
New Approach to Practical Leakage-Resilient Public-Key
Cryptography

Suvradip Chakraborty1 Janaka Alawatugoda2 C. Pandu Rangan1

1 Computer Science and Engineering Department, Science and Engineering Faculty
Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India

{suvradip,rangan}@cse.iitm.ac.in
2 Department of Computer Engineering, Faculty of Engineering

University of Peradeniya, Peradeniya 20400, Sri Lanka
janaka@ce.pdn.ac.lk

Abstract. We present a new approach to construct several leakage-resilient cryptographic primitives,
including public-key encryption (PKE) schemes, authenticated key exchange (AKE) protocols and
low-latency key exchange (LLKE) protocols. To this end, we develop a new primitive called leakage-
resilient non-interactive key exchange (LR-NIKE). We introduce a new generic security model for
LR-NIKE protocols, which can be instantiated in both bounded-and-continuous-memory leakage
setting. We then show a secure construction of LR-NIKE protocol in the bounded-memory leakage
setting, that achieves an optimal leakage rate, i.e., 1− o(1). We then show how to construct the
aforementioned leakage-resilient primitives from such a LR-NIKE. In particular,

• We show how to construct a leakage-resilient IND-CCA-2-secure PKE scheme in the bounded-
memory leakage setting, from LR-NIKE protocol. Our construction differs from the state-of-the-
art constructions of leakage-resilient IND-CCA-2-secure PKE, which use hash proof techniques
to achieve leakage resiliency. Moreover, our transformation preserves the leakage-rate of the
underlying LR-NIKE and admits more efficient construction than the previous such PKE
constructions.

• We introduce a new leakage model for AKE protocols, in the bounded-memory leakage setting.
We show how to construct a leakage-resilient AKE protocol starting from LR-NIKE protocol.
• We introduce the first-ever leakage model for LLKE protocols, in the bounded-memory leakage

setting, and the first construction of such a leakage-resilient LLKE from LR-NIKE protocol.

Keywords: leakage-resilient, public-key encryption, key exchange protocols

1 Introduction and Related Works

Traditional cryptographic primitives are provably analyzed in a black-box model, where the adversary
has restricted access to the primitive via well-defined interfaces. However, this does not truly reflect the
real-world scenario where the adversary may attack the implementation of the cryptosystem itself, which
is not accounted for in its analysis in the aforementioned well-defined interfaces. More precisely, the
adversary may obtain lots of unintended information through side-channel attacks like-power analysis
attacks [28], electromagnetic attacks [22], timing attacks [9] etc. Leakage-resilient cryptography emerged
as a theoretical foundation to address side-channel attacks, when a significant fraction of the secret key is
leaked to the adversary. Note that, there must be some restrictions that must be imposed on the class
of allowable leakage functions, as otherwise an adversary can simply read off the entire secret key from
memory. Depending upon the restrictions that are put on the leakage functions, many theoretical models
for addressing leakage has been introduced in the literature [1, 5, 8, 12,14,29]. In this work we focus on
leakage-resilient public-key cryptography in the bounded-memory leakage model [1,5]. In the bounded
leakage model the adversary chooses an arbitrary polynomial time leakage function, f and sends it to the
leakage oracle. The leakage oracle returns f(sk) to the adversary, where sk is the secret key. The only
restriction here is that the sum of output length of all the leakage functions that an adversary can obtain
is bounded by some parameter λ, which is smaller than the size of sk. Refer Appendix A for details.

From the beginning of public-key cryptography in 1976 with the ground-breaking paper of Diffie
and Hellman [11], authenticated key exchange (AKE) protocols arose as an important cryptographic
primitive. The Diffie-Hellman key exchange primitive can be viewed as a non-interactive key exchange
(NIKE) protocol, where the public-keys are pre-distributed among the parties and they agree on some
common global parameters. NIKE is very useful in any band-width-critical, power-critical, resource-critical
systems such as embedded devices, wireless and sensor networks, where the communication must be at
its minimum. Despite its real-world applications, NIKE has mostly been overlooked until recently [16]. In
2013, Freire et al. [16] discussed about the formal security models for NIKE and the constructions of
efficient NIKE schemes. However, we show that this construction is completely insecure if the adversary
obtains even a single bit of leakage from the secret key of a party. Much research has been carried out on
analyzing leakage resiliency of interactive key exchange protocols [2–4,10], but the leakage resiliency of
NIKE remains largely unstudied. Therefore, it is really important to thoroughly study on the leakage
resiliency of NIKE.

As one of the central applications of leakage-resilient NIKE (LR-NIKE), we show how to construct
leakage-resilient IND-CCA-2-secure PKE scheme generically from LR-NIKE (in the bounded-memory
leakage setting). Our construction deviates significantly from all the state-of-the-art constructions of
LR-IND-CCA-2-secure PKE schemes. All the previous constructions of practical leakage-resilient IND-
CCA-2 (LR-IND-CCA-2) secure PKE schemes relies solely on hash proof techniques to achieve leakage
resiliency. However, the generic approach of constructing leakage-resilient CCA secure PKE scheme solely
using hash proof system (HPS) systems is inherently limited to leakage rate below 1/2, as pointed out
by Dodis et al. [13]. The leakage rate of the state-of the art constructions of LR-CCA-2-secure PKE
scheme was later improved in the subsequent works of Qin et al. [31, 32], which achieved leakage rates of
1/2− o(1) and 1− o(1) respectively. They could achieve the leakage rate of 1/2− o(1) by using HPS and
one-time lossy filters (OTLF)3, and the optimal rate of 1− o(1) by cleverly instantiating the underlying
primitives, namely HPS and OTLF. However, the complexity assumption they make for their construction
is rather non-standard, namely refined subgroup indistinguishability (RSI) assumption over composite
order groups.

We deviate significantly from this HPS based approach of constructing LR-IND-CCA-2-secure PKE
schemes, and show that this connection is not inherent. To this end, we develop a new primitive called
leakage-resilient non-interactive key exchange (NIKE). Our construction of leakage-resilient NIKE relies
solely on leakage-resilient chameleon hash function (which in turn relies only on strong collision-resistant
hash function) and only a few pairing operations. We then show a very simple and generic construction of
LR-IND-CCA-2-secure PKE schemes achieving the optimal leakage rate of 1− o(1), based solely on the
assumption that the leakage-resilient NIKE exists. Our construction significantly improves the efficiency
of LR-IND-CCA-2 secure PKE schemes compared to their state-of-the-art constructions (which use the
HPS-based approach) (please refer to Table 1 for details). Besides, our LR-ND-CCA-2 secure PKE scheme
also achieves the optimal leakage rate of 1− o(1).

3 Note that this circumvents the impossibility result of Dodis et al. [13], since the analysis of [13] considered the
fact that the LR-IND-CCA-secure PKE was constructed solely from HPS; whereas in [31,32] they do not solely
use HPS and instead relies on both HPS and OTLF for their construction.

2

We also show the applicability of leakage-resilient NIKE to construct leakage-resilient authenticated
key exchange (AKE) protocols and leakage-resilient low-latency key exchange (LLKE) protocols (in the
bounded-memory leakage setting). All the previous constructions of leakage-resilient AKE protocols [3,4,10]
either implicitly rely on HPS (by using leakage-resilient PKE as their building block) or explicitly by
using the properties of HPS. Our generic construction of leakage-resilient AKE gives an alternate way to
construct AKE protocols, different from the previous constructions of leakage-resilient AKE protocols,
achieving the optimal leakage rate of 1− o(1). Low-latency key exchange (LLKE) are one of the most
practical key exchange protocols that permits the transmission of cryptographically protected data,
without prior key exchange, while providing perfect forward secrecy (PFS). This concept was discussed in
the Google’s QUIC 4 protocol. Further, a low-latency mode is currently under discussion for inclusion
in TLS 1.3 version. Although, the first formal model of LLKE was studied by Hale et al. [20], leakage
resiliency of LLKE remains unstudied until present. Being a candidate for TLS 1.3, it is important to
explore the leakage resiliency of LLKE protocols, as side-channel attacks widely exist.

Technical Contributions. Following are the main technical contributions:

Leakage-resilient NIKE. As our first major contribution we study the leakage resiliency of NIKE
protocols. We present a leakage security model for NIKE protocols, defining the notion of leakage-resilient
non-interactive key exchange. Our model is generic and can be instantiated in the bounded-memory
leakage model and in continuous-memory leakage model. We then show how to construct secure a
NIKE protocol in the bounded-memory leakage model. Our constructions rely only on leakage-resilient
chameleon hash functions, which in turn admits very efficient instantiations based on leakage-resilient
hard relations [35,36].

Our model: Our model of leakage-resilient NIKE generalizes the CKS-heavy model of NIKE proposed of
Freire et al. [16], in the setting of leakage. Our model is a very strong model allowing the adversary to
register arbitrary public keys into the system, corrupt honest parties to obtain their secret keys, issue
extract queries to obtain shared keys between two honest parties and also between one honest party and
another corrupt party. Besides this, we also allow the adversary to obtain additional leakage from both
the parties involved in the Test/challenge query. We also introduce the notion of validity of a test query
reminiscent of the notion of freshness of a test session for (interactive) key exchange protocols. Finally,
in the (valid) test query between two honest parties, the adversary has to distinguish the shared key
between them from a random shared key. In the bounded leakage instantiation of our generic security
model of NIKE, the adversary can obtain bounded leakages from the secret keys of all parties including
those involved in the test query also. Differently, in the continuous leakage instantiation of our model
the secret is refreshed periodically. The adversary can obtain unbounded and arbitrary leakage from the
secret keys of the parties, provided the leakage from the secret key per invocation (between two successive
refreshes) is bounded.

Our construction: The starting point of our construction is the NIKE scheme of Freire et al. [16].
However, as shown in Section 3.2, the above scheme is completely insecure if the adversary obtains
even a single bit of leakage from the secret key. The main point where the construction breaks down is
the exponentiation operation. Our attack exploits the fact that if exponentiation is done in the normal
way, then it is completely insecure in the presence of leakage. A common countermeasure against this is
masking where one does a multiplicative secret sharing to share the secret key and the exponentiation is
done step-wise using each of these shares. However, for arguing security one necessarily needs to make
additional restrictions on the leakage functions. In particular, all these masking schemes are proven secure
in the Only Computation leaks Information (OCLI) axiom of Micali and Reyzin [29] or the split-state
assumption [19,21,24]. The OCLI axiom essentially tells that the secret state leaks only during the actual
computations, i.e., only actual computations are supposed to leak sensitive information, and leakage
never happens from the entire memory of the device. This is in contrast to our model, where we consider
a global leakage model where the adversary can leak from the entire memory. So our model captures
side-channel attacks like cold boot attacks which are not captured by the OCLI framework.

To this end, we use the ideas from twisted-pair PRF trick [17], but careful adopted to deal with
leakage for our leakage-resilient NIKE construction. In particular we add strong randomness extractors
as pre-processors to the original twisting technique [17]. The main idea behind the twisted-pair PRF
trick is that, it involves two PRFs F and F ′ with reversing keys. The output of the twisting function is
simply the output of the two PRFs that are combined together in special way. The guarantee is that

4 https://www.chromium.org/quic

3

https://www.chromium.org/quic

output of the twisting function looks computationally indistinguishable from a uniform value over the
same range. For our construction of leakage-resilient twisted-pair PRF trick, we add strong randomness
extractors as pre-processors to the original twisting technique. The guarantee is that the output of our
leakage-resilient twisted-pair PRF function is computationally indistinguishable from a uniform value
over the same range, even if the adversary knows the key of one PRF in full and obtains bounded leakage
from the key of the other PRF. For our construction of NIKE in the bounded leakage model, the strong
randomness extractor (when appropriately parameterized) takes care of the (bounded) leakage and then
we can extract randomness from the secret key of the NIKE and use the extracted key as the key in one
of the PRF. The key for the other PRF is included as part of the public key of the party. The output of
the leakage-resilient twisting function is then used to do secure exponentiation in the presence of leakage.
By appropriately parameterizing the extractor we can obtain a leakage rate of 1− o(1). So we can achieve
leakage-resilient exponentiation with optimal leakage rate in the (global) bounded-memory leakage model.
Combined with a bounded leakage-resilient CHF tolerating leakage rate of 1 − o(1), we can achieve a
leakage-resilient NIKE in the bounded-memory leakage model with overall leakage rate of 1− o(1).

