
1

CrowdBC: A Blockchain-based Decentralized
Framework for Crowdsourcing

Ming Li, Jian Weng, Anjia Yang, Wei Lu,Yue Zhang, Lin Hou, Jia-Nan Liu, Yang Xiang, Robert H. Deng

Abstract—Crowdsourcing systems which utilize the human intelligence to solve complex tasks have gained considerable interest and
adoption in recent years. However, the majority of existing crowdsourcing systems rely on central servers, which are subject to the
weaknesses of traditional trust-based model, such as single point of failure. They are also vulnerable to distributed denial of service
(DDoS) and Sybil attacks due to malicious users involvement. In addition, high service fees from the crowdsourcing platform may
hinder the development of crowdsourcing. How to address these potential issues has both research and substantial value. In this
paper, we conceptualize a blockchain-based decentralized framework for crowdsourcing named CrowdBC, in which a requester’s task
can be solved by a crowd of workers without relying on any third trusted institution, users’ privacy can be guaranteed and only low
transaction fees are required. In particular, we introduce the architecture of our proposed framework, based on which we give a
concrete scheme. We further implement a software prototype on Ethereum with real-world dataset. Experiment results show the
validity and effectiveness of our proposed crowdsourcing system.

Index Terms—Decentralized framework, crowdsourcing, blockchain, smart contract.

F

1 INTRODUCTION

O VER the past few years, crowdsourcing has gained
considerable interest and adoption since it is coined

in 2006 by Jeff Howe [1]. It is a distributed problem-
solving model through an open call for solutions. Nowa-
days, many large companies choose crowdsourcing as a
problem-solving method, ranging from web and mobile
development to t-shirt designs. There are numerous famous
crowdsourcing applications such as Upwork [2], Amazon
Mechanical Turk [3] and UBER [4]. We can expect that this
field will change the working style of people significantly.

The human intelligence-based crowdsourcing consists of
three groups of roles: requesters, workers and a centralized
crowdsourcing system. Requesters submit tasks which are
challenging for computers but easy for human to complete
through the crowdsourcing system. A set of workers who
are interested in this task compete and submit solutions to
the crowdsourcing system, while requesters will then select
a proper solution (usually the first or the best one that solves
the task) and grant the corresponding workers the reward.
Taking the current world’s largest freelancer marketplace,
Upwork, for example, it requires “clients” (requesters) to
deposit a milestone payment into the escrow account be-
fore work begins. Then “clients” could interview or hire

• Ming Li, Jian Weng, Anjia Yang, Yue Zhang, Lin Hou and Jianan
Liu are with the College of Information Science and Technology and
the College of Cyber Security, Jinan University, Guangzhou 510632,
China. Jian Weng is the corresponding author. E-mail: limjnu@gmail.com,
cryptjweng@gmail.com, anjiayang@gmail.com

• Wei Lu is with the School of Data and Computer Science, Guangdong Key
Laboratory of Information Security Technology, Sun Yat-sen University,
Guangzhou 510006, China.

• Yang Xiang is the Dean of Digital Research and Innovation Capability
Platform, Swinburne University of Technology;

• Robert H.Deng is with the School of Information Systems, Singapore
Management University.

Fig. 1. The system model of traditional crowdsourcing.

“freelancers” (workers) to design or write. “Freelancers”
who focus on the area of expertise compete for the job
and the winners will obtain the reward. Meanwhile, the
winners are demanded to pay a sliding service fee of 5% to
20% and evaluated via reviewing their profiles by “clients”.
Additionally, “clients” also pay 2.75% processing fee to
Upwork for the payment transaction.

However, despite the prosperity of the crowdsourcing
systems, they are subject to the weaknesses of tradition-
al trust-based model, which brings about some inevitable
challenges. First, traditional crowdsourcing systems are vul-
nerable to DDoS attacks, remote hijacking and mischief
attacks, which makes the services unavailable. Elance and
oDesk, operated by Upwork presently, downed services
for many workers due to be hit by DDoS attacks in May
2014 [5]. Second, the majority of crowdsourcing systems run
business on a centralized server, which suffers from single
point of failure inherently. In April 2015, a service outage
emerged due to hardware failure in Uber China, which
caused passengers can’t stop the order at the end of services

2

[6]. Third, user’s sensitive information (e.g. name, email
address and phone number) and task solutions are saved in
the database of crowdsourcing systems, which has the risk
of privacy disclosure and data loss. For example, one of the
most prevalent crowdsourcing systems Freelancer [7] was
reported to breach the Privacy Act for uncovering a user’s
true identity which contains IP addresses, active account
and dummy accounts by Office of the Australian Informa-
tion Commissioner (OAIC) in December 2015. Fourth, when
requesters and workers are in dispute, they need help from
the crowdsourcing system to give a subjective arbitration,
which may lead to a behavior known as “false-reporting”
[8]. Lastly, crowdsourcing companies are interested in max-
imizing their own benefits and require requesters paying
for services, which in turn increase user’s costs. Currently,
most of the crowdsourcing systems could demand a sliding
services fee for 5% to 20%.

There have been many works to deal with part of the
above mentioned issues in crowdsourcing systems. Encryp-
tion and differential privacy (DP) are used to protect data
privacy [9], [10], [11], [12], [13], [14], [15]. Reputation-based
mechanisms are proposed to address “false-reporting” be-
havior [16], [17], [18]. Distributed architectures are designed
to prevent single point of failure [11]. However, the majority
of these researches are built on the traditional triangular
structure crowdsourcing models which suffer from break-
down of trust. Up to now, none of existing works has solved
all of the above issues simultaneously. Thus, this research is
motivated by this: Can we design a decentralized crowdsourcing
system with reliability, security and low services fee? To answer
this question, we design a blockchain-based decentralized
framework for crowdsourcing. The framework has many
advantages such as increasing user security and service
availability (there is no single point of failure), enhancing
the flexibility of crowdsourcing with Turing-complete pro-
gramming language and lowering cost (users do not need to
pay the crowdsourcing system). Therefore, our framework
has the potential to disrupt the traditional model in crowd-
sourcing. In a nutshell, our specific contributions are in the
following.
• We conceptualize a blockchain-based decentralized

framework for crowdsourcing named CrowdBC, which
does not depend on any central third party to accomplish
crowdsourcing process (there is no single point of failure
issue). CrowdBC guarantees privacy by allowing users to
register without true identity and storing encrypted so-
lutions in the distributed storage. Each identity makes a
deposit before participation, which can significantly prevent
various attacks (e.g. DDoS, Sybil and “false-reporting” at-
tacks). Moreover, users don’t need to pay the costly service
fees to traditional crowdsourcing platform anymore, only
required to pay a small amount of transaction fees. Our
framework also enhances the flexibility of crowdsourcing
by using Turing-complete programming language to depict
complex logics.
•We present a concrete scheme based on the framework.

Smart contract is used to perform the whole process of
crowdsourcing task which contains task posting, task re-
ceiving, task evaluation, reward assignment, etc. And we
introduce three standard smart contracts in the scheme: User
Register Contract (URC), User Summary Contract (USC),

Requester-Worker Relationship Contract (RWRC), by which
crowdsourcing functionalities can be achieved such as post-
ing and receiving a task without relying on any central au-
thority. In particular, compared with the traditional systems,
the most useful feature lies in the evaluation of tasks to be
completed via smart contract rather than a subjective third
party. We expect that this construction will be proved quite
impactful and useful in practice.
•We implement the proposed scheme to verify the feasi-

bility through a software prototype based on Ethereum with
real-world dataset. Experiment results show the validity
and effectiveness of our proposed crowdsourcing system.
Furthermore, we illustrate a discussion of future improve-
ments to this scheme.

The remainder of the paper is organized as follows. In
section 2, we present the related work. The preliminaries of
blockchain, smart contract and digital signature are given in
section 3. In section 4 we present the system model, security
assumptions and threat model. In section 5, the description
of our proposed framework is given. Next, we present a
concrete crowdsourcing scheme under the framework in
section 6. A series of experiments are demonstrated in
section 7 and finally we conclude and discuss the future
work of the paper in section 8.

