
Practical Graphs for Optimal Side-Channel Resistant
Memory-Hard Functions

Joël Alwen

IST Austria

Jeremiah Blocki

Purdue University

Ben Harsha

Purdue University

ABSTRACT
A memory-hard function (MHF) fn with parameter n can be com-

puted in sequential time and space n. Simultaneously, a high amor-
tized parallel area-time complexity (aAT) is incurred per evaluation.

In practice, MHFs are used to limit the rate at which an adversary

(using a custom computational device) can evaluate a security sensi-

tive function that still occasionally needs to be evaluated by honest

users (using an off-the-shelf general purpose device). The most

prevalent examples of such sensitive functions are Key Derivation

Functions and password hashing algorithms where rate limits help

mitigate off-line dictionary attacks. As the honest users’ inputs to

these functions are often (low-entropy) passwords special attention

is given to a class of side-channel resistant MHFs called iMHFs.

Essentially all iMHFs can be viewed as some mode of operation

(making n calls to some round function) given by a directed acyclic

graph (DAG) with very low indegree. Recently, a combinatorial

property of a DAG has been identified (called “depth-robustness”)

which results in good provable security for an iMHF based on

that DAG. Depth-robust DAGs have also proven useful in other

cryptographic applications. Unfortunately, up till now, all known

very depth-robust DAGs are impractically complicated and little

is known about their exact (i.e. non-asymptotic) depth-robustness

both in theory and in practice.

In this work we build and analyze (both formally and empirically)

several exceedingly simple and efficient to navigate practical DAGs

for use in iMHFs and other applications. For each DAG we:

• Prove that their depth-robustness is asymptoticly maximal.

• Prove bounds of at least 3 orders of magnitude better on

their exact depth-robustness compared to known bounds

for other practical iMHF.

• Implement and empirically evaluate their depth-robustness

and aAT against a variety of state-of-the art (and several

new) depth-reduction and low aAT attacks. We find that,

against all attacks, the new DAGs perform significantly

better in practice than Argon2i, the most widely deployed

iMHF in practice.

Along the way we also improve the best known empirical attacks on

the aAT of Argon2i by implementing and testing several heuristic

versions of a (hitherto purely theoretical) depth-reduction attack.

Finally, for the best performing of the new DAGs we implement an

iMHF using the Argon2i round function and code base and show

that on a standard off-the-shelf CPU the new iMHF can actually be

evaluated slightly faster than Argon2i (despite seemingly enjoying

significantly higher aAT).

CCS CONCEPTS
• Security and privacy → Hash functions and message au-
thentication codes;

KEYWORDS
hash functions, key stretching, depth-robust graphs, memory hard

functions

1 INTRODUCTION
A memory-hard function (MHF) is a family of functions equipped

with an honest algorithm N for evaluating them such that N re-

quires a limited amount of (sequential) computation and memory,

yet no parallel amortized algorithm can significantly reduce the

product of space and time required per evaluation of the MHF.

Intuitively, the goal of MHFs is to limit the advantage (in terms

of dollar per rate of evaluation) that an adversary equipped with

a (potentially highly parallel) custom computational device such

as an FPGA or an Application Specific Integrated Circuit (ASIC)

has over the average honest user who only has an (essentially se-

quential) general purpose CPU at their disposal. In practice, MHFs

are useful in applications where we would like to limit the rate

at which an adversary can evaluate a particular function while

simultaneously not preventing honest parties from evaluating the

function at a moderate rate. An important family of such functions

are found in password based cryptography. For example we may

wish to limit the rate at which an adversary can evaluate a KDF or

password hashing algorithm in order to increase the difficulty of

the adversary performing dictionary attacks.

Several distinct hardness notions based on memory have been

considered in the literature. An early example is (sequential) space
complexity (considered for example in [33]) which lowerbounds

the minimum amount of memory required to evaluate a given

function on a (sequential) computational device. In the context

of cryptography memory-bound functions were first considered

in [3, 23]. There, the complexity of a function is taken to be the

minimum expected number of cache misses in a computation of

the function.

More recently, memory-hard functions (MHFs) were introduced

by Percival [34] in the form of the scrypt algorithm. Intuitively

MHFs define the complexity of a function to be the minimum prod-

uct of the space and time required to compute the function (amor-

tized across a large number of concurrent evaluation).
1
MHFs

have since found growing favor in the security and cryptographic

community. They have been proposed (and are being increasingly

used) for password hashing for use in storing credentials in a login

server and as key derivation functions in password based cryptogra-

phy. (For example in the recent Password Hashing Competition [2]

almost all of the entrants, including all finalists and the winner,

claimed some form of memory-hardness.) MHFs are also being in-

creasingly used as the basis for Proof-of-Work protocols underlying

1
For a brief discussion on the difference between memory-bound and memory-hard

see Appendix A.

1

cryptocurrencies such as Litecoin [20], Dogecoin [13], ZCash [41]

and Ethereum [39].

Data (In)Dependance. MHFs can generally be divided into two

categories. A data-dependent MHF (dMHF) is characterized by the

property that the memory-access pattern ofN depends on the input

to the MHF. Conversely, if the property does not hold then we use

the term data-independent MHF (iMHF). The latter are particularly

interesting in the context of password hashing as they naturally

resist a class of side-channel attacks (e.g. cache-timing attack [12])

which could potentially leak sensitive information about the inputs;

namely about the password being hashed. However this resistance

does come at a price; certain dMHFs such as scrypt have been

shown to enjoy strictly greater memory-hardness [8] then can

possibly be achieved for a very broad class of iMHFs [5] that include

all known theoretical and practical candidate iMHF constructions.

iMHFs and Graphs. In a bit more detail, this class of iMHFs can be

characterized as iMHFs consisting of some static mode of operation

over (a fixed input-length) compression function. Both in theory

and in practice essentially all iMHFs are designed (or can be viewed)

as such. Whats more, the particular mode of operation can in turn

be viewed as directed acyclic graph (DAG) which describes how the

inputs and outputs of various calls to an underlying compression

function are related to each other. First used in [24] this method of

describing a function in terms of a DAG and compression function

haswitnessed various incarnations both explicit [7, 10, 25, 26, 28, 31]

and implicit [4, 15, 18, 19, 22, 35, 40] to name just a few.

Put simply, the iMHF fG given by DAG G and round function h
is computed by labeling the nodes ofG. The input(s) to fG are the

labels of the source nodes of G.2 The labels of internal node v is

computed by applying a fixed round function h to the labels of the

parents of v .3 The output of fG is the label of the sink(s) of G.4 If
G has n nodes then for any given input x , by computing the labels

one at a time in topological order, algorithm N can evaluate the

graph function fG (x) in time n using space n times the label size. In

practice h is chosen to be some cryptographic hash function. Thus

the memory-hardness of the graph functions is usually analyzed

in the random oracle (RO) model where h is modeled as an ideal

compression function (i.e. fixed input length RO).

Besides clarity gained by such a modular design, the real power

of describing fG in terms ofG can be seen in [10, 11] where a lower-

bound on the memory-hardness of fG (in the parallel random oracle

model) is given in terms of the “amortized area-time” pebbling com-

plexity (aAT) of G or aAT(G) for short. This is a complexity notion

for a DAG given by measuring cost of an optimal strategy for a

game played involving placing pebbles on the nodes ofG according

to two very simple rules.
5
Intuitively, while any DAG on n nodes

gives rise to an iMHF which takes the same amount of resources for

the honest party using algorithm N , the memory-hardness of fG
grows as does aAT(G). This motivates the search for simple DAGs

with maximal aAT over all graphs of equal size.

2
A node is called a source if it has no incoming edges.

3
A parent of v is a node u such that G contains the edge (u, v).

4
A sink is a node with no out going edge.

5
In some other works aAT(G) is lowerbounded by the closely related notion of “cu-

mulative pebbling complexity” of the graph [7, 10].

Depth-Robust Graphs. Recently it has been shown that for a DAG

G to have high aAT it is both necessary [7] and sufficient [5] for G
to be very depth-robust.

An (e,d)-depth-robust directed acyclic graph (DAG) has the prop-
erty that after removing any subset of up to e nodes (and adjacent

edges) there remains a directed path of length d . By very depth-

robust we essentially mean that the product of e and d should

be large. The problem of constructing DAGs with extreme depth-

robustness was first investigated by Erdös, Graham and Szemerédi

in[27]. There, a graph on n nodes with indegree O (log(n)) is con-
structed

6
such that for certain positive constants c1 and c2 removing

any c1n nodes leaves a path of length c2n. More recently Mahmoody,

Moran and Vadhan [31] adapted the construction of [27] such that

for every ϵ > 0 and n ≥ nϵ large enough [31] constructs a graph

Gn on n nodes with indegree Ω̃(log
2) such that for any α ∈ (0, 1)

the graph is (αn, (α − ϵ)n)-depth-robust.7

Originally, depth-robust graphs found theoretical applications

in proving lowerbounds on circuit complexity and Turing ma-

chine time [32, 36–38] and, quite recently, to prove lowerbounds in

the domain of proof complexity [1]. However, more recently [31]

used depth-robust graph to construct several Proofs of Sequential

Work; protocols allowing a prover to convince a computationally-

bounded verifier that a certain amount of sequential work was

done (despite the prover being capable of arbitrary parallel com-

putation). Yet more recently, strong connections have emerged

between depth-robust graphs and study of secure memory-hard

functions (MHF). [5, 7] In particular, [7] showed that if G is (e,d)-
depth-robust then aAT(G) > ed . The more depth-robustG the more

memory hard fG becomes.

New Requirements and Constraints for Practice. In contrast to

more theoretical applications of depth-robust graphs, both those

in [31] and those in the study ofmemory-hard functions impose new

requirements on the constructions of depth-robust (and high aAT)

graphs. This is because both types of applications require honest

parties to label a fixed concrete depth-robust graph G (though

with different round functions and to different ends). Moreover

the security and efficiency of the resulting constructions is tightly

related indegree of G and to the maximal e and d for which G is

(e,d)-depth-robust (or to the aAT G). In particular, the analogue of

a security parameter in more conventional cryptographic schemes

is the number of nodes of G. Thus, applications ask for a sequence

of graphs of increasing size n such that their respective depth-

robustness (or aAT) properties grow in n. Together these properties
of the applications impose the following new desiderata for depth-

robust graphs:

Low In-Degree: For the MHF applications the round func-

tion h is modeled as a (random) oracle. In particular this

imposes the restriction that evaluating h requires having

all inputs in memory simultaneously. In practice though h
is implemented by a cryptographic hash function which

6
The indegree of a graph is the largest number of incoming edges for any node in the

graph.

7
To be precise, except for [27], the remaining works on depth-robustness from the

70s and 80s actually considered a vairant with edge removal instead of node removal.

However, for constant indegree graphs, as used in this work, the two notions are

effectively the same.

2

are iterative functions (e.g. using the Merkle-Damgård con-

struction). This means that when the input x to h is long

then there is really no need to store all of x at once. Given

the importance of memory consumption to the security

definition it is important to minimize this discrepancy be-

tween the RO model and real world computation. Thus,

as the length of the (longest) input to h is dictated by the

indegree of G, to build a memory-hard function we would

like that the indegree of G be as small as possible (usually

2).

For the case of Proofs-of-Sequential-Work, the efficiency

of each protocol in [31] degrades significantly in the in-

degree of G. Therefore, in this case too we would like to

minimize the indegree.

Extreme Depth-Robustness & aAT: The security of cryp-

tographic applications discussed above is tightly tied to the

depth-robustness and aAT of the underlying DAG. Thus,

a good start is to use a family of graphs with asymptot-

ically maximal values in n for these measures. However,

while asymptotics provide some evidence for soundness

of a construction, in any given practical instance, it is the

exact security for the concrete parameters being used that

ultimately matters.