Leakage-resilient CCA-2-secure PKE. As one of the central applications of leakage-resilient NIKE
(LR-NIKE), we show how to construct leakage-resilient IND-CCA-2 (LR-IND-CCA-2) secure PKE
generically from LR-NIKE. As already mentioned in the introduction, our approach to LR-IND-CCA-2-
secure PKE is completely different from the hash-proof framework of constructing LR-IND-CCA-2-secure
PKE schemes in the bounded-memory leakage model. Our construction achieves the optimal leakage rate
of 1 − o(1) and at the same time is much more efficient and hence practical than the state-of-the-art
constructions.

Our construction: Our generic transformation from LR-NIKE to LR-IND-CCA-2-secure PKE scheme
essentially follows and adapts the ideas of Freire et al. [16]. We observe that the same transformation
of Freire et al. [16] from (standard) NIKE to CCA-2-secure PKE works even in the presence of leakage
provided we have an appropriate leakage-resilient NIKE as the starting point of our transformation. The
main idea behind the transformation is as follows: the public-secret key pair of the LR-CCA-2-secure
PKE scheme is same as the public-secret key pair of the underlying LR-NIKE protocol. While encrypting,
another public-secret key pair of the NIKE is sampled independently and the shared key generation
algorithm of the NIKE is run among the two key pairs yielding a shared key. This key is used as the
encapsulation key of the underlying IND-CCA-2-secure key encapsulation mechanism (KEM) and the
ciphertext is set to be the new sampled public key. Decryption is straightforward and the decryptor can
recover the same shared key by running the shared key generation algorithm with the original secret
key and the new sampled public key. Now from the IND-CCA-2-KEM one can easily get a full fledged
IND-CCA-2-secure PKE using standard techniques.
Our transformation preserves the leakage rate, in the sense that if the starting point of our construction is a
LR-NIKE with leakage rate of 1−o(1), then the LR-CCA-2-secure PKE constructed from it also enjoys the
same leakage rate. Hence we obtain the most efficient and practical construction of LR-IND-CCA-2-secure
PKE scheme achieving optimal leakage rate of 1− o(1) following a completely different approach from
the hash proof techniques.

In Table 1, we show the comparison of our scheme with the state-of-the-art constructions of LR-IND-CCA
secure PKE schemes in terms of both computational and communication complexity. We obtain these
complexity figures by instantiating all of the compared schemes with the state-of-the-art constructions
of the required underlying primitives. As we can see, the number of group elements involved in our
ciphertext is far lesser than the number of group elements involved in the ciphertexts of the other schemes.
With regard to the number of exponentiations and multiplication operations also, our scheme is much
more efficient compared to others, hence improving the computational complexity of the state-of-the-art
LR-IND-CCA secure PKE schemes by a significant margin. However, note that we do require a constant
number of pairing operations (to be precise only 3) in the encryption side and also in the decryption side.
In the table, n ∈ N, and is usually the number of generators required for the construction. Also [32] works
over composite order groups of the form G = Gτ1 ×Gτ2 . Here Tc denotes the tag space in the encryption
scheme of [32], and {0, 1}s denote the seed space of a strong randomness extractor.

Leakage-resilient AKE. As our next contribution, we show how to obtain a generic construction of a
leakage-resilient authenticated key exchange (LR-AKE) protocol, starting from a leakage-resilient NIKE.
Our construction of the LR-AKE protocol also gives a new and alternate construction from LR-NIKE.

4

Scheme
#Exponentiations #Multiplications #Pairings.

Size of ciphertext C Leakage rate. Complexity Assumptions
KeyGen Enc. Dec. KeyGen Enc. Dec. KeyGen Enc. Dec.

Qin and Liu [31] n2 (n2 + n+ 2) (n2 + 2n) (n2 + n) 2n2 (2n2 + n) NA NA NA G2 × Znq × {0, 1}m × G̃n
2×n2 1

2
− o(1) DDH

Qin and Liu [32] (n2 + n+ 1) (3n+ 2) (3n+ 1) n 2n 2n NA NA NA Gτ1 × {0, 1}m ×Gn+1 × Tc 1− o(1) RSI over composite order groups

Ours (n+ 5) (2n+ 8) (n+ 3) (n+ 3) (2n+ 6) (n+ 3) NA 3 3 G2Zn+1
q × {0, 1}s 1− o(1) DBDH

Table 1. Comparison among the LR-IND-CCA PKE schemes

We first formulate a new security model for LR-AKE protocols, which we call Bounded-memory Before-
the-Fact Leakage eCK (BBFL-eCK) model. We then show a generic construction of BBFL-eCK-secure
AKE protocol using a LR-NIKE in the bounded-memory leakage setting.

Our model: Our security model for LR-AKE is a strong security model which addresses (bounded) leakage
from the entire memory, which is stronger than the Only computation leaks information axiom [29]. We
present an eCK-style [26] security model, suitably adjusted to the leakage setting.

Our construction: We give the generic construction of leakage-resilient AKE from leakage-resilient NIKE
in the bounded-memory leakage model. We adapt the construction of Bergsma et al. [6] to the setting
of leakage. In particular Bergsma et al. [6] showed a construction of AKE protocols from a standard
NIKE protocol and an existentially unforgeable signature scheme. We replace the standard NIKE with
our leakage-resilient NIKE and the existentially unforgeable signature scheme with a signature scheme
that is existentially unforgeable under chosen message and leakage attacks [23]. It is then straightforward
to see that the constructed AKE protocol is secure in our BBFL-eCK security model. The leakage rate of
our construction is 1− o(1), under appropriate choice of parameters.

Leakage-resilient LLKE. As our final contribution we show an extremely important practical appli-
cation of leakage-resilient NIKE protocols. We study the leakage resiliency of low-latency key exchange
(LLKE) protocols. In this paper we give a suitable leakage security model for LLKE protocols which
we call the Bounded-memory leakage LLKE-ma (BL-LLKE-ma) model where “ma” stands for mutual
authentication. We then present a generic construction of leakage-resilient LLKE (LR-LLKE) construction
based on our new LR-NIKE protocol in the bounded-memory leakage setting.

Our model: The security of (standard) LLKE protocols has been recently analyzed by Hale et al. [20],
under mutual authentication of the client well as the server. We give a leakage analogue of their security
model. Our model allows the adversary to activate arbitrary protocol sessions between the clients and
servers. Besides, the adversary can obtain the temporary or the main keys of a session of both the clients
as well as the server, obtain the long-term secret key of clients and servers and also obtain bounded
leakage from both the client and the server involved in the Test query. Finally in the test query (satisfying
some freshness/validity conditions) the adversary has to guess the requested key from a random key.

Our construction: Adopting the construction of Hale et al. [20] we show a generic construction of leakage-
resilient LLKE protocol from a leakage-resilient NIKE protocol. In particular, we require a LR-NIKE
scheme and a UF-CMLA secure signature scheme. Plugging them appropriately in our context we obtain
the construction of leakage-resilient LLKE protocol. Moreover, the leakage rate enjoyed by our LLKE
protocol is also optimal, i.e., 1− o(1), under appropriate choice of parameters.

2 Preliminaries

2.1 Notations

For a, b ∈ R, we let [a, b] = {x ∈ R : a ≤ x ≤ b}; for a ∈ N, we let [a] = {1, 2, · · · , a}. If x is a string , we

denote |x| as the length of x. When x is chosen randomly from a set X , we write x
$←− X . When A is an

algorithm, we write y
$←− A(x) to denote a run of A on input x and output y; if A is randomized, then y is

a random variable and A(x; r) denotes a run of A on input x and randomness r. We denote the security
parameter throughout by κ. An algorithm A is probabilistic polynomial-time (PPT) if A is randomized
and for any input x, r ∈ {0, 1}∗; the computation of A(x; r) terminates in at most poly(|x|) steps. Let G
be a group of prime order p such that log2(p) ≥ κ. Let g be a generator of G, then for a (column/row)
vector C = (C1, · · · , Cn) ∈ Znp , we denote by gC the vector C = (gC1 , · · · , gCn). Furthermore, for a vector

D = (D1, · · · , Dn) ∈ Znp , we denote by CD the group element X =
∏n
i=1 g

CiDi = g
∑n
i=1 CiDi .

5

2.2 Entropy and Randomness Extraction

We begin with some definitions and useful result.

Definition 1 (Min-Entropy). The min-entropy of a random variable X, denoted as H∞(X) is defined

as H∞(X)
def
= -log(maxx Pr[X = x]). This is a standard notion of entropy used in cryptography, since it

measures the worst-case predictability of X.

Definition 2 (Average Conditional Min-Entropy). The average-conditional min-entropy of a ran-

dom variable X conditioned on a (possibly) correlated variable Z, denoted as H̃∞(X|Z) is defined
as

H̃∞(X|Z) = - log
(
Ez←Z [maxx Pr[X = x|Z = z]

)
= - log

(
Ez←Z [2H∞(X|Z=z)]

)
.

This measures the worst-case predictability of X by an adversary that may observe a correlated variable
Z.

The following bound on average min-entropy was proved in Dodis et al. [15].

Lemma 1. [15] For any random variable X, Y and Z, if Y takes on values in {0, 1}`, then

H̃∞(X|Y,Z) ≥ H̃∞(X|Z)− ` and H̃∞(X|Y) ≥ H̃∞(X)− `.

Definition 3 (Randomness Extractor). We say that an efficient randomized function Ext: X ×S → Y
is an (υ, ε)-extractor if for all (correlated) random variables X, Z such that the support of X is X and

H̃∞(X|Z) ≥ υ, we get (Z, S,Ext(X;S)) ≈ε (Z, S, UY), where S is uniform over S, and UY denotes the
uniform distribution over the range of the extractor Y.

2.3 Bounded Leakage-resilient (LR) Chameleon Hash Functions

In this section we give the definition of LR chameleon hash functions (CHF) in the bounded -memory
leakage model [35].

LR-CHF in bounded leakage model: Informally, a chameleon hash function (CHF) is a collision-
resistant hash function, the only difference being that it is easy to find collision given a trapdoor. Without
knowing the trapdoor it is hard to find any collision. Leakage-resilient chameleon hash functions (LR-CHF)
postulate that it is hard to find collisions, even when the adversary learns bounded leakage/information
about the secret key. Formally, an λ-LR-CHF ChamH : D ×Rcham → I, where D is the domain, Rcham
the randomness space and I the range, consists of the algorithms (Cham.KeyGen, Cham.Eval, Cham.TCF).

1. Cham.KeyGen(1κ, λ): The key generation algorithm takes as input 1κ and the leakage bound λ as
parameters and output an evaluation key along with a trapdoor (hk, ck). The public key hk defines a
chameleon hash function, denoted ChamHhk(., .).

2. Cham.Eval(hk,m, r): The hash function evaluation algorithm that takes as input hk, a message m ∈ D,
and a randomizer r ∈ Rcham and outputs a hash value h = ChamHhk(m, r).

3. Cham.TCF(ck, (m, r),m′): The trapdoor collision finder algorithm takes as the trapdoor ck, a message-
randomizer pair (m, r), an additional message m′, and outputs a value r′ ∈ Rcham such that
ChamHhk(m, r) = ChamHhk(m

′, r′).

A λ-LR-CHF must satisfy the following three properties:

• Reversibility: The reversibility property is satisfied if r′ = Cham.TCF(ck, (m, r),m′) is equivalent
to r = Cham.TCF(ck, (m′, r′),m).

• Random Trapdoor Collisions: The random trapdoor collision property is satisfied if for a trapdoor
ck, an arbitrary message pair (m,m′), and a randomizer r, r′ = Cham.TCF(ck, (m, r),m′) has uniform
probability distribution on the randomness space Rcham.