2 RELATED WORK

Research on crowdsourcing has become an emerging
trend with the explosive growth of the internet and mobile
devices. It mainly focuses on the following aspects: (a)
crowdsourcing applications based on Web 2.0 technology
and smartphone, such as voting system [3], creative system
[2] and spatial crowdsourcing system [19]. (b) Incentive
protocols design [16], [17], [18], [20]. An efficient incentive
protocol can attract more users participating in crowdsourc-
ing. (c) Answer and data collection in crowdsourcing [21],
[22], [23]. (d) Quality evaluation of solutions [24], [25], [26].
It aims to detect malicious workers and we can u the
evaluation result to the penalty standard. (e) Security and
privacy problems in crowdsourcing [9], [10], [11], [12], [13],
[14], [15]. Zhuo et al. [10] proposed a privacy-preserving
verifiable method for cloud-assisted mobile crowdsourcing.
Halder et al. [12] and Yang et al. [13] presented some security
and privacy challenges in crowdsourcing, such as data pro-
tection, privacy threats and availability threats. Toch et al.
[11], [14] and To et al. [9], [15] proposed secure crowdsourc-
ing models for privacy management of user information in
crowdsourcing. We refer readers to a comprehensive survey
on crowdsourcing for more information [27], [28], [29], [30],
[31].

Federico et al. [32] proposed CrowdJury which is a
blockchain-based crowdsourcing application for court pro-
cessing of adjudication. This is most related to our approach,
but the details about the design of crowdsourcing proto-
cols are not provided. Jacynycz et al. [33] and Zhu et al.
[34] presented a blockchain-based crowdfunding which is
a specific type of crowdsourcing. In addition, the research
on blockchain-based crowdsourcing has also gained con-
siderable interest in industry recently, such as microwork
[35]. The above mentioned works are limited to their spe-
cific applications (i.e., CrowdJury with court adjudication),

3

whilst in comparison, we conceptualize a blockchain-based
decentralized framework with much broader goals, such as
providing a direction for system designers to design a class
of decentralized protocols in crowdsourcing.

3 BACKGROUND

3.1 Blockchain

Bitcoin [36] is the first idea of a decentralized currency
which has attracted lots of attentions. A set of time-ordered
transactions are recorded in files called “blocks”. Each block
contains the hash value of the previous block, and they
eventually form a hash chain called “blockchain” which
is essentially a public, immutable and ordered distributed
ledger. Users offer computing resources to compete for the
right of recording transactions into blockchain, and the
winner will be rewarded with coins and transaction fee.
Blockchain technology provides a new direction for us to re-
duce the role of the middleman in current society [37]. And
we can easily associate blockchain with the financial sector
(e.g. Bitcoin), but the innovative potential of blockchain
applications is much more than this. The applications in
different areas, such as Micropayment schemes [38], naming
and storage system [39] and health records sharing [40], are
based on blockchain technology.

Transaction: Defined as a data structure, transaction
consists of three segments: inputs, outputs and digital sig-
nature. For a valid coin transaction, the input must be
an unspent of a previous transaction. And all transactions
during a period of time are linked together as a structure
(e.g. Merkle tree) and filled into a block by a miner. Once
the block is confirmed, these transactions will not be able to
be changed anymore.

Consensus Protocol: Consensus protocol aims to de-
termine which miner’s block will be appended on the
blockchain. Generally, the miner gets the recording right by
affording a valid proof which can be confirmed correct by
other miners, such as a challenging computational puzzle
in Bitcoin. In particular, the consensus blockchain is also
the longest chain, which refers to the largest work to be
produced. There exist several kinds of consensus protocol,
such as proof of work (PoW) [36] and proof of stake (PoS)
[41].

Network: Blockchain uses a peer-to-peer (P2P) network,
which is a distributed application architecture [42]. Nodes
in P2P network have equal privilege without a central
coordination by servers or stable hosts. Unlike the tradi-
tional Client/Server mode, nodes in this network are both
suppliers and consumers of resources.

Blockchain Paradigm: Blockchain can be viewed as a
transaction-based state machine [43]. Each state includes
information like a nonce, account balances, data expressing
information of the physical world, etc. It’s updated from
a genesis state to a final state after each transaction. In
this paper, we focus on smart contract execution and state
transition. So we give a description of blockchain paradigm
by describing a simplified transaction that depicts a smart
contract execution here. A number of useful parameters are
defined as follows: nonce nonce, timestamp t, contract data

m, original address addr, transaction fee fee, etc. Therefor
the transaction can be denoted as the following presentation:

T = {nonce, t,m, addr, SigR(m), fee}

, where the transaction T could activate the code execution
of smart contract. Then, a valid state transition from σ
to σt+1 via transaction T is denoted as: σt+1 = F (σ, T),
where F refers to arbitrary computation which is carried
out by blockchain, and σ can store arbitrary state between
transactions.

3.2 Smart Contract
Smart contract, which refers to the Blockchain 2.0 space

[44], is proposed by Nick Szabo in 1994 [45]. It depicts
complex logics by program common process into code and
represents the implementation of contract-based agreement.
It is essentially a self-executing digital contract in a secure
environment with no intervention and verified through
network peers. The main reason for difficult to realize smart
contract is that it’s hard to find a secure environment which
is decentralized, unalterable and programmable. The advent
of blockchain technology could solve this problem perfectly.
Currently, there exist several blockchain platforms support-
ing smart contract, two famous of which are Ethereum
[43] and Hyperledger [46]. They are designed to run smart
contract without frauds, downtime or any third party inter-
ference.

3.3 Digital Signature
Digital signature is a mathematical scheme which pro-

vides ownership [47]. A valid signature can guarantee that
a digital message sent by a sender can be verified by a
receiver, including the message integrity, the identity of the
sender, etc. Besides, the sender cannot also repudiate that
he/she has sent the message, which is the property of non-
repudiation. Generally, a typical digital signature has the
property of authentication, integrity and non-repudiation.
In this work, we sign the posting task and solutions by
digital signature, which can guarantee the integrity of trans-
actions and prevent any repudiation between the requester
and worker.

4 SYSTEM AND THREAT MODELS AND ASSUMP-
TIONS

In section 4.1, we present the system model and the
workflow for blockchain-based crowdsourcing. Section 4.2
outlines the security assumptions. Section 4.3 discusses the
threat models.

4.1 System Model
Figure 2 illustrates the proposed framework. Users

are classified into three types: requester, worker and min-
er. CrowdBC is a decentralized crowdsourcing framework
which can support Turing-complete programs. Requester
and worker should register to get their credentials before
obtaining services from CrowdBC.

Requester: Requesters post tasks by transferring the
tasks description with an amount of reward into programs.

4

Fig. 2. The system model of CrowdBC.

Taking the advantages of programs which are automati-
cally executed on trustable blockchain platform, requesters
choose proper workers and get the satisfactory solution.

Worker: Workers are the community who have certain
skills, they compete for the task and get rewards. Each
worker is associated with a reputation which represents the
past behavior on solving tasks. Qualified workers whose
reputation satisfies the minimum value could compete for
the task and submit solutions. Using the Turing-complete
programs in blockchain, worker can reach an agreement
with requester. After the evaluation of their solutions, they
are assigned with corresponding reward.

Miner: Miners add past transaction records to the
blockchain and validate a new block by the consensus
protocol. They ensure the security of blockchain and can
earn transaction fees and mining rewards. Besides, they can
register in CrowdBC to post or receive a task.

4.2 Security Assumptions

The security of crowdsourcing task in CrowdBC is re-
lated with the security of blockchain, and we make the
following assumptions. We assume that the blockchain is a
secure environment, which means that there exist enough
honest miners to ensure the security of blockchain and
adversaries can not launch 51% attack, double-spending
and rewrite blockchain history. We also assume that the
network has low latency and messages are synchronous
between the honest miners.

Besides, in order to prevent “false-reporting”, requester
is required to make a deposit before a task starts and
make a commitment on blockchain [48]. The deposit cannot
be redeemed before the task deadline. If solutions satisfy
requester’s requirements, the task reward is sent to worker
automatically at the end of the task. Meanwhile, to avoid the
behavior of “free-riding”, we also require workers to deposit
with coins or reputation, which could encourage workers to
provide enough efforts to solve the task. More significantly,
CrowdBC requires deposits from requesters and workers to
guard against Sybil attacks.

