attack. We explain our general method:

Theorem 23.1.1 (General Decryption Oracle Attack). For every IV cho-
sen by the attacker, and for every k ≥ 1, the attacker can obtain a proportion
of 30/32 · 10/13 + 1/32 · 5/13 ≈ 0.73 of the internal keystream bits a1−13k with a
computation effort of about 2k and with about K = 2 “Chosen IV and Chosen
Ciphertext” (CIVCC) queries on average, with one fixed chosen IV and random
ciphertexts, and with ciphertexts length of about k characters. For the remaining
values ai we make the alogrithm return ”don’t know”.

Proof: We assume that we have K decryption CIVCC oracle queries (with chosen
IV and chosen ciphertexts) with ciphertexts of length k characters. This would
give us about K2/2 pairs where we could try to apply the formula:

Cj ⊕ C ′j = (Pj ⊕ P ′j) ·Mrj for all 0 ≤ j < k.

and apply the analysis of the previous Section 23 and even if sth. go wrong,
we could recover the ai from another pair [except those never used].
Now in this paper we made a “minimalistic” choice of K = 2. Exactly, and only,
two things can go wrong for our pair of decryptions obtained from the oracle.
Either we have Cj = C ′j or rj = 0. Avoiding both cases happens with probability
at least 30/32. In this case we can determine 10/13 of the bits uniquely from
the decrypted pair. We also have a case where Cj 6= C ′j but unhappily rj = 0
and Rj cannot be determined for sure (ambiguity), in this case however Bj
can be obtained from Cj = Pj · Mrj ⊕ Bj · Mrj = Pj ⊕ Bj . This happens
with probability about 1/32, in this case we only get 5/13 of the bits of Bj =
(a7+13(j−1), . . . , a11+13(j−1)).
56 Even though the first 4 characters (or 20 bits) of the plaintext are always known to

the attacker in real life situations. cf. Appendix I.5, this does NOT give the values
u127,α, due to double one-time pad cf. Section 16.
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24 A Decryption Oracle with a Slide Attack

In the previous section Thm. 23.0.1 we see that in the decryption oracle scenario,
it is relatively easy to recover the keystream components Rj , Bj by asking for
several decryptions with the same IV and we need about K = 2 to recover most
(but not all) of these bits. This gives access to a1 which however still depends
on 240 key bits. In addition we get access to further a2, a3, . . . in the same way
by using longer decryption queries. This is what we are going to exploit now.
the starting point is that we have not yet used the full power of the chosen
IV attack scenario: the capacity to select many arbitrary IVs and therefore for
example well-chosen related IVs.

Now we are going to design our slide attack. There exist many different slide
attacks, e.g. [72, 29, 38]. We want to exploit the self-similarity of the T-310 block
cipher: the key bits repeat every 120 rounds, and we need to adjust the IV bits
in order to obtain identical permutations. Then the question will be whether
these identical permutations can have identical inputs. Traditionally researchers
call such pairs of inputs a ‘slid pair’ [4].

Here is our first basic slide attack. First we consider some integer s such that:

1) d = 120s mod 127 is small in absolute value
2) 120s is not too large in absolute value (or we will need to decrypt long messages)

For example s = 18 has 120 · 18 = 127 · 17 + 1 and d = 1. Or57 s = 1 given
120 · 1 = 127 · 1 − 7 and d = −7. Now the main idea in the attack is that if by
some sort of “happy” accident for some encryption with some IV, we have

u120s = u0 = 0xC5A13E396,

then the attacker can detect this fact efficiently if there exist correlations on
bit α for d rounds, cf. Section 25.1 and if the attacker has access to a certain
type of chosen IV and chosen ciphertext attack (with partial recovery of the
internal keystream) such as in Thm. 23.1.1.

It should be noted that this equality on 36 bits normally happens with prob-
ability 2−36 except in some special cases such as few steps after 0xC5A13E396,
in which cases this probability is lower. However we do not see a method for
the attacker to obtain a better probability than 2−36, the attacker needs to try
many cases where this property can happen accidentally and eventually he will
succeed to obtain a “slid pair”.

57 The first example, as we will see later, is one we have designed for “stronger” long-
term key settings of T-310, cf. later Appendix G. The second example is meant to
work more easily for “weaker” long-term key settings of T-310.
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25 Slide Property Detection With Decryption Oracle and
Internal Correlations

In this section we will first see what kind of correlations we need for our attack.
Then in Section 25.2 we will describe the full procedure for the detection of a
‘slid pair’.

25.1 On the Existence of Suitable [α]→ [α] Correlations

We consider some relation of type

120s = 127t+ d,

where d is small in absolute value and also s and t are not too large. For
example (s, t, d) = 18, 17, 1 or (s, t, d) = 1, 1,−7. At this moment we will con-
centrate on the case of d = ±7, cf. Appendix G for d = 1 case. We want two bits
used for encryption in two encryptions shifted by 120s rounds to be correlated,
cf. Fig 25.2 page 87. In other words order to make our slide attack we need a
correlation property of type: one special bit α ∈ {1 − 36} of the block cipher
state is correlated with the same bit α after d rounds for some small d.

si,α
?
= si+d,α ∀i

This can be seen as a special case of linear cryptanalysis (LC) [81]. However
we only look at invariant linear characteristics with Hamming weight 1, which
will be substantially less frequent. To illustrate this we can compare Table 13,
Table 14 and Table 15 in Section 21. Correlations of type [α] → [α] are clearly
extremely few or are substantially weaker than other correlations. For example
for the historical key 31, and for 7 rounds, we found the following linear char-
acteristics [17] → [36] with probability 1 for some 30 % of key/IV cases, which
unhappily is not invariant and it is not really useful for us, and for 17 rounds
we have that [17] → [25,29,35] with probability 1/2± 2−3.00 also for some 30 %
of key/IV cases.

In general the answer depends on the values of d and the choice of the term
key LZS with specific values for D,P, α. We conjecture that for every D,P, α
there exists several d such that our attack can be made to work (with s > 1 it
will be harder). In practice however in this paper we want to design a simple
attack with d = ±7 and for this value of d we have NOT found a convincing
real-life example with a sufficiently large correlation. This indicates that the
East-German cryptologists have done a very good job at preventing our basic
slide attack, described in this article, from being effective in practice. Until now
we found no suitable strong correlations for our attack for any of the original
keys from [54] except for the peculiar key 27 and for a different value of d, cf.
Table 15 page 15. In general probably there is no way to prevent such attacks
from working with a sufficiently large d or/and with a weaker correlation, in
particular however, we do not have a convincing example. For this reason, and
for simplicity, we are going to evaluate the complexity of our attack on a key
which we have generated ourselves and which exhibits the correlation required
for d = ±7 exactly. In this paper we are going to use the following key called
701 for which we have a suitable invariant property [30] → [30] for some 20 %



86 N. T. Courtois et. al., eprint.iacr.org/2017/440/ May 29, 2018

of key and IV choices, cf. Table 15 page 71 which also contains the specification
of this key 701. This can also be done for key 741 which is a KT1 key.

25.2 Slide Property Detection With Decryption Oracle and Internal
Correlations - The Detailed Procedure

Here is how the attacker can detect/confirm of his guess is correct:

Theorem 25.2.1 (Sliding Property Detection with a Decryption Ora-
cle). For every IV chosen by the attacker, and for every s ≥ 1, the attacker can
detect with near-certainty if u120s = u0 for the unknown key, by requesting a
decryption of K = 2 ciphertexts for this IV with another related IV’ which we
specify below, with length 120s+ k each, and with time complexity about 2k as
in Thm. 23.1.1, where k is the decryption oracle query data capacity requested
for a fixed set of parameters s, d, which will be determined later to achieve the
desired confidence level four our distinguisher.

Proof: We describe how the distinguisher works in four Steps 1-4.
Step 1. We select two IVs which are distant by 120s steps of our 61-bit

LFSR, called IV, IV ′. We recall that 120s mod 127 is small. We recall that the
key is repeated after every multiple of 120 rounds, but the keystream is extracted
every 127 rounds. Then IF in some two encryptions have the same state

u0 = u′120s [Sliding Assumption]

which occurs with probability 2−36 THEN we have

ui = u′120s+i
for any number of steps i ≥ 0.
Step 2. Then for both encryptions the attacker can recover most of the

keystream with K = 2 decryption queries per IV, cf. Thm. 23.1.1.
Step 3. Step 3. We have 120s = 127t+ d with d small. This means that IF

again u0 = u′120s the keystream extracted from the second encryption is shifted
by 127t + d, i.e. it is extracted at t “big” ai-scale steps later with 127 rounds
each, and with a φd offset. We can hardly hope that these bits will be identical
BUT we can hope they will be in some cases correlated. We have

aj = u127j,α
and

a′j = u′127j,α = u′127(j−t)−d+120s,α = u127(j−t)−d,α

25.3 Step 4 - Simplified Correlation Analysis

Now as a first approximation, we see that the attacker has access to the sequences
u127j,α and u127j′−d,α for any j, j′ which are shifted by d = 1 encryption round
φ. The question now is if there is a correlation between these 2 bits which
makes that the slide assumption u0 = u′120s will be detected.

This depends on the values of α, d, the particular correlation characteristics
of the Boolean function Z used (such as correlation immunity), and on the long-
term key D,P . We conjecture that for every α there exists one or several d
such that our attack works. For example we can use our example of a long-
term key described in Section 8. Here for d = 1 we have observed that we have
u127j−1,α = u127j,α with probability 0.5− ε with ε = 2−3 which means that the
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Fig. 25.23. Slide Attacks on T-310 - the IVs are identical at positions which are also
distant by a multiple of 120, the keystream is shifted by φd, where d can be positive
or negative.
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attacker can easily detect if our sliding condition on 36 bits is true for α = 17
[similar results can be obtained for other values of α].

Then for the LZS 701 and d = −7 we have observed that we have u127j+7,α =
u127j,α with probability 0.5 − ε with ε = 2−11 which means that the attacker
can detect if our sliding condition on 36 bits is true for α = 30.

25.4 Step 4’ - Actual Correlation Analysis

More precisely, it is not quite correct to say that the attacker has access to the
sequences u127j,α and u′127j,α for every j. Following cf. Thm. 23.1.1 only 73 %
of these bits can be recovered on each side. This makes that only some pairs
u127j,α, u

′
127(j−17),α will actually be available, actually a proportion of (0.73)2 ≈

0.53. This is of course sufficient to detect the correlation with about twice higher
k than otherwise needed, and we will estimate k below. This ends the proof of
Thm. 25.2.1.

25.5 Sliding Step - Summary

We see that the attacker can obtain P/C pairs on 36+36 bits for the T-310
block cipher for 120s rounds away and with arbitrarily chosen IVs, and where
the second IV is obtained by clocking the LFSR 120s steps backwards.

More precisely, following Thm. 25.2.1 the attacker can detect if the internal
states on the 36 bits are identical. He can know with near-certitude that

u0 = u′120s [Sliding Assumption]

is true for some pairs IV, s and for the current secret key. This condition is true
with probability 2−36 in general and when it occurs the attacker will detect it.

25.6 Data Complexity Required in Our Attack

At this stage we see that the attacker can generate P/C pairs for 120 rounds
given that s = 1, and following Section 15 key recovery for 120 rounds with a
SAT solver should be feasible. It is then easy to see that the we need to generate
7 such P/C conditions on 36 bits: one is not sufficient to uniquely determine
a key on 240 bits. We need to estimate the data complexity needed to see if
u120s = 0xC5A13E396 will be simultaneously true in 7 cases with probability
of at least 1/2 and to reliably discard as many as 239 − 7 cases. Therefore we
need to operate with a precision which is sufficient to have the standard Gauss
error function erf() to predict less than one false positive in 239 experiments.
We must be able to reject most cases with Thm. 25.2.1 operating at z standard
deviations, where z is such that that erf(z/

√
2) < 2−39, which gives z = 7, see

the table in [105].
The standard deviation for N events, where equality of some two bits of type

u127i,α holds in Thm. 25.2.1, which is assumed true with probability 1/2±ε, with

ε = 2−11 here, will be about
√
N and the deviation in observed probability will be√

N/N . In order to detect correlations with confidence at or exceeding 7 standard
deviations we need, approximately, 7

√
N/N ≤ ε. This leads to N ≥ 72 ·ε−2. Now,

not all bits u127i,α are simultaneously known in 2 distinct encryptions. Inside 13k
possible bits ai for each of K = 2 decryptions with k characters, only 73 % are
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available, and out of these only 73 % are such that the correlated bit for the other
decryption is also available to the attacker. This leads toN ≈ 13k·(0.73)2 ≈ 6.9k.
We need k = N/6.9 = 72 · ε−2/6.9 ≈ 7ε−2 with ε = 2−11.

25.7 A Basic Full Sliding Key Recovery Attack with d = −7

The question is now HOW to break this block cipher knowing that the attacker
can identify P/C pairs for 120 rounds with s = 1. We can then follow the whole
process described above more than once and obtain several P/C conditions on
36 bits (one is not sufficient to uniquely determine a key on 240 bits).

1. We have d = −7 and s = 1.
2. The attacker will try some 7 · 236 ≈ 239 random IVi on 61 bits. He can

then expect that there exists some 239−36 ≈ 7 “good” IVs where he has
u120s = u0 = 0xC5A13E396. At this moment he does not know which 7 IVs
are the “good” ones.

3. For each of IVi, i = 1 . . . 239 the attacker will step the IV exactly 120s steps
backwards to obtain IV ′i .

4. The pairs IV, IV ′ are always shifted by a multiple of 120 rounds, so that
they key bits si,1−2 are also aligned.

5. Memory requirements are very small.
6. Then we apply Thm. 25.2.1 cf. also Fig. 25.2. The attacker - with the help

of a decryption oracle - can see if u120s = u0 = 0xC5A13E396 by aligning
2 sequences aj and a′j+t, where only 0.732 ≈ 0.53 of the pairs are known to
the attacker, discarding all the pairs where either of aj , a

′
j+t is not known,

and counting how many times we have aj = a′j+t.
Following Section 25.6, the attacker needs to select 7 cases where u120s =
0xC5A13E396 will be simultaneously true and reliably discard 239−7 cases.
This leads to k = N/6.9 = 72 · ε−2/6.9 ≈ 7ε−2 with ε = 2−11. We also need
120s more characters which is negligible.

7. Overall our attack requires k = 7ε−2 characters of encrypted data where
ε = 2−11. We need about k ≈ 225 characters of decrypted data per decryption
query.

8. The data complexity is about K · 7 · 239 ≈ 243 chosen IV chosen ciphertext
decryption queries, which are 225 characters each in length.

9. The time complexity is about 239 · K · 225 ≈ 265 CPU clocks spent in ex-
amining correlations plus the time to recover the key from 7 P/C pairs for
120 rounds by a SAT solver attack. As long as this step takes less58 than
265 CPU clocks, this will NOT change the complexity of our attack. For the
time being we assume it does.

Overall we see that we can recover the 240-bit key of T-310 with about 243

chosen IV chosen ciphertext decryption queries with messages of less than 225

characters each, cf. Section 25.7. The time required is about 266 CPU clocks and
the memory required is small.
58 For example, in Table 1, Section 9, page 25, in [38], the time complexity decreases

as the number of P/C pairs grows. We expect a similar result here and arguably 120
rounds of T-310 are the equivalent of 8 rounds of GOST in terms of complexity and
key usage.
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25.8 Another Sliding Key Recovery Attack with d = 1

In the case of T-310 keys for which there is no correlation with d = 7, or if
the SAT solver attack does not work as well as expected, we need to develop
different sliding attacks. In Appendix G. we provide one such alternative sliding
attack which was designed rather for the case of larger s > 1 and d = 1.
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26 On Correlation Immunity in T-310

Correlation immunity, has been an important goal in the design of encryption
machines for many decades, cf. [100]. It is possible to see that cases where our
Slide-Correlation attack of Section will work with small s = 1, 2, . . . are very
rare. In a cipher such as T-310 there are many methods to insure that for many
choices of D,P, α our attacks following Section 24 and Appendix G will not
work. In this section we focus of correlations with s = 1 used in our later attack
of Appendix G. Similar analysis for s = 7 could be very complex to handle. Here
are some reasons why such correlations will not exist.