• LR-collision resistance: The LR collision-resistance property is satisfied if for any PPT adversary
A, we have that the following advantage in negligible:

AdvcollA,ChamH(κ) = |Pr[(hk, ck)← Cham.KeyGen(1κ, `); (m, r), (m′, r′)← AO
κ,λ
ck (hk) :

(m, r) 6= (m′, r′) ∧ ChamHhk(m, r) = ChamHhk(m
′, r′)]|

where Oκ,λck is the leakage oracle to which A can adaptively query to learn at most λ bits of information
about the trapdoor ck.

6

2.4 Pseudo-random Functions

F : Σk ×Σm → Σn is a (εprf , sprf , qprf) secure pseudo-random function (PRF) if no adversary of size sprf
can distinguish F (instantiated with a random key) from a uniformly random function, i.e., for any A of
size sprf making qprf oracle queries we have:

| Pr
K

$←−ΣK [AF (K,.) → 1]−PrRm,n [ARm,n()̇ → 1] | ≤ εprf , where R(m,n) is the set of all functions from

Σm → Σn.

2.5 UF-CMLA-Secure Signature Schemes

We review the definition of UF-CMLA security according to Katz et al. [23]. The leakage function fi is
an adversary chosen efficiently computable adaptive leakage function, which leaks fi(sk) from a secret
key sk.

Definition 4 (Unforgeability Against Chosen Message Leakage Attacks (UF-CMLA)). Let
κ be the security parameter and λ be the leakage parameter. Let LR-SIG = (SIGkg,SIGsign,SIGvfy) be a
signature scheme, we define AdvUF-CMLA

LR-SIG,Bsig

(
κ) as the advantage of any PPT adversary Bsig, winning the

following game:

1. (sksig, pksig)
$←− SIGkg(1κ)

2. (m∗, σ∗)← AO(·,·)(pksig)

3. If SIGvfy(pksig,m∗, σ∗) = “true” and m∗ is not
been previously signed, then Bsig wins.

Oracle O(m, fi)

• σ $←− SIGsign(sksig,m)
• γi ← fi(sk

sig)
• If

∑
i=1 |γi| ≤ λ

– γ ← γi
– γ ← ⊥

• Return (σ, γ)

We say the signature scheme LR-SIG is UF-CMLA-secure, if AdvUF-CMLA
LR-SIG,Bsig

(
κ) is negligible.

2.6 Assumptions in Bilinear Group

In this paper we will consider Type-2 pairings. We let G2 be a type 2 pairing parameter generation
algorithm. It takes as input the security parameter 1κ and outputs gk = (G1,G2,GT , g1, g2, p, e, ψ) such
that p is a prime, (G1,G2,GT) are description of multiplicative cyclic groups of same order p, g1, g2
are generators of G1 and G2 respectively, e : G1 ×G2 → GT is a non-degenerate efficiently computable
bilinear map, and ψ is an efficiently computable isomorphism ψ : G2 → G1, and that g1 = ψ(g2).

The Decisional Bilinear Assumption over Type-2 Pairings (DBDH-2). Let gk = (G1,G2,GT , g1,
g2, p, e, ψ) be the output of the parameter generation algorithm G2 as above. We consider the following
version of the DBDH-2 problem introduced by Galindo [18] and also used in Freire et al. [16]. Formally,
we say that the DBDH-2 assumption holds for type-2 pairings if the advantage of the adversary ADBDH-2

denoted by Advdbdh-2ADBDH-2,G2(κ) is negligible, where

Advdbdh-2ADBDH-2,G2(κ) = |Pr[A(g2, g
a
2 , g

b
2, g

c
1, e(g1, g2)abc) = 1] − Pr[A(g2, g

a
2 , g

b
2, g

c
1, e(g1, g2)z) = 1]|.

where the probability is taken over the random choices of the algorithm G2 and the internal coin tosses of
the algorithm A.

3 Leakage-resilient Non-interactive Key Exchange

In this section we give our definition of leakage-resilient non-interactive key exchange (LR-NIKE). We
assume that all the public keys in the system are distinct and each of them uniquely represents an
user/identity in the system. In other words, the adversary is not allowed to register the same public key
more than once. In practice, this can easily be ensured by requiring the Certification Authority (CA) to
check for consistency whenever an individual attempts to register a public key in the system. So, w.lo.g,
when we write pki for the i-th public key, we mean that pki is associated with the user with identifier
IDi ∈ IDS, where IDS denotes the identity space. In the leakage-free scenario, this setting was also
considered in the work of Freire et al. [16], which they called the Simplified(S)-NIKE. Also, we denote
by PK, SK and SHK the space of public keys, secret keys and shared keys respectively. Formally, a
LR-NIKE scheme, LR-NIKE, consists of a tuple of algorithms (NIKEcommon setup, NIKEgen, NIKEkey)
with the functionalities specified below:

7

1. NIKEcommon setup(1κ, λ): The Setup algorithm takes as input the security parameter κ and the
overall leakage bound λ that can be tolerated by the NIKE scheme, and outputs a set of global
parameters of the system denoted by params.

2. NIKEgen(1κ, params): The key generation algorithm is probabilistic and can be executed independently
by all the users. It takes as input the security parameter κ and params and outputs a public/secret
key pair (pk, sk) ∈ PK × SK.

3. NIKEkey(pki, skj): The shared key generation algorithm takes the public key of user IDi, namely pki
and the secret key of user IDj , namely skj , and outputs a shared key shkij ∈ SHK for the two keys
or a failure symbol ⊥ if i = j, i.e., if skj is the secret key corresponding to pki.

The correctness requirement states that for any two pairs (pki, ski) and (pkj , skj), the shared keys
computed by them should be identical, i.e., NIKEkey(pki, skj) = NIKEkey(pkj , ski).

3.1 The Generic Leakage-resilient Non-interactive Key Exchange ((·)LR-CKS-heavy)
Security Model

In this section we present the formal security model for leakage-resilient non-interactive key exchange
(LR-NIKE). Our security models of LR-NIKE can be seen as generalization of the CKS-heavy security
model introduced in Freire et al. [16] to appropriately model key leakage attacks. Our generic LR-
NIKE ((·)LR-CKS-heavy) security model can be instantiated in two different ways which leads to two
different security models, namely- bounded LR-CKS-heavy (BLR-CKS-heavy) model and continuous
LR-CKS-heavy (CLR-CKS-heavy) model.

Our model allows the adversary to register arbitrary public keys into the system, provided they are
distinct from each other and from the public keys of the honestly registered parties. The adversary can
also issue Extract queries to learn the private keys corresponding to the honestly generated public keys.
The adversary can also learn the shared key between two honestly generated parties (via HonestReveal
query) as long as both of them are not involved in the challenge/Test query. We also allow the adversary
to learn the shared key between an honest party and a corrupt party (via CorruptReveal query). Apart
from the above queries, the BLR-CKS-heavy model allows the adversary to obtain a bounded amount of
leakage of the secret/private keys of the parties. Differently, the CLR-CKS-heavy model model allows the
adversary to continuously obtain arbitrarily large amount of leakage from the secret keys of the parties,
enforcing the restriction that the amount of leakage per observation is bounded. Finally, in the Test query,
the adversary has to distinguish the real shared key between two honest parties from a random shared key.
To prevent trivial wins, we enforce some natural restrictions on the Test query which we call the validity
conditions. We also note that once the test query is asked by the adversary, he is not allowed to make
further leakage queries on the corresponding parties involved in the test query (modeling before-the-fact
leakage).

Remark 1. (Extract query vs. Leakage queries). By issuing Extract query, the adversary can learn the secret
key of a party entirely. Separately, by issuing leakage queries the adversary gets bounded/continuous
amount of leakage from the secret key. It may seem paradoxical to consider both Extract as well as Leakage
queries at the same time. However, there are good reasons to consider both.

A non-leakage version of the (·)LR-CKS-heavy model allow the adversary to corrupt the honest parties
to obtain the corresponding secret keys. However, it disallows the adversary to corrupt any of the parties
involved in the Test query. This is a natural restriction, since corrupting any of the parties involved in the
test session will also allow the adversary to reconstruct the shared key of the test session and hence win
the security game with certainty. But note that in our (·)LR-CKS-heavy model the adversary can also
obtain (bounded/continuous) leakage from the secret keys of the parties involved in the test session in
addition to corrupting other (non-test) honest parties in the system.

Hence, the (·)LR-CKS-heavy model allows the adversary to obtain more information than a non-leakage
version of (·)LR-CKS-heavy model, namely CKS-heavy model [16] and hence is necessarily stronger than
the CKS-heavy model.

Adversarial Powers. The (·)LR-CKS-heavy security model is stated in terms of a security game
between a challenger C and an adversary A. The adversary A is modeled as a probabilistic polynomial
time (PPT) algorithm. We denote by ΠU,V the protocol run between principal U , with intended principal
V . Initially, the challenger C runs the NIKEcommon setup algorithm to output the set of public parameters
params, and gives params to A. The challenger C also chooses a random bit b in the beginning of the

8

security game and answers all the legitimate queries of A until A outputs a bit b′. A is allowed to ask the
following queries:

1. RegisterHonest queries(1κ, params): This query allows the adversary to register honest parties in the
system. The challenger runs the NIKEgen algorithm to generate a key pair (pkU , skU) and records the
tuple (honest, pkU , skU). It then returns the public key pkU to A. We refer to the parties registered
via this query as honest parties.

2. RegisterCorrupt queries(pkU): This query allows the adversary to register arbitrary corrupt parties in
the system. Here, A supplies a public key pkU . The challenger records the tuple (corrupt, pkU ,⊥).
We demand that all the public keys involved in this query are distinct from one another and from the
honestly generated public keys from above. The parties registered via this query are referred to as
corrupt.

3. Extract queries(pkU): In this query the adversary A supplies the public key pkU of a honest party. The
challenger looks up the corresponding tuple (honest, pkU , skU) and returns the secret key skU to A.

4. Reveal queries(pkU , pkV): This query can be categorized in to two types– HonestReveal queries
and CorruptReveal queries. Here the adversary supplies a pair of public keys pkU and pkV . In the
HonestReveal query, both pkU and pkV are honestly registered, i.e., both of them correspond to honest
parties; whereas in CorruptReveal query, one of the public key is registered as honest while the other
is registered as corrupt. The challenger runs the NIKEkey algorithm using the secret key of the honest
party (in case of HonestReveal query using the secret key of any one of the parties) and the public
key of the other party, and returns the result to A.

5. Test (pkU , pkV): Here A supplies two distinct public keys pkU and pkV , that were both registered
as honest. If pkU = pkV , the challenger aborts and returns ⊥. Otherwise, it uses the bit b to answer
the query. If b = 0, the challenger runs the NIKEkey algorithm using the public key of one party say
pkU , and the private key of the other party skV and returns the result to A. If b = 1, the challenger
samples a random shared key from SHK, and returns that to A.

6. Leakage queries: The leakage queries can further be categorized into two types depending upon the
particular instantiation of our generic (·)LR-CKS-heavy model.

(a) Bounded leakage queries: In the BLR-CKS-heavy security model the total amount of leakage
from the secret key of the underlying cryptographic primitives is bounded by leakage parameter
λ = λ(κ). Here the adversary A supplies the description of an arbitrary polynomial time
computable functions fi and a public key pk. The challenger computes fi(sk), where sk is the
secret key corresponding to pk, and returns the output to A. The adversary A can specify multiple
such leakage functions as long as the leakage bound is not violated, i.e,

∑
i |fi(sk)| ≤ λ(κ). Note

that A can obtain λ bits of information/leakage from the secret key from each of the honest
parties, including those involved in the Test queries.

(b) Continuous leakage queries: In the CLR-CKS-heavy model the adversary can obtain unbounded
leakage of the secret key of honest parties, with the only restriction that the amount of leakage
per occurrence is bounded by leakage parameter. If the leakage bound of the secret keys of the
parties per occurrence is λ(κ) and the leakage function fi outputs leakage bits of the ith secret
key, then for leakage resilience of the ith secret key we need that |fi(ski)| ≤ λ(κ).