Furthermore, we assume that a solution is encrypted by
the worker leveraging a secure public key encryption algo-
rithm. The worker uses the corresponding requester’s public
key to encrypt the solution. And the requester could decrypt
the solution successfully by the secret key. Specifically, solu-
tions are saved as cipher text in distributed database.

4.3 Threat Model

We consider several security challenges that exist in the
crowdsourcing system.

(a) An attacker could flood the network with low reward
tasks and thus other requesters’ tasks cannot be published
on the blockchain. This is a type of denial of service(DoS)
attack.

(b) An attacker could register many addresses to mount a
Sybil attack by receiving but not completing a large number
of tasks, thus discouraging requesters from participating in
the crowdsourcing system.

(c) The dishonest worker can improve his reputation
with posting a task by himself.

(d) An attacker might submit a solution which can be
evaluated as high quality by miner, while it is low quality
in fact.

(e) An attacker might steal users’ data stored in the server
(e.g. task solutions).

(f) An attacker could compromise a user’s computer and
download a comprised CrowdBC client, which could leak
the user’s private data.

(g) A user can’t redeem his coin in blockchain if he loses
the private key.

The use of the blockchain-based crowdsourcing model
can address some of the threats mentioned above. Intuitive-
ly, our main methodology is to discourage the attackers
to launch attacks by making the costs much more than
benefits they can obtain. We can address some of the above
threats, which will be discussed in section 6.4. However, our
proposed framework exclude some types of attacks which
do not belong to the discussion of this paper, such as key
missing and compromising the user’s computer.

5 CROWDBC: BLOCKCHAIN-BASED DECENTRAL-
IZED FRAMEWORK FOR CROWDSOURCING

5.1 Overview of CrowdBC

Combining the advantages of blockchain, we formalize a
decentralized crowdsourcing framework named CrowdBC.
It allows users to finish a crowdsourcing process in the logic
plane and store their encrypted solutions in the data plane.
First and foremost, CrowdBC client is designed as the user
interface in the logic plane, and it runs locally on user’s
personal computer without depending on any central serv-
er. More importantly, CrowdBC client allows workers and
requesters to interact with the underlying blockchain. Re-
quester and worker reach an agreement on top of blockchain
which is used to achieve eventual consensus on the state of
each task. It supports all operations for the crowdsourcing,
such as registration, posting task and receiving task.

Three Layers Architecture: Drawing lessons from [39],
we divide CrowdBC into three layers: the application layer,
blockchain layer and storage layer. As shown in Figure 3,
two layers (application and blockchain layer) lie in the logic
plane and one layer (storage layer) lies in the data plane.
Workers with special skills could query and compete tasks
which are posted by requesters in application layer. The
blockchain layer uses the task state changes as input to
achieve consensus between worker and requester. Notice
that, there exist lots of data collected from requesters and

5

Fig. 3. Overview of CrowdBC’s architecture.

workers, because of the limited data storage capacity in
blockchain, we separate the logic layer and the data layer,
and we believe this separation can improve CrowdBC’s data
storage significantly. We put the task metadata (such as data
size, owner, hash value, pointer) in the blockchain layer and
raw data in the storage layer. Thus, the users do not need
to trust the data saved in the data layer and they can verify
the integrity and authenticity of data in the logic layer.

Underlying Blockchain: Without loss of generality, the
blockchain we adopt supports execution of any arbitrary
“program” which is short for Turing-complete program (e.g.
smart contract). We assume that each blockchain platform
has a “Compiler” to compile the “program”. And how to
build a compiler is out of the scope of this paper and we
do not depict here. We design an user interface module in
the client for workers and requesters to interact with the
“program” and the blockchain.

State Machine Construction: Our framework constructs
a state machine to depict task processing. It depicts the task
life cycle, and each state represents the global status of the
task. The task is triggered from current state to next state
with users’s valid input in the application layer. Figure 4
shows the different states that a task can be in and how
the state transfers. Each task generates a new state machine
and the global state of the task is updated successfully
when a new block is created. There exist six states: Pending,
Unclaimed, Claimed, Evaluating, Canceled, Completed. Users
can query task’s current state at any time by themselves.

5.2 CrowdBC Layers

Now, we present the architecture of CrowdBC which
contains two planes: the logic plane and the data plane.
The logic plane, which consists of application layer and
blockchain layer, is used as providing user management and
task management for requester and worker. The data plane
which is responsible for task data or solution storage mainly
refers to the storage layer.

5.2.1 Application Layer
The application layer mainly refers to CrowdBC client.

It provides users with entrance to finish a crowdsourcing
task and contains three main modules: User Manager (UM),
Task Manager (TM) and Program Compiler. The client runs
correctly without relying on a central server, even there exist
some failed nodes, the services for crowdsourcing are not
affected in CrowdBC. This design can improve the security
of crowdsourcing system.

To make it more clearly, we introduce each module’s
function respectively. UM acts as the registration and user
information management. Users should first register before
starting the crowdsourcing task. They do not need to pro-
vide true identity and just register with key pairs (a public
key and private key). Meanwhile, each identify is relat-
ed with a default reputation value. The value is changed
upon the worker’s behavior and can not be updated by
himself/herself. New user fills personal information which
refers mainly on key pair and description with the client,
and create a new “program” in the blockchain. A middle
module “Program Compiler” is built to convert the new cre-
ating “program” into executable language of the blockchain
layer. Once the “program” is written into the blockchain, the
user registers successfully. Then, he/she can post or receive
a task based on TM which is the task management module.
Crowdsourcing tasks are depicted into “program” and run
in the blockchain, including task posting, task receiving, so-
lution submission, task evaluation and reward assignment.
Remarkably, in order to get satisfactory results, the requester
only allows qualified workers who reach a minimum repu-
tation value to receive the task. We will give the detailed
description about the decentralized crowdsourcing protocol
in section 6.3.

5.2.2 Blockchain Layer
The blockchain layer is the middle tier and serves two

purposes: 1) providing consensus on the order in which
“program” is written and 2) running state machine. The
“program” is sent to the blockchain layer after being com-
piled, then they are written to the blockchain after be-
ing confirmed by miners. The proposed framework de-
fines the logic of state transition by the “program” via
cryptographically-secured transactions. State machine uses
valid input from the application layer and triggers task state
changes in the blockchain layer ultimately.

Generally speaking, the block in blockchain layer should
not hold too much data. Otherwise, it will have an affect on
the network synchronization and take too much disk space.
For example, at 28 March 2017, a full mining node of bitcoin
needs to occupy 106G total disk space to synchronize with
the network [49]. In order to reduce the data size stored on
blockchain, we separate the metadata (owner, time stamp,
pointer, the task hash value, etc.) from the actual storage
of data. In detail, the task attachments and solution data
are stored off-blockchain in the distributed database. A data
pointer which consists of a query string is saved in the
blockchain and can be used to find the data in the storage
layer. Besides, the hash value of the data is saved in the
blockchain, which can guarantee the data have not been
changed in the storage layer. By this way, the data storage
capacity of our framework increases obviously.

6

Fig. 4. State machine model for a task.

5.2.3 Storage Layer
The storage layer is the lowest tier, which is mainly used

to store the actual data values of tasks and solutions. We do
not adopt any particular storage in the framework, instead
allowing multiple storage providers to coexist, such as S3,
IPFS [50] or a distributed Hashtable (e.g. Kademilia [51]).
Data values are signed by the private key of the owners.
Users don’t need to believe the data stored in the storage
layer, and they could check the authenticity and integrity
of the data values by data’s hash and digital signature in
the blockchain layer. In addition, workers submit a solution
to the system and use requester’s public key to encrypt
the solution, which means only requester can decrypt it.
In this way, we can ensure data privacy and prevent the
data from being leaked to irrelevant users. Meanwhile, by
storing task data outside of the blockchain, CrowdBC allows
values of arbitrary size and satisfies actual demands for
crowdsourcing.

5.3 The Crowdsourcing Process in CrowdBC

In this section, we describe the general process of our
framework. Based on CrowdBC client, our framework con-
sists of six steps as follows:

Step1. In the first step, requester and worker register.
The CrowdBC client transfers user’s information into the
input of “program” which is written into a transaction and
will be sent to blockchain. Each registered user is assigned
with a public key pair.

Step2. Updating “program” can be seen as a transaction
which needs to be confirmed by miners. The next steps are
all related with this step and it depicts that the data and
status are recorded on the blockchain permanently.