Therefore, going beyond asymptotic optimality we pro-

pose two further desiderata. First, the hidden constants

in the asymptotics should be made explicit and upper

bounded as far as possible. Second, we would like em-

pirical evidence supporting the claim that the graph has

high depth-robustness and/or large aAT. This can take the

form of evaluating the success of state-of-the-art depth-

reduction algorithms and of efficient pebbling strategies

that aim to minimize the pebbling cost of the graph. (The

latter algorithms can, in particular, give rise to evaluation

strategies for evaluating the iMHF fG on a parallel devices

with low amortized space/time per instance. [5, 7])

Simple & Locally Navigable: In all cryptographic applica-

tions honest parties are required to label the nodes ofG . For
this to be made practical we would like to be able to provide

implementors with a simple, elegant and concise algorithm

for navigating the edge structure of the graph (in particular

for determining the parents of a given node). All past con-

structions of graphs with extreme depth-robustness (and

asymptotically optimal aAT) rely heavily on low degree ex-

pander graphs with extreme expansion properties. While

in theory well understood, in practice these can prove to

be either rather complicated with large (or at least poorly

understood) constants describing their expansion proper-

ties (relative to indegree) or to be simple but exhibiting

suboptimal expansion properties.

With the goal of wide spread adoption in mind it would

be useful to avoid generic expanders altogether. More to the

point, ideally we would like a graph equipped with a simple

algorithm (ie. consisting only of a few basic arithmetic and

control flow instructions) for computing the parent func-

tion in polylog time and space. More precisely given node

v ∈ V and i ∈ {1, . . . , indeg(v)} the algorithm outputs the

i th parent node u ofv in time (and space)O(log
2
(|V |)) with

only very small constants hidden in the O notation.

1.1 Existing Graphs and Their Properties
Due to a Lemma by Valiant [38] it follows that for any graph G on

n = 2
k
nodes with indegree δ and any t there exists a subset set S ⊆

V of nodes of size |S | ≤ δtn/(log(n)−t) such that removing S leaves

no path of length greater than 2
k−t

. Several constructions of graphs

with low indegree exhibiting this asymptotically optimally depth-

robustness are given in the literature [27, 32, 36, 37] but all rely

on low (or constant) indegree expanders with extreme expansion

properties. The graphs in [31] also have indegree Ω̃(log
2(n)) rather

log(n) which would be optimal for graphs of equal size and depth-

robustness.

Valiants upperbound on the depth-robust of a graph and the al-

gorithm for pebbling non-depth-robust (i.e. depth-reducible) graphs

in [5] together imply that any graph has aATO(n2
log logn/log(n)).

All graphs graphs with (near) optimal aAT are built from optimal

depth-robust graphs [7, 10].

In contrast, for graphs with simple, locally navigable construc-

tions which do not rely on general expanders the asymptotics fall

well short of what we could hope to achieve. In particular, the

aAT of graphs used in iMHFs proposed for use in practice have

so far proven to be well below optimal [5–7, 9]. Of these the most

prominent is Argon2i [15] which won the recent Password Hashing

Competition and is rapidly establishing itself as the most widely

deployed iMHF in practice. We destinguish between the latest ver-

sion (1.3) Argon2iB and any previous versions Argon2iA as they

rely two different families of DAGs. In particular, for the graphs un-

derlying Argon2iB and Argon2iA the results in [7] show their aAT

to be O(n1.8) and O(n1.708) respectively. Graphs for other iMHFs

such as both Catena functions and the Balloon Hashing functions

have aATO(n1.67) or even o(n1.625). Similar results [9] hold for the

graphs used in Pomelo [40], Lyra2 [4], Rigv2 [19], Gambit [35] and

TwoCats [22].

In terms of constants, to the best of our knowledge, no effort

has been made for depth-robust graphs nor for high aAT graphs

to optimize the construction (or their analysis) to achieve good

constants. In fact no such analysis has been done prior to this

work. In Appendix D we show that for the depth-robust graph

of [27] the proof in that work implies that the (constant indegree

version of the) graph is (e,d)-depth-robust for ed = cn2/log(n)
where c = 4.72 × 10

−7
. The graph underlying the Argon2iA is only

known [5] to have aAT n5/3/(c log
2 n) for c = 9.6 × 10

7
.

1.2 Our Results
In a nutshell, in this work we make progress towards bringing

the constructive applications of depth-robust and high aAT graphs

into practice. First we build and analyze a very simple and locally

navigable sequences of graphs with indegree 2 and asymptotically

optimal depth-robustness. We given an upper bound for the hidden

constants an order of magnitude smaller then any known even

for the best theoretical construction ([27]). We also give a second

construction with similar properties but for high aAT. For this we

upper bound the hidden constants in its aAT to be two orders of

3

magnitude smaller than the best known for any graph with optimal

asymptotic aAT.

Finally we implement the graphs in software and run a variety

of state-of-the-art depth-reduction and low aAT attacks for graph

sizes used in practice. We compare the the results very favorably to

those of similar experiments for the DAGs underlyingArgon2iA and

Argon2iB. In particular the empirical results indicate that the hidden

constants for the depth-robustness and aAT of our constructions

are vastly smaller than we are able to bound rigorously. In more

details we do the following.

DRSample. In Section 3 we introduce algorithm DRSample for
sampling the parents of nodes in a random DAG G of size n. Next
we prove a probabilistic bound on the parameters of the depth-

robustness of G . In particular, G is (Ω(n/logn),Ω(n))-depth-robust
except with negligible probability which is optimal. Our proof ac-

tually shows thatG satisfies a stronger variant of depth-robustness

called block depth-robustness [7] with block sizes of length b =
Ω(logn). Intuitively, this ensures that G − S contains a long path

p which maintains distance b from S meaning that for any x ∈ p
none of nodes [x ,x + b] are contained in S .

aATSample. In Section 4 we introduce algorithm aATSample
which modifies an arbitrary locally navigable block depth-robust

DAGG with a simple operation so as to obtain a new locally nav-

igable graph G ′. We show how to transform an exact (i.e. non

asymptotic) lowerbound on the aAT ofG into a higher exact lower-

bound on aAT ofG ′. In particular we can use DRSample forG and,

combining the results from the previous section with those in [7]

relating depth-robustness to aAT, we obtain the necessary exact

lowerbound on the aAT of G.

Empirical Analysis. In Section 5 we provide empirical evidence

for the suitability of both families of graphs.

Implemented Attacks: For attacks we implement 6 depth-reducing

algorithms; that is algorithms for finding small sets S of nodes for

reducing the depth of a given graph. The first is taken from the

attack in [5] while the other four are variants of Valiant’s algorithm

in [38]. The last one (called “Best Attack”) simply takes the smallest

set S found by any of the other algorithms for a given target depth.

We also implement the parallel pebbling attack of [5] which pro-

duces a low aAT pebbling of a given DAGG and depth-reducing set

S . In particular the algorithm makes use Best Attack as a subroutine

and searches for optimal parameters for running the [5] pebbling

algorithm.

Implemented Graphs: Next we implement 8 graphs, Argon2i-A,

Argon2i-B, DRSample, aATSample as well as a variant of the latter
requiring less randomness to sample (a valuable commodity in some

practical applications) but for which the formal analysis about the

constants (and asymptotics) carry over almost unchanged. Finally,

for applications where no randomness is available at all, we also

implement fully deterministic “Powers-of-Two” graph. This latter

graph is also exceedingly simple and efficient to implement both

in hardware and software requiring nothing other then a single

mod (potentially even a power of 2) operation and one bit-shift to

compute the parent function.

Security: Our first contribution in this section is to show that, in

practice, depth-reduction techniques based on Valiant’s lemma actu-

ally outperform the Layered depth-reduction attacks of [5]. At least

in the cases of the Argon2i graphs this is somewhat surprising as

asymptotic analysis of Layered for those particular graphs indicates

that it should out perform significantly better then asymptotics

known to hold for Valiant’s lemma (albeit on an arbitrary graph).

In practice, the converse seems to be true, at least for Argon2i-A,

Argon2i-B, DRSample and the Powers-of-Two graph. (We believe

this to indicate that, even in theory, the behavior of Valiant’s lemma

merits further investigation.)

Next, we describe and analyze the results of running the Best

Attack depth-reducing algorithms and against each of the graphs

on sequence of interesting graph sizes for use in practice. We found

that all new constructions fair significantly better than Argon2i-B.

Amongst the new constructions DRSample seems to be the most

depth-robust of all. For example, in order to reduce the depth of the

Argon2i-B graph on n = 2
24

nodes to approximately 4× 10
6
a set of

size |S | = 6.7 × 10
3
was found while for DRSample no set smaller

than |S | ≥ 12 × 10
5
. Recall that when G is (e,d)-depth-robust then

aAT(G) > ed . For Argon2i-B the (e,d) point with the highest such

product we found was 2.5 × 10
11

while for DRSample we found a

point with ed ≈ 5 × 10
12
.

Finally, we report and analyze the results of running the peb-

bling attack against each graph (for each size) on input the optimal

depth-reducing set found for that choice of graph and size. Here

too the new constructions faired better than either version of Ar-

gon2 (though the fully deterministic construction only marginally

so). Once again DRSample and its variants proved the most re-

silient though aATSample was not much worse. For example, when

n = 2
24

(which corresponds to 8GB of memory when using Ar-

gon2’s compression function which can be computed in roughly

1.25 seconds) we see the aAT of the attack on Argon2i-B is roughly

11.5 times better than the honest party while against DRSample
the improvement is only 3.4 fold.

Improved Attacks:Along the waywe also improve the best known

empirical results for low aAT and depth-reduction attacks on both

Argon2i-A and Argon2i-B compared with the state-of-the-art in [6].

For example, when evaluating Argon2i-B with one pass over 8GB

of memory our new low aAT attack is now almost 11.5 times more

efficient than the honest algorithm (compared to 9.3 times more

efficient in [6]). For a similar evaluation of Argon2i-A we improve

from 14.2 to 19 times the honest algorithms efficiency. This may

be somewhat unexpected in light of the fact that, compared to

Valiants lemma, the best (known) lowerbounds for the attacks on

those graphs are actually better for the Layered depth-reduction

algorithm used in [6]. Never-the-less, in practice our experiments

indicate that Valiant’s approach seems to work better.

Timing: Finally we also report on experiments measuring the time

required by the honest evaluation algorithm for evaluating an iMHF

obtained by using DRSample with Argon2iB’s compression func-

tion on an off-the-shelf general purpose CPU. We show that for

the same number of calls to the underlying round function the new

iMHF can be evaluated as slightly faster than Argon2iB.

4

1.3 Discussion
To be clear, although we believe these results represent significant

improvements in terms of practical applicability compared to past

graph constructions, the constants for the depth-robustness and

aAT which we are able to prove still leave something to be desired

for graph of the size we would like to use in practice (e.g. iMHF

n = 2
22

is a reasonable value). However, the empirical results

strongly indicate that an iMHF using our new constructions are both

as (or even more) efficient for the honest user while simultaneously

resulting in significantly greater memory-hardness when compared

to state-of-the-art in practical iMHFs. With this in mind we view

the theoretical techniques introduced in this work for bounding the

constants of the new constructions as a strong starting point for the

further investigation into tightening the bounds.We conjecture that

the graphs presented here do in fact achieve constants of practical

interest as evidenced by the failure of otherwise powerful attacks.