A’s queries may be made adaptively and are arbitrary in number. However, to prevent trivial wins
the adversary should not be allowed to make certain queries to the parties involved in the Test query.
We model this by requiring the Test query to be valid. We next give the definition of validity in our
(·)LR-CKS-heavy model (see Def. 5).

Our condition of validity of the Test query is split into two parts depending on the particular
instantiation of our (·)LR-CKS-heavy model.

Definition 5 (λ-BLR-CKS-heavy validity). We say that the Test query ΠU,V between two parties U
and V with public-secret key pairs (pkU , skU) and (pkV , skV) respectively is valid in the BLR-CKS-heavy
model if the following conditions hold:

1. The adversary A is not allowed to ask Extract(pkU) or Extract(pkV) queries.

2. The adversary A should not be allowed to ask HonestReveal(pkU , pkV) or HonestReveal(pkV , pkU)
queries.

9

3. The total output length of all the Bounded Leakage queries queried by A to each party involved in the
Test query, i.e., U and V is at most λ(κ), i.e.,

∑
i |fi(skU)| ≤ λ(κ) and

∑
i |fi(skV)| ≤ λ(κ).

4. After the Test query ΠU,V is activated, the leakage functions fi(skU) and fi(skV) may not be asked
by the adversary.

Definition 6 (λ-CLR-CKS-heavy validity). We say that the Test query is valid in the CLR-CKS-
heavy model if: Conditions (1)-(2) of Definition 5 hold, and

3. The output length of the Continuous Leakage queries made by A per occurrence to each party involved
in the Test query is at most λ(κ), i.e., |fi(skU)| ≤ λ(κ) and |fi(skV)| ≤ λ(κ).

4. After the Test query ΠU,V is activated, the leakage functions fi(skU) and fi(skV) may not be asked
by the adversary.

Remark 2. Note that in our validity conditions defined above (Defs. 5 and 6) we do not allow the adversary
to make leakage queries to either of the parties involved in the Test query after the Test query is activated.
This is because if the adversary is allowed to leak from the secret key after the Test query he can simply
encode the specification of the shared key derivation function and other public keys into the leakage
function. This reveals some information about the shared key allowing the adversary to successfully
answer the challenge (distinguishing real from random). Such an impossibility result was also shown in
the context of public-key encryption [30] and (interactive) key exchange protocols [3].

Security Game and Security Definition.

Definition 7 ((·)LR-CKS-heavy security game). Security of a NIKE protocol in the generic ((·)LR-
CKS-heavy model is defined using the following security game, which is played by a PPT adversary A
against the protocol challenger C.

• Stage 1: The challenger C runs LR-NIKEcommon setup algorithm to output the global parameters
params and return it to A.

• Stage 2: A may ask any number of RegisterHonest, RegisterCorrupt, Extract, HonestReveal, CorruptRe-
veal, and Leakage queries.

• Stage 3: At any point of the game A may ask a Test query that is λ-(·)LR-CKS-heavy valid. The
challenger chooses a random bit b to respond to this queries. If b = 0, the actual shared key between
the respective pairs of parties involved in the corresponding test query is returned to A. If b = 1, the
challenger samples a random shared key from SHK, records it for later and returns that to A.

• Stage 4: A may continue asking RegisterHonest, RegisterCorrupt, Extract, HonestReveal, CorruptReveal,
and Leakage queries provided the Test query is still valid.

• Stage 5: At some point A outputs the bit b′ ← {0, 1} which is its guess of the value b. A wins if
b′ = b.

Let SuccA denote the event that A wins the above security game (Definition 7).

Definition 8 ((·)LR-CKS-heavy-security). Let qH , qC , qE, qHR, and qCR denote the number of
RegisterHonest,RegisterCorrupt,Extract,HonestReveal, and CorruptReveal queries respectively. A NIKE
protocol π is said to be (·)LR-CKS-heavy-secure if there is no PPT algorithm A that can win the above
(·)LR-CKS-heavy security game with non-negligible advantage. The advantage of an adversary A is defined
as:

Adv
(·)LR-CKS-heavy
π,A (κ, qH , qC , qE , qHR, qCR) = |2 Pr(SuccA)− 1|.

3.2 Constructions of Leakage-resilient Non-interactive key exchange

In this section we show our constructions of leakage-resilient NIKE in the bounded-memory leakage model.
But, before presenting the constructions, we show an attack against the the NIKE scheme of [16] in the
setting of leakage, which will motivate us for new constructions of leakage-resilient NIKE.

10

Attack on the NIKE protocol of [16] in the bounded-leakage setting. In this section we show
that the NIKE protocol of Freire et al. [16] from pairings in the standard model is completely insecure,
even if the adversary is given only a single bit of leakage on the secret key. The attack exploits the fact
that the adversary can ask any arbitrary leakage function as long as the output of the function is length
shrinking in its input size. In particular, the secret key of a party in the NIKE protocol in Freire et al. [16]
is a field element, i.e., x ∈ Zp, and one of the components of the public key is Z = gx. The shared key
between two parties IDi and IDj has the structure e(Sxi , Zj), where S is a public element, Zj = gxj

and xi and xj are the secret keys of parties IDi and IDj respectively.

Now, given the public-key, the adversary can encode the function that leaks the hardcore bit of the
discrete logarithm of Z. In other words, he can specify the leakage function in such a way such that it
leaks exactly the most significant bit (MSB) of x. Note that the MSB of x is actually the hardcore bit of
the discrete logarithm function. So, with a single bit of leakage the adversary can recover x completely
and hence he can distinguish the shared secret key from a random key with probability 1 and win the
indistinguishability game. In fact here with only a single bit of leakage the adversary can perform key
recovery attack, which is stronger than the attack on the indistinguishability game.

Protocol BLR-NIKE: Construction of NIKE in the bounded-memory leakage model. Table
2 shows our construction of NIKE in the bounded-memory leakage model. The starting point of our
construction is the NIKE protocol of [16]. Let G2 be a type 2 pairing parameter generation algorithm,
i.e., it outputs gk = (G1,G2,GT , g1, g2, p, e, ψ), ChamHhk : {0, 1}∗×Rcham → Zp be a (bounded) leakage-
resilient chameleon hash function tolerating leakage bound up to λ(κ) (denoted as λ-LR-CHF) indexed
with the evaluation/hashing key hk and Rcham denotes the randomness space of the hash function. Also
let F : {0, 1}`(κ) × Zp → Zp, F ′ : Zp × {0, 1}κ → Zp be (εprf , sprf , qprf) and (ε′prf , s

′
prf , q

′
prf) secure PRF

families Ext : Zp × {0, 1}s → {0, 1}`(κ) be an average-case (v, ε)-extractor, with v << log p. Namely, it
has log p bits of input, s bit seed, and `(κ)-bit outputs, and for a random seed and input with v bits of
min-entropy, the output is ε-away from a uniform `(κ)-bit string.

Party IDA Party IDB

NIKEcommon setup(1κ)

gk
$←− G2(1κ)

where gk = (G1,G2,GT , g1, g2, p, e, ψ)
α, β, γ, δ ← G∗1

(hk, ck)← Cham.KeyGen(1κ, λ)

params
$←− (gk, α, β, γ, δ, hk)

Return params

NIKEgen(1κ, params)

xA, rA ← Zp; r′A
$←− Rcham; xB , rB

$←− Zp; r′B
$←− Rcham;

x̂A ← Ext(xA, sA); where sA
$←− {0, 1}s x̂B ← Ext(xB , sB); where sB

$←− {0, 1}s
x′A ← Fx̂A(rA) + F ′rA(1κ); x′B ← Fx̂B (rB) + F ′rB (1κ);

ZA ← g
x′A
2 ; ZB ← g

x′B
2 ;

tA ← ChamHhk(ZA||IDA; r′A); tB ← ChamHhk(ZB ||IDB ; r′B);

YA ← αβtAγtA
2

; XA ← Y
x′A
A YB ← αβtBγtB

2

; XB ← Y
x′B
B

pkA ← (XA, ZA, r
′
A, rA, sA); skA ← xA pkB ← (XB , ZB , r

′
B , rB , sB); skB ← xB

NIKEkey(pkB , skA) NIKEkey(pkA, skB)

If pkA = pkB , return ⊥ If pkB = pkA, return ⊥
Parse pkB as (XB , ZB , r

′
B , rB); Parse pkA as (XA, ZA, r

′
A, rA);

tB ← ChamHhk(ZB ||IDB ; r′B); tA ← ChamHhk(ZA||IDA; r′A)

If e(XB , g2) 6= e(αβtBγtB
2

, ZB) If e(XA, g2) 6= e(αβtAγtA
2

, ZA)
then shkA,B ←⊥ then shkA,B ←⊥

x′A ← Fx̂A(rA) + F ′rA(1κ); x′B ← Fx̂B (rB) + F ′rB (1κ);

shkAB ← e(δx
′
A , ZB) shkAB ← e(δx

′
B , ZA)

Table 2. LR-NIKE Protocol in the Bounded Leakage model(BLR-NIKE)

Theorem 1. Let ChamHhk be a family of bounded leakage-resilient chameleon hash function (BLR-
CHF), F and F ′ be (εprf , sprf , qprf) and (ε′prf , s

′
prf , q

′
prf) secure PRFs and Ext be a (v, ε)-strong average case

11

randomness extractor where p is the order of the underlying groups G1, G2 and GT . Then the above NIKE
protocol BLR-NIKE is BLR-CKS-heavy-secure assuming the intractability of the DBDH-2 assumption
with respect to the parameter generator G2. In particular, let A be an adversary against the NIKE protocol
BLR-NIKE in the BLR-CKS-heavy security model making qH number of RegisterHonest user queries.
Then using it we can construct an adversary ADBDH-2 against the DBDH-2 problem such that:

AdvBLR-CKS-heavy
BLR-NIKE,A (κ) ≤ q2H

(
2ε+ 2εprf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2,G2(κ)

)
.

Proof. The proof of this theorem will proceed via the game hopping technique [34]: define a sequence
of games and relate the adversary’s advantage of distinguishing each game from the previous game to
the advantage of breaking one of the underlying cryptographic primitive. Let AdvGameδ(A) denote the
advantage of the adversary A in Game δ.

Game 0: This is the original security game with adversary ADBDH-2. When the Test query is asked, the

Game 0 challenger chooses a random bit b
$←− {0, 1}. If b = 0, the real shared key is given to A, otherwise

a random value chosen from the shared key space is given.

AdvGame0(A) = AdvBLR-CKS-heavy
BLR-NIKE,A (κ).

Game 1: Initially ADBDH-2 chooses two identities IDA, IDB ∈ [qH], where qH denotes the number of
RegisterHonest queries made by ANIKE. Effectively ADBDH-2 is guessing that IDA and IDB to be honestly
registered by ANIKE will be involved in the Test query later. When ANIKE makes its Test query on a
pair of identities {IDI , IDJ}, ADBDH-2 checks if {IDI , IDJ} = {IDA, IDB}. If so, it continues with the
simulation and gives the result to ANIKE; else it aborts the simulation.

AdvGame1(A) ≥ AdvGame0(A)/q2H .

Game 2: This game is identical to the previous game, except that the challenger changes the way
how the output of the extractor is computed. In particular, instead of computing x̂A ← Ext(xA, sA)
and x̂B ← Ext(xB , sB), the challenger chooses a uniformly random x̂A, x̂B ← {0, 1}`(κ). Game 0 and
Game 1 are indistinguishable by the property of the strong average case randomness extractor. Suppose
that the adversary obtains at most λ = λ(κ) bits of leakage from the secret keys xA and xB of
parties A and B respectively. Since Ext can work with inputs that have min-entropy v << log p,
even given the bounded leakage of λ bits, we have that

(
xA, sA,Ext(xA, sA)

)
≈ε

(
xA, sA, U`(κ)

)
and(

xB , sB ,Ext(xB , sB)
)
≈ε
(
xB , sB , U`(κ)

)
, where U`(κ) denotes the uniform distribution over {0, 1}`(κ).∣∣AdvGame2(A)−AdvGame1(A)

∣∣ ≤ 2ε.