Step3. It is performed by requester to post tasks. Re-
questers are required to pay reward in advance and pay-
ments are deposited on the blockchain. Meanwhile, a rule
for workers is set by requesters to ensure that qualified
workers could ultimately receive the task. An evaluation
function is also required, and thus the solution can be eval-
uated by miners on the blockchain instead of the requester
or the crowdsourcing system.

Step4. Registered workers receive the posted task by
interacting with CrowdBC client. Each worker receives a
task should deposit some coins or a reputation value to
ensure the quality of the task.

Step5. Workers submit solutions before the task finish
time when they finish the task. The solutions are encrypted
with the requester public key and sent to the distributed
storage. Meantime, a hash value and pointer are stored on
the blockchain. Requester could find the solutions by the
pointer and decrypt them with his private key.

Step6. The last step is about solution collection, reward
assignment and task evaluation. Workers or requesters can
complete this step initiatively by publishing a transaction
to the blockchain. Rewards are automatically assigned to
workers according to the evaluation results which deter-
mine how many rewards they can obtain and are related
to their efforts. High efforts and good performances will get
more reward and improve the reputation.

6 A CONCRETE IMPLEMENTATION OF CROWDBC
6.1 Crowdsourcing Smart Contracts

In this section, we present a concrete scheme of Crowd-
BC. The blockchain which supports smart contracts is adopt-
ed in the design. From here on, we denote the “program”
as smart contract. Inspired by [40], we implement three
types of smart contracts: User Register Contract (URC), User
Summary Contract (USC), Requester-Worker Relationship
Contract (RWRC). Figure 5 shows the contract structures
and relationships.

Basically, user (requester or worker) information is di-
vided into two parts: basic information and detailed infor-
mation. The former which contains name, address and type
is saved in the global URC contract. The latter, including one
user’s profile, description, reputation and task list, is saved
in USC and updated with the task processing. Notice that,
USC is created simultaneously when a user successfully
registers in URC. Besides, requester and worker reach the
agreement in RWRC which depicts the constraint condition
in the task processing. Specially, there exist three important
algorithms: solution evaluation algorithm, coin processing
algorithm and reputation updating algorithm. The second
algorithm is to lock the deposits on the blockchain before
the deadline [48] and assign reward to the workers upon
the first algorithm result. The third algorithm is to man-
age workers’s reputation, user’s reputation automatically
updates only with the completed task.

6.1.1 User Register Contract (URC)

Upon registration, a user (a requester or a worker)
does not need to submit his/her true identity, and will be
assigned with a key pair: a “public key” and a “private
key”. The global URC contract produces a user’s address by
generating a hash with the public key. The address contains
no information about the user, which provides users much
higher-level privacy than users in traditional crowdsourcing
systems. Meanwhile, a USC contract corresponding to the
new registered user will be created.

As mentioned above, users are allowed to use
pseudonyms to finish transactions. But we also suggest

7

Fig. 5. The structure of smart contracts on CrowdBC and data references.

the workers to register with true identity that can be au-
thenticated in certified institutions, which can increase the
probability of receiving task in CrowdBC. Besides, we set
rules into the URC contract that registering new identities
will be recognized and the mapping of the total user list
could be updated. Notice that updating or creating a con-
tract need transaction fee which is paid by the party who
publishes it. Transaction fee is given to miners who confirm
the transaction and support CrowdBC running persistently.

6.1.2 User Summary Contract (USC)

This contract stores the personal statistics information
and evaluation for the requester and worker according to
their past behavior. We establish multi-metrics to evaluate
the workers and requesters in USC for the sake of reducing
any subjective judgment, including profile, reputation, task
general description and activity. Profile mainly describes user
basic information, including skills, expertise, etc. Specially,
if users register with true identities, profile also contains a
digital signature signed by certificate authority, and users
can authenticate identities by their public key. This metric
is set up when users register at the first time and can be
updated by themselves. Reputation is an important param-
eter which is initialized with default value and updated
with the completion of the task. In our framework, we
build the reputation-based incentive mechanism based on
[16], which will be described in section 6.2. High reputation
value reflects a user’s good performance in the past. Task
general description refers to the summary information about
task statistics, including user’s proportion of task-delay,
biding number. Activity describes the level of activity and
working extent for users. High activity level depicts hard
working with tasks. It is worth nothing that these metrics
can’t be changed easily by any single third party and are
automatically updated only with the related completed task.

Workers find an uncompleted task by querying re-
quester’s task list in USC. Each task in USC has a status.
Tasks in the state of Pending or Unclaimed illustrate that they
still accept solutions and the qualified workers can receive
the task and verify the task signature with requester’s
public key. USC also contains a list of task addresses which
can point to user’s previous task in the Requester-Worker
Relationship Contract (RWRC).

6.1.3 Requester-Worker Relationship Contract (RWRC)

Requester Worker Relationship Contract (RWRC) depicts
the agreement between requester and worker, which is
about the process of task posting, task receiving, solution
evaluation, and reward assignment. It is created when re-
quester posts a task and publishes the task information,
including description, owner address, reward, finish time, status.
Requester signs on the information with his/her private
key and other workers could check it by the corresponding
public key.

Without loss of generality, RWRC contains a validation
function qualificationV erify() which is set by requester
and used to verify whether workers are qualified for receiv-
ing the task or not. The function is related to a worker’s
reputation, activity, task general description, etc. Generally,
a minimum reputation value is set to avoid low reputation
workers. Thus, the higher reputation and better behavior
worker has, the more likely he/she gets the task in Crowd-
BC. Meanwhile, requester defines a fixed worker pool Wpool

to store worker’s address, the size of worker pool Wnum is
corresponding to required workers, and each worker who
satisfies the validation function would add his/her address
to Wpool. If workers are qualified, they update RWRC
by publishing it to the blockchain, which represents they
receive a task successfully. RWRC contract cannot receive
workers exceeding the size of Wpool, and requester can’t

8

assign the task to workers more than he/she paid, because
contract is published on the network and each miner would
verify.

As mentioned before, the data saved on the blockchain
should not be too large due to the limited storage. Thus
we put only the task metadata on the blockchain by RWRC
and other detail information to the distributed storage layer.
Moreover, in order to prevent requester from behaving as
“false-reporting” in pursuit of self-interest maximization,
a timed-commitment scheme is constructed [48], which
means requester deposits before the task starts and cannot
redeem the task reward until the finish time (unless the
corresponding worker does not submit the solution timely).
Similarly, worker who wants to receive the task should
also save some coin or reputation value as a deposit in
the blockchain. Depositing before workers receiving tasks
is a unique feature which is necessary under our framework
to prevent the “free-riding” and guarantees the fairness of
the users. If worker submits an effective solution which is
confirmed by a miner, the deposit will be returned back to
him/her; otherwise, the coin will be deducted by requester
and worker’s reputation value will be reduced.

Different from the traditional model in which solution-
s are evaluated by requester or the crowdsourcing sys-
tem, the solutions in CrowdBC are evaluated by miners.
We first assume that there exists an evaluation function
validateSolution() posting with the RWRC contract by
requester and miners could verify the solutions without
knowing the solution details. There exist some emerged
technologies supporting this process, such as indistin-
guishability obfuscation [52], homomorphic encryption [53].
How to design an appropriated evaluation mechanism in
the decentralized crowdsourcing framework is an important
issue and we will extend this work in the future.

As to data storage, a particular space is allocated for each
RWRC contract in the storage layer. Task attachments and
solutions are stored in the space, and the corresponding
hash values are recorded in the blockchain to guarantee
solutions unaltered at the source. Especially, to protect da-
ta privacy, workers use requester’s public key to encrypt
the solutions. Requester can decrypt them and verify the
integrity of the data values in the blockchain layer. On the
other hand, a pointer is created once worker submits the
solution successfully. It is also written in the blockchain and
can be used to find the solution for requester.

6.2 Reputation Management

CrowdBC builds incentive mechanism based on the
users’ past behavior. Requesters are ex-ante payment before
they post task, so we mainly focus on the the workers’s
reputation. Each worker is assigned with a reputation which
can be viewed as an important reference for requesters
when they choose workers. A high reputation with workers
reflects their good behaviors on solving tasks in the past;
otherwise, they will be limited to participate in some tasks.