One example would be a consequence of a “good” choice of the Boolean
function Z which has a certain level of correlation immunity. In many cases we
don’t even need to study Z() because a bit at α at input of φs simply does not
affect the same bit α at the output of φs for a small s and therefore a correlation
is impossible.

In another example, a lack of correlation could be deduced from a detailed
analysis of Fig. 3.28 showing that even if bit 29 was one of the inputs of Z1,
which it isn’t, the bit u20 still prevents any correlation with s = 1 and α = 29
from existing.

Another example is to see that some very strong correlations reported in
Table 18 cannot exist for the KT1 or KT2 keys simply because these keys the
round function is bijective, see Section C.10 and D.6 for detailed mathematical
proofs for both classes of keys.

Another example is that lack of correlation can be a result of some bits being
not used in T . For example we have the following two easy results:

Theorem 26.0.1. If α is not a multiple of 4 and it is one of the bits not used
by T in Table 1 page 40, it is easy to see that there will not be any correlation
for s = 1 rounds.

Proof: If α 6= 4k it will belong to a branch other than I1 in Fig. 4.6 page 15.
Then after one round the perturbation will not affect T and move to another
branch. The output at bit α after s = 1 rounds is therefore totally independent
from the input flip at α and these two bits are therefore not correlated.

We can also obtain a stronger result:

Theorem 26.0.2. If α, α+ 1 are both present in the list of bits not used by T
in Table 1 and if α = 4k+ 1 or α = 4k+ 2 than there will not be any correlation
for any of s = 1, 2 rounds.

Proof: If α = 4k + 1 or +2 it will belong to branch I4 or I3 in Fig. 4.6 after
one round the perturbation will not affect T and move to the branch I3 or
I2 respectively and become α + 1, and after 1 more round it will still not flip
anything in T and move to branch I2 or I1. A bit flip has just moved to another
location different than α. Again, the output at bit α after s = 1, 2 rounds is
independent from the input flip at α and these two bits cannot be correlated.

Remark. Once our perturbation arrives to branch I1 it is guaranteed to flip
one of the inputs of T , for all KT1 keys, this happens for reasons of P () taking
all the possible 4 · k values, cf. [95] and Section 5.4.
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26.1 On Correlation Vulnerability in T-310

There some simple ways to make T-310 fall for truly devastating attacks where
120 bits of the key can recovered with extreme ease in the ciphertext-only sce-
nario, see Table 18 and Section 22.7. This can be achieved for example by man-
dating that D(8) = P (5) or that D(7) = P (6), cf. Section 22.8, which cannot59

happen for the KT1 keys, see Section B. More examples of correlation vulner-
abilities and/or attacks with a weak LZS choice are listed in Section 22. Other
types of correlation attacks are studied in Appendix B.3 and in Appendix C.13.

59 More generally such correlations cannot happen for KT2 keys either because these
LZS have a round function which is not bijective, cf. Appendix D.6.
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27 Summary of Strong and Weak Points in T-310

In this paper we study the peculiar internal structure of the T-310 cipher.

27.1 On Per-Round Weakness vs. Number of Rounds

We discover that the round function has many issues. Serious weakness against
Differential Cryptanalysis, cf. Section 9, and serious weakness against Linear
Cryptanalysis either cf. Section 21 with as much as 3 % of KT1 long term keys
which are pathologically weak. One round of this cipher clearly weaker than
comparable historical block ciphers such as DES or RC2 and which also is not too
strong w.r.t. software algebraic and/or SAT solver attacks, cf. Section 15. Then
we have this peculiar internal triangular structure where we disconnect/replace
just one bit in D in an unbalanced Feistel scheme.

However due to an excessively large number of rounds per encrypted bit, the
overall gate complexity of this cipher is incredibly high, cf. Appendix I.15. The
question is now60 can a “per round weakness” compensated by a larger number
of rounds, AND by the fact 61 that62 extremely few63 bits extracted from the
internal state (1 bit every 127 rounds) are actually used for encryption.

Overall it is not obvious to claim that T-310 is broken. Probably the per-
round weakness of T-310 is most probably, NOT a weakness “per se” and can be
mitigated by the fact that T-310 consumes as many as 1651 rounds of the per-
mutation φ per each encrypted character. Most vulnerabilities of T-310 should
therefore be considered in relative terms. Our overall opinion on T-310 is that it
exhibits a fascinating mix of properties, some of which make it extremely strong,
other weaken the cipher very substantially.

60 This is not unusual, the same problem occurs in for example in [38, 22, 36], and
also for about half of block ciphers submitted to the NIST AES competition in the
late 1990s.

61 This is quite unusual, and here T-310 appears to be substantially more robust
than nearly any other cipher known in crypto literature.

62 However overall this situation is not unusual if we look at broader context in which
one cipher could be used, for example to obtain a realistic card-only attacks MiFare
classic cipher, the extremely low quantity of data which the attacker can dispose
of is due to an extremely well engineered protocol in which the cipher is used, so
that the reader must authenticate first, and very little data can be obtained by the
attacker, at a price of exploiting an additional bug and a weak RNG, cf. [33].

63 Needless to say smart people in the industry have known this for years, see for
example [33, 76].
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27.2 Definite Vulnerabilities of T-310

Below we provide a list of major vulnerabilities which we have identified in
the design of T-310. Most of these properties are able to very substantially
degrade the security of T-310 for no apparent reason. We believe that at
least half of these properties simply cannot be defended64 by any engineering or
practical reasons known to us, such as the cost or speed of encryption. Therefore
they should be rather considered as “bugs” rather than “features” this even
though we do not always know how to exploit them in a convincing way. Several
examples of such properties of T-310 with variable levels of severity are studied
in this paper:

1. First we show that potentially key space could be halved, cf. Section 4.5, or
the divide and conquer approach attacks on the key space are possible due
to the permanent lack of mixing of its belonging to the two 120-bit halves
of the secret key, cf. Section 7.6.

2. Then we show that long-term key space is surprisingly small, cf. Section 8.6,
3. Then we show that the structure of T () has some issues, in particular the fact

that 8 state bits per round are omitted has some important consequences,
cf. Section 12.3, and Section 12.4. Other issues are studied in Section 9.4
and 21.4.

4. Then we show that the first 4 characters of plaintext are always known to
the attacks, cf. Appendix I.5.

5. Then we show that the encryption procedure is subject to “Zero-value” at-
tacks cf. Section 17.3 and Section 20.2.

6. At several places we exploit the periodic key scheduling of T-310, cf. Section
20.1, our slide attacks in Section 24.

7. The periodic key scheduling is in general hard to exploit. This with exception
of our second “Zero-value” attack is described in Section 13.6 which is quite
powerful.

8. At other places we show that weak long-term keys are a major concern and
that validation of long-term keys is important in T-310. Several ways to
backdoor the T-310 cipher are described in Section 22. If the attacker can
select any LZS, the security of T-310 collapses totally, cf. Section 22.7.

9. More specifically we study powerful chosen-key attacks in Section 18 and
show that they lead almost inevitably to powerful correlation attacks cf.
Section 18.9 for almost every bit inside the cipher.

10. Few more types of correlation attacks on T-310 with weak or/and strong keys
are studied in Section 20.2, Section 25, Section 22.6 and and in Appendix
B.3 and and also in Appendix C.13.

11. In this paper we show several ways in which a long-term key could be weak
or backdoored, cf. Sections 4.5, 19 or in Sections 21.4 and 22.5 and few other.
This poses serious problems to verify if long-term keys are bijective and if

64 This sort of properties are usually due to the to the inclination by the designers to
mandate some simple and elegant internal structure and the popularity of certain
ideas among cipher designers.
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they should be approved for practical use, cf. Section C, Appendices C.10,
D.6 and [46, 47, 54, 99].

12. Finally, are the actual historical keys the strongest possible? Almost ev-
erything we have done seems to indicate that yes, with two exceptions, cf.
Section 8.3. In related-key differential attacks cf. Section 12.4 we have ob-
served that the choice of α in these keys is potentially quite vulnerable. Then
in Table 19 page 107 we see that historical keys could quite be vulnerable to
correlation attacks on S1 specifically.

Most of these should be considered as either engineering mistakes or at least
they define definite areas where the cipher is weaker than it could otherwise
be. Many of these observations also open interesting possibilities to potentially
misuse the cipher or make it weaker on purpose just by selecting a weaker sort
of long-term key, in chosen IV attacks, etc.
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28 Conclusion and Summary of Our Attacks on T-310

T-310 is an important Cold War cipher. In this paper we study the peculiar
internal structure of the T-310 cipher and show that it has several serious vul-
nerabilities, but also that it is very strong in the sense that it extracts extremely
few bits for the actual encryption and a very large number of rounds will be used
to encrypt just one character of the plaintext. This property makes that T-310
seems substantially stronger than other ciphers from the same historical period
such as RC2, DES, and Skipjack. Cryptanalytic literature knows extremely few
examples where the cipher would actually be broken under such difficult circum-
stances. In one such example the attacker obtains only 4 bits from each larger
encryption [33]. In T-310 bits from rounds as high as 1397 are used to encrypt
just the first character. In spite of this difficulty in this paper we propose several
attacks on T-310.

For example our sliding attack on T-310 in Section 25.7, allows one to recover
the 240-bit key of T-310 with about 243 chosen IV / chosen ciphertext decryption
queries, which need to be 225 characters long. The time required is about 265 CPU
clocks to recover a 240-bit key and memory required is small. This attack requires
some correlations to exist and will work only for some keys D,P, α, and will
not work for any of the actual historical keys. Then in Appendix G we present
another more complex sliding attack which uses another type of correlations
with s = 1. It seems that long-term keys immune to correlations required by
such attacks are quite rare, cf. Section 26, however such keys definitely exist, cf.
Section 21.5.

Another very important attack on T-310 is given in Section 20. We see that
the combination of regular periodic structure, deficient KT2 or other keys, can
lead to very strong attacks in spite of the fact that the IV expansion destroys
the perfectly periodic structure. We present a ciphertext-only correlation attack
which seems to work for every single weak key known to us, cf. Table 10.
For example with β = 2−8 for key 27 the attacker can recover the full 240-
bit encryption key in a time of 28

′
given about 245 characters of encrypted data

in the ciphertext-only scenario. A similar attack can be mounted against SKS
V/1 cipher, cf. Section 20.3. It is extremely rare to see a ciphertext-only attack
on a real-life government cipher65.

This result shows that there are serious possibilities for degrading the security
of T-310 by the choice of LZS, and we stress the fact that it quite difficult to
check all of some forty conditions which the LZS of type KT2 must satisfy. At the
same time in this paper we show that both KT1 class, cf. Thm. C.10.1 page 117
and KT2 class of long-term keys, cf. Thm. D.6.1 page 125, are mathematically
proven secure against this sort of potentially devastating ciphertext-only attacks.

Finally we show that if the attacker can select the long-term key freely, the
security of T-310 collapses very badly, cf. Section 22.7 and just a few thousand
characters of encrypted data can be used to decrypt communications encrypted
with T-310 in the ciphertext only scenario.

65 This for example was not the case for Enigma during WW2 and the first ciphertext-
only attack on Enigma was found only in 1995, cf. [69, 87].
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Appendix.

A Glossary

We provide tentative English translations for a selection of German terms used
in T-310 literature. We do not guarantee the correctness of these translations.

BStU = Bundesbeauftragter Stasi Records Agency
für die Stasi-Unterlagen

MfS = Ministerium für Staatssicherheit GDR Ministry of State Security (Stasi)
ZCO = Zentrales Chiffrierorgan der DDR Central Cipher Organ of the GDR

ZCO = MfS Abteilung XI ZCO is a.k.a. Stasi Department XI
GVS = Geheime Verschlußsache Secret and confidential

Chiffrierverfahrens encryption method
LZS, Langzeitschlüssel long-term key (up to 94 bits)

Zeitschlüssel current secret key (240 bits)
SpS, Spruchschlüssel spelling key, the IV (61 bits)
Synchronfolge SYF synchronisation seq. SYF, contains the IV

bestehend aus 25 FS-zeichen consisting of 25 teletype characters
FS, Fernschreiber teleprinter

ZG, physikalischer Zufallsgenerator RNG, random number generator
PZG, Pseudozufallsgenerator PRNG, pseudo-random number generator

Verschlüsselungseinheit encryption unit
CE = Chiffiereinheit Encryption Unit

Eingabeeinheit input unit
Synchronisationseinheit synchronization unit

Erzeugung der Spruchschlüssel generation of IVs / spelling keys
und seine Umkodierung in SYF and their recoding in SYF

Umkodierung der empfangenen SYF recoding the received SYF
in Spruchschlüssel (gerführtes gerät) in a device controlled by IV

Kryptologische Abbildung cryptographic mapping / function
Komplizierungsalgorithmus complication algorithm

Komplizierungseinheit complication unit
Zwischenfolge sequence

Kryptologische Eingenschaften cryptologic characteristics
Schieberegister Shift register
Minimalperiode the period (for a sequence)

Primzahl prime number
0-1 verhältnis statistisch ratio/proportion of 0/1, balancedness

Grundtext-Geheimtext-Paares plaintext-ciphertext pairs
Sicherheit der Chiffrierverfahren security of encryption procedures

gegen dekryptierung against decryption
Gebrauchsanweisung instructions for use

zwei LZS-Klassen two classes of long-term keys
eineindeutig bijective



Cryptographic Security Analysis of T-310 105

B A Description of KT1 Keys

We provide a complete66 description of key class KT1 following page 58 and
Section 2.2 of Annex 1 and pages 114-115, and also Section 4.1 page 117 in [99].

(P,D, α) ∈ KT1⇔ all of the following hold:

D and P are injective
P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25, P (24) = 29
Let W = {5, 9, 21, 25, 29, 33}
∀1≥i≥9 D(i) /∈W
α /∈W (note: cf. also Fig. 9.16 page 32)
Let T = ({0, 1, . . . , 12}\W ) ∩ ({P (1), P (2), . . . , P (24)} ∪ {D(4), D(5), . . . , D(9)} ∪ {α})
Let U = ({13, . . . , 36}\W ) ∩ ({P (26), P (27)} ∪ {D(1), D(2), D(3)})
|T\{P (25)}|+ |U\{P (25)}| ≤ 12
D(1) = 0
There exist {j1, j2, . . . , j7, j8} a permutation of {2, 3, . . . , 9} which

defines D(i) for every i ∈ {2, 3, . . . , 9} as follows:
D(j1) = 4, D(j2) = 4j1, D(j3) = 4j2, . . . , D(j8) = 4j7

P (20) = 4j8 (note: this value is not any of the D(i))
(D(5), D(6)) ∈ {8, 12, 16} × {20, 28, 32} ∪ {24, 28, 32} × {8, 12, 16}
P (6) = D(8), P (13) = D(7)
P (27) 6= 0 mod 4
∀1≥l≥9∃1≥i≥26P (i) = 4 · l
D(3) ∈ {P (1), P (2), P (4), P (5)}
D(4) /∈ {P (14), P (16), P (17), P (19)}
{P (8), P (10), P (11), P (12)} ∩ {D(4), D(5), D(6)} = ∅

Fig. 2.24. Some observations about internal dependencies inside one encryption round
φ, which hold for all KT1 keys (some also work with KT2), cf. also Fig. 9.16 page 32.

There exists approximately 283.2 KT1 different keys total, cf. Section 8.6.

KT1 keys can be seen as a method to make the cipher have desired properties,
an in principle are quite strong cf. later Thm. C.10.1 page 117, but not always,
see for example Section 21.8, Section B.3 and Section B.5.
66 An incomplete description which only included the conditions in page 58 of [99] was

given in [95].