2 PRELIMINARIES
We begin with some notation and definitions central to this work.

We denote the set of natural numbers by N = {1, 2, . . .}. For a ≤ b
both in N we denote the set {a,a + 1, . . . ,b} by [a,b]. In particular

[1,n] is denoted simply by [n]. We denote the set ofw-bit strings

as Bw = {0, 1}
w
and the set of all bitstrings by B = ∪w ∈[n]Bw . We

use logx = log
2
x to denote the base 2 logarithm.

For a directed acyclic graph (DAG) G = (V ,E) the indegree of a
node v ∈ V is the number of incoming edges. That is indeg(v) :=

|{(u,v) ∈ E}|. Conversely, the outdegree of v is the number of out-

going edges outdeg(v) := |{(v,u) ∈ E}|. More generally, the inde-

gree of G is max{indeg(v) : v ∈ V }. A node with indeg(v) = 0

is called a source and a node with outdeg(v) = 0 is called a sink.
We write Gn for the set of all DAGs on n nodes and Gn,δ ⊆ Gn
for the set of DAGs with indegree δ . The length of a (directed)

path p = (v1,v2, . . . ,vz) in G is the number of nodes it traverses

length(p) := z. The depth ofG is the length of the longest directed

path in G. The parents of a node v is the set parents(v) := {u ∈ V :

(u,v) ∈ E} of nodes with an outgoing edge leading v and similarly

the children of v are the nodes children(v) := {u ∈ V : (v,u) ∈ E}
with an incoming edge from v . Continuing the analogy, the an-
cestors of v are all nodes with a directed path from u to v . That
is ancestorsG (v) := {u ∈ V : (u, . . . ,v) a path in G}. When the

graph G is clear from context we omit the subscript. Finally, for

the sake of brevity, in this work, when we say that a set of nodes

S is being removed from a graph G we implicitly also mean that

incident edges to those nodes are removed. We denote the resulting

graph by G − S .
The following (parametrized) combinatoric property of the edge

structure of a DAG is central to this work. For large values of the

parameters it captures the intuition that the graph remains deep

even even when large arbitrary subsets of the nodes are removed.

Definition 2.1 (Block Depth-Robustness). For n ∈ N let G = (V ,E)
be a DAG with an implicit number of its nodes V = [n]. Given
S ⊆ V let N (S,b) =

⋃
v ∈S [v − b + 1,v]. We say that a DAG G is

(e,d,b)-block depth-robust if

∀S ⊆ V |S | ≤ e ⇒ depth(G − N (S,b)) ≥ d .

When b = we simply say that G is is (e,d)-depth-robust.

We will utilize the following lemma in our security analysis.

Lemma 2.2 is a slight generalization of a result of Valiant [38], and

we refer to attacks based on this lemma as Valiant’s Lemma Attacks.

Lemma 2.2. Let base b ∈ N≥2 be given and let G = (V = [n],E)
be any n node DAG with depth(G) ≤ bd and maximum indegree
indeg (G) ≤ δ then there is an efficient algorithm to compute subsets
S1, . . . , Sd ⊆ V with the following properties:

(1) For all T ⊆ [d] we have depth (G −
⋃
i ∈T Si) ≤ bd−|T | .

(2)

∑d
i=1
|Vi | ≤ δn.

2.1 Graph Pebbling
The results in [10] showed how to construct provably secure MHF

from any graph with high aAT. With that in mind we now formally

define this complexity notion laying the groundwork for the anal-

ysis of our second construction. aAT is defined in via the parallel

black pebbling game, a natural generalization to a parallel setting of

the original (sequential) black pebbling game [21, 30]. The game is

played in a sequence of moves consisting of placing and removing

pebbles on the nodes of a given DAG according to certain (very

simple) rules until all target nodes have been pebbled.

The complexity of such an execution is the sum of two values.

The first summand is the sum of the number of pebbles on the

graph across all steps which is called the “cumulative pebbling com-

plexity” (CPC) of the execution. The second summand is the sum of

number of times a pebble is placed on the graph. Intuitively, CPC

the amortized cost of storage (i.e. storing a label for one time step)

while the second term captures the amortized cost of computation.

Before being added to CPC, the second summand is multiplied by

the core-memory ratio R. This ratio is a parameter of the complexity

notion aAT denoting the ratio between the cost of computation vs.

storage. More precicely R is the on-chip area of a circuit computing

the compression function divided by the on-chip area required to

store one label. In the case of Argon2’s compression function and

labels the authors proposed R = 3000 as a realistic setting for that

parameter [16] (which is the value we used in all of our experi-

ments). For more intuition and in-depth explanation for aAT we

refer the to [16] and [5] (where the notion is referred to as “energy”

complexity).

We fix our notation for the parallel graph pebbling game follow-

ing [5].

Definition 2.3 (Parallel/Sequential Graph Pebbling). LetG = (V ,E)
be a DAG. A pebbling configuration is set Pi ⊆ V . Let S,T ⊆ V be

pebbling configurations. A pebbling P = (P0, P1, P2, . . . , Pt) with
starting configuration P0 = S for target T is a sequence of pebbling

configurations such that all target nodes are pebbled:

∀v ∈ T ∃z ≤ t : v ∈ Pz .

The pebbling P is called legal if pebbles are only places on nodes

whose parents are already pebbled:

∀i ∈ [t] : v ∈ (Pi \ Pi−1) ⇒ parents(v) ⊆ Pi−1.

The pebbling P is called complete if S = ∅ and T is the set of

sinks of G. For a sequential pebbling we add the constraint that

|Pi \ Pi−1 | ≤ 1, while no such constraint applies for a parallel

pebbling.

5

Let Π be the set of all legal and complete parallel pebblings of

G. Then for (implicit) core-memory ratio R > 0 the cumulative
pebbling complexity (CPC) and the amortized area-time complexity
(aAT) of a pebbling P and graph G are defined to be:

cpc(P) :=
∑
i≤t
|Pi | cpc(G) := min{cpc(P) : P ∈ Π}

aAT(P) := cpc(P) + R ∗
∑
i ∈[t]

|Pi \ Pi−1 |

aAT(G) := min{aAT(P) : P ∈ Π}.

More generally, let ΠT denote the set of legal parallel pebblings ofG
with target setT and starting configuration P0 = ∅. The cumulative
pebbling complexity (aAT) of pebbling a graph G with target set T
is defined to be:

aAT(G,T) = min{aAT(P) : P ∈ ΠT }.

For the sake of brevity, when it is clear from the context that a

pebbling is legal and complete we will refer to it as simply a pebbling
of G.

Clearly for any pebbling P (and thus for any graph) it holds that

aAT(P) ≥ cpc(P) (regardless of the core-energy ration) and so a

lowerbound on CPC is also a lower bound on aAT.

We will need the following result from [7].

Theorem 2.4 (Corollary 2 in [7]). Given a DAGG = (V ,E) and
subsets S,T ⊂ V such that S∩T = ∅ letG ′ = G−(V \ ancestorsG−S (T)).
IfG ′ is (e,d)-depth robust then the cost of pebblingG − S with target
set T is aAT(G − S,T) > ed for any core-energy ration R ≥ 0.

Finally we use the notion of quality from [5] to evaluate how

good a given pebbling strategy P is. Intuitively quality captures

the multiplicative advantage of an attacker compared to the hon-

est (sequential) evaluation algorithm. More precisely, if PN is the

honest pebbling strategy for a DAG G then the quality of pebbling

P for that DAG is given by aAT(PN)/aAT(P). In other words, if P
has quality 10 then an attacker evaluating the iMHF fG based on

the pebbling strategy P will have 10 times less amortized area-time

complexity than the honest algorithm.

All graphs considered in this work have the same type of honest

pebbling strategy; namely pebble the nodes one at time in topolog-

ical order never removing a pebble from the DAG. Thus in each

case aAT(PN) = n(n + 1)/2+Rn. In particular, following the recom-

mendation of [16] we used R = 3000 in our experiments.

3 A SIMPLE VERY DEPTH-ROBUST GRAPH
In this section we give the main construction (c.f. Algorithm 1)

which is a very simple and efficient algorithm for sampling a DAG

from a particular distribution enjoying extreme depth-robustness

with high probability. It is clear by inspection that DRSample only
returns acyclic graphs of size n and indegree (at most) 2. It is also

easy to see that the graphs are simple and locally navigable; that

is the GetParent function, which returns the i th parent of a node v ,
requires O(log(n)) simple arithmetic operations.

We prove a bound on the depth-robustness parameters of graphs

sampled by DRSample in terms of n. At the highest level, the proof
follows that in [27]. However we depart in several ways. First, we

consider a different graph than [27] so, naturally, any statements

that depend directly on the edge structure of the graph need to be

Algorithm 1: An algorithm for sampling depth-robust graphs.

Function DRSample(n ∈ N≥2):

V := [v]

E := {(1, 2)}

for v ∈ [3,n] and i ∈ [2] do // Populate edges
E := E ∪ {(v,GetParent(v, i))} // Get ith parent

end
return G := (V ,E).

Function GetParent(v ,i):
if i = 1 then

return v − 1

else
д′←[1,

⌊
log

2
(v)

⌋
+ 1] // Get random range size.

д := min(v − 1, 2д
′

) // Don’t make edges too

long.

r←[max(д/2, 2),д] // Get random edge length.

end
return v − r

reproven. In particular, the key lemma about the expansion proper-

ties of the graph needs a new approach (c.f. Lemma 3.3). Second, as

our graphs are sampled randomly, we make probabilistic statements

rather than absolute ones. Consequently, our proof technique now

requires some probability theoretic techniques on top of the original

combinatoric approach of [27]. Third, we have attempted to opti-

mize the constant factors in the proof to the extent possible even if

it makes the proof slightly more complex. By contrast, [27] seem

to focus on obtaining a simple proof even if this simplicity comes

at the cost of worse constant factors. We begin with a high level

outline of the proof followed by a detailed exposition. Thus we use a

new techinque to analyze even the purely combinatoric Lemma 3.2.

Proof Outline. The proof considers a graphG sampled byDRSample.
First, we remove an arbitrary set of nodes S of sizeO(n/log(n)) (and
incident edges) from G. Next, for the remaining nodes in G we de-

fine a notion of a “good” node. Intuitively, these are nodes such

that not too many of their neighbors were removed. The proof con-

cludes by showing that Ω(n) of the remaining nodes must be good

and that, with high probability, there remains a path p running

through all good nodes. In particular after removing S graphG still

has depth Θ(n).
To show that p likely exists we use the following term. For a pair

of nodes v and u are “reachable” if there remains a (directed) path

connecting u and v (either from u to v or vice versa). It is shown

that for any good node, with high probability a large fraction the

remaining nodes are reachable. Thus we can then show that any

pair of good nodes are reachable. In particular we show that, with

high probability, there is at least one node between the two good

nodes that is reachable by both. Thus we can now construct p by

connecting all the good nodes.

The details follow. We begin by stating the claim formally.

6

Theorem 3.1. Forn ∈ N letG←DRSample(n). Then Pr[G is (e,d,b)−
block depth-robust] ≥ 1 − negl(n) where

e ≥ 2.43 × 10
−4n/logn = Ω

(
n

log(n)

)
, d ≥ 0.03n = Ω(n) ,

b ≥ 160 logn = Ω(logn).

In particular,

Pr

[
aAT(G) > 7.3 × 10

−6n2/log(n)
]
≥ 1 − negl(n) .