Unlike traditional crowdsourcing system, the reputation
management is implemented by the third party, we define
the protocols and implement them in the decentralized
blockchain. Each worker is tagged with a reputation θ. θ is
an integer number from the finite set set(0, 1, · · · , Repmax),

where Repmax represents the max size of this set. hk is
the average reputation of the whole workers. Updating θ
depends on the outcome of the RWRC contract. If a miner
confirms a solution and gives the positive evaluation, work-
er’s reputation will be increased and recorded in blockchain.
Worker can not update the reputation by himself, because
miners will not confirm this type of transaction.

As mentioned before, we assume that the task solution
can be evaluated by a function and use the evaluation
function validateSolution() to check worker action. Let “a”
refer to the output of the evaluation function. “a = H”
stands for high effort of action and “a = L” stands for low
effort of action. Thus, the reputation Θ can be computed as
follows:

Θ =

min(Repmax, θ + 1), if a = H and rep ≥ hk
θ − 1, if a = L and rep ≥ hk + 1

0, if a = L and rep = hk
θ + 1, if rep < hk + 1

(1)
hk denotes the threshold of the selected social strategy,

which is a method of using social norms to control worker’s
behavior [16]. If worker’s reputation falls to hk and receives
a “L” feedback from the miner by using the evaluation
function, his/her reputation will fall to 0 and cannot receive
most of the tasks. He/she needs to receive enough simple
tasks and get positive feedback until his reputation value
reaching hk again.

6.3 The Proposed Decentralized Crowdsourcing Proto-
col

In the section, to formalize the decentralized crowd-
sourcing protocols, we adopt a designed notational system
such that readers may understand our constructions with-
out understanding the precise details of our formal model-
ing. It consists of six algorithms: register, mining, post task,
receive task, submit solution, evaluate solution, assign
reward. Users interact with the blockchain by CrowdBC
client. To make it clearer, we elaborate the general contract
flow of CrowdBC in Figure 6.

6.3.1 Register
We refer R and W to requester and worker, respectively,

so the collection of requesters and workers can be denoted
as {Ri|i = 1...n} and {W i|i = 1...m}. Algorithm 2 illus-
trates the implementation for a user U (hence U = RiorW i)
to register in CrowdBC via URC contract. We denote public
key and private key of requester/worker by Rpk/Wpk and
Rsk/Wsk, respectively. Worker’s initial reputation value is
θk (θk is the average reputation value of all workers). The
registration of a user can be depicted as algorithm 2.

6.3.2 Confirm Contract
The process of creating and updating a contract can

be seen as a transaction which needs to be confirmed in
the blockchain. Miners can verify the effectiveness of the
transaction. Workers and requesters can participate in the
blockchain as a “miner” and contribute their resources to
achieve a trustworthy chain. To model the confirmation
of the transaction and the execution of blocks, we define

9

Fig. 6. The process of crowdsourcing in CrowdBC and smart contract updating.

Algorithm 1: Message dissemination with VPCoin in
blockchain

Input: message M, public key of message owner PKowner ,
public key of message sender PKA, public key of
message receiver PKB , signature on message signature,
message reward total, message dissemination end time
endtime, owner payment num

Output: payment status isSuccess
1 isSuccess = true; ;
2 currentT ime← now ;
3 if currentT ime ≥ endtime then
4 Message dissemination is timeout;
5 isSuccess = false ;

6 if balance(PKowner) < total ‖ total ≤ 0 then
7 The total balance of owner isn’t enough to pay to the

receiver ;
8 isSuccess = false ;

9 sigSKA
(M), sigSKB

(sigSKA(M))← signature ;
10 if checkSignature(sigSKA(M), PKA) is true ∧
checkSignature(sigSKB

(sigSKA(M)), PKB) is true then
11 Receiver signature is invalid ;
12 isSuccess = false ;

13 isTransferSuc← transfer(PKowner, num,PKreceiver) ;
14 if isTransferSuc then
15 Transfer coin to PKreceiver failed;
16 isSuccess = false ;
17 goto final;

18 total← (total − num) ;
19 final ;
20 return isSuccess;

the blockchain state as a pair (BCσ, BC), where BCσ
is the previous block and BC is the current one. BC =
{Maddr, (T1..Tc..Tk), timestamp, blockid, preblockhash},
where Maddr is the address of a miner, and Tc is the contract
which needs to be confirmed. Users need to wait for several
blocks to ensure that the contract is recorded immutably
in blockchain. The entire process can be described as
algorithm 3.

Algorithm 2: Register and generate an identity in URC
Input: user name Uname , user type Utype, user description

Udesc that describe skills, register numbers
numRegistrants, user register pool Upool, average
reputation value θk

Output: user public key and private key Upk, Usk , USC contract
address USCaddr , is registering success isSucc

1 isSucc = false ;
2 Upk, Usk = keyGenerator();
3 Uaddr = Hash(Upk);
4 if Uaddr exists in Upool then
5 The address Uaddr has already been registered;
6 goto final;

7 Urep ← θk ;
8 Utype ← {REQUESTER, WORKER} ;
9 U ←
{Upk, Usk, Uaddr, Uname, Utype, Udes, Urep, USCtaskList} ;

10 Upool put U ;
11 numRegistrants+ +;
12 USC ← U ;
13 isSucc = true ;
14 final ;
15 return U , USCaddr and isSucc;

Algorithm 3: Contract confirmation and block valida-
tion in blockchain

Input: contract need to be confirmed Tc, blockchain as before
BCσ , timestamp t, miner address Maddr , incoming new
transactions Γ

Output: isPass represents whether Tc is confirmed
1 isPass = false ;
2 (T1...Tc...Tk)← Γ ;
3 BC← {Maddr ,(T1...Tc...Tk), t, blockid, hashpreblock} ;
4 (BCσ , BC)← BC ;
5 if Tc exists in (BCσ , BC) then
6 isPass = true ;

7 final ;
8 return isPass;

10

6.3.3 Post Task
After registration, requester could post a task to

CrowdBC. We refer the task (contains description,
requirement, title, etc.) as ψ and the task reward which
is presented by digital coin on the blockchain as Vψ . For
each task, there is a reputation limitation Repψ which
means the minimum reputation value of worker who can
receive the task. Setting Repψ too large will have an affect
on the number of participants, and the average reputation
of the whole workers is set by default. Wnum refers to
the number of workers required to complete the task. In
order to avoid denial of payment by requester, we specify
that requester deposits a reward on the blockchain and
cannot withdraw the reward unless workers do not submit
results on time. We assume that there exists a function
lockUtil(Rpk, Vψ, t) which could lock the Vψ of Rpk
on the blockchain for t time. Solution evaluation function
validateSolution(ψ, SOLUTIONponiter, SOLUTIONhash)
is issued with the task at first. The SOLUTIONponiter
and SOLUTIONhash is created upon submitting the
solution which is encrypted with requester’s public key. We
assume that the solution can be expressed by code logic
and miners can confirm the result without knowing the
detailed information. To give a simplification, the output of
the evaluation function is ‘H ’ or ‘L’. Algorithm 4 illustrates
the implementation of posting task.

Algorithm 4: Post task in RWRC
Input: requester Ri, task description ψ, task reward V rψ , the

minimum reputation of worker Repψ , finish time tψ ,
maximum workers number Wnum, USC address
USCaddr

Ri

Output: RWRC contract RWRCψ , result validation function
validateSolution(ψ, SOLUTIONpointer, SOLUTIONhash),
update USCRi

1 if Ri is unregistered then
2 Ri has not been registered;
3 goto final;

4 if lockUtil(Ripk, V
r
ψ , tψ) is not success then

5 Ri deposits reward on blockchain failed ;
6 goto final;

7 sigRisk(ψ)← Digital signature on ψ by Risk ;
8 checkWorkerQualification(Repψ ,W

i)← Repψ ;
9 validateSolution(ψ, SOLUTIONpointer, SOLUTIONhash)
← ψ ;

10 W list
ψ (1...Wnum)←Wnum ;

11 receivedWorkerNumψ ← 0 ;
12 RWRCψ ← Task(ψ,W list

ψ (1...Wnum), sigRisk(ψ), V rψ , tψ) ;

13 USC
Tpool

Ri put RWRCaddrψ ;
14 updateUSCContract(RWRCaddrψ , Unclaimed, USCRi) ;
15 final ;
16 return RWRCψ ,
validateSolution(ψ, SOLUTIONpointer, SOLUTIONhash);

6.3.4 Receive Task
Worker finds uncompleted tasks in requester’s

USC contract and receive a task if he/she satisfy
conditions set by requester. The condition function
checkWorkerQualification(ψ,Repψ) means that a task
ψ can be received by a worker W i with reputation value
W i
rep ≥ Repψ . Besides, for the sake of making workers

do the job industriously, worker deposits a coin or certain

reputation value before receiving the task. If he/she
chooses coin V rψ as the deposit, we still use the function
lockUtil(W i

pk, V
r
ψ , tψ). Otherwise, reputation is reduced

by Repwψ within the process of this task and added after
completing the task if the worker gets positive feedback.
Worker signs on ψ with the Wsk, which can ensure
the correctness for task reward assignment in the end.
Algorithm 5 illustrates the implementation of receiving
task.