Game 3: This game is identical to the previous game, except that the challenger changes the way
how the PRFs are computed. In particular, instead of computing x′A ← Fx̂A(rA) + F ′rA(1κ) and x′B ←
Fx̂B (rB) + F ′rB (1κ), the challenger computes x′A ← RF (rA) + F ′rA(1κ) and x′B ← RF (rB) + F ′rB (1κ),
where RF is random function with the same range as F . If A can distinguish the difference between
Game 2 and Game 3, then A can be used as a subroutine to construct a distinguisher D between the
PRF F : {0, 1}`(κ) × Zp → Zp and and a random function RF .

|AdvGame3(A)−AdvGame2(A)| ≤ 2εprf .

Game 4: This game is identical to the previous game, except that the challenger nows samples x′A and
x′B randomly. In particular, instead of computing x′A ← Fx̂A(rA) +F ′rA(1κ) and x′B ← Fx̂B (rB) +F ′rB (1κ),

the challenge samples x′A, x
′
B

$←− Zp. Note that x′A and x′B are identically distributed in both Game 3 and
Game 4, and hence both these games are identical from the view of an adversary.

AdvGame4(A) = AdvGame3(A).

Game 5: In this game the challenger changes the way in which it answers RegisterCorrupt queries. In
particular let, IDA and IDB be identities of two honest parties involved in the Test query with public
keys (XA, ZA, r

′
A, rA, sA) and (XB , ZB , r

′
B , rB , sB) respectively. Let IDD be the identity of the party with

public key (XD, ZD, r
′
D, rD) that is subject to a RegisterCorrupt query. If tD = ChamHhk(ZA||IDA; r′A) or

tD = ChamHhk(ZB ||IDB ; r′B), the challenger aborts. Note that if the above happens, then the challenger
has successfully found a collision of the chameleon hash function. By the difference lemma [33] we have:∣∣AdvGame4(A)−AdvGame3(A)

∣∣ ≤ AdvcollA,ChamH(κ).

12

Game 5: In this game the DBDH-2 adversary ADBDH-2 receives as input (g2, g
a
2 , g

b
2,

gc1, T) as input, and its objective is to determine if T = e(g1, g2)sbc or a random element from GT , where
g1 and g2 are generators of the group G1 and G2 respectively and a, b, c are random elements from Zp.
We now describe how ADBDH-2 sets up the environment for ANIKE and simulates all its queries properly.

ADBDH-2 runs Cham.KeyGen(1κ, λ) to obtain a key pair for a chameleon hash function, (hk, ck). It
then chooses two messages m1,m2 ← {0, 1}∗ and r1, r2 ← Rcham, where Rcham is the randomness
space of the chameleon hash function. ADBDH-2 then computes the values tA = Cham.Eval(m1; r1) and
tB = Cham.Eval(m2; r2).

Let us define a polynomial of degree 2 p(t) = p0 + p1t+ p2t
2 over Zp such that tA and tB are the roots of

p(t), i.e., p(tA) = 0 and p(tB) = 0. Also, let q(t) = q0 + q1t+ q2t
2 be a random polynomial of degree 2 over

Zp. ADBDH-2 then sets α = (gc1)p0 · gq01 , β = (gc1)p1 · gq11 , γ = (gc1)p2 · gq21 and δ = gc1 (gc1 was obtained as
input of the hard problem instance). Note that, since pi, qi ← Zp are randomly chosen, the values of α, β

and γ are also random. Also note that αβtγt
2

= (g1)p1(t)g
q(t)
1 . In particular YA = g

q(tA)
1 and YB = g

q(tB)
1

(since p(tA) = p(tB) = 0). ADBDH-2 then simulates all the queries of ANIKE as follows:

• RegisterHonest: When ADBDH-2 receives as input a RegisterHonest user query from ANIKE for a party
with identity ID, it fist checks whether ID ∈ {IDA, IDB}. Depending upon the result it does the
following:

– If ID /∈ {IDA, IDB}, ADBDH-2 runs NIKE.gen to generate a pair of keys (pk, sk), and makes
returns pk to ANIKE.

– If ID ∈ {IDA, IDB}, ADBDH-2 does the following. Without loss of generality let ID = IDA.
Now, ADBDH-2 uses the trapdoor ck of the chameleon hash to produce r′A ∈ Rcham such that
Cham.Eval(ga2 ||IDA; r′A) =
Cham.Eval(m1; r1). Note that, by the random trapdoor collision property of the chameleon hash
function, r′A is uniformly distributed over Rcham and also independent of r1. Similarly when ID =
IDB , ADBDH-2 uses the trapdoor ck to produce r′B ∈ Rcham such that Cham.Eval(gb2||IDB ; r′B) =
Cham.Eval(m2; r2). The value r′B is also uniformly distributed over Rcham and also independent
of r2. ADBDH-2 then sets:

pkA = (ψ(ga2)q(tA), ga2 , r
′
A, rA) and pkB = (ψ(gb2)q(tB), gB2 , r

′
B , rB).

where rA, rB ← Zp. Note that these are correct public keys since p(tA) = p(tB) = 0.

• RegisterCorrupt: Here ADBDH-2 receives as input a public key pk and an identity string ID from ANIKE.
If ID ∈ {IDA, IDB}, ADBDH-2 aborts as in the original attack game.

• HonestReveal: When ANIKE supplies identities of two honest parties, ID and ID′ say, ADBDH-2 checks
if {ID, ID′} = {IDA, IDB}. If this happens, ADBDH-2 aborts. Else, if {ID, ID′} ∩ {IDA, IDB} ≤ 1,
there are three cases:

– ID ∩ {IDA, IDB} 6= φ and ID′ ∩ {IDA, IDB} = φ. In this case, the challenger ADBDH-2 runs
NIKE.key(pkID, skID′) to produce the shared key shkID,ID′ . Note that ADBDH-2 can do this since
it knows the secret key skID′ of the party ID′. ADBDH-2 then gives shkID,ID′ to ANIKE.

– ID ∩ {IDA, IDB} = φ and ID′ ∩ {IDA, IDB} 6= φ. In this case, the challenger ADBDH-2 runs
NIKE.key(pkID′ , skID) to produce the shared key shkID,ID′ . Note that ADBDH-2 can do this since
it knows the secret key skID′ of the party ID′. ADBDH-2 then gives shkID,ID′ to ANIKE.

– {ID, ID′} ∩ {IDA, IDB} = φ. In this case, the challenger ADBDH-2 runs NIKE.key(pkID′ , skID)
(it can use skID′ also) to produce the shared key shkID,ID′ . ADBDH-2 then gives shkID,ID′ to
ANIKE.

• CorruptReveal: When ANIKE supplies two identities ID and ID′ where ID was registered as corrupt
and ID′ was registered as honest, ADBDH-2 checks if ID′ ∈ {IDA, IDB}. If ID′ /∈ {IDA, IDB},
ADBDH-2 runs NIKE.key(pkID, skID′) to obtain shkID,ID′ and returns it to ANIKE. However, if ID′ ∈
{IDA, IDB}, ADBDH-2 checks whether the public key pkID = (XID, ZID, r

′
ID, rID) by checking

the pairing. This makes sure that pkID is of the form (Y dID, g
d
2 , r
′
D, rD) for some d ∈ Zp, where

YD = (gc1)p(tID)g
q(tID)
1 , rD ← Zp and r′D ← Rcham. This means that XID = (gcd1)p(tID)g

dq(tID)
1 . From

this the value gcd1 can be computed as:

gcd1 = (XID/ψ(ZID)q(tID))1/p(tID) mod p.

Note that the value 1/p(tID) is well defined since p(tID) 6= 0 mod p. Also note that tID 6= tA, tB,
since we have already eliminated the hash collisions.

13

Assume w.l.o.g. that ID′ = IDA. So writing the public key of IDA as (YA, ZA, r
′
A, rA), the shared

key between IDA and ID is given by:

shkIDA,ID = e(gcd1 , ZA).

• Leakage queries: The adversary ANIKE may specify arbitrary polynomial time computable function(s)
fi to leak from the secret keys xA and xB. The challenger ADBDH-2 forwards the functions fi to its
leakage oracle and forwards the answers to ANIKE.

• Test query: Here, ADBDH-2 returns T .

This completes the description of simulation by ADBDH-2. If ANIKE can distinguish between real and
random key in Game 4, then it is equivalent to solving the DBDH-2 problem. To see this, note that for user
IDA we have ZA = ga2 and XA = ψ(ZA)q(tA), and for user IDB we have ZB = gb2 and XB = ψ(ZB)q(tB).
Hence, shkIDA,IDB = e((gc1)b, ZA) = e((gc1)a, ZB) = e(g1, g2)abc.

Since the simulation done by ADBDH-2 is perfect, we have:

AdvGame5(A) = AdvGame4(A)

Game 6. In this game the challenger ADBDH-2 chooses T randomly from the target group GT . Since T is
now completely independent of the challenge bit, we have Pr(SuccGame6) = 1/2. Game 5 and Game 6
are identical unless adversary ADBDH-2 can distinguish e(g1, g2)abc from a random element. So, we have,

|AdvGame6(A)−AdvGame5(A)| ≤ Advdbdh-2ADBDH-2,G2(κ).

By combining all the above expression from Game 0- Game 6 we have:

AdvBLR-CKS-heavy
BLR-NIKE,ANIKE

(κ) = AdvGame0(A)

≤ q2H · (AdvGame1(A)

≤ q2H · (AdvGame2(A) + ε)

≤ q2H · (AdvGame3(A) + ε+ εprf + ε′prf)

≤ q2H · (AdvGame4(A) + ε+ εprf + ε′prf + AdvcollA,ChamH(κ))

≤ q2H · (AdvGame5(A) + ε+ εprf + ε′prf + AdvcollA,ChamH(κ))

≤ q2H · (AdvGame6(A) + ε+ εprf + ε′prf + AdvcollA,ChamH(κ)

+Advdbdh-2ADBDH-2,G2(κ))

≤ q2H · (ε+ εprf + ε′prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2,G2(κ))
Thus we have,

AdvBLR-CKS-heavy
BLR-NIKE,ANIKE

(κ) ≤ q2H ·
(
ε+ εprf + ε′prf + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2,G2(κ)

)
.

ut

Leakage Tolerance of Protocol BLR-NIKE. The order of the groups G1, G2 and GT are p. Note that
although the secret key in our protocol BLR-NIKE may appear to be a single field element, but in the
actual instantiation of the protocol the secret key is a tuple of n+ 1 field elements. This is because the
secret key of the concrete instantiation of the BLR-CHF of Wang and Tanaka [35] consists of n field
elements which also corresponds to the number of generators in the construction of [35]. The leakage
tolerance of the BLR-CHF is λ′ = ((n− 1) log(p)− ω(log κ)) as shown in [35]. The size of the secret key
of the BLR-CHF is L = n log p. So, for sufficiently large n, the leakage rate η = λ′/L of the BLR-CHF
approaches 1− o(1).

We also consider a very good randomness extractor that can work with inputs that have min-entropy
v << log p and produces outputs whose distance from uniform `(κ)-bit strings is ε < 2−`(κ). The size of the
secret key xA (respectively xB) of our NIKE construction is log p (apart from the size of the secret key of λ′-
LR-CHF, i.e, n log p). So the leakage tolerated from xA (respectively xB) is at least log p−v ≈ log p. Hence,
the overall leakage tolerated by our construction is λ ≈ ((n−1) log(p)−ω(log κ))+log p ≈ n log(p)−ω(log κ).
The overall size of the secret key of our construction is L′ = (n+ 1) log p. So the overall leakage rate of
our construction is η′ = λ/L′ = 1− o(1), for sufficiently large n.

4 Constructions of various cryptographic primitives from leakage-resilient
NIKE

We show many potential applications of leakage-resilient NIKE, demonstrating its usefulness as an
important cryptographic primitive.