106 N. T. Courtois et. al., eprint.iacr.org/2017/440/ May 29, 2018

B.1 Observations About KT1 Keys

We have the following result:

Theorem B.1.1 (KT1 Cycling Theorem). For every key in the class KT1
if we replace the first value d[1] = 0 by P (20) and we divide all values by 4, we
obtain a permutation of the set {1, . . . , 9} with exactly one cycle.

Proof: We start with a real-life example. In key 14 we get 8,28,24,12,16,32,36,4,20.
If we divide by 4 we get 2,7,6,3,4,8,9,1,5. This permutation of the set {1, . . . , 9}
forms one single cycle: starting from 1: we have 1,2,7,9,5,4,3,6,8,1.

In the general case, and following the definition of KT1 in Section B, there exist
{j1, j2, . . . , j7, j8} a permutation of {2, 3, . . . , 9} such that D(j1) = 4, D(j2) =
4j1, D(j3) = 4j2, . . . , D(j8) = 4j7 and P (20) = 4j8 We claim that then the
following permutation with 1 cycle [in order] is what we are looking for: 1, j8,
j7, . . . , j2, j1, 1 which closes the cycle. Indeed 1 is mapped to j8 due to P (20) =
4j8, then we have D(j8) = 4j7 which implies that j7 must follow position j8 etc,
finally j1 is mapped to 1 due to D(j1) = 4.

Corollary B.1.2. The number of possible sequences {j1, j2, . . . , j7, j8} with
numbers 2-9 which can occur in KT1 keys is 8!=40320.

B.2 Origins and Consequences of the Cycling Property

KT1 keys “imitate” a sort of serial connection in SKS V/1:

Fig. 2.25. A cascade of shift registers in an intermediate design which was neither SKS
V/1 not T-310 cipher, from [60], cf. Fig. 6.35 page 131. This early version of T-310
KT1 keys had 3 bit blocks, later changed to 4 bit blocks.

Fig. 2.26. Shift registers in T-310: here the fact that D(x) = 4k in KT1 keys will
insure a serial connection such as in Fig. 2.25 above with as starting point with S1 due
to D(1) = 0 and ending with P (20), cf. also Thm. B.1.1 page 106.

Moreover it is possible to specify in which exact order this serial connection
of all 4-bit shift registers at Fig. 2.26 is handled:
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Theorem B.2.1 (KT1 S1 Ordering Theorem). For every key in the class
KT1, and for the key bit S1 which is used in encryption round t ≥ 1,
initially S1 is XORed to T9 in round t and it becomes U1 or input u4·0+1 of
round t+ 1, then it becomes input u4·0+4 of round t+ 4,
then it is XORed to T10−j1 end of round t+4 and becomes bit Uj1 or input
u4·j1+1 of round t+ 5, then it becomes input u4·j1+4 of round t+ 8,
then it is XORed to T10−j2 end of round t+8, etc,
and finally it gets XORed to T10−j7 end of round t+56, and becomes Uj7 or
input u4·j7+1 of round t+ 57, then it becomes input u4·j7+4 of round t+ 58,
finally it will enter input 20 of T or input uP (20) of round t+ 59.

Table 19. Order of treatment of Ti in Thm. B.2.1

LZS nb α Ti order

14 30 T9T2T4T7T6T5T1T3

21 1 T9T6T5T2T1T7T3T4

26 4 T9T7T3T8T4T5T2T6

30 4 T9T3T6T1T8T7T5T2

31 2 T9T7T5T1T2T3T4T6

32 4 T9T6T3T5T8T4T7T1

33 3 T9T1T6T4T7T8T2T3

Immediately we see that:

Corollary B.2.2. For any bit ui, 1 ≤ i ≤ 36 after j − th block cipher round it
can be expressed as a sum of just one specific key bit S1 and a XOR of up to
nine Tk from the preceding 58 rounds (T9 always coming first).

This observation can potentially lead to attacks of the following type:

Conjecture B.2.3. We conjecture that for some LZS the bit T9 can be approx-
imated by a Boolean function of the key and IV bits in the last K rounds for
some K > 0. Then by subtracting this Boolean function under a key guess the at-
tacker can recover S1 key bits under a partial key guess and in a ciphertext-only
scenario.

To illustrate this idea, in the table below we show example of keys which exhibit
a bias for certain combinations of TiTj distant by exactly 4 rounds. It should be
added that each of these two bits Ti is not biased individually.

Table 20. Examples of keys where a sum of Ti and Tj four rounds later is biased.

LZS nb D P sequence |P − 1/2|

464 24,8,4,12,32,28,0,20,16 4,33,16,17,20,5,14,9,3,10,18,12,7,21,13,23,25,28,36,24,15,26,29,27,32,11 T6, T4 2−6.9
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B.3 On the Choice of α in KT1 Keys

Our Thm. B.2.1 shows that depending on the choice of α, the keystream bits are
extracted potentially after XORing just T9 to S1, or after XORing as many as
nine different Ti. We believe that if this number is high, it may be particularly
difficult to design a correlation attack. In Fig. 19 we show how this works for
various historical keys. The result is that the oldest key 14, α was potentially the
most secure choice. Here bit 30 is generated after using all of T9T2T4T7T6T5T1T3
in some 58 consecutive rounds cf. Thm. B.2.1.

In contrast, in all other historical keys, bit α is extracted as S1⊕T9 in one of
the few previous rounds. This is maybe a secure choice w.r.t. correlation attacks
on s2 and the complexity of different bits of T (). However it seems to be the
weakest possible choice for correlation or other attacks on S1, provided that
some bias or weakness on T9 bits would make such attacks possible in the KT1
case (or for some weaker keys cf. Table 20).

Remark. This bit 30 then enters T () at specific wire v20 cf. Fig. 7.12.

B.4 Symmetries Which Preserve KT1 Keys

We have the following fact:

Theorem B.4.1 (KT1 Symmetry Property 1). For every key in the class
KT1 if we permute in arbitrary way {P (1), P (2), P (4), P (5)} we always get a
valid KT1. The same applies to {P (14), P (16), P (17), P (19)} and also to the set
{P (8), P (10), P (11), P (12)} and also to the pair {P (21), P (23)}.

Proof: By careful inspection we see that the definition never makes any distinc-
tion between these indices.

We also have:

Fact B.4.2 (KT1 Symmetry Property 2). For every key in the class KT1
if and for certain well chosen pairs a, b, if the numbers a, b appear at two lo-
cations a = P (x) and b = P (y) and we swap these pairs, we always ob-
tain a valid KT1 key (this ignoring completely α or being KT1 for at least
for some α ). There are 112 such pairs a, b which are 1,[2-3,6-7,10-11];2,[3,6-
7,10-11];3,[6-7,10-11];6,[7,10-11];7,[10-11];10,[11]; 13,[14-15,17-19,22-23,26-27,30-
31,34-35];14,[15,17-19,22-23,26-27,30-31,34-35];15,[17-19,22-23,26-27,30-31,34-35];
17,[18-19,22-23,26-27,30-31,34-35];18,[19,22-23,26-27,30-31,34-35];19,[22-23,26-27,30-
31,34-35]; 22,[23,26-27,30-31,34-35];23,[26-27,30-31,34-35];26,[27,30-31,34-35];27,[30-
31,34-35];30,[31,34-35];31,[34-35];34,[35];

Justification: By careful inspection we see that the KT1 definition never makes
any distinction between the two values in each pair. In general if we look at set
13, . . . , 36 which explicitly appears in the KT1, and exclude all the other elements
potential values of P () which are explicitly used or name in the definition, such
as all multiples of 4, 33, 21, 25, 29. We are left with 13,14,15,17,18,19,22,23,26,27
which gives 45. Our computer simulations show that there exist 67 additional
pairs and 112 total.
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Definition B.4.3 (Normal form for the KT1 keys).
We say that a KT1 key is in a normal form if for each 4 sets of Thm. B.4.1 the

values always appear in the increasing order inside P(). In addition for each of
the 112 sets of Thm. B.4.2, the numbers x, y should be in an increasing order.
For example if P (x) = 13 and P (y) = 14 we must have x < y.

Remark: This property allows to classify all KT1 keys in a reduced number
of distinct equivalence classes with representatives being the keys in normal form.

B.5 Discussion KT1 Keys: Strong or Weak?

It is clear that KT1 keys prevents many strong attacks, see for example Thm.
C.10.1 which has prevents the attacks of Section 20.2 and Appendix C.12-C.13
and Section 22.6.

Is KT1 class always secure? The answer is not always. In Section 21.8 we
show numerous examples of keys which satisfies ALL the KT1 conditions above
and which is pathological w.r.t Linear Cryptanalysis. A large proportion of all
KT1 keys has this property. Following Section 21.7 about 1/8 · 1/36 ≈ 0.3% of
keys are such that D(2) = 4 and P (27) = 6 and therefore must be weak w.r.t.
Linear Cryptanalysis. In a future update of this paper we will show that about
3.0% of all KT1 keys are weak w.r.t. Linear Cryptanalysis. In Section 22 we
study the more general question of arbitrary weak LZS, not only in the KT1
case.
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C On Bijectivity of One Round φ

In this section we study the question whether the round function is always a
permutation, and what would be the [security] consequences of φ not being a
bijection. In theory, from a pure encryption point of view, nothing forces φ to
be invertible. However φ is bijective in any version of T-310 we have ever heard
of. The original documentation clearly says that it must be a bijection cf. pages
47 and 56 in [99]. It appears that if φ is required to always be bijective, this will
be for security reasons, not for purely functional encryption reasons. Bijective
φ allows to maintain high entropy of the state ut at any time t. Moreover the
opposite seems to lead almost always to insecure ciphers, see Conj. 22.11.1
page 81 and Sections 20 and 22.7.

C.1 Vanishing Differential Attacks

More importantly, this property of φ being bijective is able to prevents some
very strong attacks on block ciphers. Such attacks are very well known for
example in mobile telephone SIM cards. These attacks can be called by many
different names such as vanishing differentials, all-zero output difference attacks,
collision attacks or “Narrow-Pipe” attacks.

For example in the last 20 years it was relatively easy67 to extract keys from
SIM cards for certain mobile phone operators, and these attacks these keys ex-
ploit precisely vanishing differentials cf. [5, 6, 39, 32]. In general, the question of
avoiding such rather strong differential properties is precisely the reason why
we have many bijections in the design of block ciphers and hash functions. For
example S-boxes in SERPENT, PRESENT, GOST [13, 43] and many other ci-
phers are permutations on 4 bits. In DES S-boxes are also always bijective and
are on 4 bits when two (first and last) input bits are fixed [12].

C.2 Weaker Types of Vanishing Differentials

Vanishing differentials can also be applied at a different level: to a round function
of a block cipher. It is possible to see that they exist for the DES round function,
but only when we involve at least 3 consecutive S-boxes, cf. [12, 15] and they
do not exist in GOST cf. slide 255 in [39]. These properties have been carefully
engineered by the designers or DES, cf. slide 31 in [14] and [8, 12].

In T-310 it is also possible to find differentials which vanish totally. First,
this is inevitable because T () is of compressing type and cannot be bijective.
Future works are going to show how good differential properties for iterated φ

67 We and our students have ourselves extracted large numbers of keys from SIM cards
as recently as in 2012 primarily for Chinese SIM cards, and we have also discovered
that certain European mobile operators still used COMP128v1 until 2012. The basic
attack was first outlined by Briceno-Goldberg-Wagner cf. [5], and is also described
in page 6-15 in [6] and in Section 13.1 slides 249-255 in [39]. Moreover there exist
more efficient variants of this attack cf. [32] which we have developed ourselves, cf.
slide 230 in [32] and [68], and as far as we can see the full account of these attacks
and their complexity have never yet been published so far. These attacks do not
concern SIM cards which use more recent crypto algorithms.
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could be in the best case. However knowing that only up to 9 inputs of any of
the four Boolean functions Z() are repeated elsewhere (due to being an output
of D()), it is hard to imagine an impossibility result 68 here.

There exist also very simple vanishing differentials due to the fact that the
round function T does not use all the bits it potentially be using. In this cases
some bits which are flipped will be some of those not used by T cf. Table 1 page
40. This gives very good differentials for 3 rounds such that only 1 bit is flipped
at the input, and only one at the output (with same IV) cf. Section 12.3.

C.3 Related Properties: Beyond All-Zero Differentials

Departing from the vanishing differentials, in T-310 it is also possible to obtain
output differentials where exactly 35 bits out of 36 are flipped with different IVs
cf. Fact. 12.6.1.

It is not clear however if or how the properties with 1 or 35 bits flipped men-
tioned above could be exploited by the attacker. In general some relatively strong
differential properties in isolation will not yet allow to construct an interesting
differential attack.

C.4 Are Vanishing Differentials A Problem in T-310?

In T-310 it is possible to see that vanishing differentials are less a threat than in
other ciphers, due to the action of the IV which generates a complex aperiodic
pattern. However T-310 is still vulnerable to some very powerful attacks. For
example if φ was sometimes not bijective, we could have a situation where 2
encryptions with the same IV would collide for example on the first X rounds,
and then a distinguisher [possibly a ciphertext-only distinguisher based on Fried-
man’s Index of Coincidence [66, 80]] which shows that the keystream is identical
starting from this point. This would make the cipher extremely easy to break
by a software/algebraic attack or brute force attack. Such an attack would be
easy because the first X rounds use only 2X key bits and for any previous rounds
we could potentially avoid guessing the key but only the current state(s) at a
certain location(s) which would be guessing only 36 bits par cipher state u.,1−36
to be guessed.

C.5 On The Group Generated by Bijections in T-310 Cipher

The function has 3 key/IV bits s1, s2, f which makes that T-310 operates with
combinations of exactly 8 fixed permutations on 36 bits which are called φ0, . . . , φ7
in Section 1.5 in [99]. The document also calls G(P,D) the group generated by
these 8 permutations and contains some interesting results about composition
of these permutations. From the cryptanalyst point of view it is crucial that this
group G(P,D) is quite69 large.
68 For example that that we cannot find a flip on few inputs of just one of the Z() which

would vanish immediately and give the same output bit Z(.) with a probability 6= 0.
69 If this group is small, the cipher would probably insecure. The opposite does not

hold: Even if the group is so large that it contains all possible permutations, the
security can still be very poor, see [18, 19].
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C.6 Bijections vs. KT1/KT2 Classes of Long-Term Keys

It is not sufficient to say that φ should be a bijection, cf. [99]. It appears that
all currently known long-term keys cf. Section 8 lead to bijective φ, and that the
designers of two well-known classes of long-term keys KT1/KT2 have mandated
that φ is going to be a bijection. It is not hard to see that a less strict set of rules
can also lead to a bijection, cf. Section E.6, which key is NOT not compliant
with all the rules of KT1 and nevertheless gives a bijection.

Nevertheless it appears that previous publications and historical resources
have NOT mathematically proved that KT1 or KT2 will always be a bijection
or at least such a proof does not appear in [99]. This property is crucial, and we
cannot understand the security of T-310 for as long as we are not able to tell
if KT1 or KT2 rules would allow the long-term key to be non-bijective which
would allow some very powerful attacks such as described in Section C. We either
need a mathematical proof that KT1/KT2 are secure, or to demonstrate that
an attack is possible.

In this paper we finally resolve this question. First we are going to prove that
φ is invertible for one historical key numer 26 and we will also show that there is
more than one order in which the inversion can be performed. Then we provide
a complete mathematical proof how exactly the inversion can be performed for
all KT1 keys. We plan to resolve the KT2 case in a future update of this paper.

C.7 One Round Operation φ

We recall from Section 7.5 the 9 new bits which are created at each round:

(um+1,1, um+1,5, um+1,9, . . . , um+1,29, um+1,33) =

(U1, U2, U3, . . . , U8, U9) =

D(s1; um,I1)⊕T
(
f, s2, P(um,I1−4)

)
=(

um,D(1) ⊕ T9(f, s2, um,P (1−27)),

um,D(2) ⊕ T8(f, s2, um,P (1−27)), . . .