Algorithm 5: Receive task in RWRC
Input: RWRC contract RWRCψ , worker W i, worker deposit

coin V wψ , worker deposit reputation Repwψ , worker
USCW

Output: update RWRC contract RWRCψ and USC contract
USCW i

1 if W i is unregistered then
2 W i has not been registered;
3 goto final;

4 Task(Ri, ψ,W list
ψ (1...Wnum), sigRisk(ψ), V rψ , tψ)← RWRCψ

5 if checkWorkerQualification(Repψ ,W
i) is dissatisfactory then

6 W i does not satisfy the condition;
7 goto final;

8 if receivedWorkerNumψ >= Wnum then
9 Task ψ can not be accepted anymore;

10 goto final;

11 if V wψ 6=0 & lockUtil(W i
pk, V

w
ψ , tψ) is success then

12 W i deposits reward on blockchain succeeded ;

13 else if repwψ 6=0 &

updateUSCReputation(USCW ,W i
pk, (Rep

w −Repwψ)) is
success then

14 W i deposits reputation on blockchain succeeded ;

15 else
16 W i makes a deposit in blockchain failed ;
17 goto final;

18 sigW i
sk(ψ)← Digital signature on ψ by W i

sk ;
19 Wlist(1...Wnum)(ψ) add sigW i

sk(ψ) ;
20 USC

Tpool

W put RWRCaddrψ ;
21 receivedWorkerNumψ++; ;
22 if receivedWorkerNumψ ≥Wnum then
23 updateUSCContract(RWRCaddrψ , Claimed, USCW i) ;

24 else
25 updateUSCContract(RWRCaddrψ , Unclaimed, USCW i) ;

26 final ;
27 return RWRCψ and USCW ;

6.3.5 Submit Result
Once worker completes the task, he/she could submit

solution to requester following algorithm 6. The task solu-
tion, encrypted by requester’s public key Rpk and signed
by worker’s private key Wsk, is stored on the distributed
database. The hash and pointer of the solution is stored
on the blockchain. Requester could get the solution by the
pointer and decrypt it using his/her private key.

6.3.6 Evaluate Task and Send Reward
After submitting the solution, worker could demand

for the process of task evaluation and reward payment, or
requester initiatively finishes them when the finish time is
on. In our design, we assume that the evaluation result
is given under the evaluation function and miners on the
blockchain could confirm. As shown in algorithm 7, the task

11

Algorithm 6: Submit solution in RWRC
Input: RWRC contract RWRCψ , task solution SOLUTIONψ ,

worker W i, requester Ri, finish time tψ
Output: solution pointer SOLUTIONponiter , solution hash

value SOLUTIONhash
1 if now > tψ then
2 SOLUTIONψ can not be submitted for timeout;
3 goto final;

4 sigW i
sk(SOLUTIONψ)← Digital signature on SOLUTIONψ

by W i
sk ;

5 SOLUTIONencrypted
ψ ← Encrypt the solution

{SOLUTIONψ , sigW i
sk(SOLUTIONψ)} with Ripk ;

6 SOLUTIONW i

ψ (hash)← Hash(SOLUTIONencrypted
ψ) ;

7 SOLUTIONW i

ψ (poniter)←
sendDataToDHT (SOLUTIONencrypted

ψ) ;
8 tsubmit ← now ;
9 RWRC

SOLUTIONlist
ψ ←

{SOLUTIONW i

ψ (hash), SOLUTIONW i

ψ (poniter), tsubmit} ;
10 updateUSCContract(RWRCaddrψ , Evaluating, USCW i) ;
11 updateUSCContract(RWRCaddrψ , Evaluating, USCRi) ;
12 final ;
13 return SOLUTIONponiter

ψ and SOLUTIONhash
ψ ;

reward paid to worker is quality-contingent payment (i.e.,
better performance will get more reward). The evaluation
result will be synchronized automatically with worker’s
USC contract to update his/her reputation.

6.4 Security and Privacy

In CrowdBC, users have much higher privacy and se-
curity compared to the traditional crowdsourcing systems.
First, users register in traditional crowdsourcing systems
with some sensitive information (e.g. phone number, ad-
dress), which has the risk of user privacy leakage. On
the contrary, worker and requester in the proposed frame-
work are not required to submit true identity to finish a
crowdsourcing task. Second, in order to protect data pri-
vacy, worker submits an encrypted task solution with the
requester public key. The encrypted solution is stored in
the distributed storage, and can be found by the pointer
which is saved on blockchain. Only the requester could
decrypt the solution by using his private key. Third, there
exist DDoS and Sybil attacks in traditional crowdsourcing
systems. Malicious requesters may flood the network with
no reward task, or some malicious workers may receive
tasks but refuse to submit valid results, which could cause
valid workers cannot receive any tasks. These attacks can be
prevented effectively in CrowdBC, because malicious users
need to pay a huge price to launch these attacks under the
deposit-based mechanism.

In particular, the reputation value is an important factor
for worker receiving a task. High reputation means high
probability to receive the task. Consequently, the reputation
value should be protected and prevented from being easily
changed by any single party. Specifically, the reputation val-
ue is changed only with a completion of related tasks. The
USC contract can’t be created by workers themselves and
UpdateReputation(USCW ,W

i
pk,W

i
rep) in USC can only be

invoked by RWRC contract. It is worth nothing that creating
RWRC contract need do deposit and pay transaction fee.

Algorithm 7: Evaluate task and send reward in RWRC
Input: RWRC contract RWRCψ , requester Ri, worker list

Wlist, selected social strategy hk
Output: update RWRC contract RWRCψ and USC contract

USCRi , USCW i , send reward to related workers W i

1 Task(Ri, ψ,W list
ψ (1...Wnum), sigRisk(ψ), SOLUTIONhash

ψ ,
SOLUTIONponiter

ψ , V rψ , V
w
ψ , tψ)← RWRCψ ;

2 rewardNeedSend← (V rψ/Wnum);
3 for each W i in Wlist do
4 if tisubmit ≤ tψ then
5 if checkSignature(SOLUTION i

hash,W
i
pk) is not

success then
6 Check W i

pk signature failed ;
7 continue ;

8 evaluationResulti ←
validateSolution(ψ, SOLUTION i

poniter, SOLUTION
i
hash)

;
9 originalReputationV alue←W i

rep +Repwψ (i) ;
10 if originalReputationV alue ≥ hk &

evaluationResulti ≡ H then
11 W i

rep ←
min{Repmax, originalReputationV alue+ 1} ;

12 rewardNeedSend← (V rψ + V wψ) ;

13 else if originalReputationV alue ≥ hk &
evaluationResulti ≡ L then

14 W i
rep ← originalReputationV alue−Repwψ (i) ;

15 rewardNeedSend← V wψ ;

16 else if originalReputationV alue ≡ hk &
evaluationResulti ≡ L then

17 W i
rep ← 0 ;

18 rewardNeedSend← V wψ ;

19 else if originalReputationV alue < hk then
20 W i

rep ← originalReputationV alue+ 1 ;
21 rewardNeedSend← V wψ ;

22 else
23 evaluationResulti ← L ;
24 rewardNeedSend← V wψ ;
25 W i

rep ←W i
rep +Repwψ (i) ;

26 isSendRewardSuc←
sendReward(W i

pk, rewardNeedSend) ;
27 updateReputation(USCW ,W i

pk,W
i
rep) ;

28 updateUSCContract(RWRCaddrψ , Completed, USCW i) ;
29 UpdateUSCContract(RWRCaddrψ , Completed, USCRi) ;

30 UpdateAvgReputation(hk)
31 final ;
32 return RWRCψ , USCRi , USCW i ,isSendRewardSuc;

Therefore, if a malicious user wants to brush his reputation,
he may pay a high cost. By this way, we can anticipate that
users in CrowdBC would work honestly and diligently.