Remark: For G ← DRSample(n) we have aAT(G) ≥ ed ≥ 7.3 ×

10
−6 n2

logn by [7]. While the constant 7.3 × 10
−6

is admittedly lower

than one would desire in practice we point out that this is only a

lower bound. In Section 5we empirically demonstrate thatDRSample(n)
resists depth-reducing attacks, and appears to resist known at-

tacks better than all other known iMHF candidates. Improving the

constants from the lower bounds is indeed an important theoret-

ical challenge. For comparison we note that the constant terms

in all known theoretical lower bounds on aAT(G) for other iMHF

constructions are also quite small. For example, Alwen et al. [7]

were able to show that Argon2i-A and Argon2i-B have aAT(G) =

Ω̃
(
n5/3

)
. If we include the hidden constants then the bound be-

comes aAT(G) ≥ cn5/3/logn with c = 1.04 × 10
−8

which is two

orders of magnitude smaller than the constant we are able to prove

for DRSample.

The Meta-Graph. Before we analyze the block depth-robustness

of G we first introduce the notion of a meta-graph [7]. As Claim 1

saysG will be block depth-robust if and only ifGm is depth-robust.

Fix an arbitrary integerm ∈ [n] set n′ = ⌊n/m⌋. Given a DAG G
we will define a DAG Gm , called the meta-graph of G. For this we
use the following sets. For all i ∈ [n′] letMi = [(i−1)m+1, im] ⊆ V .

Moreover we denote the first and last thirds respectively ofMi with

MF
i = [(i − 1)m + 1, (i − 1)m +

⌊
m

(
1 − γ

2

)⌋
] ⊆ Mi ,

and

ML
i = [(i − 1)m +

⌈
1 + γ

2

⌉
+ 1, im] ⊆ Mi .

We define the meta-graph Gm = (Vm ,Em) as follows:

Nodes: Vm contains one node vi per set Mi . We call vi the
simple node andMi its meta-node.

Edges: If the end of a meta-node ML
i is connected to the be-

ginningMF
j of another meta-node we connect their simple

nodes.

Vm = {vi : i ∈ [n′]} Em = {(vi ,vj) : E ∩ (ML
i ×M

F
j) , ∅}.

We remark that the parameter 0 < γ < 1

2
is a constant that we

will optimize later. Claim 1, a simple extension of a result from [7],

says that any path of length d inGm corresponds to a path of length

≥ dγ in G. This suggests that we may want to select γ as large as

possible. However, increasing γ reduces the probability that two

meta-nodes in Gm are connected by an edge.

Claim 1. IfGm is (e,d)-depth robust thenG is
(
e/2,dγm,m

)
-block

depth robust.

Proof. Fix any set S ⊆ V of size e/2. We say that a nodevi ∈ Vm
in themeta-graph is unaffected by S ifMi∩

⋃
v ∈S {v −m + 1, . . . ,v} =

∅. That isG −
⋃
v ∈S {v −m + 1, . . . ,v} contains every node in the

setMi . Let Sm ⊆ Vm denote the set of nodes affected by S . Formally,

Sm = {vi ∈ Vm : Mi ∩
⋃
v ∈S {v −m + 1, . . . ,v} , ∅}.

We now claim that |Sm | ≤ e . To see this we observe that the set⋃
v ∈S
{v −m + 1, . . . ,v}

can intersect at most e meta-nodes because for each v ∈ S the

set {v −m + 1, . . . ,v} intersects at most two meta-nodes. Thus, S
affects at most e nodes in Gm .

SinceGm is (e,d)-depth robust there remains a path ϕ ′ of length
d inGm−Sm . To complete the proof we observe thatϕ ′ corresponds
to a path ϕ in G −

⋃
v ∈S {v −m + 1, . . . ,v} of length

length(ϕ) ≥ γ length(ϕ ′)m ≥ γdm.

In particular, the path ϕ goes through the middle γ nodes of the

d meta-nodes corresponding to ϕ ′. Since each of corresponding

meta-nodes in ϕ ′ is unaffected by S the path ϕ is still contained in

G −
⋃
v ∈S {v −m + 1, . . . ,v}. �

Proof of Theorem 3.1.
We begin by fixing some useful notation and terminology.

Iv (r) and I∗v (r): The interval of r nodes preceding (or suc-

ceeding) v in Gm . That is Iv (r) = [v − r + 1,v] ∩Vm and

I∗v (r) = [v,v + r − 1] ∩Vm .

Ḡm = (V̄m , Ēm): Fix a set S ⊂ Vm = [n
′] with |S | ≤ cn′

for some constant c > 0 (to be determined later) and let

Ḡm = (V̄m , Ēm) be the graph obtained by removing nodes

in S (and incident edges) from Gm .

Good node: Let c > 0 be a constant. Intuitively a node v ∈
Vm is called c-good under S if at most a c-fraction of nodes

in any interval starting or ending at v are contained in the

set S . More precisely v ∈ Vm is c-good if and only if both

of the following hold:

• ∀r ∈ [v] |Ir (v) ∩ S | ≤ cr
• ∀r ∈ [m −v + 1]

��I∗r (v) ∩ S �� ≤ cr .
We say a node v ∈ Vm is c-bad under S if v is not c-good
under S . When the set S of removed nodes is clear from

context we will simply write c-bad or c-good.
Reachable node: A node u ∈ V̄m is said to be reachable

for v ∈ V̄m under S if there exists directed a path in Ḡm
connecting u to v or v to u.

Rv,S (r) and R∗v,S (r): The set of reachable nodes in the pre-

ceding (or succeeding) intervals of size r around node v .
More precisely Rv,S (r) = {u reachable for v : u ∈ Iv (r)}
and R∗v,S (r) = {u reachable for v : u ∈ I∗v (r)}.

Local Expander: Given c > 0 and r∗ ∈ N≥1 we say that a

node v ∈ Vm is a (c, r∗)-local expander if for all r ≥ r∗
we have (1) for all subsets A ⊆ I∗v (r),B ⊆ I∗v+r (r) of size
|A|, |B | ≥ cr there exists an edge from A to B (Em ∩ A ×
B , ∅), and (2) for all subsets A ⊆ Iv (r),B ⊆ I∗v−r (r)
of size |A|, |B | ≥ cr there exists an edge from A to B (

Em ∩A × B , ∅).

Note that the notion of c-good nodes is independent of the edge

structure of Gm (and thus of G). To determine whether a node v

7

is c-good it suffices to only consider the specific set S of removed

nodes. By contrast, if a node is local expander or not is independent

of a particular set S of removed nodes as this property depends

only on the edge structure of Gm (i.e. of G).
The following claim states that even if a linear number of nodes

are removed from G there still remains a linear number of good

nodes inGm . Their proof quite closely follows an similar argument

in [27] (as the statement holds independently of the edge structure

of Gm).

Claim 2. [27, Claim 2] Let G = (V ,E) be an arbitrary DAG, let
Gm = (Vm ,Em) denote its meta-graph. Let S ⊂ Vm = [n

′] denote
an arbitrary subset vertices and constant c5 > 2|S |/n. Then at least
n′ − |S |

(
2

c5

)
nodes inGm are c5-good. In particular, if |S | ≤ cn′ then

at least n′
(
c5−2c
c5

)
nodes are c5-good.

Lemma 3.2 states that if u < v are both c5-good with respect to

S and both (r∗, c4)-local expanders then v is reachable from u in

Gm − S . Lemma 3.2 improves upon a result of [27]. In particular,

we achieve laxer constraints on the constants (e.g., 3c4 + c5 ≤ 1 vs.

3c4 + 4c5 < 1) at the cost of a slightly longer proof.

Lemma 3.2. Let c4, c5 > 0, r∗ ∈ N≤(1/c5) be given such that 3c4 +

c5 ≤ 1. Fix a set S ⊆ Vm and let u,v ∈ Vm be given such that (1) u,v
are both c5-good, and (2) u,v are both (r∗, c4)-local expanders. Then
u is reachable for v under S .

Proof. Let S ⊆ V be given such that v is c5-good under S . We

prove by induction on i ≥ 0 that for r = 2
ir∗ ≤ n −v we have��Rv,S (r)�� ≥ |Iv (r)| (1 − c4) − |Iv (r) ∩ S | (1)

and if r ≤ v we have���R∗v,S (r)��� ≥ ��I∗v (r)�� (1 − c4 − c5) . (2)

First, observe that whenever r ≤ r∗ ≤ 1

c5

we have

��Rv,S (r)�� =
|Iv (r)| and

���R∗v,S (r)��� = ��I∗u (r)�� since the intervals Iv (r) and I∗u (r)

contain no pebbles by definition of a c5-good node. Thus, our base

case holds when i = 0 since we have r = 2
0r∗ = r∗. Given that

equations 1 holds for r = 2
i · r∗ we now show that the equations

also hold for r = 2
i+1r∗. By the inductive hypothesis we have���R∗v,S (2ir∗)��� ≥ |Iv (r)| (1 − c4) − |Iv (r) ∩ S |

≥ |Iv (r)| (1 − c4 − c5)

≥ c4 |Iv (r)| ,

where the last inequality follows because 1 ≥ 2c4 + c5. We can now

invoke c5-goodness of v along with the (c4, r
∗)-local expansion of

v to argue that���R∗v,S (2i+1r∗)
��� ≥ ���R∗v,S (

2
ir∗

)��� + (1 − c4)

���I∗v+2
i r ∗

(
2
ir∗

)���
−

���Iv+2
i r ∗

(
2
ir∗

)
∩ S

���
≥ (1 − c4)

���I∗v (
2
i+1r∗

)��� − ���Iv (
2
i+1r∗

)
∩ S

��� ,
where the final step follows from the inductive hypothesis. A sim-

ilar argument holds for 1 and both equations also holds for node

u. WLOG assume that u < v and that v − u > r∗ (otherwise
the interval between u and v contains no pebbles!) and observe

that for an arbitrary r we have

��Rv,S (r)�� ≥ 1−c4−c5

2
|Iv (r)| and���R∗u,S (r)��� ≥ 1−c4−c5

2

��I∗v (r)�� ≥ c4

��I∗v ��
. Let r =

⌊v−u
2

⌋
. If

v−u
2

is an

integer then the argument follows immediately since there must

be an edge from R∗u,S (r) to Rv,S (r). If v can be reached from node

u + r + 1 and node u + r + 1 can be reached from node u then we

are done. Otherwise we have two cases :

Case 1: Node u + r + 1 is not reachable from node u. In this case

we note that

���R∗u,S (r)��� ≥ c4

��I∗v (r + 1)
��
and that

��Rv,S (r + 1)
�� ≥

c4

��I∗v (r + 1)
��
. Since, R∗u,S (r) ⊆ Iv+r+1(r + 1) and Rv,S (r + 1) ⊆

Iv (r + 1) and v is a (r∗, c4)-local expanders we must have an edge

from R∗u,S (r) to Rv,S (r + 1) which implies that there is a path from

u to v .
Case 2: Node v is not reachable from node u + r + 1. In this case

we note that

���R∗v,S (r)��� ≥ c4

��I∗v (r + 1)
��
and that

���R∗u,S (r + 1)

��� ≥
c4

��I∗v (r + 1)
��
. Since, R∗u,S (r+1) ⊆ I∗u (r+1) and Rv,S (r) ⊆ Iu+r+1(r+

1) and u is a (r∗, c4)-local expanders we must have an edge from

R∗u,S (r + 1) to Rv,S (r) which implies that there is a path from u to

v . �

Thus far the results that we have proven have been independent

of our graph DRSample. This changes with Lemma 3.3 which is

central to our proof of the theorem. It states that in expectation at

least (1−c6)n
′
meta-nodes (e.g., most meta-nodes) inGm are c4 local

expanders. We remark that it is possible to apply concentration

bounds to argue that the number of meta-nodes that are c4 local

expanders is tightly concentrated around its mean. We sketch this

proof in Appendix C — see Lemma C.1.