. . . um,D(9) ⊕ T1(f, s2, um,P (1−27))
)

Now in KT1 keys we have D(1) = 0. Wee have then:

U1 = sm+1,1 ⊕T9(f, sm+1,2; um,P (1), . . . , um,P (27))

U2 = um,D(2) ⊕T8(f, sm+1,2; um,P (1), . . . , um,P (27))

...

U9 = um,D(9) ⊕T1(f, sm+1,2; um,P (1), . . . , um,P (27))

C.8 How to Invert the Encryption Round φ

In this section we will show how φ can be inverted for one type of long-term key
of type KT1. We need to see how to recover all the missing nine I1 bits numbered
4, 8, 12, 16, . . . 36. All the other bits with numbers 6= 4k are already known. This
will be be done potentially in a different way for each different long-term key.
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First in Section C.9 and Fig. 3.28 we will show how this can be donee for one
particular key number 26. Then in Section C.10 Thm. C.10.1 and Fig. 3.30 we
will show it can always be done for all keys if type KT1.

If we put all the outputs of D on the left hand side, and take into account
how T () is defined w.r.t previous bit in Section 9, we have already obtained in
Section 9.6 that:

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕uP (27)

U2 ⊕ uD(2) = U3 ⊕ uD(3) ⊕Z4(uP (21−26))

U3 ⊕ uD(3) = U4 ⊕ uD(4) ⊕uP (20)

U4 ⊕ uD(4) = U5 ⊕ uD(5) ⊕Z3(uP (14−19))⊕ s2
U5 ⊕ uD(5) = U6 ⊕ uD(6) ⊕uP (13)

U6 ⊕ uD(6) = U7 ⊕ uD(7) ⊕Z2(uP (7−12))

U7 ⊕ uD(7) = U8 ⊕ uD(8) ⊕uP (6)

U8 ⊕ uD(8) = U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5))

U9 ⊕ uD(9) = f

Here we distinguish Z1, Z2, Z3, Z4, which by definition are 4 copies of the
same Boolean function Z() defined in Section 10.1.

Fig. 3.27. The internal structure of T () inside one round of T-310, cf. Fig. 9.17.
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C.9 Example of Inversion for Key 26
We now give a concrete example of such inversion which was developed by our
student Maria-Bristena Oprisanu (during GA18 Cryptanalysis course at Univer-
sity College London), cf. Fig. 3.28 below. We recall the necessary definitions:

j=3,7,2,6,5,8,4,9 D=0,28,4,32,24,8,12,20,16 P=8,4,33,

16,31,20,5,35,9,3,19,18,12,7,21,13,23,25,28,36,24,15,26,29,27,32,11

Accordingly for this key 26 we get the following equations:

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕u11
U2 ⊕ u28 = U3 ⊕ u4 ⊕Z4(u24,15,26,29,27,32)

U3 ⊕ u4 = U4 ⊕ u32 ⊕u36
U4 ⊕ u32 = U5 ⊕ u24 ⊕Z3(u7,21,13,23,25,28)⊕ s2
U5 ⊕ u24 = U6 ⊕ u8 ⊕u12
U6 ⊕ u8 = U7 ⊕ u12 ⊕Z2(u5,35,9,3,19,18)

U7 ⊕ u12 = U8

U8 ⊕ u20 = U9 ⊕ u16 ⊕Z1(s2, u8,4,33,16,31)

U9 ⊕ u16 = f

Remark: Here in line U7 we observe that two of the ui terms have disappeared
which does always happen for the KT1 keys which mandate that D(8) = P (6).

We are now ready to explain how inversion can be performed. On Fig. 3.28
below we have added numbers 0-9 in blue to show in which order different bits
u4·l, l ≤ 9 in I1 can be computed, and below we detail how they are computed.

0 First we know u0 = s1.
1-2 We see that bits u16 and u12 can be obtained immediately from the U7, U8, U9.

Fig. 3.28. Example of inversion of φ for key number 26.
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3 Then we observe that P (27) = 11 which is not a multiple of 4, (a property
always true for the KT1 keys cf. [95]) so u28 can be computed from U1, U2.

4 Then we observe that inputs of Z2 do not contain any multiples of 4 and are
all known. Therefore we can compute u8.

5 Then due to the fact that P (13) = D(7) for the KT1 keys [95], we can
compute u24.

6 Then we observe that the only input of Z3 which is a multiple of 4 is u28
which we have already computed. So we can compute u32.

7 Once we know u24,32 all the inputs of Z4 become known and we can compute
u4.

8 Now we know u8,4,16 and all other inputs of Z1, and we can compute u20.
9 We note that uP (20) = u36 corresponds to the bit 36 which is NOT used by

D, and is not in the image of D(), which is always mandated in KT1 keys
cf. [95]. Until now we have computed 8 input bits without computing or
using uP (20) = u36. However we need to compute this bit in order to invert
φ completely. It is now computed simply as u36 = uD(3) ⊕ uD(4) ⊕ U3 ⊕ U4.

This ends the analysis on how inversion is performed for key 26.

Overall our computation above could be very shortly written as the following
sequence of events [compact notation]:

0 16 12 P27 28 Z2 8 P13 24 Z3 32 Z4 4 Z1 20 P20 36

In general this “compact notation” solution sequence is not unique: the order
of some but not all events can be altered]. For example another possible solution
is:

0 P27 28 12 P13 16 Z2 8 24 Z3 32 Z4 4 Z1 20 P20 36

This sequence of events will be similar for other keys in KT1 class. We give
the general theorem below.
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C.10 A Proof The φ is Bijective for All KT1 Keys
This proof was also developed together with our student Maria-Bristena Oprisanu.
She also has provided the figures to illustrate it, as well as developed a software
solution for showing in which order the inversion can be performed for different
actual keys, and for checking that such solutions are correct.

For better readability we reproduce here the Fig. 5.7, we recall the compact
description of the φ function in Section 7.1.

φ
(
sm+1,1, si,2, f ; um,I1 , um,I2 , um,I3 , um,I4

)
=(

um,I2 ; um,I3 ; um,I4 ; D(sm+1,1; um,I1)⊕T
(
f, sm+1,2, P(um,I1−4)

) )

Fig. 3.29. T-310 for the KT1 keys as on Fig. 5.7.

Now we recall how all this translates into a set of multivariate equations
when D(1) = 0, cf. Section 9.6 or Section C.8. We will number these equations
(1-9).

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕uP (27) (1)

U2 ⊕ uD(2) = U3 ⊕ uD(3) ⊕Z4(uP (21−26)) (2)

U3 ⊕ uD(3) = U4 ⊕ uD(4) ⊕uP (20) (3)

U4 ⊕ uD(4) = U5 ⊕ uD(5) ⊕Z3(uP (14−19))⊕ s2 (4)

U5 ⊕ uD(5) = U6 ⊕ uD(6) ⊕uP (13) (5)

U6 ⊕ uD(6) = U7 ⊕ uD(7) ⊕Z2(uP (7−12)) (6)

U7 ⊕ uD(7) = U8 ⊕ uD(8) ⊕uP (6) (7)

U8 ⊕ uD(8) = U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5)) (8)

U9 ⊕ uD(9) = f (9)

We have the following result:
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Theorem C.10.1 (KT1 Invertibility Theorem). For every key in the class
KT1, as defined in Appendix B and for every 3 bits s1, s2, f the round function
φ is bijective and given the 36 outputs, the internal bits and the 9 input bits of
the form 4 · k which are the only bits which are modified, can be computed in
the order defined by the following sequence (written in a compact notation):

0 D1 P27 D9 D2 D7 P13 Z2 D6 D5 Z3 D4 Z4 D3 Z1 D8 P20

Proof: We need to recover 9 bits which are of type u4k. For the class KT1, cf.
Appendix B, it is easy to see that inside these u4k we have 8 which are of type
uD(i) and one which is always uP (20). All the remaining 27 bits are known from
the start, cf. Fig. 3.29 above. Thus we only need to show how to compute uD(1−9)
and then uP (20) given the U1−9.

D1 We use the notation D1 in our compact notation to say that we know from
the start that uD(1) = s1.

P27 We have P (27) 6= 0 mod 4 for the KT1 keys, cf. App. B, therefore we know
uP (27).

D2 The equation (1) can be used to compute uD(2) = U1 ⊕ s1 ⊕ U2 ⊕ uP (27).
D7 Then we use the fact that P (6) = D(8) in KT1 keys, cf. App. B. Then

equation (7) becomes U7⊕uD(7) = U8 and we can compute uD(7) = U7⊕U8.
P13 We observe that for all KT1 keys P (13) = D(7), cf. App. B.
D9 From equation (9) we get: uD(9) = U9 ⊕ f .

Fig. 3.30. A method for inverting φ which works for ANY key of type KT1.

Z2 Now we are going to show that we know all the inputs of Z2, which are
uP (7−12), which is not quite obvious. At this moment we have already ob-
tained 4 bits of the 10 planned, and there are only SIX bits of type u4∗k which
remain unknown. These are uD(3−6), uD(8) and uP (20). Now D(8) = P (6) cf.
App. B.
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In order to show that Z2(uP (7−12)) can be computed we need to show that:
{D(3 − 6), P (6), P (20)} ∩ {P (7 − 12)} = ∅. Moreover knowing that P is
injective, we can exclude 6,20 and we just need to show that: {D(3− 6)} ∩
{P (7− 12)} = ∅. Moreover, {D(3− 6)} only contains multiples of 4 and we
have P (7) = 5 and P (9) = 9 due to the W conditions in App. B. It remains
to show that:

{D(3− 6)} ∩ {P (8), P (10− 12)} = ∅
Now also following App. B, we have D(3) ∈ {P (1), P (2), P (4), P (5)} and P
is injective, so we can exclude D(3) and it remains to show that:

{D(4− 6)} ∩ {P (8), P (10− 12)} = ∅
which is exactly the last KT1 condition in Appendix B. This ends the proof
that Z2 is known.

D6 Now we compute D6 using equation (6): uD(6) = U6⊕U7⊕uD(7)⊕Z2(uP (7−12)).
D5 Then after D6 we use equation (5) to compute uD(5) as:

uD(5) = U5 ⊕ uD(6) ⊕ U6 ⊕ uP (13)

Z3 The inputs of Z3 are Z3(uP (14−19)).
At this moment there are only FOUR bits of type u4∗k which remain un-
known. These are uD(3−4), uD(8) and uP (20). Discarding two, P (20), P (6) due
to injectivity of P as before, we need to show that:
It remains to show that:

{D(3− 4)} ∩ {P (14− 19)} = ∅.
We have P (15) = 21 and P (18) = 25 due to the W conditions. and according
to the penultimate condition in App. B, D(4) can be excluded because it
says precisely that D(4) /∈ {P (14), P (16), P (17), P (19)} and P (15) and
P (18) were already excluded as not being multiples of 4. It remains to show
that:

D(3) /∈ {P (14), P (16), P (17), P (19)},
which is insured by the injectivity of P and condition pre-penultimate con-
dition in App. B, which says that D(3) ∈ {P (1), P (2), P (4), P (5)}.

D4 Now that the D5 and Z3 steps are done, we use equation (4) to compute
uD(4) as:

uD(4) = U4 ⊕ U5 ⊕ uD(5) ⊕ Z3(uP (14−19))⊕ s2.

Z4 The next step is to compute Z4(uP (21−26)). Can this intersect with any of the
three remaining unknowns uD(3), uD(8), uP (20)? The intersection is empty as
D(8) = P (6) and D(3) ∈ {P (1), P (2), P (4), P (5)} and P injective makes
that none of these can intersect with P (21− 26).

D3 From Z4 and uD(2) we compute uD(3) using equation (2). We obtain uD(2) =
U2 ⊕ U3 ⊕ uD(3) ⊕ Z4(uP (21−26)).

Z1 This will enable the computation of Z1(s2, uP (1−5)). Can this intersect with
any of remaining unknowns uD(8), uP (20)? Again no, because D(8) = P (6)
and P is injective.
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D8 From Z1 we can deduce uD(8) using equation (8) and we have: uD(8) =
U8 ⊕ f ⊕ Z1(s2, uP (1−5)).

P20 The last unknown is determined using equation (2): uP (20) = uD(3)⊕uD(4)⊕
U3 ⊕ U4.

This ends the proof that φ is bijective for any KT1 type key which is also
a security proof against all sorts of attacks with “Vanishing Differentials” such
as described in Section C.4, and also against all sort of correlation attacks, as
described in Sections 18 and 20.

C.11 Post-Scriptum to Our Proof - Order and Structural Properties
with KT1 Keys

In our proof we have the following order of computing bits:

0 D1 P27 D9 D2 D7 P13 Z2 D6 D5 Z3 D4 Z4 D3 Z1 D8 P20

which ordering is a strong structural property of the KT1 keys. There is another
“ordering” structural property for all KT1 keys which is even stronger. More
precisely, we observe that certain conditions in definition of KT1 which involve
the permutation j1−8 imply another type a linear order for certain bits inside
the Feistel cipher:

There exist {j1, j2, . . . , j7, j8} a permutation of {2, 3, . . . , 9} which
defines D(i) for every i ∈ {2, 3, . . . , 9} as follows:
D(j1) = 4, D(j2) = 4j1, D(j3) = 4j2, . . . , D(j8) = 4j7

P (20) = 4j8 (which value is not any of the D(i)).

This property is also further studied in Appendix B.1.

Fig. 3.31. A cascade of shift registers in an intermediate design which was neither SKS
V/1 not T-310 cipher [60].

Fig. 3.32. A view of one round of T-310 encryption in the KT1 case.



120 N. T. Courtois et. al., eprint.iacr.org/2017/440/ May 29, 2018

It seems that these conditions are NOT at all required in our proof above and it
is not clear if these conditions are really important for the security of T-310. In
fact we are dealing here with a total ordering which can be modified to be cyclic
[the existence of a permutation with 1 single cycle, see Thm. B.1.1 page 106].
This cycle seems to exist for reasons which are related to the history of T-310
which was built by modifying the earlier SKS V/1 cipher, see Section F.

C.12 Our KT1 Proofs vs. Correlation Vulnerabilities

In contrast the conditions P (6) = D(8) and P (13) = D(7) are clearly somewhat
needed or at least are used in the proof ot Thm. C.10.1, cf. also Fig. 2.24.

These two conditions are EXTREMELY important, see Section 22.6 to see
that there is devastating ciphertext-only attack if just one of these is not satisfied.
More precisely in Section 22.6 we see that different conditions of type P (5) =
D(8) or P (6) = D(7) lead to very strong correlations.

C.13 On Correlation Vulnerability of KT1 Keys

Both types of properties studied above open avenues for correlation attacks.
First, if we look at the structure of Fig. 3.32 and related Thm. B.1.1 we see that
even though S1 will be masked by one state bit at one step, this masking should
be undone later by XOR with another state bit which could be correlated (cf.
Table 20 for actual examples when this happens).

The same remark applies to all the conditions of type P (6) = D(8) see
Fig. 2.24 page 105 which could potentially be involved in correlation attacks
as discussed above and with specific examples found in Section 22.6 where for
example we discover for example that either P (5) = D(8) or P (6) = D(7) is in
fact potentially much worse than P (6) = D(8) in KT1 keys. Interestingly, KT1
excludes some of these weaker cases of Section 22.6.

C.14 Some Basic Results on KT1 Keys

Our student Matteo Scarlata has proven the following result:

Theorem C.14.1 (KT1 Impossibility Result). For every KT1 key we have
D(2) 6= 8. Moreover, for every z > 1 we have D(z) 6= 4z.