7 EVALUATION RESULTS AND ANALYSIS
The primary goal of CrowdBC is to design a secure

and verifiable crowdsourcing system with low services fee.
We implemented a software prototype on Ethereum to test
our proposed scheme and depicted the complex process
of crowdsourcing by smart contract [54]. The experiment
used 30 personal computers (including 23 Lenovo, 5 HP
and 2 Apple) to construct a private test network. Smart
contracts were executed on the test network. We evaluated
the accuracy of CrowdBC by asking the workers to tag the
images with a class, which was a type of multi-labeling

12

tasks. Extensions to other arbitrary tasks are also possible,
requiring to change the evaluation function to evaluate the
result accordingly.

CrowdBC was implemented on Ethereum (version0.8.7)
with program language including solidity, java and
javascript with roughly 9615 lines of code, among which,
only about 900 lines are for implementing smart contracts
in solidity. Solidity is an object-oriented programming lan-
guage designed for writing smart contracts in Ethereum.
Besides, CrowdBC interacts with Ethereum based on web3j,
a lightweight library for java applications on the Ethereum
network. Web3j allows users to work with the Ethereum
in java without writing additional integration codes for
the platform. Especially, we constructed BCCompiler based
on web3j. As above mentioned, each new registering of a
user and new task could create a new contract. The task
information was input by CrowdBC client which was devel-
oped based on javascript. Then it was transformed into the
contract, and compiled by BCCompiler. Unlike traditional
crowdsourcing system which relies on a central server to run
client, CrowdBC client could run locally on user’s personal
computer.

To evaluate the utility, security and performance of
CrowdBC, we conducted five sets of experiments to process
image tagging task on the CIFAR-10 dataset which consists
of ten classes of images, such as airplane, automobile, bird
and cat. The CIFAR-10 dataset contains five training batches
and one test batch, each batch with 10000 images. For
our experiments, we randomly choose images from the
training batch to recognize images. Furthermore, 50 workers
and 5 requesters are registered and each registered user is
assigned with 20 ETH coins, and about 2 to 3 users use a
computer together. We randomly select 500, 1000, 1500, 2000,
2500 images from the training batch. For the sake of prevent-
ing DDoS and Sybil attacks, both requesters and workers are
required to deposit some coins on the blockchain. Further,
task solutions are encrypted with requester’s public key
and saved in the data storage, thus no malicious users
can decrypt and read them. In particular, we design the
evaluation function to verify if the encrypted results belong
to the ten classes of images. By doing this, a fair arbitration
could be given by smart contract rather than any third
party. In order to illustrate the feature of decentralization
in CrowdBC, 4, 5, 6 computers were closed respectively in
the last three sets of experiments. Moreover, the gas price is
set at the average market price, about 20000000000 Wei [55]
(Wei is the smallest subdenomination of ETH [43]). The cost
of ETH is computed under the Ethereum gas rules by the
formula: COSTETH = COSTgas ∗GASprice/1018. In order
to reduce the storage requirement on the blockchain, we
store the images on external databases while put the address
and the cryptographic hash of the data on the blockchain,
thus the cost gas is not increased with the task size.

According to the above procedures, we completed five
sets of experiments. Figure 7 shows the accuracy of image
tagging by workers with different number of images in each
task. The average accuracy was 94.32% on 7500 images,
among the error results, these images were really unclear.
This indicated the good utility of CrowdBC. Besides, even
part of computers were closed in the experiments, it did
not affect the process of crowdsourcing and users could still

Fig. 7. The Accuracy of Images Tagging in CrowdBC.

normally post or receive the task, which was the decentral-
ization feature of our framework.

In the five dataset experiment, the average confirmation
time of posting task in Ethereum (exclude the data up-
loading time) was 15171ms, and the average cost money
was 0.049$ per 100 image. The overall cost of ETH and the
corresponding money were as shown in Table 1. According
to AMT reward policy, about 0.45$ is paid for each 100
images tagging or identifying task. It’s worth nothing that
when we first designed the experiment in February 2017, 1
ETH price was about 12$, and the cost was acceptable. As
the sharp rise of ETH price in June 2017, 1 ETH was up
to 277.36$ according to the ETH market price [55], which
was unpractical in real life. We can see that the cost was
general lower than AMT platform by using the ETH price
in February 2017, and the more image quantities had, the
cheaper the cost was. Especially, the cost in CrowdBC has
not changed a lot with the image number increased to
2500, while the cost in AMT added about 400%. Therefore,
CrowdBC is applicable for the task with large reward.

TABLE 1
The cost for different dataset in CrowdBC

Dataset Cost Gas
(ETH)

Cost in
CrowdBC ($)

Cost in
AMT ($)

CIFAR-10 Image (500) 0.05948394 0.713 2.25
CIFAR-10 Image (1000) 0.06105164 0.732 4.50
CIFAR-10 Image (1500) 0.06153296 0.738 6.75
CIFAR-10 Image (2000) 0.06195696 0.743 9.00
CIFAR-10 Image (2500) 0.06417034 0.770 11.25

In sum, we conducted the whole crowdsourcing process
with a practical example in CrowdBC, which illustrates
that the blockchain-based framework is feasible. However,
we realize that a more low-cost and public blockchain
for CrowdBC is necessary. Hyperledger as a well known
blockchain fabric might be a solution, which is also a future
work of our framework.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented the design of CrowdBC, a
blockchain-based decentralized framework for crowdsourc-
ing. We analyzed that the traditional centralized crowd-
sourcing system suffers from privacy disclosure, single

13

point of failure and high services fee. We formalized Crowd-
BC to handle these centralized problems. Meanwhile, we en-
hanced the flexibility of crowdsourcing by smart contract to
depict complex crowdsourcing logic. A series of design algo-
rithms based on smart contract were proposed to construct a
concrete scheme under the framework. Besides, we evaluat-
ed our approach on Ethereum by implementing components
providing decentralized crowdsourcing services.

We are still in the early stage of blockchain technology
and identify several meaningful future works. First, we only
implemented the basic process of crowdsourcing currently,
but there exists much more complex scenes to handle. Sec-
ond, designing an efficient evaluation mechanism is crucial
in CrowdBC. We resume that requester could provide an
evaluation function when posting the task. However, we
should also consider that requester does not know about the
solution, and thus giving an efficient evaluation function is
becoming difficult.

ACKNOWLEDGMENTS

This work was supported by National Natural Sci-
ence Foundation of China (Grant Nos. 61732021, 61702222,
61472165 and 61373158), Guangdong Provincial Engineering
Technology Research Center on Network Security Detec-
tion and Defence (Grant No. 2014B090904067), Guangdong
Provincial Special Funds for Applied Technology Research
and development and Transformation of Important Scientif-
ic and Technological Achieve (Grant No. 2016B010124009),
the Zhuhai Top Discipline–Information SecurityGuangzhou
Key Laboratory of Data Security and Privacy Preserving,
Guangdong Key Laboratory of Data Security and Privacy
Preserving, China Postdoctoral Science Foundation funded
project (Grant No. 2017M612842).

REFERENCES

[1] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 53,
no. 10, pp. 1–4, Oct. 2006.

[2] “Upwork,” ”https://www.upwork.com/”, [Online].
[3] “Amazon mechanical turk,” ”https://www.mturk.com/mturk/

welcome”, [Online].
[4] “Uber,” ”https://www.uber.com/”, [Online].
[5] “Elance and odesk hit by d-

dos,” ”https://gigaom.com/2014/03/18/
elance-hit-by-major-ddos-attack-downing-service-for-many-freelancers/”,
[Online].

[6] “Uber china statement on service outage,” ”http:
//shanghaiist.com/2015/04/18/uber\ chinese\ operations\
recently\ hacked.php/”, [Online].