Lemma 3.3. Let G ← DRSample(n) and letm = τ logn, r∗ ≥ 1

and let x ∈ [n′] = [n/m] be a meta-node then x is a (c4, r
∗)-local

expander in the meta-graph Gm = (Vm ,Em) except with probability

at most c6 =
1

4r ∗π 2e−2c4(1−c4)

(
x r
∗

1−x

)
where

x = e

(
2c4 ln

(
1

c
4

)
+2(1−c4) ln

(
1

1−c
4

)
−
τ (1−γ)2c2

4

8

)
.

Proof. Fix a node v ∈ Vm and r ≥ r∗. Let i be given such that

2
i+1 ≥ 2rm ≥ 2

i
. Fix X ⊆ I∗v (r) and Y ⊆ I∗v+r (r) then we have

Pr [X × Y ∩ Em = ∅] ≤

(
1 −
|X |(1 − γ)

8r logn

)(1−γ)m |Y |
≤

(
1

e

) (1−γ)2 |Y | |X |τ
8r

If we set |X | = |Y | = c4r then we have

Pr [X × Y ∩ Em = ∅] ≤

(
1

e

) (1−γ)2c2

4
rτ

8

.

We would like to use union bounds to show that (whp) no such

sets X ,Y exist. We have

(r
c4r

)
2

such pairs X ,Y where, by Sterling’s

inequalities

√
2πnn+0.5e−n ≤ n! ≤ enn+0.5e−n , we have

8

(
r

c4r

)
=

r

(c4r)!(r − c4r)!

≤
er r+1/2

√
2π (c4r)c4r+0.5

√
2π (r − c4r)r−c4r+0.5

=
er r+1/2

2π
√
r (c4)

c4r+1/2(1 − c4)
r−c4r+1/2

=
e

2π
√
rc4(1 − c4)(c4)

c4r (1 − c4)
r−c4r

=
e
c4r ln

(
1

c
4

)
+(1−c4)r ln

(
1

1−c
4

)
2πe−1

√
rc4(1 − c4)

Thus, by union bounds the probability that there exists X ⊆ I∗v (r)
and Y ⊆ I∗v+r (r) s.t. |X | = |Y | = c4r and X ×Y ∩ Em = ∅ is at most(

1

e

) τ (1−γ)2c2

4
r

8

(
r

c4r

)
2

≤
e

2c4r ln

(
1

c
4

)
+2(1−c4)r ln

(
1

1−c
4

)
−
τ (1−γ)2c2

4
r

8(
2πe−1

√
rc4(1 − c4)

)
2

=
xr

4π 2e−2rc4(1 − c4)
.

The probability that a node y is not a (c4, r
∗)-local expander is

at most

n′∑
r=r ∗

xr

4π 2e−2rc4(1 − c4)
=

1

4π 2e−2c4(1 − c4)

n′∑
r=r ∗

xr /r

≤
1

4r∗π 2e−2c4(1 − c4)

(
xr
∗

− xn
′+1

1 − x

)
≤

1

4r∗π 2e−2c4(1 − c4)

(
xr
∗

1 − x

)
= c6

�

Assuming we can find appropriate constants, the Theorem 3.1

now follows directly from the above claims. Lemma 3.3 implies that

(1−c6)n
′
nodes inGm are (c4, r

∗)-local expanders in expectation we

expect to have at least n′ − |S | 2

c5

− c6n
′
nodes that are both (c4, r

∗)-

local expanders and c5-good with respect to S . Lemma 3.2 then

implies that there is a path running through each of these nodes.

Thus, the meta-graph Gm of a random DRSample DAG G is (e, d)-
depth robust where d is a random variable with expectation E[d] =
n′ − |S | 2

c5

− c6n
′
. Furthermore, Lemma C.1 from the Appendix C

allows us to claim that for any constant ϵ > 0 we have d ≥ n′ −
|S | 2

c5

−c6n
′−ϵn except with negligible probability inn assuming that

x < 1. Thus,Gm is (c1n
′, c2n

′)-depth robust with c2 = 1−
2c1

c5

−c6−ϵ .

By Claim 1 G is (c1n
′, c2γmn′,m)-block depth robust or simply(

c1n
τ logn , c2γn

)
-depth-robust. This in turn implies that aAT(G) ≥

c3n
2/logn where c3 = c1c2γ/τ . It remains to find suitable constants

γ ,τ , c1, c2, c3, c4, c5, c6 and r∗ to maximize c3 such that all of the

following additional constraints are satisfied:

(1) 0 < c1, c2, c3, c4, c5, c6 < 1, ϵ > 0,

(2) c2 ≤ 1 −
2c1

c5

− c6 − ϵ from Lemma C.1 ,

(3) c3 ≤ c1c2γ/τ from Theorem 2.4

(4) 3c4 + c5 ≤ 1 from Lemma 3.2

(5)

(
2c4 ln

(
1

c4

)
+ 2(1 − c4) ln

(
1

1−c4

)
−

τ (1−γ)2c2

4

8

)
< ln(0.861)

from Lemma 3.3.

(6) c5r
∗ ≤ 1 from Lemma 3.2.

(7) c6 ≥
(0.861)r

∗

4r ∗π 2e−2c4(1−c4)(1−0.861)
from Lemma 3.3.

The proof now follows by settingτ = 160, r∗ = 8, c4 = 0.2916, c5 =

0.125, γ = 0.1, c6 = 0.00861, ϵ = 0.01, c2 = 0.3, c1 = 0.038945 and

c3 = 7.3 × 10
−6
.

4 GADGET TO BOOST CC
This goal of this section is to build a DAG on n ∈ N nodes with high

exact aAT suitable for use in the construction of memory-hard func-

tions. Theorem 2.4 implies
8
that if a DAGG is (c1n/logn, c2n)-depth-

robust for some constants c1 and c2 then Π
∥
cc (G) ≥

c1c2n2

logn . Com-

bined with the Theorem 3.1 this implies that algorithm DRSample
already samples a low indegree, simple and locally navigable graph.

Moreover its aAT is bounded by the exact (i.e. non-asymptotic) term

c1c2ed . Our next theorem shows that we can do better by modify-

ing (any block-depth-robust) construction to essentially eliminate

the dependence on c2 and directly construct a family of graphs for

which Π
∥
cc (Gn) ≥

c1(1−ϵ)n2

4 logn + o(1).

The function aATSample (c.f. Algorithm 2) takes as input a graph

H = (V̄ , Ē) ∈ Gn,2 with node set V̄ = [n] and returns a graph

G = (V ,E) ∈ G2n,2 with node set V = [2n]. It expects access to a

function GetParentH (v, i) which returns the i th parent of node v ∈
V̄ in H which it uses to implement G’s analogous parent function
GetParentG (v, i) which is parametrized by a constant c ∈ (0, 1)
given as input to aATSample.

Theorem 4.1. Let H ∈ Gn/2,2 with nodes V̄ = [n/2] be

(c1n/logn, c2n, c3 logn) -block depth-robust

for constants c1, c2 and c3 and let G = aATSample(H , c3). Then G ∈

Gn,2 and for every ϵ > 0 if n > 2

(
1−ϵ
c

2
c

3

)
then Π

∥
cc (Gn) ≥

c1(1−ϵ)n2

4 logn .

We sketch the proof below and begin with the construction

of G. (The pseudocode describing the construction can be found

in Algorithm 2.) Let n′ = n/2. We start with a graph Hn′ = (V̄ , Ē)
with V̄ = [n′]. We will addn′ nodes to formG = (V ,E)withV = [n]
initially setting E = Ē. Setting n′ = n/2 for each i ∈ [n′] we add
the edge (n′ + (i − 1),n′ + i) to E. Next letm = ⌊c3 logn⌋ and let

M = {u ∈ [n] : u ≡ 0 mod m} = ⌊n/m⌋. For each u = bm ∈ [n′]
and every v ∈ [n′ + 1,n] such that v −n′ ≡ b mod |M | we add the
edge (u,v) to E.

Clearly, G has indeg(G) = 2. For a node v ∈ [n′] we have that
indeg(v) ≤ indeg(Hn) ≤ 2. For v[n′ + 1,n] we have at most 2

incoming edges; (v − 1,v) and (bm,v) where b = v − n′ mod |M |.
Fix a pebbling P1, . . . , Pt ofG and let ti denote the first time step

during which node i was pebbled. In the following discussion set

e = c1n
′/logn, d = c2n

′
and b = c3 logn′. Suppose that for some

i ∈ [tn′ , tn−|M |] we have that |Pi | ≤ (1 − ϵ)e . Then we can show

8
by setting S = ∅ and letting T be the sinks of G

9

Algorithm 2: An algorithm for sampling a high aAT graph.

Function aATSample(H = (V̄ = [n], Ē), c ∈ (0, 1)):
V := [2n]

E := Ē ∪ {(i, i + 1) : i ∈ [2n − 1]}

for v ∈ [n + 1, 2n] and i ∈ [2] do // Populate new

edges of graph.
E := E ∪ {(v,GetParentc (v, i))} // Get ith parent

of node v

end
return G := (V ,E).

Function GetParentc(v ,i):
if i = 1 then

return v − 1

end
else if v ≤ n then

return GetParentH (v, i) // DRSample
end
else

m := ⌊c log(n)⌋

b := (v − n) mod ⌊n/m⌋

u := bm
return u

end

that

ti+|M |∑
j=ti

��Pj �� ≥ ϵed .

In particular, letG ′ = G −V \ancestorsG−Pi ([i, i + |M |]). We note

thatHn −Pi is still (ϵe,d,b)-block-depth-robust. Thus,G
′
is at least

(ϵe,d)-depth-robust so Theorem 2.4 implies that

ti+|M |∑
j=ti

��Pj �� ≥ Π
∥
cc (G

′) ≥ ϵed .

Let ℓ1 ≥ tn/2 be the smallest time step for which

��Pℓ1

�� ≤ (1− ϵ)e
if such a round exists and letv1 be given such that tv1

< ℓ1 ≤ tv1+1.

In general, once ℓ1 < . . . < ℓi and v1, . . . ,vi have been defined let

ℓi+1 be the least pebbling round such that ℓi+1 ≥ tvi+1+ |M |+1
and��Pℓi+1

�� ≤ (1 − ϵ)e if such a round exists. Finally, let vi+1 be given

such that tvi+1
< ℓ1 ≤ tvi+1+1. Continue until we have defined a

maximal sequence ℓ1, . . . , ℓi∗ .

We have

t∑
j=1

��Pj �� ≥ (1−ϵ)e max{n/2−mi∗, 0}+i∗×ϵed ≥ min

{
e(1 − ϵ)n

2

,
n

2|M |
ed

}
.

We have
n

2 |M | ed = Ω
(
n2

)
and

e(1−ϵ)n
2

= O
(

n
logn

)
. Thus, we

can find N > 0 such that for all n > N the second term dominates

and we have

t∑
j=1

��Pj �� ≥ min

{
e(1 − ϵ)n

2

,
n

2|M |
ed

}
≥

c1(1 − ϵ)n
2

4 logn
.

In particular this holds for any n > 2

(
1−ϵ
c

2
c

3

)
.

remark 1. We note that aATSample (c.f. Algorithm 2) yields a
graphG which, except with negligible probability in n, has aAT(G) ≥
6.08×10

−5n2/logn. In terms of provable security guarantees the lower
bound for aATSample improves on our lower bound for DRSample
by an order of magnitude, and it appears to improve on [27] by two
orders of magnitude — see Appendix D. Interestingly, while we can
establish better constants in our proof of security for aATSample the
simpler construction DRSample appears to perform better in practice.

5 EMPIRICAL ANALYSIS
In this section we describe the experiments we ran comparing

various graphs and interpret their results.