Proof: Following the definition is Section B there exist {j1, j2, . . . , j7, j8} a per-
mutation of {2, 3, . . . , 9} which defines D(i) for every i ∈ {2, 3, . . . , 9} as follows:

D(j1) = 4, D(j2) = 4j1, D(j3) = 4j2, . . . , D(j8) = 4j7

Now if D(2) = 8 then ∃k ∈ {2, . . . 8} such that D(jk) = 4jk−1 with jk = 2
and 4jk−1 = 8. Thus jk = jk−1 which contradicts the assumption that j is
a permutation. More generally if D(z) 6= 4z), z > 1 then ∃k ∈ {2, . . . 8} such
that D(jk) = 4jk−1 with jk = z and 4jk−1 = 4z. Thus jk = z = jk−1 which
contradicts the assumption that j is a permutation.

More we have the following result:
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Fact C.14.2 (KT1 Exclusion Rules). We cannot have D(2) = 4k+ 1 unless
it is 13 or 17. Overall there are 168=8*21 possible values for pairs (D(2), P (27)),
where we can have any combination of 8 case D(2) = 4k and D(2) 6= {0, 8}, and
P (27) can take any of 21 permitted values between 1 and 36, which are defined
by excluding nine multiples of 4 and six values in set W = {5, 9, 21, 25, 29, 33}.
Proof: We have D(2) = 8 not possible due to Thm. C.14.1 and we also recall
that KT1 specifies P (27) 6= 0 mod 4, cf. Section B. It remains to see why six
{4k + 1} values 5,9,21,25,29,33 are forbidden, even though 1, 13 and 17 are
actually allowed. This is because P is injective and all these 6 values are already
taken due to P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25, P (24) =
29, cf. Section B. Computer simulations show that all the 168 cases do happen
for actual valid KT1 keys.
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D A Study of KT2 Keys

D.1 Definition of KT2 Keys

D and P are injective

P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25, P (24) = 29

Let W = {5, 9, 21, 25, 29, 33}
∀1≥i≥9 D(i) /∈W

α /∈W
Let T = ({0, 1, . . . , 12}\W ) ∩ ({P (1), P (2), . . . , P (24)} ∪ {D(4), D(5), . . . , D(9)} ∪ {α})

Let U = ({13, . . . , 36}\W ) ∩ ({P (26), P (27)} ∪ {D(1), D(2), D(3)})
|T\{P (25)}|+ |U\{P (25)}| ≤ 12

A = {D(1), D(2), D(3), D(4), D(5), D(6), D(7), D(8), D(9)} ∪ {P (6), P (13), P (20), P (27)}
A1 = {D(1), D(2)} ∪ {P (27)}
A2 = {D(3), D(4)} ∪ {P (20)}
A3 = {D(5), D(6)} ∪ {P (13)}
A4 = {D(7), D(8)} ∪ {P (6)}

∀(i, j) ∈ {1, . . . , 27} × {1, . . . , 9} : Pi 6= Dj

∃j1 ∈ {1, . . . , 7} : Dj1 = 0

{D(8), D(9)} ⊂ {4, 8, . . . , 36} ⊂ A
∀(i, j) ∈ 1, 27× 1, 9 : Pi 6= Dj

∃j1 ∈ 1, 7 : Dj1 = 0

{D8, D9} ⊂ {4, 8, . . . , 36} ⊂ A
∃(j2, j3) ∈ ({j ∈ 1, 4|Dj1 6∈ Aj})2 ∧

∃(j4, j5) ∈ (1, 4 \ {j1, 2j2 − 1, 2j2})× (5, 8 \ {j1, 2j2 − 1, 2j2}) ∧
∃j6 ∈ 1, 9 \ {j1, 2j2 − 1, 2j2, j4, j5} :

j2 6= j3 ∧ {4j4, 4j5} ⊂ Aj2 ∧
Aj2 ∩ (4j1 − 3, 4j1 ∪ 4j6 − 3, 4j6) 6= ∅ ∧

{8j2 − 5, 8j2} ⊂ Aj3 ∧Aj3 ∩ (4j1 − 3, 4j1 ∪ 4j6 − 3, 4j6) 6= ∅;
{D(9)} \ (33, 36 ∪ {0}) 6= ∅

{D(8), D(9), P (1), P (2), . . . , P (5)} \ (29, 32 ∪ {0}) 6= ∅
{D(7), D(8), P (1), P (2), . . . , P (6)} \ (25, 32 ∪ {0}) 6= ∅

{D(7), D(9), P (1), P (2), . . . , P (6)} \ (25, 28 ∪ 33, 36 ∪ {0}) 6= ∅
{D(6), D(7), D(8), D(9), P (1), P (2), . . . , P (12)} \ (21, 36 ∪ {0}) 6= ∅

{D(5), D(7), D(8), D(9), P (1), P (2), . . . , P (13)} \ (17, 20 ∪ 25, 36 ∪ {0}) 6= ∅
{D(7), D(8), D(9), P (1), P (2), . . . , P (6)} \ (25, 36 ∪ {0}) 6= ∅

{D(5), D(6), D(8), D(9), P (1), P (2), . . . , P (13)} \ (17, 24 ∪ 29, 36 ∪ {0}) 6= ∅
{D(5), D(6), D(7), D(9), P (1), P (2), . . . , P (13)} \ (17, 28 ∪ 33, 36 ∪ {0}) 6= ∅

{D(5), D(6), D(7), D(8), P (1), P (2), . . . , P (13)} \ (17, 32 ∪ {0}) 6= ∅
{D(5), D(6), D(7), D(8), D(9), P (1), P (2), . . . , P (13)} \ (17, 36 ∪ {0}) 6= ∅

{D(4), D(5), . . . , D(9), P (1), P (2), . . . , P (19)} \ (13, 36 ∪ {0}) 6= ∅
{D(3), D(4), . . . , D(9), P (1), P (2), . . . , P (20)} \ (9, 36 ∪ {0}) 6= ∅

plus the “Matrix rank = 9 condition” M9 defined in Section D.4 below.
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D.2 Our Approach to KT2 Keys

The description of KT2 keys in [99] is excessively complex, cf. pages 59-60,114-
115 and 117 in [99] or Appendix D.1 above. We are not sure why all these
conditions have been imposed, possibly to obtain many very strong and exact
mathematical properties and results such as Thm. 11.2.1 page 38 and many other
such results which can be found in [99]. We don’t believe that such exact results
are actually needed for a cipher to be secure, and potentially they degrade the
entropy of the long-term key down to relatively low levels, cf. Section 8.6.

D.3 A New Class of Keys KT2b

In this paper we define a new class of keys called KT2b which will contain only
a tiny subset of the conditions of KT2. The selection was made as follows: we
kept some particularly simple ones which occur for many other KT1 and KT2
keys, we also kept all those which are in some way “hard-coded” in Fig. 9.16 as
this figure comes from the original specification of T-310 cipher in [99] and also
those which avoid some particularly bizarre keys from [54] such as key 17 which
has P (25) = P (26). Then added few more conditions which are ONLY such as
we judged necessary in order to be able to prove that φ will be bijective. We are
not aware of any attack or security problem with any of the KT2b keys.

(P,D, α) ∈ KT2b⇔ all of the following hold:

D and P are injective
P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25, P (24) = 29
Let W = {5, 9, 21, 25, 29, 33}
∀1≥i≥9 D(i) /∈W
α /∈W
A = {D(1− 9)} ∪ {P (6), P (13), P (20), P (27)}
∀(i, j) ∈ {1, . . . , 27} × {1, . . . , 9} : Pi 6= Dj

∃j1 ∈ {1, . . . , 7} : Dj1 = 0
{D(8), D(9)} ⊂ {4, 8, . . . , 36} ⊂ A
the “Matrix rank = 9 condition” M9 defined in Section D.4 below.

Lemma D.3.1 (KT2=⇒ KT2b). Every key in the class KT2 satisfies all the
conditions of class KT2b which are simply a subset of conditions of KT2, cf.
Section D.1 or page 60 in [99].

D.4 On M9 Condition and Matrix B

Here we provide a statement of the “Matrix rank = 9 condition” which is defined
as:

M9 :


The concrete values D(i)/P (j) inside the formulas D(s1,uI1)⊕T(f,s2,P(uI1−4))
which define the 9 “fresh” outputs I4 = {1, 5, . . . , 33} of φ appear at such places
that all the 9 “fresh” outputs I4 of φ are sums of non-linear parts of type Z(.),
plus affine parts which involve various variables in uI2−4 , plus an invertible
linear transformation B of rank 9 with the remaining 9 inputs of I1 = {4, 8, . . . , 36}.



124 N. T. Courtois et. al., eprint.iacr.org/2017/440/ May 29, 2018

In addition we are going to show how to compute the coefficients of this
matrix we will call B following70 page 60 in [99]. We recall that we have in the
general case the following relations which are a standard compact way to write
φ in order.

u0
def
= s1

U9 = uD(9) ⊕ f
U8 = uD(8) ⊕ U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5))

U7 = uD(7) ⊕ U8 ⊕ uD(8) ⊕uP (6)

U6 = uD(6) ⊕ U7 ⊕ uD(7) ⊕Z2(uP (7−12))

U5 = uD(5) ⊕ U6 ⊕ uD(6) ⊕uP (13)

U4 = uD(4) ⊕ U5 ⊕ uD(5) ⊕Z3(uP (14−19))⊕ s2
U3 = uD(3) ⊕ U4 ⊕ uD(4) ⊕uP (20)

U2 = uD(2) ⊕ U3 ⊕ uD(3) ⊕Z4(uP (21−26))

U1 = uD(1) ⊕ U2 ⊕ uD(2) ⊕uP (27)

We are now going to show that these equations have a certain property for
any KT2b or/and any KT2 key such that some parts can be separated because
they do not contain any numbers of type 4k, and what remains will give the
coefficients of B. More precisely we have:

Lemma D.4.1 (KT2b Separation Lemma). For every key which satisfies
the conditions in the class KT2b and ignoring the last M9 condition, the 4 non-
linear functions Z() inside the round function φ depend only on variables of I2−4

which are not modified by φ, i.e. the Z1−4() do not depend on any of the input
variables of type 4k in I1 ∪ {0}.
Proof: We recall that for every KT2b key we have:

{4, 8, . . . , 32, 36} ⊂ {D(1− 9);P (6), P (13), P (20), P (27)}
and all outputs of D and P are disjoint by definition in KT2b. This implies that
the inputs of 4 non-linear functions Z() cannot contain any of the {4, 8, . . . , 32, 36}.
Moreover in KT2b one of D(1− 7) will be 0 (which is where uD(i) is replaced by
s1 in the definition of φ). Accordingly, u0 = s1 cannot be any of the inputs of
the Z() either, which are all either of the form uP (i) or s2. This ends the proof
for KT2b, and also for KT2, as KT2=⇒ KT2b, cf. Lemma D.3.1

D.5 Computation of the Matrix B

In order to write the matrix B for any KT2b or/and any KT2 key we just need
to discard all the Z() and all the numbers not in {4, 8, . . . , 32, 36} in and we will
a obtain a square 9× 9 matrix B = (bij).

We then have (the arithmetic is done mode 2):

70 Our matrix B will be an equivalent obtained by a linear transformation on rows
(which preserves the rank and invertibility) of the matrix B as defined in page 60 in
[99], which matrix it would be more complex to write due to the fact that the Ti are
defined a sort of recursive straight-line program cf. Section 9 and decided to keep it
that way which is very short and avoids very long summations.
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U1

U2

U3

U4

U5

U6

U7

U8

U9


= B ·



u4
u8
u12
u16
u20
u24
u28
u32
u36


+ C where C

def
=



f
Z1(s2, uP (1−5))
uP (6) ⊕ . . .

Z2(uP (7−12))⊕ . . .
uP (13) ⊕ . . .

Z3(uP (14−19))⊕ s2 ⊕ . . .
uP (20) ⊕ . . .

Z4(uP (21−26))⊕ . . .
uP (27) ⊕ . . .


Here ⊕ . . . denotes some additional terms and will not occur in the first two
lines; they will only occur if some of the uD() in the equations in Section D.4
above have terms which are not in {4, 8, . . . , 36}, in which case they need to be
added to C, with a replacement of u0 by s1 in one case.

To make it more concrete, in Section E.4 page 126 we show a concrete (and
a bit special) example of how this matrix looks like for one particular key.

D.6 On Invertibility of KT2 Keys

We have the following result:

Theorem D.6.1 (KT2 and KT2b Invertibility Theorem). For every key
in the class KT2b, and therefore also for every KT2 key, and for every 3 bits
s1, s2, f the round function φ is bijective, and given the 36 outputs, the 9 input
bits of the form 4k, can be computed by solving a linear system of rank 9.

Proof: Again due to KT2 Separation Lemma D.4.1, we know all the values in
C and matrix B is assumed to be invertible. Therefore we can do the inversion
simply as:



u4
u8
u12
u16
u20
u24
u28
u32
u36


= B−1·



U1

U2

U3

U4

U5

U6

U7

U8

U9


+B−1·C, where C

def
=



f
Z1(s2, uP (1−5))
uP (6) ⊕ . . .

Z2(uP (7−12))⊕ . . .
uP (13) ⊕ . . .

Z3(uP (14−19))⊕ s2 ⊕ . . .
uP (20) ⊕ . . .

Z4(uP (21−26))⊕ . . .
uP (27) ⊕ . . .


.

Remark: K2 vs. KT1: In KT1 we had a very different situation, many inputs to
Z() were not initially known. Some concrete examples of this are bits 24,32,8,4,16
in Fig. 3.28 and our proof that these can be determined in the general case was
far from being trivial and required to use many specific conditions mandated for
the KT1 keys, cf. Thm. C.10.1. Here for KT2 the proof is substantially simpler
overall and uses extremely few of the conditions mandated for KT2.
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E On Non-Standard Long-Term Keys

E.1 KT2 and Similar Keys vs. Chosen Long-Term Key Attacks

The known sources [99, 54] report only one KT2 key which is number 15 from
1979. In order to better understand the properties of these keys we are going to
show some special keys.

E.2 Some Examples Of Abnormal Keys

While trying to mathematically prove that KT2 are bijective, cf. Thm D.6.1
above, we have generated several examples of keys which satisfy all conditions
of KT2 except maybe the “Matrix rank = 9 condition” M9 of Section D.4.

Table 21. Examples of keys which would be of type KT2 except for the matrix rank
condition M9.

LZS nb D P rank of B

206 4,0,32,2,35,17,12,20,24 15,13,33,18,34,8,5,6,9,30,22,14,16,3,21,31,7,25,26,28,27,11,23,29,19,1,36 6
207 0,24,20,8,16,2,11,32,4 7,6,33,26,17,13,5,19,9,10,27,18,12,30,21,15,34,25,23,36,31,14,22,29,3,1,28 7
407 0,24,20,8,16,2,11,32,4 17,7,33,6,10,13,5,27,9,26,22,18,12,30,21,15,34,25,23,36,31,14,19,29,3,1,28 7
208 17,0,2,32,35,4,12,20,24 13,15,33,10,18,8,5,30,9,6,3,14,16,22,21,31,7,25,26,28,27,11,23,29,19,1,36 8

15 0,4,17,12,35,32,2,24,20 15,13,33,34,6,8,5,3,9,18,14,22,28,30,21,31,7,25,26,16,27,11,23,29,19,1,36 9

We call this sort of keys “Rank-Deficient” KT2 keys, cf. Definition 19.2.1
page 62. Additional similar keys which satisfy less conditions can be found in
Table 7 page 57.

E.3 The Anomalous Long-Term Key 207

We study the key 207 in more detail which is as follows:

D=0,24,20,8,16,2,11,32,4 P=7,6,33,

26,17,13,5,19,9,10,27,18,12,30,21,15,34,25,23,36,31,14,22,29,3,1,28

this key 207 has some71 interesting properties. We recall that this key satisfies
all the conditions for KT2 except the very last “Matrix rank = 9 condition”
M9. For this key the round function φ is not bijective (!).

In what follows we are going to show what exactly is the problem with this
long-term key. We recall that KT2 mandates the matrix B to be invertible. This
is precisely is the only condition violated in our key 207, which will be easily seen
if we re-write our equations in such a way which makes this matrix B appear
explicitly.