14

4.1 Leakage-resilient Adaptive Chosen Ciphertext secure PKE

We now present our construction of LR-IND-CCA-2-secure PKE scheme from a BLR-CKS-heavy-secure
LR-NIKE scheme. Actually, here we show how to construct a LR-IND-CCA-2-secure key encapsulation
mechanism (KEM) given such a NIKE. Before proceeding with the construction, we give the LR-IND-
CCA-2 security model for KEMs.

Leakage-resilient Chosen-Ciphertext security for KEM. We say that a KEM Γ = (KEM.Setup,

KEM.Gen, KEM.Encap, KEM.Decap) satisfies correctness if for all pub
$←− Setup(1κ), (pkKEM, skKEM)

$←−
Gen(1κ, pub), and (C,K) ← Encap(pkKEM), it holds that Pr [Decap(skKEM, C) = K] = 1 (where the
randomness is taken over the internal coin tosses of algorithm KEM.Gen and KEM.Encap).

LR-IND-CCA-2 security. We now turn to defining indistinguishability under adaptive chosen-ciphertext
attacksin the bounded-memory leakage setting (BLR-IND-CCA-2).

Experiment ExpBLR-IND-CCA-2
Γ,A (κ, λ) Oracle Decap∗(C)

pub
$←− Setup(1κ); If C = C∗, abort

(pk, sk)
$←− Gen(1κ, pub), b

$←− {0, 1}; Return Decap(sk, C)

(C∗,K∗1)← Encap(pk); K∗0
$←− K;

b′ ← ADecap∗,Oλsk(·)(pk, C∗,K∗b); Oracle Oλsk(L)

If b′ = b, then return 1, else return 0 Return L(sk)

Table 3. Experiment defining LR-CCA-2 security of KEM

Definition 9 (BLR-IND-CCA-2 security). Let κ ∈ N and λ = λ(κ) be parameters. We say that
KEM Γ = (Setup, Gen, Encap, Decap) is λ-BLR-CCA-2-secure if for all PPT adversaries A there exists a
negligible ν : N→ [0, 1] such that∣∣∣Pr[ExpBLR-IND-CCA-2

Γ,A (κ, λ) = 1]
∣∣∣ ≤ ν(κ).

where the experiment ExpBLR-IND-CCA-2
Γ,A (κ, λ) is defined in Table 3.

Generic Construction of leakage-resilient KEM. We now show the construction of leakage-resilient
CCA-2-secure KEM Γ = (KEM.Setup, KEM.Gen, KEM.Encap, KEM.Decap) from a leakage-resilient NIKE
(see Figure 1).

Note that the correctness of the above construction follows from the correctness of the NIKEkey algorithm.
The LR-IND-CCA-2 security of the KEM scheme Γ follows from the following theorem:

Let LR-NIKE = (NIKEcommon setup, NIKEgen, NIKEkey) be a BLR-CKS-heavy NIKE with leakage
rate 1− o(1).

1. KEM.Setup(1κ) : This algorithm runs the NIKEcommon setup(1κ) algorithm to obtain the system
parameters params. It then sets the public parameters of the KEM pub as params.

2. KEM.Gen(1κ, pub) : This algorithm runs the algorithm NIKEgen(1κ, pub) to obtain a pair of
public-private key (pk, sk). It then sets pkKEM = pk and skKEM = sk.

3. KEM.Encap(pkKEM) : This algorithm parses pkKEM as pk, samples another key pair (pk′, sk′)←
NIKEgen(1κ, pub). Then it runs NIKEkey(pk, sk′) to produce the shared key shk. It then sets the
encapsulated key K = shk and the ciphertext C = pk′.

4. KEM.Decap(skKEM, C) : This algorithm parses the ciphertext C as pk′ and the secret key skKEM

as sk. It then runs NIKEkey(pk′, sk) and obtains the result.

Figure 1. Construction of LR-CCA-2 secure KEM Γ

Theorem 2. Suppose the leakage-resilient NIKE scheme LR-NIKE is BLR-CKS-heavy-secure with leakage
rate 1− o(1). Then the KEM scheme Γ is BLR-IND-CCA-2-secure KEM. More formally, let AKEM be
an adversary against Γ making qD number of decapsulation queries and qL number of leakage queries.

15

Then using AKEM, we can construct another adversary ANIKE in the BLR-CKS-heavy security model who
makes two RegisterHonest queries, qD number of RegisterCorrupt queries, qD number of CorruptReveal
queries, and qL number of Leakage queries and the running time of ANIKE is roughly same as that AKEM.
Moreover the leakage rate of Γ is 1− o(1).

Proof. Let AKEM be an adversary against the BLR-IND-CCA-2-secure KEM Γ . We now show how to use
AKEM to construct another adversary ANIKE against LR-NIKE, thereby contradicting its BLR-CKS-heavy
security. ANIKE simulates the environment to AKEM in the following way:

– KEM.Setup: On input the public parameters params, ANIKE sets the public parameters pub of the
KEM scheme as params.

– KEM.Gen: ANIKE makes two RegisterHonest queries, receiving as input two honestly registered public
keys pk1 and pk2. It then sets pkKEM = pk1 and skKEM =⊥.

– KEM.Encap(pk): To simulate the challenge phase, ANIKE makes a Test(pk1, pk2) query. It receives as
reply a shared key K which is either the real key, i.e., K = NIKE.key(pk1, sk2), or a random shared
K ← SHK. It then sets the encapsulated key K∗ = K and C∗ = pk2.

– Leakage queries: When AKEM queries with leakage functions f , the challenger ANIKE forwards f to
the leakage oracle Oλsk1(·), and receives as response f(sk1). It then returns f(sk1) to AKEM.

– Decapsulation queries: AKEM makes decapsulation queries to ANIKE with ciphertexts C. ANIKE

parses C as pk′, and since we have C 6= C∗, we have pk′ 6= pk2. If pk′ = pk1, ANIKE outputs ⊥.
This is consistent with the rejection rule of the KEM Γ and also LR-NIKE. Else, ANIKE makes a
RegisterCorrupt query on pk′. Here we assume that all of AKEM’s decapsulation queries are distinct
without loss of generality and hence all of the RegisterHonest queries are distinct. ANIKE then makes
a CorruptReveal(pk1, pk

′) query to get a shared key K ∈ SHK or a symbol ⊥. It then returns K to
AKEM.

This completes the description of ANIKE’s simulation. From the description it is clear than the above
simulation is perfect. Note that, if K∗ is the real shared key, i.e., it is the output of NIKE.key algorithm,
then it is properly simulating the Encap algorithm in the ExpBLR-IND-CCA-2

Γ,A (κ, λ) security experiment; else
if K∗ is chosen randomly it also properly simulates the fact that it is chosen randomly in the experiment.
Finally, when AKEM outputs a bit b′ as its guess for b in the experiment, ANIKE also outputs the same
bit b′. So the advantage of ANIKE in breaking the BLR-CKS-heavy security of LR-NIKE is exactly the
same as the advantage of AKEM in breaking the BLR-IND-CCA-2 security of the KEM scheme Γ . Also
note that the number of RegisterCorrupt and CorruptReveal queries made by ANIKE is same as the number
of decapsulation queries asked by AKEM. This completes the proof of the above theorem. ut

4.2 Leakage-Resilient Authenticated Key Exchange

The work of Bergsma et al. [6] shows a generic construction of eCK-secure AKE protocol, using an
UF-CMA-secure signature scheme, CKS-light-secure NIKE scheme and a pseudo-random function as
underlying primitives.

In this paper, we present a construction of a leakage-resilient NIKE protocol, which is secure in
the CKS-heavy model, under bounded-memory leakage, i.e. BLR-CKS-heavy-secure NIKE protocol
(Table 2). Since the CKS-heavy-security implies the CKS-light-security, our leakage-resilient NIKE
protocol can work as a bounded-memory-leakage-resilient CKS-light-secure NIKE protocol. Further, in
the literature we can find UF-CMLA-secure signature schemes [23], which are UF-CMA-secure signature
schemes under the bounded-memory leakage model. Thus, we can find the necessary primitives from the
literature to transform our leakage-resilient NIKE to a leakage-resilient AKE, following the NIKE to AKE
transformation of Bergsma et al [6], in the bounded-memory leakage model.

There are numerous leakage versions of the eCK model, under OCLI axiom [2–4], and the memory
leakage model [10]. Further, they address after-the-fact leakage. With our new BLR-CKS-heavy-secure
NIKE protocol, following the Bergsma et al. [6] transformation, we can achieve leakage-resilient AKE in
an eCK-style model,

- under the memory leakage (stronger than the OCLI axiom),

- addressing before-the-fact leakage (weaker than the after-the-fact leakage).

16

Bounded-memory Before-the-fact Leakage eCK Model. We present a suitable security model to
analyze the leakage resiliency of AKE protocols, considering the aforementioned points, i.e. eCK-style
security model [26] addressing before-the-fact, bounded-memory leakage.

Let κ be the security parameter. Let U = {U1, ..., Un} be a set of n parties. We use the term principal
to identify a party involved in a protocol instance. Each party Ui where i ∈ [1, NP] has a pair of long-term
public and secret-keys, (pkUi , skUi). The term session is used to identify a protocol instance at a principal.
Each principal may have multiple sessions and they may run concurrently. The oracle Πs

U,V represents

the sth session at the owner principal U , with intended partner principal V . The principal which sends
the first protocol message of a session is the initiator of the session, and the principal which responds to
the first protocol message is the responder of the session.

Partner sessions in BBFL-eCK model. Two oracles Πs
U,V and Πs′

U ′,V ′ are said to be partners, if all the
conditions of Alawatugoda et al. [3, Def. 3] hold.

Modelling Leakage. We consider the bounded-memory leakage setting for modelling the leakage, where
the adversary is allowed to obtain totally a bounded amount of leakage from each of the long-term secret
keys, issuing arbitrary number of leakage queries at will, before the session key is established. This leakage
model maps with the real world scenarios, where the adversary can install a malware on the victim’s
computer and steal some amount of secret information from the memory, launch a cold-boot attack, as
well as learns some amount of secret information during the computations on secret keys (power analysis
attacks, timing attacks etc). The adversary is allowed to issue leakage queries with arbitrary number of
polynomial time functions fi and obtain the leakage fi(sk), of the secret key sk. As mentioned above the
constraint is

∑
i=1 |fi(sk)| ≤ λ, where λ is the leakage parameter.

Adversarial Powers.

– Send(U, V, s,m) query: The oracle Πs
U,V , computes the next protocol message according to the protocol

specification and sends it to the adversary. A can also use this query to activate a new protocol
instance with blank m.

– SessionKeyReveal(U, V, s) query: A is given the session key of the oracle Πs
U,V .

– EphemeralKeyReveal(U, V, s) query: A is given the ephemeral keys (per-session randomness) of the
oracle Πs

U,V .

– Corrupt(U) query: A is given the long-term secrets of the principal U .

– Test(U, s) query: When A asks the Test query, the challenger first chooses a random bit b
$←− {0, 1}

and if b = 1 then the actual session key is returned to A, otherwise a random string chosen from the
same session key space is returned to A.

– Leakage(U, fi) query: The leakage fi(skU) is computed and returns to the adversary if and only if∑
i=1 |fi(skU)| ≤ λ.

λ-BBFL-eCK-freshness. Let λ be the leakage parameter. An oracle Πs
U,V is said to be λ-BBFL-eCK -fresh

if and only if the conditions (1)-(3) of Alawatugoda et al. [3, Def.4] hold, and

4. Before Πs
U,V is activated, for all Leakage(U, fi) queries,

∑
i=1 |fi(skU)| ≤ λ, and for all Leakage(V, fi)

queries,
∑
i=1 |fi(skV)| ≤ λ.

5. After Πs
U,V is activated no leakage allowed from U and V .

The BBFL-eCK security game. The adversary A interacts with the challenger by issuing any combination
of Send(), SessionKeyReveal(), EphemeralKeyReveal(), Leakage() and Corrupt() queries at will. At some
point the adversary chooses a λ-BBFL-eCK-fresh oracle and issues a Test() query. Then, the adversary may
continue asking the Send(), SessionKeyReveal(), EphemeralKeyReveal(), Leakage() and Corrupt() queries
while preserving the freshness of the test session, and finally outputs answer bit b′ for the challenge. A
wins if b′ = b. Let SuccA is the event that the adversary A wins the above security game.