Depth-Reduction and aAT Attacks. To empirically investigate

the depth-robustness of graphs we implemented five algorithms

for constructing a depth-reducing set S for a DAG G. Each attack

takes as input a target depth dtдt and outputs a set S such that

depth(G − S) ≤ dtдt The first is the layered attack of Alwen and

Blocki [5], which has been shown to have good asymptotic perfor-

mance against Argon2i-A [5] and Argon2i-B [6].

The next three attacks are based on Lemma 2.2 (Valiant’s Lemma

Attacks), which has been used [5] to provide a generic upper bound

on the aAT of anyDAGG with constant indegree: aAT(G) = O
(
n2

log logn
logn

)
.

The first variant (Lazy Valiant) simply sets b = 2, computes sets

S1, . . . , S ⌈logb (depth(G))⌉ , sets T0 = ∅ and greedily updates Ti+1 :=

Ti ∪ argminj<Ti

��Sj �� until depth(G −⋃
j ∈Ti Sj) ≤ dtдt . The second

variant is the same except that we set b = 3. Finally, the third vari-

ant is the one described by Alwen and Blocki [5]. Briefly, if we let

G0 = G then we can apply one round of Valiant’s Lemma (b = 2)

to obtain a set S0 such that depth (G0 − S0) ≤ 2
⌈logb (depth(G))−1⌉

.

Setting Gi+1 = Gi − Si we can iterate until we obtain a graph

Gk = G −
⋃k−1

i=0
Si with depth(Gk) ≤ dtдt . While the theoretical

behavior of Valiant’s Lemma against highly depth-robust DAGs is

well understood in an asymptotic sense, to the best of our knowl-

edge our experiments give the first empirical results about the

behaviour of these attacks in practice.

The fifth attack is a hybrid which combines the layered attack

and Valiant’s Lemma Attack. Briefly, the attack partitions the nodes

of the graph into

√
dtдt layers as in [5] and then uses Lemma 2.2 to

reduce the depth of each layer to

√
dtдt to that the resulting graph

has depth at most dtдt . Finally, the sixth “Best Attack” algorithm

we implemented simply takes the best (smallest) S produced by any

of the four previous algorithms.

To empirically investigate the aAT of our candidate graphs we

implemented AB16 pebbling algorithm of [5] which has been shown

to be quite effective against many practical iMHFs both theoreti-

cally [5, 7, 9] and empirically [6]. This algorithm takes as input a

depth reducing set S as well as a key parameter д ∈ [depth(G −
S),n], which specifies the length of each “light phase” in the attack,

and outputs a pebbling P with cost aAT(P) = O
(
|S |n + дn + n2d

д

)
.

Our implementation takes as input a DAG G on n = 2
k
nodes

with k ∈ [14, 24]. In our attack we enumerate over target depths

dtдt ∈ {2
i

: i ∈ [3,k − 2]} and for each target depth we use the

“Best Attack” heuristic to construct the smallest depth-reducing

set S . Next we iterate over values of the remaining key parameter

10

д ∈ [depth(G−S),n] and run the Alwen-Blocki attack [5] — our im-

plementation includes the heuristic optimization from [6]. Finally,

we output the pebbling P with minimal aAT(P) over all choices of
the key parameters dtдt and д.

Candidate Graphs. As test subjects we implemented a total of

8 graphs. As a benchmark we implemented the DAGs underlying

Argon2i-A and Argon2i-B. We also implemented the DAGs sampled

by DRSample and aATSample.
In certain practical situations where trusted uniform randomness

is at a premium it may be beneficial to have graphs which require

less randomness to sample. To that end we also implemented hybrid

versions HDRSample and HaATSample of our two main construc-

tions. In a nutshell the hybrid versions differ from the originals in

that they now select the range sizes for long edges deterministically

rather than randomly. Their full pseudo-code can be found in the

appendix in Algorithm 3 and Algorithm 5, respectively. The formal

results in the previous sections forDRSample and aATSample carry
over almost unchanged to their hybrid counterparts. Recall that

the algorithm aATSample takes as input a parameter c ∈ (0, 1), we
evaluate the algorithm using the parameters c ∈ {0.1, 0.5}.

Finally, for applications where randomness is simply not avail-

able, we have also implemented an (exceedingly simple and efficient)

fully deterministic graph Deterministic. In this graph the second

incoming edge of each consecutive node has double the length

of the second edge for the previous node. This length doubling is

repeated until edges no longer fit in the graph at which point the

next edge has length 2 again and the doubling process begins anew.

Intuitively this approximates the distribution of the edge lengths of

DRSample as that can be seen as first uniformly samples a power of

two to set a range size and then uniformly samples an edge length

within that range size.

Results. We describe three figures which summarizing the results

of our experiments.

Figure 1 compares the depth-reducibility of each of the candi-

date DAGs. In particular, we plot depth vs the minimum size of a

depth reducing set found by any of the five attacks. We see that all

new constructions and their variants have better resistance to the

depth-reduction attacks than both Argon2i variants. In particular,

DRSample and HDRSample provide the strongest resistance.
Figure 2 plots the quality of the best attack we found. (Recall that

quality compares the attacker’s aAT against the honest algorithm’s

aAT. A parallel pebbling attack with 3 means it is 3 times more

efficient than the strategy used by honest (sequential) parties when

pebbling the graph.). Once again we see that all new constructions

and their variants have higher aAT cost (smaller attack quality) than

Argon2i-A and Argon2i-B meaning that they are more resistant to

attacks. Once again DRSample and HDRSample offer the strongest
resistance.

Figure 3 compares the empirical performance of the layered

depth-reducing attack [5] with the performance of the Lazy Valiant

attack. In particular, we plot depth vs the minimum size of a depth

reducing set found by the two attacks for 4 of the candidate graphs.

As the plot shows, Valiant’s attack consistently outperforms the lay-

ered attack of Alwen and Blocki [5]. Valiant’s lemma is dramatically

superior when we are attacking highly depth-robust constructions

0 0.2 0.4 0.6 0.8 1 1.2

·10
7

0

2

4

6

8

·10
6

e = |S |

D
e
p
t
h
:
d

Argon2iA

Argon2iB

DRSample

HDRSample

Deterministic

HaATSample

aATSamplec=0.1

aATSamplec=0.5

Figure 1: Depth-Reducibility of DAGs under Best Attack (n =
2

24 ≈ 10
7.224)

14 16 18 20 22 24

0

5

10

15

20

Running Time Parameter: log
2
(n) (Memory: = nKB)

A
t
t
a
c
k
Q
u
a
l
i
t
y

Argon2iA

Argon2iB

DRSample

HDRSample

Deterministic

HaATSample

aATSamplec=0.1

aATSamplec=0.5

Prior Attacks [6]

Figure 2: Attack Quality vs iMHF Candidates

such as DRSample or Deterministic. We used diamonds to high-

light the curves forDRSample andDeterministic under the layered
attack, since these curves are so close to the bottom right side of the

plot that they are difficult to see. Surprisingly, our results show that

in practice Valiant’s attack also appears to perform slightly better

than the Layered attack against Argon2i-A and Argon2i-B. This,

despite the (known) theoretical upper bounds on |S | for those DAGs
being much smaller for the Layered attack. Based on these empirical

results we conjecture that one could provide significantly tighter

theoretical upper bounds on the size of the set S we obtain when

we use Lazy Valiant to build depth-reducing sets for Argon2i-A and

B. The only known theoretical guarantee is that Valiant’s lemma

yields a set |S | ≤ O
(
n logdtдt

logn

)
such that depth(G − S) ≤ dtдt .

6 IMPLEMENTATION
To implement our iMHF we modified Argon2i [14] replacing its

edge structure with that of DRSample. We selected DRSample be-
cause it is simple and our empirical analysis suggests that it offers

the best resistance to attacks. Our source code is available at [29].

The modification involved adding about 5 lines of code for data

independent addressing, and commenting out over thirty lines of

code.

11

0 0.5 1 1.5

·10
7

0

0.5

1

1.5

2

·10
6

e = |S |

D
e
p
t
h
:
d

Argon2i-A

Argon2i-B

Deterministic

DRSample

Layered

Valiant

Figure 3: Depth-Reducibility: Layered vs. Lazy Valiant
Depth-Reduction Attacks (n = 2

24 ≈ 10
7.224)

Remark 1: Part of the reason for the dramatic reduction in lines

of code is that we decided to remove support for multiple lanes

(e.g., to support parallelism) as researchers have previously raised

concerns [6] about the high depth-reducibility of an Argon2i DAG

when the number of lanes becomes large
9
. At this time we would in-

stead recommend supporting parallelism using the trivial approach:

instantiate several independent iMHF threads (with different salt

values) and hash each of these outputs to produce the final output

block.

Remark 2: While our primary goal was to implement our iMHF

DRSample, the reference code still includes the data-dependent

modes of operation. However, the data-dependent mode of opera-

tion uses the uniform distribution over edges similar to SCRYPT.

The recent security proof for SCRYPT [8] suggests that a uniform

edge distribution is the right distribution to use for data-dependent

modes. While SCRYPT has optimal aAT complexity, it is liable to

space-time tradeoff attacks (e.g., an attacker could compute the func-

tion in n2
steps with maximummemory usageO(1)). We conjecture

that the “id” mode of operation, which runs data-independent mode

for n/2 steps before switching to the data-dependent mode of opera-

tion, might providemuch stronger resistance to space-time trade-off

attacks though we leave this question as an interesting direction

for future research.

6.1 Timing Results.
Recall that the goal when designing an iMHF is to find a function

which, for a fixed amount of time used for honest sequential evalu-

ation (e.g. 1/2 second) forces the maximum cost possible per rate

of evaluation on an attacker. Thus we also compared the running

time of the honest evaluation of an iMHF using our new DAGs

9
In particular, any directed edge from a node in lane i to a node in lane j , i cannot
exist in the same slice.When sampling a backedge for a nodev in lane j Argon2 follows
the following approach: (1) select a random lane ℓ, (2) select a (random) predecessor

r (v, j) ∈ [v − 2] of v in lane ℓ and add the directed edge ((r (v, j), ℓ), (v, j)) from
node (r (v, j), ℓ) to (v, j). If ℓ , j then it is required that v − r (v, j) is large to

avoid deadlocking each thread (e.g., by ensuring that the value for node (r (v, j), ℓ)
is certainly computed in thread ℓ before we try to compute the value for node (v, j)
in thread j . Alwen and Blocki [6] observed that as the number of threads grows

large almost all backedges are long, which makes it significantly easier to construct

depth-reducing sets for their attack.

with Argon2i-B. In a nutshell we found the new DAGs to actually

be slightly but noticeably faster than Argon2i-B. This despite, our

empirical (and previous theoretic) evidence indicating that for any

given set of parameters the new iMHFs incur significantly greater

amortized area-time complexity for the adversary.

In more detail we modified the Argon2i-B implementation [14]

replacing its edge structure with that of DRSample. We compared

the time required on an Intel(R) Core(TM) i5-4210U CPU@ 1.70GHz

8GB of memory to evaluate the two iMHFs for a setting with a

single lane, 1GB of memory (i.e. 2
20

blocks). We found that the

performance of the new iMHF is actually marginally better than

that of Argon2i-B (0.969 seconds for original vs. 0.966 seconds

for modified version). (While the difference is small we do get

statistically significant evidence for the hypothesis that the new

iMHF is even slightly faster.)

7 OPEN QUESTIONS
While there is still a large gap between the constant factors in

the best known provable lower bounds on aAT for DRSample and
aATSample and the best known upper bounds (attacks) on aAT, we
are conjecturing that both constructions aATSample andDRSample
can provide strong memory hardness guarantees in practice.