E.4 Example of Computation of Matrix B for Key 207

We recall our set of multivariate equations cf. Section 9.6 or Section C.8. Let
zi = um+1,i in order to distinguish the inputs um,i and the outputs um+1,i

denoted simply by ui in our compact notation.

71 One particularity of this key is that it has D : IF9+2
2 → IF9

2, cf. Section 5.6.
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z1 ⊕ z5 = u24 ⊕ s1 ⊕ uP (27)

z5 ⊕ z9 = u24 ⊕ u20 ⊕ Z4(uP (21−26))

z9 ⊕ z13 = u36 ⊕ u8 ⊕ u20 ⊕ 0

z13 ⊕ z17 = u8 ⊕ u16 ⊕ s2 ⊕ Z3(uP (14−19))

z17 ⊕ z21 = u16 ⊕ u12 ⊕ uD(6)

z21 ⊕ z25 = uD(6) ⊕ uD(7) ⊕ Z2(uP (7−12))

z25 ⊕ z29 = u32 ⊕ uD(7) ⊕ uP (6)

z33 ⊕ z29 = u32 ⊕ u4 ⊕ Z1(s2, uP (1−5))

z33 = uD(9) ⊕ f
Here it is trivial to observe that the rank of B is at most 7: we have two

empty lines in B.

E.5 A Collision For Key 207

We present one example of a collision with this key where most bits are at 0,
and only very few bits are at 1, which makes this example easy to study and
easy to verify. We have found the following collision:

U (b) = φ(0, 0, 0;U (a)) = φ(0, 0, 0;U (a′))

which is also shown in Fig. 5.33 below. Here we define U (a) as all bits being
0 except two uD(5) = u16 = 1 and uP (13) = u12 = 1. Then let U (a′) is such
that all bits are 0 except uD(4) = u8 = 1 and uP (20) = u36 = 1. Finally let

U (b) = φ(0, 0, 0;U (a)). Here all bits are at 0 except four which are
z1 = 1

z5 = 1

z25 = 1

z29 = 1

One way to see how this collision can occur, is to re-write the 9 equations of
Section E.4 in such a way that bits which will be at 1 for EITHER a or a′ case
are on the left hand side, and the bits which are zero in both cases on the right
hand side. We have 1 = Z(0, 0, 0, 0, 0, 0) in all four instances of our function Z().

z1 ⊕ z5 = s1 ⊕ uD(2) ⊕ uP (27)

z5 ⊕ Z4(uP (21−26)) = uD(2) ⊕ z9 ⊕ uD(3)

u36 ⊕ u8 = z9 ⊕ uD(3) ⊕ z13
u8 ⊕ u16 ⊕ Z3(uP (14−19)) = z13 ⊕ z17 ⊕ s2

u16 ⊕ u12 = z17 ⊕ z21 ⊕ uD(6)

z25 ⊕ Z2(uP (7−12)) = z21 ⊕ uD(6) ⊕ uD(7)

z25 ⊕ z29 = uD(7) ⊕ uD(8) ⊕ uP (6)

z29 ⊕ Z1(s2, uP (1−5)) = z33 ⊕ uD(9) ⊕ uD(8)

0 = z33 ⊕ uD(9) ⊕ f
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In this form we see immediately that the both U (a) and U (a′) have an even
number of active bits on the left had side and therefore our collision is correct!
We can also view this collision on the figure below.

has the same output (U1, U2, . . . , U9) = (z33, z29, . . . , z5, z1) = (0, 1, 1, 0, 0, 0, 0, 1, 1) as:

Fig. 5.33. A collision for φ with key 207: active wires at 1 are marked with color dots.

E.6 An Example of Long-Term Key Which is Neither KT1 Nor
KT2

In this section we demonstrate that the set of 10 conditions for the long-term keys
specified in 256 in [95] is not quite correct and not compliant with the original
document [99]. More precisely the author of [95] has forgotten to transcribe some
additional conditions of Section 4.1 in Appendix 1 of [99] such as P (3) = 33 and
few other conditions. In order to show that the spec of [95] is indeed incomplete
we have also created (by trial and error) our own example of long-term key which
satisfies 100 % of the criteria of page 256 in [95].

935: D=0,24,32,4,8,28,16,20,12 P=12,32,8,
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14,4,20,21,26,30,24,17,25,16,1,27,23,18,5,13,36,2,34,15,28,10,6,3

However it is easy to see that P (3) = 8 6= 33. This long-term key does not belong
to class KT1. Interestingly, it appears that for every key/IV bits we obtain a
bijection φ for a round function. At this moment it not clear if this key which
we will call key 935, is weak in any way. The lecture of comments which appear
in [54] just after key 33 suggests that this key may be weak for some cyclic
properties such as repeated word test, which properties are however not clearly
specified in [54].

E.7 Another Non-Standard Key

Here is another example of non-standard bijective key which is different than
other keys and without trying to make it weak in any way. It has been generated
to see if the complex conditions specified by the designers of T-310 cf. Appendix
B and D.1 are necessary to obtain a secure cipher. Possibly most of these con-
ditions are NOT needed. This key satisfies the first 4 conditions of KT2 keys of
Section D.1 and we call such keys KT2f.

731: P=3,26,33,31,32,4,5,34,9,18,14,28,27,7,21,2,30,25,

35,8,22,20,36,29,10,15,17 D=28,0,16,12,36,32,24,4,20

E.8 The Special Key 16 and SKS Cipher

This part was moved to later Appendix F.2.
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F SKS V/1 Cipher: A Predecessor of T-310

Numerous sources indicate that T-310 is a descendant of an earlier cipher ma-
chine known as SKS V/1, see for example pages 10,11,22,41,47-48,120,122 in [99]
and [57]. Both belong to a larger family of ciphers known as ALPHA, cf. [99]. In
this section we summarize the main characteristics of SKS as opposed to T-310
following information obtained form Jörg Drobick, and from [57, 58, 99].

1. SKS V/1 is a sort of Feistel cipher with 3 branches cf. Fig 6.34 and later
Fig 6.37 page operating on 27 = 3 · 9 bits, while T-310 has 4 branches and
operates on 36 = 4 · 9 bits, cf. Fig. 5.7 page 18.

Fig. 6.34. Outline of SKS cipher with 3 branches and 27 bit block size.

2. In both cases 9 new bits are created in one step, and the overall cipher
operation is extremely similar, cf. Fig. 6.36. Both designs have exactly the
same T () component which can be defined as T : {0, 1}3×{0, 1}27 → {0, 1}9
cf. Section 9.

3. The key S1, S2 in SKS has 208 = 2·104 bits, and in T-310 it has 240 = 2·120
bits (earlier version had 208 cf. [60]).

4. SKS also has a variable initial constant U0 which is part of the long-term
key in SKS and which is fixed once for all in T-310. It appears that U0 has
7 inputs m1−7 and 27 outputs r1−27, and that input m1 is used in case of
reset, cf. page 39 in [102].

5. SKS also has P : {1− 28} → {1− 27} instead of P : {1− 27} → {1− 36} in
T-310.
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6. SKS long-term keys have no D, instead it has a permutation on 9 or 10 wires
called sometimes Q and sometimes R−1.

7. More precisely, in all generality they operate on 10 wires Fig. 6.36 and in [57]
and inputs would be called TR1-TR9, cf. page 12 or 100 in [60] and outputs
are T1-9 which is NOT the same as later specifications of T-310 where T1-9
are not permuted by Q.

8. Both algorithms belong to a general class called ALPHA, and it appears that
early versions of SKS V/1 from 1973-75 were known under another name of
OPERATION, cf. for example the 1973 document [58] where Q and R had
10 wires.

9. Later T-310 also has something quite similar: see Thm. B.1.1 page 106.
10. Moreover there exists an early (not final) version of T-310 cipher from 1976

which is very much like SKS: it has 208 bit key it has 2 permutations P and
Q on 27 bits and 9 bits respectively, cf. [60]. In this early version of T-310,
is neither exactly SKS V/1 nor the actual T-310, we would have R9=1 and
we have a permutation on 9 wires cf. Fig. 6.35 and [60].

Fig. 6.35. An early original drawing of the encryption unit from [60] which is neither
exactly SKS V/1 nor the actual T-310, but a sort of intermediate version.

11. The aperiodic sequence fi is generated differently, the LFSR is a maximum-
period LFSR with 52 bits with equation fi = fi−52 ⊕ fi−49 instead of 61
in T-310. It is initialized to an initial value (IV) using 168 random bits
obtained from a physical random number generator. Then at each clock i
[which represents one round of the SKS block cipher] the fi are expanded to
104 bits through duplication of certain bits as follows:

FUi,k = fi+k+52ν
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at step i with k = 1 . . . 104 and ν = 0 when k = 1..51, then ν = 1 when
k = 52..103, finally ν = 2 for k = 104.

12. T-310 has a periodic key with period 120 which is different and relatively
prime to 127 which is the period for extracting internal keystream bits. SKS
has a stronger periodic structure: both the key bits repeat every 104 steps,
and the extraction of 1 bit from the state of the block cipher happens every
104 steps after the starting interval of 104p rounds, where p in an integer
known as “Startzeitpunkt”.

wi,k = Ψ(fi+kν∗52;S1k;S2k, U0, Ui; k − 1, P ;Q;Z1;Z2;Z3;Z4)

where Ψ corresponds to extracting bit P (28) from the cipher state.

13. The choice of α is replaced by the choice of P (28).

Fig. 6.36. An original drawing of the SKS encryption unit a.k.a. ”Komplizierungsein-
heit” or a “complication unit”, cf. [57].

14. SKS V/1 differs substantially from T-310 in handling the actual data/text
encryption. In SKS, plaintext is divided in blocks of 41 bits expanded with
6 parity bits using a linear Error Correcting Code, and encrypted with a
binary XOR with a keystream sequence Wi a.k.a. AR = “Additionsreihe”.
This is a lot simpler and also clearly weaker, than in T-310 which uses this
peculiar “double one-time pad” method cf. Section 16. We have:
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Wi = wi,104

These bits are used in blocks of 47 to encrypt data blocks with parity.
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F.1 Unorthodox Feistel Ciphers - Comparison of T-310 to the SKS
Cipher

In the previous Section 4.5 we wrote that there is no evidence that a simple
bijective permutation of wires D applied to I1 would ever be used in a real-life
cipher T-310 and nothing else. However in a more relaxed sense it was. If T-
310 is used with a special long-term key 16 it will behave like an earlier SKS
cipher, predecessor of T-310, see Appendix F and E.8. There are however two
differences: SKS is a Feistel with 3, not 4 branches, and moreover SKS (already)
ignores one bit of I1 which is replaced by one bit of the key.

Fig. 6.37. SKS cipher is in every way similar to T-310 with KT1 keys except it has 3
branches and the state has 27 bits.

The fact the SKS systematically ignores one bit of I1 is extremely significant,
cf. Sections 5.2 and 5.4. As with T-310 a permutation is obtained due to careful
use of 9 bits of I1 in P , and would requires one to re-visit the bijectivity/security
proofs Appendix C or SKS would be prone to some potentially quite strong
ciphertext only attacks such as in Section 20.
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F.2 The Special Key 16 and SKS Cipher

The following non-standard key is described in [54] as a key number 16 for a
special version of T-310 cipher machine called T-310/51 SAGA instead of the
usual T-310/50 ARGON. We ignore what the exact difference between these
machines might be but in [54] we read that this key 16 is approved for both T-
310/50 for some sort of testing and was also used in 1984 for testing of T-310/51.

//Der Langzeitschl\"{u}ssel 16: (1979)

D=0,35,19,23,27,11,3,15,31 P=14,19,33,

18,23,15,5,6,9,2,34,1,30,11,21,3,22,25,17,7,32,10,27,29,26,35,13

Moreover in page 42 of [99] we read that this (apparently the same key 16)
is some sort of either mathematical or an exact functional equivalent of a key
for an earlier encryption machine called SKS72.

For this LZS number 16, the state has in fact only 27 distinct active bits
instead of 36, and the other bits such as 4, 8 and many other are simply not
used, see Table 1 page 40. At the same time it still has the basic 6 properties 73

regarding the set W of Section B such as P (3) = 33. This leads to the following
situation which we depict in Fig. 6.38 below.

Fig. 6.38. T-310 round function based on page 119 in [99] with modifications due to the
fact that most state bits of type 4k are no longer used except D(1)=0 and P(21)=32.
We mark with green numbers bits 32, or those in W , and those XORed to the outputs
T1− T9 respectively, cf. Section 7.5.

Remark. The bit 32 in T-310 implementation of this permutation is simply
there to represent the bit 31 which is used in a later cycle clock.

F.3 Special Key 16, SKS Cipher and KT0 Key Class

It is clear from [99] that SKS cipher is older than T-310 and clearly also sub-
stantially simpler. For this reason we will informally call this key a KT0 type.

72 SKS is also mentioned in other T-310 sources such as [54].
73 These can be traced to Section 4.1 in Appendix 1 of [99] and they hold for all of

KT1 keys, all of KT2 keys, and also for this key 16.
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On page 48 in [99] we read that:

The function ΦT : {0, 1}36 → {0, 1}36 represents a generalization of the
mapping ΦS : {0, 1}27 → {0, 1}27 in the sense that for each pair (P,R) ∈
SG(1−27)×SG(1−9) a pair (P ′, D) exists that satisfies the conditions of
the definition of the encryption algorithm T-310, while the corresponding
function ΦT on the 27 components u1, u2, u3, u5, u6, . . . u31, u33, u34, u35
of the 36-digit vector U = (u1, u2, . . . u36) realizes the mapping ΦS .

Here ΦS denotes the round function of the SKS V/1 encryption algorithm, cf
page 47 in [99], which is expected to be a bijection on 27 bits, cf. Section F
below.

F.4 A Sufficient Condition to Emulate SKS V/1

An interesting question is, what conditions should a long-term key satisfy to in
order emulate a SKS V/1 cipher. A quick comparison of our later Fig. 6.37 page
134 to earlier Fig. 5.7 page 18 and of Fig. 7.11 page 24 to Fig. 6.35 page 131 and
Fig. 6.36 page 132 suggest the following answer. The answer is that we need to
prevent P from using any bits from the 4th branch, and force D to use exactly
8 out of these bits, 1 being s1, and without repetitions as Q/R is expected to
be a bijection, and we need to make sure that first of these bits is s1 which is
denoted as 0 in D.

We obtain the following set of “very minimalist” conditions KS0 which need-
less to say, are all satisfied by key 16:

(P,D) ∈ KS0⇔ all of the following hold:
Let W ′ = {3, 7, 11, 15, 19, 23, 27, 31, 35}
D(1) = 0
∀2≥i≥9D(i) ∈W ′ (one is inevitably missing)
D is injective
at most 1 value P (.) should be a multiple of 4

As a bonus which we obtain “for free”, key 16 satisfies also a well-known KT1-
type property that ∀1≥i≥9 D(i) /∈ W where W = {5, 9, 21, 25, 29, 33} which is a
simple consequence of W ′ property in KS0 above.

In addition we also list some stronger properties which key 16 also satisfies,
but it is not clear if they are necessary for SKS V/1 to be secure, nor if these
extra properties would be in any way mandatory or required for the designers
of SKS V/1 cipher.

(P,D) ∈ KS1⇔ all of the following hold:

all conditions of KS0 hold
P is injective
P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25, P (24) = 29
There exist {j1, j2, . . . , j7, j8} a permutation of {2, 3, . . . , 9} which

defines D(i) for every i ∈ {2, 3, . . . , 9} as follows:
D(j1) = 3, D(j2) = 4j1 − 1, D(j3) = 4j2 − 1, . . . , D(j8) = 4j7 − 1

P (20) = 4j8 − 1 (note: this value is not any of the D(i))
Exactly one integer m = 4k + 3 is missing in Im(P ) and P (21) = m+ 1 is present
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For example for LZS-16 we have (j1, j2, . . . , j7, j8) = (7, 5, 3, 6, 4, 8, 9, 2).
It follows from these conditions that the intersection of P and D must have

7 elements: all the eight non-zero elements of D except one which is 31, which
is still present in a certain way in LZS-16: it replaced by 32 in P which means
that bit 31 is used by P one clock later.