Definition 10 (BBFL-eCK-security). A protocol π is said to be BBFL-eCK-secure if there is no PPT
adversary A that can win the BBFL-eCK security game with non-negligible advantage. The advantage of
an adversary A is defined as AdvBBFL-eCK

π,A (κ) = |2 Pr(SuccA)− 1|.

17

Constructing BBFL-eCK-secure Key Exchange Protocols. In Table 4, we show the generic
leakage-resilient variant of the Bergsma et al. [6] AKE protocol. We replace the CKS-light-secure NIKE
with a BLR-CKS-heavy-secure NIKE, and the UF-CMA-secure signature scheme with a UF-CMLA-secure
signature scheme in the bounded-memory leakage model, to come up with the generic BBFL-eCK-secure
AKE protocol. In this protocol, the final shared key is obtained by xor-ing the intermediate keys. Since
the adversary learns the leakage only from the long-term secret parameters, it is not necessary to use
leakage-resilient PRFs for the construction of LR-AKE, following NIKE to AKE transformation of
Bergsma et al.

Let LR-NIKE = (NIKEcommon setup,NIKEgen,NIKEkey) be the underlying BLR-CKS-heavy-secure NIKE
protocol, LR-SIG = (SIGkg,SIGsign,SIGvfy) be the underlying UF-CMLA-secure signature scheme and
PRF be a secure pseudo-random function.

A (Initiator) B (Responder)(
(sknikeA ,sksigA),(pknikeA ,pksigA)

) (
(sknikeB ,sksigB),(pknikeB ,pksigB)

)
rA

$←− {0.1}κ rB
$←− {0.1}κ

(sktmp
A , pktmp

A)← NIKEgen(1κ, rA) (sktmp
B , pktmp

B)← NIKEgen(1κ, rB)

σA ← SIGsign(sksigA , pktmp
A)

(pk
tmp
A

,σA)
−−−−−−−→ σB ← SIGsign(sksigB , pktmp

B)

If: SIGvfy(pksigB , pktmp
B , σB) = 1;

(pk
tmp
B

,σB)
←−−−−−−− If: SIGvfy(pksigA , pktmp

A , σA) = 1;

T := sort(pktmp
A , pktmp

B) T := sort(pktmp
A , pktmp

B)

knike,nike = PRF(NIKEkey(sknikeA , pknikeB), T) knike,nike = PRF(NIKEkey(sknikeB , pknikeA), T)

knike,tmp = PRF(NIKEkey(sknikeA , pktmp
B), T) knike,tmp = PRF(NIKEkey(sknikeB , pktmp

A), T)

ktmp,nike = PRF(NIKEkey(sktmp
A , pknikeB), T) ktmp,nike = PRF(NIKEkey(sktmp

B , pknikeA), T)

ktmp,tmp = PRF(NIKEkey(sktmp
A , pktmp

B)) ktmp,tmp = PRF(NIKEkey(sktmp
B , pktmp

A))

kA,B := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp kB,A := knike,nike ⊕ knike,tmp ⊕ ktmp,nike ⊕ ktmp,tmp

Table 4. Leakage-resilient AKE Protocol LR-AKE

Since, the generic construction of the AKE protocol remains unchanged with respect to the Bergsma
et al. [6], except the replacement of the leakage-resilient advancements of the underlying primitives, in
the bounded-memory leakage setting, the security of the resulting AKE still preserves the eCK-style with
the advancements of leakage resiliency in the bounded-memory leakage setting. Therefore, the security
theorem and the flow of the security proof is similar to the theorem and proof of the Theorem 1 of
Bergsma et al. [6, Appendix A].

Theorem 3. If the underlying NIKE protocol, LR-NIKE, is BLR-CKS-heavy-secure, the signature scheme,
LR-SIG, is UF-CMLA-secure in the bounded-memory leakage model, and the pseudo-random property
holds for the PRF, then the LR-AKE protocol is BBFL-eCK-secure.

Let d be the number of parties. Each party Ui owns at most ` number of protocol sessions. Let A be

an adversary against the above protocol LR-AKE. We construct attackers Bsig,B(1)nike,B
(0)
nike and Bprf against

the underlying leakage-resilient signature scheme, leakage-resilient NIKE protocol (matching session exists
and no matching session exists respectively), and the pseudo-random function s.t.,

AdvBBFL-eCK
LR-AKE,A (κ) ≤ 4 · d2`2 ·

(
AdvBLR-CKS-heavy

LR-NIKE,B(1)
nike

(
κ
)

+ AdvprfPRF,Bprf

(
κ
))

+4 · AdvBLR-CKS-heavy

LR-NIKE,B(0)
nike

(
κ
)

+ 4 · d · AdvUF-CMLA
LR-SIG,Bsig

(
κ
)
.

Proof Sketch. To prove the Theorem 3, we need to consider four types of attackers.

– A1-type attacker never asks EphemeralKeyReveal query for the test session. If there exists a partner
to the test session it will also never asks EphemeralKeyReveal query for the partner session.

– A2-type attacker never asks EphemeralKeyReveal query for the test session. If there exists a partner
to the test session it also never asks Corrupt query for the owner of the partner session.

– A3-type attacker never asks Corrupt query to the owner of the test session. If there exists a partner
to the test session it also never asks the EphemeralKeyReveal query to the partner session.

– A4-type attacker never asks Corrupt query to the owner of the test session. If there exists a partner
to the test session it also never asks the Corrupt query to the owner of the partner session.

18

Each legitimate attacker according to the freshness definition falls into at least on of these categories.

In the LR-AKE protocol the session key is computed as k := knike,nike⊕ knike,tmp⊕ ktmp,nike⊕ ktmp,tmp.
The main intuition behind this construction is that we need to reduce the indistinguishability of the shared
key of LR-AKE to the indistinguishability of LR-NIKE. In this simulation we can easily simulate the leakage,
by giving the adversary A the leakage obtained from the underlying leakage-resilient NIKE-challenger
and the signature scheme challenger. In the security experiment against the leakage-resilient NIKE,
the NIKE-adversary gets two challenge public-keys from the leakage-resilient NIKE-challenger. In the
reduction, we need to embed them into the view of the adversary A, in a way that we can embed the
leakage-resilient NIKE-challenge key into k while successfully answering all the legitimate Corrupt and
EphemeralKeyReveal queries.

A1-type attacker never asks EphemeralKeyReveal queries to the test session and the partner to the
test session. Thus, it is possible to embed the public keys from the leakage-resilient NIKE-challenger, as
the ephemeral public keys of the test session. Then, use the challenge key from the leakage-resilient NIKE
challenger as ktmp,tmp.

For the case of A2-type attacker, embed the public keys from the leakage-resilient NIKE-challenger,
one as the ephemeral public key and the other one as the long-term public-key of the test session. Then,
use the challenge key as ktmp,nike. Since this embedding involves a long-term secret of one party of the test
session, we need to use an additional PRF, and this long-term secret is used in many protocol executions
involving the corresponding party. Similarly, A3 and A4-type attackers can be handled by embedding the
leakage-resilient NIKE-challenger’s public and challenge keys accordingly.

Thus, the four attackers correspond to all possible combinations of Corrupt and EphemeralKeyReveal
queries, that are allowed in our BBFL-eCK security model. ut

Leakage Tolerance of the Generic LR-AKE Protocol. This generic protocol can tolerate the leakage
according to the leakage tolerance of the underlying leakage-resilient NIKE and the leakage-resilient
signature scheme. Our LR−NIKE can tolerate 1− o(1) leakage and the UF-CMLA signature scheme of
Katz et al. [23] can tolerate n−nε leakage, for n bit key and 1 > ε > 0, which approaches 1− o(1) leakage
rate for sufficiently large n and small enough ε. Thus, the corresponding instantiation can tolerate an
overall leakage rate of 1− o(1).

4.3 Leakage-resilient Low-latency Key Exchange

Low-latency key exchange (LLKE) can be considered as one of the important practical usages of NIKE
protocols, which permits the transmission of cryptographically protected data, without prior key exchange,
while providing perfect forward secrecy (PFS). Leakage resiliency of LLKE remains unstudied.

Bounded-memory Leakage LLKE-ma Model. We refer the security model under mutual authenti-
cation of Hale et al. [20, Section 5] as LLKE-ma model. In this work, we introduce bounded-memory
leakage model on top of LLKE-ma model (We use the notation BL-LLKE-ma to identify our model
whenever necessary).

Let d be the number of clients and ` be the number of servers. Each client is represented by a
collection of n oracles Ci,1, . . . ,Ci,n and each server is represented by a collection of k oracles Sj,1, . . . ,Sj,k.
Each oracle represents an instance of the protocol. Each principal has a long-term key pair (ski, pki).
Let κ be the security parameter and λ be the leakage parameter. Each oracle Ci,s ∈ [d]× [n] (or Sj,t ∈
[`]× [k], respectively), maintains:

1. two variables ktmp
i and kmain

i to store the temporary and main keys of a session,
2. a variable Partneri contains the identity of the intended communication partner, and
3. variables Min

i,s and Mout
i,s containing messages sent and received by the oracle.

Adversarial Powers.

– Send(Ci,s/Sj,t,m): The adversary sends the message m to the requested oracle, the oracle processes m
according to the protocol specification, and the response is returned to the adversary.

– Reveal(Ci,s/Sj,t, tmp/main): This query returns the key of the given stage if it has been already
computed, or ⊥ otherwise.

– Corrupt(i/j): This query returns the long-term secret key of the server or the client accordingly. If
Corrupt(j/i) is the τ -th query issued by the adversary, we say a party is τ -corrupted. For the parties
that are not corrupted we define τ :=∞.

19

– Test(Ci,s/Sj,t, tmp/main): This query is used to test a key. If the variable for the requested key is not

empty, the challenger chooses b
$←− {0, 1}, and if b = 0 then the requested key is returned, else a

random key is returned. Otherwise, ⊥ is returned.
– Leakage(i/j,fi): The leakage fi(ski/j) is computed and returns to the adversary if and only if∑

i=1 |fi(ski/j)| ≤ λ.

BL-LLKE-ma security game. The adversary interacts with the challenger by issuing any combina-
tion of Send(),Corrupt(),Reveal(), Leak() queries. At some point the adversary issues a Test() query,
to an oracle that holds the conditions in Def. 11. Then, the adversary may continue asking the
Send(),Corrupt(),Reveal(), Leak() queries, without violating the conditions of the Def. 11, and finally
outputs answer bit b′ for the challenge. A wins if b′ = b. Let SuccA is the event that the adversary A
wins the above security game.

Definition 11 (Leakage-Resilient Key-security (under Mutual Authentication)). A protocol
π is said to be BL-LLKE-ma-secure if there is no PPT adversary A that can win the BL-LLKE-ma
security game with non-negligible advantage, while holding the following conditions:

– All the conditions [20, Def. 8].
– Before activation of the test session on Ci, ∀ Leakage(i, fi) queries,

∑
i=1 |fi(ski)| ≤ λ, and before

activation of the test session on Sj ∀ Leakage(j, fi) queries,
∑
i=1 |fi(skj)| ≤ λ.

– After activation of the Test session on Ci no leakage allowed from ski (same as to the case of Sj).

The advantage of A is defined as AdvBL-LLKE-ma
π,A (κ) = |2 Pr(SuccA)− 1|.

Generic Construction of BL-LLKE-ma-secure LLKE from NIKE. In the work of Hale et al.,
they have used a CKS-light-secure NIKE scheme NIKE and UF-CMA-secure signature scheme SIG. We
simply replace those primitives with their respective leakage-resilient versions.

Let LR-NIKE = (NIKEcommon setup,NIKEgen,NIKEkey) be a BLR-CKS-heavy-secure NIKE scheme,
LR-SIG = (SIGkg,SIGsign,SIGvfy) be an UF-CMLA-secure signature scheme. Then we construct a LLKE
protocol LR-LLKE=(Gen,KEclient

init , KEclient
refresh, KE

server
refresh) same as the description in Hale et al. [20, Section 6.1].