How close to optimal are the depth-reducing attacks on DAGs

likeDRSample andDeterministic?We conjecture that the construc-

tions of depth-reducing sets are nearly optimal. If this conjecture

is true it would imply that for n ≤ 2
24

the quality of any attack on

DRSample is at most 28 [7]. Thus, an important open challenge is

to find smaller depth-reducing set for the specific graph DRSample
with n = 2

24
nodes (or demonstrate that no smaller depth-reducing

set exists). Is there an efficient approximation algorithm to find a

small depth-reducing set S given a target depth dtдt ? While it is

hard to approximate |S | to within a factor of 1.99 [17], it is still possi-

ble that an efficient 2.01-approximation algorithm exists. Similarly,

is there an efficient algorithm to approximate the aAT of a fixed

DAGG? Blocki and Zhou [17] recently showed that aAT is NP-hard

to compute exactly, but an efficient approximation algorithm would

allow us to quickly analyze constructions like DRSample.
Another interesting theoretical challenge is to construct a family

of

(
4n

logn ,Ω
(

n
log

1−ϵ n

)
, logn

)
-block depth robust DAGs. In fact, we

conjecture that DRSample already satisfies this property. Such a

family could be used along with aATSample to obtain a family of

DAGs with aAT provably at least
(1−ϵ)n2

logn .
10

Finally, we conjecture that our constructions of practical depth-

robust DAGs might lead to the development of data-dependent

MHFs with provably strong resistance to space-time trade-off at-

tacks.

10
In particular, it would cost Ω

(
n2

log
2−ϵ n

)
to re-pebble the DAG starting with

4(1−ϵ)n
logn

pebbles on the graph. The graph aATSample constructs would consist of a gadget

that forces us to either keep
2(1−ϵ)n

logn pebbles on the DAG during the last n/2 steps or

re-pebble within the next
n

2 logn steps. It would cost Ω
(

n2

log
1−ϵ n

)
to re-pebble every

n
logn steps so it is better to keep

2(1−ϵ)n
logn pebbles around for these last n/2 steps. Thus,

aAT ≥
(1−ϵ)n2

logn .

12

REFERENCES
[1] 2016. Cumulative Space in Black-White Pebbling and Resolution. In Proceedings

of the 2016 ACM Conference on Innovations in Theoretical Computer Science, 9-11
January 2017, Berkeley, California USA.

[2] 2016. Password Hashing Competition. (2016). https://password-hashing.net/.

[3] Martin Abadi, Mike Burrows, Mark Manasse, and Ted Wobber. 2005. Moderately

Hard, Memory-bound Functions. ACM Trans. Internet Technol. 5, 2 (May 2005),

299–327. https://doi.org/10.1145/1064340.1064341

[4] Leonardo C Almeida, Ewerton R Andrade, Paulo SLM Barreto, and Marcos A

Simplicio Jr. 2014. Lyra: Password-based key derivation with tunable memory

and processing costs. Journal of Cryptographic Engineering 4, 2 (2014), 75–89.

[5] Joël Alwen and Jeremiah Blocki. 2016. Efficiently Computing Data-Independent

Memory-Hard Functions. In Advances in Cryptology CRYPTO’16. Springer, 241–
271.

[6] Joël Alwen and Jeremiah Blocki. 2017. Towards Practical Attacks on Argon2i and

Balloon Hashing. In Proceedings of the 2nd IEEE European Symposium on Security
and Privacy (EuroS&P 2017). IEEE, (to appear). http://eprint.iacr.org/2016/759.

[7] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. 2017. Depth-Robust Graphs

and Their Cumulative Memory Complexity. In EUROCRYPT (LNCS). https:

//eprint.iacr.org/2016/875.

[8] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tes-

saro. 2017. scrypt is Maximally Memory-Hard. In Advances in Cryptology-
EUROCRYPT 2017. Springer, (to appear). http://eprint.iacr.org/2016/989.

[9] Joël Alwen, Peter Gaži, Chethan Kamath, Karen Klein, Georg Osang, Krzysztof

Pietrzak, Leonid Reyzin, Michal Rolínek, andMichal Rybár. 2016. On theMemory-

Hardness of Data-Independent Password-Hashing Functions. Cryptology ePrint

Archive, Report 2016/783. (2016). http://eprint.iacr.org/2016/783.

[10] Joël Alwen and Vladimir Serbinenko. 2015. High Parallel Complexity Graphs and

Memory-Hard Functions. In Proceedings of the Eleventh Annual ACM Symposium
on Theory of Computing (STOC ’15). http://eprint.iacr.org/2014/238.

[11] Joël Alwen and Björn Tackmann. 2017. Moderately Hard Functions: Definition,

Instantiations, and Applications. (2017). https://eprint.iacr.org/2017/.

[12] Daniel J. Bernstein. 2005. Cache-Timing Attacks on AES. (2005). http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf

[13] Billy Markus. 2013. Dogecoin. (2013). http://dogecoin.com/

[14] Alex Biryukov, Daniel Dinu, Jean-Philippe Aumasson, and Samuel Neves. 2017.

Argon2. https://github.com/P-H-C/phc-winner-argon2. (2017).

[15] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. 2016. Argon2: New

Generation of Memory-Hard Functions for Password Hashing and Other Ap-

plications. In IEEE European Symposium on Security and Privacy, EuroS&P 2016,
Saarbrücken, Germany, March 21-24, 2016. IEEE, 292–302. https://doi.org/10.1109/
EuroSP.2016.31

[16] Alex Biryukov and Dmitry Khovratovich. 2015. Tradeoff Cryptanalysis of

Memory-Hard Functions. In Advances in Cryptology - ASIACRYPT 2015 - 21st
International Conference on the Theory and Application of Cryptology and Informa-
tion Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings,
Part II (Lecture Notes in Computer Science), Tetsu Iwata and Jung Hee Cheon (Eds.),
Vol. 9453. Springer, 633–657. https://doi.org/10.1007/978-3-662-48800-3_26

[17] Jeremiah Blocki and Samson Zhou. 2016. On the Computational Complexity

of Minimal Cumulative Cost Graph Pebbling. arXiv preprint arXiv:1609.04449
(2016).

[18] Dan Boneh, Henry Corrigan-Gibbs, and Stuart Schechter. 2016. Balloon Hashing:

Provably Space-Hard Hash Functions with Data-Independent Access Patterns.

Cryptology ePrint Archive, Report 2016/027, Version: 20160601:225540. (2016).

http://eprint.iacr.org/.

[19] Donghoon Chang, Arpan Jati, Sweta Mishra, and Somitra Kumar Sanadhya.

2014. Rig: A simple, secure and flexible design for Password Hashing Version

2.0. (2014).

[20] Charles Lee. 2011. Litecoin. (2011). https://litecoin.info/

[21] Stephen A. Cook. 1973. An Observation on Time-storage Trade off. In Proceedings
of the Fifth Annual ACM Symposium on Theory of Computing (STOC ’73). ACM,

New York, NY, USA, 29–33. https://doi.org/10.1145/800125.804032

[22] Bill Cox. 2014. Twocats (and skinnycat): A compute time and sequential memory

hard password hashing scheme. Password Hashing Competition. v0 edn. (2014).
[23] Cynthia Dwork, Andrew Goldberg, and Moni Naor. 2003. On Memory-Bound

Functions for Fighting Spam. In Advances in Cryptology - CRYPTO 2003 (Lecture
Notes in Computer Science), Vol. 2729. Springer, 426–444. https://doi.org/10.1007/
978-3-540-45146-4_25

[24] Cynthia Dwork, Moni Naor, and Hoeteck Wee. 2005. Pebbling and Proofs of

Work. In Advances in Cryptology - CRYPTO 2005: 25th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005,
Proceedings (Lecture Notes in Computer Science), Vol. 3621. Springer, 37–54.
https://doi.org/10.1007/11535218_3

[25] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof

Pietrzak. 2015. Proofs of Space. In Advances in Cryptology - CRYPTO 2015 -
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part II (Lecture Notes in Computer Science), Rosario Gennaro and

Matthew Robshaw (Eds.), Vol. 9216. Springer, 585–605. https://doi.org/10.1007/

978-3-662-48000-7_29

[26] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. 2011. One-Time Com-

putable Self-erasing Functions. In TCC (Lecture Notes in Computer Science), Yuval
Ishai (Ed.), Vol. 6597. Springer, 125–143.

[27] Paul Erdoes, Ronald L. Graham, and Endre Szemeredi. 1975. On Sparse Graphs
with Dense Long Paths. Technical Report. Stanford, CA, USA.

[28] Christian Forler, Stefan Lucks, and Jakob Wenzel. 2013. Catena: A Memory-

Consuming Password Scrambler. IACR Cryptology ePrint Archive 2013 (2013),
525.

[29] Practical Graphs. 2017. Practical-Graphs/Argon2-Practical-Graph. https://github.

com/Practical-Graphs/Argon2-Practical-Graph. (2017).

[30] Carl E. Hewitt and Michael S. Paterson. 1970. Record of the Project MAC

Conference on Concurrent Systems and Parallel Computation. ACM, New York,

NY, USA, Chapter Comparative Schematology, 119–127. https://doi.org/10.1145/

1344551.1344563

[31] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. 2013. Publicly verifiable

proofs of sequential work. In Innovations in Theoretical Computer Science, ITCS ’13,
Berkeley, CA, USA, January 9-12, 2013, Robert D. Kleinberg (Ed.). ACM, 373–388.

https://doi.org/10.1145/2422436.2422479

[32] Wolfgang J. Paul and Rüdiger Reischuk. 1980. On Alternation II. A Graph

Theoretic Approach to Determinism Versus Nondeterminism. Acta Inf. 14 (1980),
391–403. https://doi.org/10.1007/BF00286494

[33] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. 1976. Space Bounds

for a Game on Graphs. In Proceedings of the Eighth Annual ACM Symposium
on Theory of Computing (STOC ’76). ACM, New York, NY, USA, 149–160. https:

//doi.org/10.1145/800113.803643

[34] C. Percival. 2009. Stronger key derivation via sequential memory-hard functions.

In BSDCan 2009.
[35] Krisztián Pintér. 2014. Gambit – A sponge based, memory hard key derivation

function. Submission to Password Hashing Competition (PHC). (2014).

[36] Georg Schnitger. 1982. A Family of Graphs with Expensive Depth Reduc-

tion. Theor. Comput. Sci. 18 (1982), 89–93. https://doi.org/10.1016/0304-3975(82)
90113-X

[37] Georg Schnitger. 1983. On Depth-Reduction and Grates. In 24th Annual Sympo-
sium on Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November
1983. IEEE Computer Society, 323–328. https://doi.org/10.1109/SFCS.1983.38

[38] Leslie G. Valiant. 1977. Graph-Theoretic Arguments in Low-Level Complex-

ity. In Mathematical Foundations of Computer Science 1977, 6th Symposium,
Tatranska Lomnica, Czechoslovakia, September 5-9, 1977, Proceedings (Lecture
Notes in Computer Science), Jozef Gruska (Ed.), Vol. 53. Springer, 162–176.

https://doi.org/10.1007/3-540-08353-7_135

[39] Vitalik Buterin. 2013. Ethereum. (2013). https://www.ethereum.org/

[40] Hongjun Wu. 2015. POMELO – A Password Hashing Algorithm. (2015).

[41] Zerocoin Electric Coin Company. 2016. ZCash. (2016). https://z.cash/

A MEMORY-HARD VS. MEMORY-BOUND
We show that memory-bound and memory-hard are distinct com-

plexity notions by giving a simple and intuitive separating example;

that is a function which is memory-bound but not memory-hard.