Fig. 6.39. A cascade of shift registers in an intermediate design which was neither SKS
V/1 not T-310 cipher [60]. The key bit s1 enters the first register, then it propagates
in a specific order. This order is precisely what is specified by a permutation of wires
{2, 3, . . . , 9} which in different descriptions of SKS or T-310 emulating SKS, [99] will
be denoted by R−1, Q or j1−8.

F.5 Security of SKS/1

It is possible to see that the security of SKS depends very strongly on the value
of p: if p is small, the attacker will have access to keystream bits generated
with just the first 104 rounds and the cipher should be broken by a variety of
methods such as software algebraic attacks (cf. also Section 15) and also by slide
attacks similar as in T-310 yet substantially different than in current paper, cf.
for example Section 24 and Appendix G.

It is also possible that in the same way as in T-310, SKS V/1 will fall to very
powerful ciphertext-only attacks if the long-term keys are faulty or not chosen
carefully. For example in Section 20.3 we show one such attack in the case where
the long-term key is such that φ is not bijective.
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G An Advanced Birthday Paradox Sliding Key Recovery
Attack on T-310 with d = 1

The question is now HOW to break this block cipher knowing that 120s rounds
is a large number and just one condition on 36 bits is not sufficient to uniquely
determine a key on 240 bits. The answer is that we need to combine several
variants of the above attack and apply Thm. 25.2.1 several times.

Here is one basic way to do it:

1. We will use the case d = 1 and several different s ≥ 18 such that d = 1.
2. The attacker will try 25.5 different s values, of the form s = 18 + 127u with

any 1 ≤ u ≤ 25.5. For each s and for all possible IV we apply Thm. 25.2.1.
3. The attacker test all possible 261 − 1 IVs, to discover some 261−36 = 225

“good” IVs where he has u120s = u0 = 0xC5A13E396.
4. We expect that this set of 225 “good” IVs is random, and different for each
s.

5. The attacker will store many of these “good” IVs in a hash table, he stops if
he finds a collision on 61 bits: IV,IV’ are such that IV and IV ′ are shifted
by 120 rounds, exactly (NOT a multiple of 120 rounds). To achieve this, we
store in our hash table both IV and the IV shifted by 120 steps forward.

6. Memory required is about 261 bits.
7. By birthday paradox, we need just about 230.5 cases.
8. We see that if only we try 25.5 values s and all 261 IVs, some 230.5 of which

will work, we should obtain a desired collision.
9. The data complexity is about 4 · 261+5.5 ≈ 267.5 chosen IV chosen ciphertext

decryption queries with which are 25.5 ·127 ·120 ≈ 219.5 bytes each in length.
10. The time complexity is roughly about 4 · 261+5.5+7+7 ≈ 281 CPU clocks.

For example with large probability the attacker obtains the following type
of collision: u120s = u0 = 0xC5A13E396 for one IV , and u′120s′+0 = u′0 =
0xC5A13E396 for IV ′ shifted by 120 steps exactly which becomes “accidentally”
equal to IV by the birthday paradox.

We obtain a situation where u120 = u0 = 0xC5A13E396 for the the first IV .
We have obtained a P/C pair for 120 rounds exactly.

With roughly
√

8230.5 ≈ 233 times more attempts, we can obtain more than
one such colliding pairs for example 8 pairs. We expect that approximately 8
pairs will be needed in order to be able to recover the key by a SAT solver as in
Section 15. As long as this step takes less74 than

√
8 · 281 ≈ 282.5 CPU clocks,

this does NOT change the complexity of our attack.
Overall we see that we can recover the 240-bit key of T-310 with about√

8 · 267.5 ≈ 273 chosen IV chosen ciphertext decryption queries with messages
of less than 220 characters each. The time required is about 283 CPU clocks and
memory required is about 261 bits.

74 For example, in Table 1, Section 9, page 25 in [38], the time complexity is below 283

starting from 6 PC pairs and decreases with more P/C pairs. We expect a similar
result here and arguably 120 rounds of T-310 are the equivalent of 8 rounds of GOST
in terms of complexity and key usage.
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H Stream Ciphers, LFSRs and T-310

T-310 is also a stream cipher or a block cipher used in a mode which effectively
transforms a block cipher into a stream cipher. T-310 also has components which
are typically found only in stream ciphers, not in typical block ciphers. It in-
corporates an LFSR in the expansion of the IV which is the part which makes
this block cipher aperiodic which can be compared to other block ciphers where
regular periodic structure is a source of numerous attacks, e.g. GOST [38]. It is
also possible to view the matrix operation used in T-310 encryption process as
another (much smaller) LFSR which is clocked a variable number of steps.

Since Eurocrypt 2003 [27, 28, 35], many families of LFSR-based stream ci-
phers can be efficiently broken. Unhappily, compared to most traditional LFSR-
based stream ciphers the LFSRs are used in T310 in a very different way. One
is used to produce an aperiodic sequence which is public (derived from the IV),
and another as a secondary re-encryption process for data already potentially
strongly encrypted. Attacks on stream ciphers have been developed initially on
ciphers with “Linear Feedback” [27, 28] which comes from LFSRs. These attacks
were later improved/enhanced to tolerate a proportion of arbitrary non-linear
components, cf. [28] and Fig. 8.40 below. We reproduce this picture here to show
that it DOES apply to T-310.
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Fig. 8.40.M successive applications of a combiner with k inputs, m outputs and l bits
of memory, a general setting in stream cipher cryptanalysis, cf. Fig. 2. in [28]

There are two major ways to apply it to T-310. In both cases we assume that

the NON-LINEAR part of the state denoted a
(t−1)
0 , . . . , a

(t−1)
l−1 in Fig. 8.40 and

in [28], is now going to be a combination of the secret key and the 36-bit block
state. Therefore the internal state will now be 276 bits: 240 key bits bits sj,1−2
which will repeat every and 36 state bits uj,0−36. Now we can:

1. Either consider that each box as on Fig. 8.40 contains one iteration of φ and
the key is encoded on 240 bits and both halves are rotated by one position
modulo 210 when they exit the box to enter the next box, then we have
(k,m, l) = (1, 10

127∗13 , 240 + 36) where m = 10
127∗13 means that we only use a

small fraction of what is output.
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2. Or consider that each box as on Fig. 8.40 contains 120iterations of φ and
the key is on 240 bits and output identical to enter the next box, then we
have (k,m, l) = (120, 120∗10127∗13 , 240 + 36).

In both cases the inputs come from one or several LFSRs, a linear component,
exactly as in [28], which means that we can potentially apply the methods and
ideas of [28]. This however will encounter very substantial difficulties: the main
idea in [28] is that the more bits are output from such sub-system connected
to one or several LFSRs, the easier it becomes to break by an algebraic attack,
and attacks are particularly strong when m is large. Here we have m ≤ 1 which
makes it very difficult to hope that we can find I/O properties such as in [28]
which eliminate all the 266 bits which are hard to predict for the attacker.

Consequently, it is clear than T-310 is a lot more robust than any stream
cipher considered in [28] or it has a non-linear part of the state updated at each
clock which is particularly important. In T-310 even the primary “internal”
sequence of bits u127j,α to which the attacker has no direct access, is produced
by a highly non-linear component, which is also bijective, making it a block
cipher. Not by a relatively small variation of an LFSR-based stream cipher.
Overall we see little hope that any of the classical attacks on stream ciphers
could be applied to T-310.

H.1 More About LFSR-based Stream Ciphers and T-310

The question is about designing an LFSR-based stream cipher with a poten-
tially an extremely robust combiner/filter component, cf. Fig. 8.40 above and
[28]. Overall the analysis of [28] can potentially be applied, at least in theory.
The main point of [28], cf. Thm. 5.1 of page 7 in eprint version is that such a
combiner/filter system could have a sort of “secondary key” in the form of I/O
polynomial equations which the input bits [public in T-310 also for u0] and the
output bits which are those used for encryption in T-310, and which ELIMI-
NATES totally all the internal variables of the combiner/filter system, which
here would be all the intermediate states ut of the T-310 block cipher and which
are denoted by ai on Fig. 2. of [28]. This is a strong result and could be ap-
plicable to T-310, it basically means that there exist a certain system of I/O
equations which could be seen as a “secondary key” for K-310, and a recovery
of these equations could be an option for the attacker.

Depending on the degree, size and sparsity of such equations this recovery
might be possible, and such “secondary key” could potentially be used to decrypt
communications routinely, under a number of technical conditions such as for
example if the system of equations would extend with additional equations which
allow to determine other unknown bits directly.
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I On Hardware and Software and Implementation
Aspects of T-310

In this section we provide some software and tools which can help the reader to
study the T-310 cipher.

I.1 Technical Information On Implementation of T-310 Encryption
in T-310/50 and T-310/51 Cipher Machines

This section contains some important information about how T-310 encryp-
tion was implemented in practice in Eastern Germany. It is primarily based on
informations provided by Jörg Drobick in [54, 55, 57] and on additional clari-
fications we have obtained from the author [in person and by email]. The ac-
tual machines can be seen in Harnekop NVA Museum in Prötzel, Germany, cf.
www.nva-harnekop.de, some videos filmed at these premises can be found at
[56].

1. The 240-bit key ZS is stored on punch cards.
2. On insertion followed by removal of the punchcard from the device, the key

is stored in internal shift registers75 which is similar to storing it in RAM
and if the power supply is disconnected, the key would be lost.

3. There is a red ‘panic’ button on the operator console which allows to erase
the key and produces an alarm.

4. Each T-310 encryption machine implements all the main internal state/keystream
generation routines twice, cf. Section I.2 below.

5. Moreover, one single “complication unit” as depicted on Fig. 9.16 is imple-
mented using 1.5 of a board of type GVS01 1103X the picture of which
can be found at http://scz.bplaced.net/t/t310lz.jpg and additional
explanations in [54].

6. Each board of type GVS01 1103X has a socket to insert a smaller board
which is sometimes called 7905.XX which contains the long-term key (LZS).

I.2 Additional Notes and Remarks On Actual Hardware
Implementation of T-310

The complication unit is implemented twice, probably in order to protect against
fault injection attacks (a.k.a. DFA) [93, 50] and probably also to save operators
some time dealing with faults and errors. The same is also true for SKS V/1
machines. If the internal keystream results are not the same, the encryption is
stopped and nothing will be output. This can be viewed as protection against
fault attacks which are in general quite powerful and could be combined with
software algebraic attacks cf. [50] and Section I.10. Interestingly, the memory
which stores the 240-bit key is NOT duplicated. If an error would occur in a
circular shifting of the key, the faulty key would be kept in memory and it could
be used to encrypt or decrypt further characters of the message (or further
messages).
75 We have twice 30 shift registers on 8 bits implemented using 74LS91 TTL ICs.
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I.3 Coding of Short-Term Keys in T-310

In the section we give an example of a 240-bit short term key of T-310 and we
explain how such keys are encoded. Detailed explanations were provided by Jörg
Drobick.

Fig. 9.41. ZS Key known as 758 002100 00X 01, an actual historical example of a key
which can be found at [54] or http://scz.bplaced.net/k/758-wochen.jpg.

The key on punched car which is shown on this example should be read form
right to left and from upper line -1 down to the lowest line 9, excluding the
control line 4. This can be transcribed in hex as follows:

S1 = E8 EE CB 61 E8 C5 18 7C 9A 3F C4 11 F8 87 4B

S2 = 32 F2 B0 98 D7 C5 35 5E 7E BA 80 DF 79 B8 21

Here bytes are written from left to right, for example E8 is 1110 1000 in
binary, corresponds to in order to bits s8−5,1, s4−1,1 with the notations of Section
13.2. Reading key bits in the opposite order 1, 2 . . . 120 for S1 and likewise for S2,
we see that bits s1−8,1 are in order 0001 0111 and at the end we have s113−120,2
which are in order 1000 0100.
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I.4 Some Test Vectors For T-310

We give here some test vectors for T-310. Notations are self-explanatory. Our
first test vector details many internal values inside the cipher. The key is different
than in previous section.

LZS 26 KT1=1

D=0,28,4,32,24,8,12,20,16, P=8,4,33,16,31,20,5,35,9,3,19,18,12,7,21,

13,23,25,28,36,24,15,26,29,27,32,11,

S1[1..120] = 010100101001010011010101101000100111010010101100111101100111

111100001111011000010001000111101101011110001110001000101100

S2[1..120] = 110100110111100111011001000001010111000011010010101100010001

101011011011111001110100100011100101101001100110111100110001

IV[-60..0] = 0001000001011111111101010011101001100111010000000001111111111

U0[1..36] = 011010011100011111001000010110100011

U1[1..36] = 001111000110101101101100101011011001

Keystream at alpha u_{i,alpha} i=1..127 =

110011101010001011111011101100111100111010010000100000100111

100000100111000110001100011011000001011101101111000010100010

1011010

keystream Ai generated [i=1..]

00000 1 11110 00 10101 1 11111 11 10101 0 00010 00 11001 1 00101 10

11001 0 10101 01 10101 0 01110 00 01110 1 00110 01 11100 1 00011 01

10011 1 00100 01 01100 0 00001 00

R_1/r_1 B_1 R_2/r_2 B_2 = 0/ 0 30 21/13 31

Plaintext chars ITA-2 12345 (A=24):

31 2 8 8 24 19 14 18 16 22

Plaintext chars:

LS CR LF LF A B C D E F

Ciphertext chars ITA-2:

1 11 25 24 24 11 12 6 26 17

Ciphertext chars:

T G W A A G I N J Z

I.5 Remark: KPA Attack for Free

We observe that the plaintext is pre-pended by the so called “MBF 2” or
“Maschinenbefehlsfolge 2” which is LS CR LF LF. This is what happens in
real life situations and these 4 characters will be encrypted and the correspond-
ing plaintext is known to the attacker. Therefore in some sense, we always have
a known plaintext attack with T-310 for the first 4 characters which corresponds
to 127, . . . 4 · 13 · 127 iterations of the block cipher.
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I.6 Padding, Formatting, Ini: Another Test Vector For T-310

This second test vector emphasises the padding, formatting and initialization
questions: how exactly the machine needs to be synchronised at the receiving
end and how the IV and the message are encoded and transmitted.

First we explain how plaintext is formatted and padded.

Fig. 9.42. Punched tape with the plaintext ABCD..YZ + final 3 characters.

1. In real-life encryption this plaintext would also be pre-pended with “MBF
2” as in Section I.4.

2. Then we have the plaintext which is ABCD..YZ here.
3. At the end if appended CR LF LS which marks the end of the plaintext.

Now we explain how encryption is performed and how data are padded.

Fig. 9.43. Punched tape with the initialization sequence and the ciphertext.

1. At the beginning of each transmission we have 1+3+4 characters which
are always the same. The character LS which marks the beginning, then a
sequence of 3 characters called “MBF 1” or “Maschinenbefehlsfolge 1” which
is LS CR LF. This followed by letter ‘b’ repeated four times which is known
as “BFF” or “Befehlsfolge”.

2. Then we have 25 characters which conveys the initialization vector on 61
bits a.k.a. “SYF” or “Synchronfolge”.

3. Finally we have 4 characters at ‘k’ repeated four times. This is called “BFG”
or “Befehlsfolge”.

4. The we have the proper ciphertext. The first 4 characters are the encryption
of MBF 2. The last 3 character are the encryption of CR LF LS.

Finally we show the result of the decryption:

Fig. 9.44. Punched tape obtained from a decryption.

This tape contains several parts:
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1. First we have LS.
2. Then MBF 1, i.e. LS CR LF.
3. Then 4 times b.
4. Then 4 times k.
5. Then MBF 2.
6. Then the plaintext ABCD..YZ
7. Finally the plaintext ending CR LF LS.