Since, the generic construction of the LLKE protocol remains unchanged with respect to the Hale
et al., except the replacement of the leakage-resilient advancements of the underlying primitives (in the
bounded-memory leakage model), the security of the resulting AKE still preserves the LLKE-ma-style
with the advancements of leakage resiliency in the bounded-memory leakage model. Therefore, the security
theorem and the flow of the security proof is similar to the theorem and proof of the Theorem 2 of Hale
et al. [20, Appendix 6.2].

Theorem 4. If the underlying NIKE protocol, LR-NIKE, is BLR-CKS-heavy-secure, the signature scheme,
LR-SIG, is UF-CMLA-secure in the bounded-memory leakage model, then the LR-LLKE protocol is BK-
LLKE-ma-secure.

Let d be the number of clients and ` be the number of servers. Each client and each server is represented
by a collection of n and k oracles respectively. Let A be an adversary against the above protocol LR-LLKE.
We construct attackers Bsig and Bnike against the underlying leakage-resilient signature scheme and the
leakage-resilient NIKE protocol such that,

AdvBK-LLKE-ma
LR-LLKE,A (κ) ≤ d`n ·

(
AdvBLR-CKS-heavy

LR-NIKE,Bnike
(κ) + 2AdvUF-CMLA

LR-SIG,Bsig
(κ)
)

+d`n ·
(
k · AdvBLR-CKS-heavy

LR-NIKE,Bnike
(κ) + 2AdvUF-CMLA

LR-SIG,Bsig
(κ)
)

+2kd`n ·
(
AdvBLR-CKS-heavy

LR-NIKE,Bnike
(κ) + 2AdvUF-CMLA

LR-SIG,Bsig
(κ)
)

+ 4 · AdvBLR-CKS-heavy
LR-NIKE,Bnike

(κ) .

Proof Sketch. We distinguish between four different attackers:

– A1-type attacker asks Test query to a client oracle and the temporary key.
– A2-type attacker asks Test query to a client oracle and the main key.
– A3-type attacker asks Test query to a server oracle and the temporary key.
– A4-type attacker asks Test query to a client oracle and the main key.

The four different attackers correspond to all possible combinations of queries, that are allowed in our
BK-LLKE-ma security model. The four distinct lines of the equation in Theorem 4 corresponds to each
of above cases respectively. We can easily simulate the leakage, by giving the adversary A the leakage
obtained from the underlying leakage-resilient NIKE-challenger and the signature scheme challenger.
Apart from that, the simulation is same as to the Hale et al. [20] ut

20

Leakage Tolerance of the Generic LR-LLKE Protocol. This generic protocol can tolerate the leakage
according to the leakage tolerance of the underlying leakage-resilient NIKE and the leakage-resilient
signature scheme. Our LR−NIKE can tolerate 1− o(1) leakage and the UF-CMLA signature scheme of
Katz et al. [23] can tolerate n−nε leakage, for n bit key and 1 > ε > 0, which approaches 1− o(1) leakage
rate for sufficiently large n and small enough ε. Thus, the corresponding instantiation can tolerate an
overall leakage rate of 1− o(1).

5 Conclusion and Future Works

In this paper, we present a new approach to construct several leakage-resilient cryptographic primitives,
such as leakage-resilient PKE schemes, AKE protocols and LLKE protocols, based on leakage-resilient
NIKE protocols. Our construction of LR-NIKE in the bounded leakage setting achieves an optimal leakage
rate, i.e., 1 − o(1), and the resulting leakage-resilient constructions from that also preserve the same
leakage-rate, upon the appropriate choice of parameters. As for future works, we can briefly emphasize
the following main directions:

• Leakage-resilient NIKE in the 1− o(1)-continuous-memory leakage model.
• Leakage-resilient NIKE in after-the-fact leakage model.
• On leakage-resilient LLKE, as this paper opens up that direction, we hope there is much work to be

done in future.

References

1. Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and cryptography
against memory attacks. In Theory of Cryptology Conference, pages 474–495, 2009.

2. Janaka Alawatugoda, Colin Boyd, and Douglas Stebila. Continuous after-the-fact leakage-resilient key
exchange. In Information Security and Privacy - 19th Australasian Conference, ACISP 2014, Wollongong,
NSW, Australia, July 7-9, 2014. Proceedings, pages 258–273, 2014.

3. Janaka Alawatugoda, Douglas Stebila, and Colin Boyd. Modelling after-the-fact leakage for key exchange.
In Proceedings of the 9th ACM symposium on Information, computer and communications security, pages
207–216. ACM, 2014.

4. Janaka Alawatugoda, Douglas Stebila, and Colin Boyd. Continuous after-the-fact leakage-resilient eck-secure
key exchange. In Cryptography and Coding - 15th IMA International Conference, IMACC 2015, Oxford, UK,
December 15-17, 2015. Proceedings, pages 277–294, 2015.

5. Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Leakage-resilient public-key cryptography in the bounded-
retrieval model. In Advances in Cryptology-CRYPTO 2009, pages 36–54. Springer, 2009.

6. Florian Bergsma, Tibor Jager, and Jörg Schwenk. One-round key exchange with strong security: An efficient
and generic construction in the standard model. In IACR International Workshop on Public Key Cryptography,
pages 477–494. Springer, 2015.

7. Daniel J. Bernstein. Cache-timing attacks on AES. Technical report, 2005.
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

8. Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan. Overcoming the hole in the
bucket: Public-key cryptography resilient to continual memory leakage. IACR Cryptology ePrint Archive,
Report 2010/278, 2010.

9. David Brumley and Dan Boneh. Remote timing attacks are practical. In USENIX Security Symposium, pages
1–14, 2003.

10. Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, and Fuchun Guo. Strongly leakage-resilient authenticated
key exchange. In Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference
2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings, pages 19–36, 2016.

11. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, pages
644 – 654, 1976.

12. Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Cryptography against
continuous memory attacks. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium
on, pages 511–520. IEEE, 2010.

13. Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Efficient public-key cryptogra-
phy in the presence of key leakage. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 613–631. Springer, 2010.

14. Yevgeniy Dodis, Yael Tauman Kalai, and Shachar Lovett. On cryptography with auxiliary input. In STOC,
pages 621–630, 2009.

15. Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. SIAM journal on computing, 38(1):97–139, 2008.

21

16. Eduarda SV Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G Paterson. Non-interactive key exchange. In
Public-Key Cryptography–PKC 2013, pages 254–271. Springer, 2013.

17. Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Strongly secure authenticated key
exchange from factoring, codes, and lattices. Designs, Codes and Cryptography, 76(3):469–504, 2015.

18. David Galindo. Boneh-franklin identity based encryption revisited. In International Colloquium on Automata,
Languages, and Programming, pages 791–802. Springer, 2005.

19. David Galindo, Johann Großschädl, Zhe Liu, Praveen Kumar Vadnala, and Srinivas Vivek. Implementation of
a leakage-resilient elgamal key encapsulation mechanism. Journal of Cryptographic Engineering, 6(3):229–238,
2016.

20. Britta Hale, Tibor Jager, Sebastian Lauer, and Jörg Schwenk. Speeding: On low-latency key exchange. IACR
Cryptology ePrint Archive, 2015:1214, 2015.

21. Shai Halevi and Huijia Lin. After-the-fact leakage in public-key encryption. In Theory of Cryptography
Conference, pages 107–124. Springer, 2011.

22. Michael Hutter, Stefan Mangard, and Martin Feldhofer. Power and EM attacks on passive 13.56MHz RFID
devices. In CHES, pages 320–333, 2007.

23. Jonathan Katz and Vinod Vaikuntanathan. Signature schemes with bounded leakage resilience. In ASI-
ACRYPT, pages 703–720, 2009.

24. Eike Kiltz and Krzysztof Pietrzak. Leakage resilient elgamal encryption. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 595–612. Springer, 2010.

25. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In
CRYPTO, pages 104–113, 1996.

26. Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated key exchange. In
International Conference on Provable Security, pages 1–16. Springer, 2007.

27. Tal Malkin, Isamu Teranishi, Yevgeniy Vahlis, and Moti Yung. Signatures resilient to continual leakage on
memory and computation. In Theory of Cryptology Conference, pages 89–106, 2011.

28. T.S. Messerges, E.A. Dabbish, and R.H. Sloan. Examining smart-card security under the threat of power
analysis attacks. IEEE Transactions on Computers, pages 541–552, 2002.

29. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In Theory of
Cryptology Conference, pages 278–296, 2004.

30. Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Advances in Cryptology-
CRYPTO 2009, pages 18–35. Springer, 2009.

31. Baodong Qin and Shengli Liu. Leakage-resilient chosen-ciphertext secure public-key encryption from hash proof
system and one-time lossy filter. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 381–400. Springer, 2013.

32. Baodong Qin and Shengli Liu. Leakage-flexible cca-secure public-key encryption: simple construction and free
of pairing. In International Workshop on Public Key Cryptography, pages 19–36. Springer, 2014.

33. Victor Shoup. Oaep reconsidered. Journal of Cryptology, 15(4):223–249, 2002.
34. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR Cryptology EPrint

Archive, 2004:332, 2004.
35. Yuyu Wang and Keisuke Tanaka. Generic transformation to strongly existentially unforgeable signature

schemes with leakage resiliency. In International Conference on Provable Security, pages 117–129. Springer,
2014.

36. Yuyu Wang and Keisuke Tanaka. Generic transformation to strongly existentially unforgeable signature
schemes with continuous leakage resiliency. In Australasian Conference on Information Security and Privacy,
pages 213–229. Springer, 2015.

Appendix

A Leakage-resilient Cryptography and Leakage Models

During the past two decades side-channel attacks have arisen as a popular method of attacking cryp-
tographic systems. Timing attacks [7, 9, 25], EM radiation analysis attacks [22], and power analysis
attacks [28] are some popular methods of side-channel attacks. In order to abstractly model the side-
channel attacks and analyze the security of cryptographic primitives against them, cryptographers have
proposed the notions of leakage-resilient cryptography, introducing various leakage models. [1, 5, 27,29],
introducing various leakage models.

Only computation leaks information (OCLI) axiom. In the work of Micali and Reyzin [29], a general
framework was introduced to model the leakage, that occurs during computation with secret parameters,
which is widely known as Only computation leaks information (OCLI) axiom. They mentioned that the
leakage only occurs from the secret memory portions which are actively involved in computations. The

22

leakage amount is bounded per computation, though the adversary is allowed to obtain the leakage from
many computations. Therefore, the overall leakage amount is unbounded. Since, this assumption enforces
that the leakage is only occurred due to computations, this does not cover the attacks that happen due
to the leakage from the memory such as malware attacks, cold-boot attacks etc.

Inspired by the cold-boot attacks, Akavia et al. [1] constructed a general framework to model bounded
leakage attacks, which is widely known as bounded-memory leakage model. The adversary chooses an
arbitrary polynomial time leakage function, f and sends it to the leakage oracle. The leakage oracle
returns f(sk) to the adversary, where sk is the secret key. The only restriction here is that the sum of
output length of all the leakage functions that an adversary can obtain is bounded by some parameter λ,
which is smaller than the size of sk. This leakage model does not address the continuous leakage from the
memory, which can often happen due to attacks such as malware attacks.

Previous works of Zvika et al. [8] and Dodis et al. [12] presented a continual-memory leakage model,
in which it is assumed that the leakage happens from the entire secret memory. The other characteristics
of this model is same as the OCLI model. This leakage model is stronger than the OCLI model, because
here the adversary can obtain the leakage from the entire memory regardless of computations.

Differently, Dodis et al. [14] introduced a leakage model, where the adversary is allowed to obtain the
leakage as any computationally uninvertible function of the secret key as auxiliary input. That model
eliminates the concept of leakage parameter, but enforcing the hardness parameter instead.

23

	New Approach to Practical Leakage-Resilient Public-Key Cryptography