Recall that a function fn with hardness parameter n ∈ N is

memory-bound if the expected number of cache misses required

to compute fn on fresh input (in the random oracle model) grows

linearly in n. Conversely fn is memory-hard if, roughly speaking,

the product of (parallel) space-time grows roughly quadratically in

n.
Consider the function fn given by a arrayA of s uniform random

w-bit values. The function fn on input x with random oracle H
is defined as follows. Let b0 = x . For i ∈ [n] let bi = aj where
j = H (bi−1) mod s and set fn (x) = bn . Roughly speaking this is

the memory-bound function given in [23] and the authors show

that if w ∗ s is at least twice the size of cache then the expected

number of cache misses grows linearly in n. In other words fn is

memory-bound.

However obvious (sequential) algorithm which computes fn by

computing the bi values in increasing order of their index shows

that fn is not memory-hard. Indeed, the time complexity of this

algorithm grows linearly in n but its space complexity remains

13

https://password-hashing.net/
https://doi.org/10.1145/1064340.1064341
http://eprint.iacr.org/2016/759
https://eprint.iacr.org/2016/875
https://eprint.iacr.org/2016/875
http://eprint.iacr.org/2016/989
http://eprint.iacr.org/2016/783
http://eprint.iacr.org/2014/238
https://eprint.iacr.org/2017/
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://dogecoin.com/
https://github.com/P-H-C/phc-winner-argon2
https://doi.org/10.1109/EuroSP.2016.31
https://doi.org/10.1109/EuroSP.2016.31
https://doi.org/10.1007/978-3-662-48800-3_26
http://eprint.iacr.org/
https://litecoin.info/
https://doi.org/10.1145/800125.804032
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1007/11535218_3
https://doi.org/10.1007/978-3-662-48000-7_29
https://doi.org/10.1007/978-3-662-48000-7_29
https://github.com/Practical-Graphs/Argon2-Practical-Graph
https://github.com/Practical-Graphs/Argon2-Practical-Graph
https://doi.org/10.1145/1344551.1344563
https://doi.org/10.1145/1344551.1344563
https://doi.org/10.1145/2422436.2422479
https://doi.org/10.1007/BF00286494
https://doi.org/10.1145/800113.803643
https://doi.org/10.1145/800113.803643
https://doi.org/10.1016/0304-3975(82)90113-X
https://doi.org/10.1016/0304-3975(82)90113-X
https://doi.org/10.1109/SFCS.1983.38
https://doi.org/10.1007/3-540-08353-7_135
https://www.ethereum.org/
https://z.cash/

constant inn. Thus the product of its space-time grows only linearly

in n.

B EXTRA GRAPH CONSTRUCTIONS

Algorithm 3: An alternative algorithm for sampling depth-

robust graphs.

Function HDRSample(n ∈ {2i : i ∈ N≥1}):

V := [v]

E := {(1, 2)}

for v ∈ [3,n] and i ∈ [2] do // Populate edges of

graph.
E := E ∪ {(v,GetParent(v, i))} // Get ith parent of

node v

end
return G := (V ,E).

Function GetParent(v ,i):
if i = 1 then

return v − 1

else
д′ := v mod log

2
(n) // Select range size.

д := min(v − 1, 2д
′+1) // Don’t make edges too

long.

r←[д/2,д] // Select random edge length.
return v − r

end

Algorithm 4: A deterministic algorithm for sampling (conjec-

tured) depth-robust graphs.

Function Deterministic(n ∈ {2i : i ∈ N≥1}):

V := [v]

E := {(1, 2)}

for v ∈ [3,n] and i ∈ [2] do // Populate edges of

graph.
E := E ∪ {(v,GetParent(v, i))} // Get ith parent of

node v

end
return G := (V ,E).

Function GetParent(v ,i):
if i = 1 then

return v − 1

else
j := v mod log

2
(n)

return v −min{2j ,v − 1}

end

C CONCENTRATION BOUNDS
Lemma C.1. LetG←DRSample(n) and letm = (τ +1) logn, r∗ =

O(1) and let x ∈ [n′] = [n/m] be a meta-node then x is a (c4, r
∗)-local

Algorithm 5: A alternative algorithm for sampling a high aAT

graph.

Function HaATSample(H = (V̄ = [n], Ē), c ∈ (0, 1)):
V := [2n]

E := Ē ∪ {(i, i + 1) : i ∈ [2n − 1]}

for v ∈ [n + 1, 2n] and i ∈ [2] do // Populate new

edges of graph.
E := E ∪ {(v,GetParentc (v, i))} // Get ith parent

of node v

end
return G := (V ,E).

Function GetParentc(v ,i):
if i = 1 then

return v − 1

end
else if v ≤ n then

д′←[1,
⌊
log

2
(v)

⌋
+ 1] // Select random range

size.

д := min(v − 1, 2д
′

) // Don’t make edges too

long.

r←[max(д/2, 2),д] // Select random edge

length.
return v − r

end
else

if v = 1 mod 2 then
u←[n]

end
else

д′←[1,
⌊
log

2
(v)

⌋
+ 1] // Select random range

size.

д := min(v − 1, 2д
′

) // Don’t make edges too

long.

r←[max(д/2, 2),д] // Select random edge

length.
return v − r

end
end

expander in the meta-graphGm = (Vm ,Em) with probability at most

c6 =
1

4r ∗π 2e−2c4(1−c4)

(
x r
∗

1−x

)
wherex = e

(
2c4 ln

(
1

c
4

)
+2(1−c4) ln

(
1

1−c
4

)
−
τ (1−γ)2c2

4

8

)
.

Furthermore, for any ϵ > 0 we have that, except with negligible
probability in n, at least n′(1 − c6 − ϵ) nodes in the meta-graph are
(c4, r

∗)-local expanders.

Proof. (sketch) We first show that except with negligible prob-

ability every node is a (c4,n
1/4)-local expander.

Claim 3. Except with probability

n3/4

4π 2e−2c4(1 − c4)

(
xn

1/4

1 − x

)
14

every node v ∈ Vm is a (c4,n
1/4)-local expander.

The proof of Claim 3 closely follows the proof of Lemma 3.3. It

is included below for completeness. Let EXPAND be the event that

all metanodes are (c4,n
1/4)-local expanders and let EXPu,r ∗ be the

indicator random variable for the event that nodeu is a(c4, r
∗)-local

expander. Conditioning on the event EXPAND the events EXPu,r ∗ and

EXPv,r ∗ are independent whenever |v − u | ≥ 4n1/4
. We can now

set Bj =
∑
i EXPj+4in1/4,r ∗ for each j ≤ 4n1/4

. Since Bj is the sum

of independent random variables we can apply chernoff bounds+

union bounds to show that except with negligible probability we

have E
[
Bj

]
−Bj ≤ ϵ n′

4n1/4 for each j ≤ 4n1/4
. It follows that

∑
j Bj ≥

(1 − c6 − ϵ)n
′
except with negligible probability in n. �

Proof of Claim 3. Fix a node v ∈ Vm and r ≥ n1/4
. Let i be given

such that 2
i+1 ≥ 2rm ≥ 2

i
. Fix X ⊆ I∗v (r) and Y ⊆ I∗v+r (r) then we

have

Pr [X × Y ∩ Em = ∅] ≤

(
1 −
|X |(1 − γ)

8r logn

)(1−γ)m |Y |
≤

(
1

e

) (1−γ)2 |Y | |X |τ
8r

If we set |X | = |Y | = c4r then we have

Pr [X × Y ∩ Em = ∅] ≤

(
1

e

) (1−γ)2c2

4
rτ

8

.

We would like to use union bounds to show that (whp) no such

sets X ,Y exist. We have

(r
c4r

)
2

such pairs X ,Y where, by Sterling’s

inequalities

√
2πnn+0.5e−n ≤ n! ≤ enn+0.5e−n , we have

(
r

c4r

)
=

r

(c4r)!(r − c4r)!

≤
er r+1/2

√
2π (c4r)c4r+0.5

√
2π (r − c4r)r−c4r+0.5

=
er r+1/2

2π
√
r (c4)

c4r+1/2(1 − c4)
r−c4r+1/2

=
e

2π
√
rc4(1 − c4)(c4)

c4r (1 − c4)
r−c4r

=
e
c4r ln

(
1

c
4

)
+(1−c4)r ln

(
1

1−c
4

)
2πe−1

√
rc4(1 − c4)

Thus, by union bounds the probability that there exists X ⊆ I∗v (r)
and Y ⊆ I∗v+r (r) s.t. |X | = |Y | = c4r and X ×Y ∩ Em = ∅ is at most

(
1

e

) τ (1−γ)2c2

4
r

8

(
r

c4r

)
2

≤
e

2c4r ln

(
1

c
4

)
+2(1−c4)r ln

(
1

1−c
4

)
−
τ (1−γ)2c2

4
r

8(
2πe−1

√
rc4(1 − c4)

)
2

=
xr

4π 2e−2rc4(1 − c4)
.

The probability that a there exists a nodey that is not a (c4,n
1/4)-

local expander is at most

n
n′∑

r=n1/4

xr

4π 2e−2rc4(1 − c4)
=

n

4π 2e−2c4(1 − c4)

n′∑
r=n1/4

xr /r

≤
n3/4

4π 2e−2c4(1 − c4)

(
xn

1/4

− xn
′+1

1 − x

)
≤

n3/4

4π 2e−2c4(1 − c4)

(
xn

1/4

1 − x

)
,

where this last term is negligible as long as x < 1.

D CONSTANTS FROM OTHER
CONSTRUCTIONS

Peeking under the hood of the [27] construction we see that the

DAG G ′ on n′ nodes has

indeg(G ′) = δ ≥ 10

©«
2

ϵ1 log
2

(
1

(1−ϵ1)
2

) ª®®¬ logn′ + 4 logn′

and is (ϵn′, ϵn′)-depth robust. After applying indegree reduction [7]
we have a DAGG onn = 2n′δ nodes that is (ϵn′, ϵn/2)-depth robust,

and hence Π
∥
cc (G) ≥ ϵ2n2/(4δ). The parameters ϵ and ϵ1 must be

selected subject to the following constraints

• 1 − ϵ4 > 2ϵ ,
• ϵ5 ≥ ϵ2,

• ϵ4 > (2ϵ/ϵ3),

• 1 − ϵ2 − 3ϵ3 > ϵ5 and

• ϵ2/5 > ϵ1 > 0

To obtain the best lower bounds we want to maximize

c =
ϵ2

10

(
2

ϵ1 log
2

(
1

(1−ϵ
1
)2

)) + 4

subject to these constraints. The best parameters we were able to

find had c ≤ 4.72 × 10
−7

(ϵ = 0.0714, ϵ1 = 0.05, ϵ2 = 1/4 − ϵ ,
ϵ3 = 1/6, ϵ4 = 0.857 and ϵ5 = 1/4).

By comparison, the constants in the lower bound on the aAT for

Argon2i-A shown in [7] are larger. In particular, it is shown that

any legal pebbling must pay

Π
∥
cc (G) ≥

n5/3

9.6 × 10
7

log
2 n

15

	Abstract
	1 Introduction
	1.1 Existing Graphs and Their Properties
	1.2 Our Results
	1.3 Discussion

	2 Preliminaries
	2.1 Graph Pebbling

	3 A Simple Very Depth-Robust Graph
	4 Gadget to Boost CC
	5 Empirical Analysis
	6 Implementation
	6.1 Timing Results.

	7 Open Questions
	References
	A Memory-Hard vs. Memory-Bound
	B Extra Graph Constructions
	C Concentration Bounds
	D Constants from Other Constructions