The key used in this example is the same as in Section I.3. The coding of IV
will be specified in a future update of this paper.

I.7 More Test Vectors For T-310

Additional test vectors can be found in [56] and in [57] or more exactly at
http://scz.bplaced.net/ke-sks-t310.html#aufbau.
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I.8 A Reference Software Implementation of T-310

We provide a simple reference implementation of T-310 in C language. It is free
to use and modify provided that the derived works contain a reference or a link
to the present paper.

inline int T310ZFunction(int e1,int e2,int e3,int e4,int e5,int e6)

{

int sum=

1 + e1 + e5 + e6

+ e1*e4 + e2*e3 + e2*e5 + e4*e5 + e5*e6

+ e1*e3*e4 + e1*e3*e6 + e1*e4*e5 + e2*e3*e6 + e2*e4*e6 + e3*e5*e6

+ e1*e2*e3*e4 + e1*e2*e3*e5 + e1*e2*e5*e6 + e2*e3*e4*e6 + e1*e2*e3*e4*e5

+ e1*e3*e4*e5*e6;

return sum&1;//mod 2

};

inline void T310TFunction(

int &t1,int &t2,int &t3,int &t4,int &t5,int &t6,int &t7,int &t8,int &t9,

int e00,int e01,int e02,int e03,int e04,int e05,int e06,int e07,int e08,int e09,

int e10,int e11,int e12,int e13,int e14,int e15,int e16,int e17,int e18,int e19,

int e20,int e21,int e22,int e23,int e24,int e25,int e26,int e27,int e28)

{

t1=e00;

t2=t1+T310ZFunction(e01,e02,e03,e04,e05,e06);t2&=1;

t3=t2+e07;t3&=1;//mod2

t4=t3+T310ZFunction(e08,e09,e10,e11,e12,e13);t4&=1;

t5=t4+e14;t5&=1;//mod2

t6=t5 +e01+ T310ZFunction(e15,e16,e17,e18,e19,e20);t6&=1;

t7=t6+e21;t7&=1;//mod2

t8=t7+T310ZFunction(e22,e23,e24,e25,e26,e27);t8&=1;

t9=t8+e28;t9&=1;

};

//hard coded part of D, allows to determines D uniquely for KT1 keys

int j[9]={-1,3,7,2,6,5,8,4,9};

//hard coded part of P,

int p[28]={-1,

8,4,33,16,31,20,5,35,9,3,19,18,12,7,21,13,23,25,28,36,24,15,26,29,27,32,11};

//input x=1..9 output=0..36

int D(int x){ if(x==1) return 0; else { for(int k=1;k<=8;k++){

if(x==j[k])

{

if(k==1) return 4; else return 4*j[k-1];//4*j_{k-1}

};}; }; printf("D(%d) undefined",x); return -9999;//should never happen

};



Cryptographic Security Analysis of T-310 147

//input x=1..27 output=1..36

int P(int x){ return p[x]; };

//(c) Nicolas T. Courtois January 2017, and based on Klaus Schmeh:

//The East German Encryption Machine T-310 and the Algorithm It Used,

//In Cryptologia, 30: 3, pp. 251 257, 2006.

void T310BlockPhiEncryptOneRound(

int s1,int s2,int f,//extra inputs = key/IV

int o[37],//outputs [1..36]

int i[37]//inputs [1..36]: v[0]=s1 etc...

)

{

int v[37]={0};//internal 37 inputs: v[0]=s1 and last/proper 36

v[0]=s1;//one extra input

for(int k=1;k<=36;k++)

v[k]=i[k-1+1];

int j=0;

int t[10]={-1,0};//used 1..9, outputs of T

T310TFunction(

t[1],t[2],t[3],t[4],t[5],t[6],t[7],t[8],t[9],

f,s2,

v[P(1)],v[P(2)],v[P(3)],v[P(4)],v[P(5)],v[P(6)],v[P(7)],v[P(8)],v[P(9)],v[P(10)],

v[P(11)],v[P(12)],v[P(13)],v[P(14)],v[P(15)],v[P(16)],v[P(17)],v[P(18)],v[P(19)],

v[P(20)],v[P(21)],v[P(22)],v[P(23)],v[P(24)],v[P(25)],v[P(26)],v[P(27)]

);

for(j=1;j<=9;j++)

o[4*j-3]=( v[D(j)]+t[10-j] ) &1;

for(j=1;j<=9;j++)

o[4*j-2]=v[4*j-3];//starts at input v[1]

for(j=1;j<=9;j++)

o[4*j-1]=v[4*j-2];

for(j=1;j<=9;j++)

o[4*j-0]=v[4*j-1];//up to output o[36]

};

I.9 Software Simulators by Drobick

Software simulators which work under Windows are provided by Jörg Drobick.
They operate in the same way as the original machines which is a bit tricky.
This video shows how to use the simulator for T-310/51 SAGA:
https://www.youtube.com/watch?v=zh2pbsr3Kx4
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I.10 Our Software Algebraic Attack CodeGen Tool

We have developed an open source software solution [2] for implementing soft-
ware algebraic attacks on T-310 which we use in Section 15.3. This software is
a combination of several programs and we advise to run it under any version of
Windows 64-bit with Python 2.7 x64 installed. Certain files necessary to work
should be in the current directory and are the following:

codegen.py

helpers.py

argon.py

config.py

ax64.exe

minisat2.exe

cryptominisat-2.9.6-win64.exe

vcomp90.dll

These files can be obtained from [21] for example a direct download link
would be http://www.nicolascourtois.com/software/codegen last.zip or
http://www.nicolascourtois.com/software/ax64.exe or
http://www.nicolascourtois.com/software/*.py.

The basic command line reference is:

python codegen.py Nr /fix115 /insX /xl /sat /T310set26

Nr = number of rounds

X=number of instances, 8 recommended

/T310set26 uses LZS-26

/fix115 could be replaced by /fix1/2 which will fix half of the 240 key bits

Or it can be also used with an exe version as follows:

codegen.exe Nr /fix115 /insX /xl /sat /T310set26

I.11 Our KT1 Key Generation Weak/Strong Key Tool

We have developed another open source software solution [3] in order to generate
and study KT1 keys in T-310 with particular focus on various classes of weak
keys. Certain files necessary to work should be in the current directory and are
the following:

keygen.py

The latest version can be obtained from [3] or and a direct download link is
http://www.nicolascourtois.com/software/keygen latest.zip.

The basic command line reference is:

python3 keygen.py

If both versions of Python are installed, we may need to specify the path of
Python, for example
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C:\Users\XYZTY\AppData\Local\Programs\Python\Python36\python keygen.py

usage: keygen.py [-h] [--method METHOD] [--KT1symmetry1] [--verify]

[--linprop LINPROP] [--count_j] [--count_d2p27]

[--learn_cond] [--forceD FILTERD] [--forceP FILTERP]

[--forceDP FILTERDP] [--force FILTER_GEN]

KT1 stream generator and property checker

optional arguments:

-h, --help show this help message and exit

--method METHOD, -m METHOD, /method can be "normal" or "german"

KT1 key generation method used (default: "german")

--KT1symmetry1, /KT1symmetry1

Use KT1 symmetry poperty to generate more keys

--KT1symmetry2 -d --KT1symmetry2pairs "1,[2-3,6-7,10-11];2,[3,6-7,10-11];

3,[6-7,10-11];6,[7,10-11];7,[10-11];10,[11];13,[14-15,17-19,22-23,26-27,30-31,34-35];

14,[15,17-19,22-23,26-27,30-31,34-35];15,[17-19,22-23,26-27,30-31,34-35];

17,[18-19,22-23,26-27,30-31,34-35];18,[19,22-23,26-27,30-31,34-35];

19,[22-23,26-27,30-31,34-35];22,[23,26-27,30-31,34-35];23,[26-27,30-31,34-35];

26,[27,30-31,34-35];27,[30-31,34-35];30,[31,34-35];31,[34-35];34,[35];"

--verify, -t, /verify

Verify validity of each generated KT1 key

--linprop LINPROP, /linprop LINPROP

Check linprop

--count_j, /count_j Count seen/missing Js: compute a J that satisfies the

KT1 conditions for each generated key, then compare to

the list of all possible Js and of a class of "weak"

Js

--count_d2p27, /count_d2p27

Count seen/missing combination of D[2] and P[27]

--learn_cond, /learn_cond

Intersect all generated keys, discovering if some

P[i],D[i] are constant (or if there exists a P[i]=D[j]

--forceD FILTERD, -D FILTERD, /forceD FILTERD

Restrict D values: D[i] = j -> i-j

--forceP FILTERP, -P FILTERP, /forceP FILTERP

Restrict P values: P[i] = j -> i-j

--forceDP FILTERDP, -DP FILTERDP, /forceDP FILTERDP

Restrict P and D values: D[i]=P[j] -> i-j

--force FILTER_GEN, -f FILTER_GEN, /force FILTER_GEN

Restrict P and D values: D[i]=P[j], D[h]=k, P[l]=m

What is called German method is based on [59] translated from German by
UCL student Simon Boehm. We should note that this original method generates
a small percentage of keys which are NOT key, we call these keys “bad” keys
and their number appears in the first column when we run the software.



150 N. T. Courtois et. al., eprint.iacr.org/2017/440/ May 29, 2018

I.12 Our Illustration Tool

Matteo Scarlata have developed another open source software tool to visualize
connections inside long-term keys. The main files are

create_key_graph.py

keygen.py

And the tool is included as part of the latest version of [3] or and a direct
download link is
http://www.nicolascourtois.com/software/keygen latest.zip.

The basic command line reference is:

python3 create_key_graph.py 741

"P=15,24,33,27,19,12,5,22,9,31,3,7,8,34,21,36,32,25,18,28,35,20,4,29,16,14,2

D=0,36,24,4,32,16,8,12,20 [1]"

This will generate a file ”phi diagram 741.xml”, which can be opened and
saved as image or edited further ar http://draw.io. We show an example result.

Fig. 9.45. One round of T-310 for key 741.
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I.13 Short Documentation For Our DC Tool

Our Differential Cryptanalysis (DC) tool [94] was written by our student Matteo
Scarlata and was used in Section 12.5. Here we provide a basic documentation.
The download link which should also contain a more up-to-date documentation
is: https://gitlab.com/mtscr/T-310

In the default mode, this tool looks for differential properties from

any delta-in to delta-outs of Hamming weight < 3. Compile with:

g++ -pedantic -Wall -std=c++11 -lcrypto -O3 -o t310-diff t310-lib.cpp

t310-diff.cpp

then run a quick demonstration:

./t310-diff -X | python2.7 counter.py

In order to make a longer computation and analyze the results later run:

./t310-diff | tee -a results.log

python2.7 counter.py results.log

### t310-diff

Basic options:

./t310-diff -r <number-of-rounds> -t <minimum-number-of-samples> -k <IV-key-bits>

-p <min-probability-to-show> -e <stop-after-x-computations>

A bigger <minimum-number-of-samples> will increase the precison of the results.

By default, the tool will iterate over all possible bitmasks (delta-in values),

this will take a long time even for few rounds.

Advanced options:

-P n: choose delta-in in the set of all the permutations of n "1" (and 36-n "0")

-X : choose delta-in of Hamming weight 1

-B <36bits-bitset> : select the active bits of the bitmask (default: all 1)

-S <36bits-bitmask> : start the computation from bitmask+1

-i : look for delta-outs of Hamming-weight >32 (experimental)

-H <delta-in-hw>: collect statistics about the distribution of delta-out

Hamming weights for a fixed delta-in Hamming weight

### counter.py

Run:

python2.7 counter.py -h

to show the help.

e.g. run:

python2.7 counter.py results1.log [results2.log ... ] -j -r <number-of-rounds>

to join the collected results for a low number of rounds in a result

for a higher number of rounds.
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I.14 On Hardware Implementation of the Boolean Function Z
We have applied a free software logic optimizer in order to obtain a gate efficient
implementation of Z(). The software tool we used is ABC by Berkeley Logic
Synthesis and Verification Group. Here is our command line:

abc.exe

read_dsd !(a+e+f+(a*d)+(b*c)+(b*e)+(d*e)+(e*f)+(a*c*d)+(a*c*f)+(a*d*e)+(b*c*f)+

(b*d*f)+(c*e*f)+(a*b*c*d)+(a*b*c*e)+(a*b*e*f)+(b*c*d*f)+(a*b*c*d*e)+(a*c*d*e*f))

resyn

resyn2 cleanup fx dsd rewrite

resyn2 cleanup fx dsd

resyn2 cleanup fx dsd rewrite

resyn2 cleanup fx dsd rewrite

write_verilog o.verilog

print_stats

dsd : i/o = 6/ 1 lat = 0 and = 51 lev = 9

We see that this circuit can be implemented with 9 levels and using 51 AND
gates [with some inputs negated]. Here is the result we obtained:
// Benchmark "dsd" written by ABC on Tue Jan 30 18:29:37 2018

module dsd ( a, b, c, d, e, f, F );

input a, b, c, d, e, f; output F;

wire n7, n8, n9, n10, n11, n12, n13, n14, n15, n16, n17, n18, n19, n20,

n21, n22, n23, n24, n25, n26, n27, n28, n29, n30, n31, n32, n33, n34,

n35, n36, n37, n38, n39, n40, n41, n42, n43, n44, n45, n46, n47, n48,

n49, n50, n51, n52, n53, n54, n55, n56;

assign n7 = b & ~c; assign n8 = a & e;

assign n9 = ~d & ~n8; assign n10 = d & n8;

assign n11 = n7 & ~n10; assign n12 = ~n9 & n11;

assign n13 = a & d; assign n14 = ~b & e;

assign n15 = b & ~e; assign n16 = ~n14 & ~n15;

assign n17 = c & ~n13; assign n18 = ~n16 & n17;

assign n19 = ~n12 & ~n18; assign n20 = f & ~n19;

assign n21 = b & c; assign n22 = ~d & ~e;

assign n23 = d & e; assign n24 = f & ~n23;

assign n25 = a & n21; assign n26 = ~n22 & n25;

assign n27 = ~n24 & n26; assign n28 = ~n20 & ~n27;

assign n29 = a & ~c; assign n30 = ~d & n29;

assign n31 = f & ~n21; assign n32 = ~n30 & n31;

assign n33 = ~a & ~b; assign n34 = ~c & d;

assign n35 = ~f & ~n33; assign n36 = ~n34 & n35;

assign n37 = ~e & ~n36; assign n38 = ~n32 & n37;

assign n39 = ~a & ~d; assign n40 = ~n13 & ~n39;

assign n41 = n7 & n40; assign n42 = c & ~d;

assign n43 = n40 & ~n42; assign n44 = ~n7 & ~n43;

assign n45 = e & ~n41; assign n46 = ~n44 & n45;

assign n47 = ~c & ~d; assign n48 = ~a & ~n47;

assign n49 = b & ~n48; assign n50 = ~n8 & ~n49;

assign n51 = ~f & ~n29; assign n52 = ~n50 & n51;

assign n53 = ~n38 & ~n52; assign n54 = ~n46 & n53;

assign n55 = n28 & n54; assign n56 = ~n28 & ~n54;

assign F = ~n55 & ~n56; endmodule

I.15 The Cost of Hardware Implementation of T-310
Now we can estimate very roughly the cost of hardware implementation of the
whole T-310 cipher. We evaluate the cost of Z() to be roughly 100 GE. One
round of encryption requires 4 applications of Z and 9 XORs, cf. Section 9.
We assume that one XOR costs 3.2 GE. Overall with some overheads we need
maybe about 430 GE for 1 round of T-310. In order to encrypt one character
we need 127 · 13 = 1651 rounds. Therefore we need about 700 KGE to encrypt
one 5-bit character, so the encryption cost per bit is about 140,000 GE. This
is extremely expensive, several orders of magnitude more expensive than any
modern block cipher we have ever heard of. For example one optimized variant
of GOST requires only 650 GE per 64 encrypted bits [91].