[7] “Freelancer,” ”http://www.smh.com.au/business/
freelancer-contests-20000-privacy-breach-fine-from-oaic-20160112-gm4aw2.
html”, [Online].

[8] X. Zhang, G. Xue, R. Yu, D. Yang, and J. Tang, “Keep y-
our promise: Mechanism design against free-riding and false-
reporting in crowdsourcing,” IEEE Internet of Things Journal, vol. 2,
no. 6, pp. 562–572, 2015.

[9] H. To, G. Ghinita, L. Fan, and C. Shahabi, “Differentially private
location protection for worker datasets in spatial crowdsourcing,”
IEEE Transactions on Mobile Computing, vol. 16, no. 4, pp. 934–949,
2017.

[10] G. Zhuo, Q. Jia, L. Guo, M. Li, and P. Li, “Privacy-preserving
verifiable set operation in big data for cloud-assisted mobile
crowdsourcing,” IEEE Internet of Things Journal, vol. 4, no. 2, pp.
572–582, 2017.

[11] E. Toch, “Crowdsourcing privacy preferences in context-aware
applications,” Personal and ubiquitous computing, vol. 18, no. 1, pp.
129–141, 2014.

[12] B. Halder, “Evolution of crowdsourcing: potential data protection,
privacy and security concerns under the new media age,” Revista
Democracia Digital e Governo Eletrônico, vol. 1, no. 10, pp. 377–393,
2014.

[13] J. R. Kan Yang, Kuan Zhang, “Security and privacy in mobile
crowdsourcing networks: challenges and opportunities,” IEEE
Communications Magazine, vol. 53, no. 8, pp. 75–81, 2015.

[14] E. Toch, “Crowdsourcing privacy preferences in context-aware
applications,” Personal and Ubiquitous Computing, vol. 18, no. 1,
pp. 129–141, 2014.

[15] C. S. Hien To, Gabriel Ghinita, “A framework for protecting
worker location privacy in spatial crowdsourcing, pvldb 2014,”
Proceedings of the VLDB Endowment, vol. 7, pp. 919–930, June 2014.

[16] M. v. d. S. Yu Zhang, “Reputation-based incentive protocols in
crowdsourcing applications,” in 2012 Proceedings IEEE INFOCOM,
Florida, USC, 2012, pp. 2140–2148.

[17] X. F. J. T. Dejun Yang, Guoliang Xue, “Crowdsourcing to smart-
phones: incentive mechanism design for mobile phone sensing,”
in Proceedings of the 18th annual international conference on Mobile
computing and networking, Mobicom 2012, Istanbul, Turkey, 2012,
pp. 173–184.

[18] G. C. Dan Peng, Fan Wu, “Pay as how well you do: A quality
based incentive mechanism for crowdsensing,” in Proceedings of
the 16th ACM International Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc 2015, Hangzhou, China, 2015, pp. 177–
186.

[19] H. To, G. Ghinita, and C. Shahabi, “A framework for protecting
worker location privacy in spatial crowdsourcing,” Proceedings of
the VLDB Endowment, vol. 7, no. 10, pp. 919–930, 2014.

[20] Z. Z. H. C. L. C. X. L. Xinglin Zhang, Zheng Yang, “Free market of
crowdsourcing: Incentive mechanism design for mobile sensing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 12,
pp. 3190–3200, Dec 2014.

[21] R. H. D. G. M. C. Tingxin Yan, Matt Marzilli, “mcrowd: a platform
for mobile crowdsourcing,” in Proceedings of the 7th ACM Confer-
ence on Embedded Networked Sensor Systems, SenSys 2009, Berkeley,
California, 2009, pp. 347–348.

[22] D. B. P. S. M. S. D. Joao Freitas, António Calado, “Crowdsourcing
platform for large-scale speech data collection,” Proc. FALA, 2010.

[23] M. E.-A. L. M. P. Suendermann, Crowdsourcing for speech processing:
Applications to data collection, transcription and assessment. John
Wiley & Sons, 2013.

[24] A. T. M. S. T. J. N. Robin Wentao Ouyang, Lance M. Kapla,
“Parallel and streaming truth discovery in large-scale quantita-
tive crowdsourcing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 10, pp. 1045–9219, Oct. 2016.

[25] X. Z. Depeng Dang, Ying Liu, “A crowdsourcing worker quality
evaluation algorithm on mapreduce for big data applications,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 7,
pp. 1879–1888, July 2016.

[26] H. Z. B. Y. Z. Gang Wang, Tianyi Wang, “Man vs. machine: Practi-
cal adversarial detection of malicious crowdsourcing workers,” in
Proceedings of the 23rd USENIX Security Symposium. Usenix Security
2014, vol. 14, San Diego, CA, 2014.

[27] K.-S. L. Man-Ching Yuen, Irwin King, “A survey of crowdsourcing
systems,” Boston, MA, USA, Oct. 2011, pp. 766–773.

[28] A. W. M. E. N. W. Tara S. Behrend, David J. Sharek, “The viability
of crowdsourcing for survey research,” Behavior research methods,
vol. 43, no. 3, p. 800, September 2011.

[29] T. S. D. V. Kaufmann, Nicolas, “More than fun and money. worker
motivation in crowdsourcing-a study on mechanical turk,” De-
troit, Michigan, USA, Aug. 2011, pp. 1–11.

[30] B. B. B. Alexander J. Quinn, “Human computation: a survey and
taxonomy of a growing field,” Vancouver, BC, Canada, May 2011,
pp. 1403–1412.

[31] M. H. Y. J. Ke Mao, Licia Capra, “A survey of the use of crowd-
sourcing in software engineering,” Journal of Systems and Software,
vol. 126, pp. 57–84, April 2017.

[32] A. S. Federico Ast, “The crowdjury, a crowdsourced justice system
for the collaboration era,” 2015.

[33] V. Jacynycz, A. Calvo, S. Hassan, and A. A. Sánchez-Ruiz, “Bet-
funding: A distributed bounty-based crowdfunding platform over
ethereum,” in Distributed Computing and Artificial Intelligence, 13th
International Conference, vol. 474, Sevilla, Spain, 2016, pp. 403–411.

[34] H. Zhu and Z. Z. Zhou, “Analysis and outlook of applications of
blockchain technology to equity crowdfunding in china,” Financial
Innovation, vol. 2, no. 1, p. 29, 2016.

14

[35] “Microwork,” ”http://www.microwork.io/”, ”[Online]”.
[36] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”

2009.
[37] A. Wright and P. De Filippi, “Decentralized blockchain technology

and the rise of lex cryptographia,” 2015.
[38] “Wikipedia. list of cryptocurrencies,” ”https://en.wikipedia.org/

wiki/List\ of\ cryptocurrencies”, [Online].
[39] R. S. M. J. F. Muneeb Ali, Jude Nelson, “Blockstack: A global

naming and storage system secured by blockchains,” in USENIX
Annual Technical Conference, USENIX ATC 2016, Denver, CO, 2016,
pp. 181–194.

[40] T. V. Asaph Azaria, Ariel Ekblaw, “Medrec: Using blockchain
for medical data access and permission management,” in 2nd
International Conference on Open and Big Data, OBD 2016, Vienna,
Austria, Aug. 2016, pp. 25–30.

[41] J. C. A. N. J. A. K. E. W. F. Joseph Bonneau, Andrew Miller, “Sok:
Research perspectives and challenges for bitcoin and cryptocur-
rencies,” in IEEE Symposium on Security and Privacy, S&P 2015,
CA, USA, May. 2015, pp. 17–21.

[42] D. Christian and W. Roger, “Information propagation in the bitcoin
network,” in Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth
International Conference on. IEEE, 2013, pp. 1–10.

[43] W. Gavin, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[44] S. Melanie, Blockchain: Blueprint for a new economy. ”O’Reilly
Media, Inc.”, 2015.

[45] N. Szabo, “Formalizing and securing relationships on public
networks,” First Monday, vol. 2, no. 9, 1997.

[46] “Hyperledger white paper (2015),” ”www.the-blockchain.com/
docs/Hyperledger\%20Whitepaper.pdf”, [Online].

[47] W. Diffie and M. E. Hellman, “New directions in cryptography,”
IEEE Trans. Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[48] D. M. Marcin Andrychowicz, Stefan Dziembowski, “Secure mul-
tiparty computations on bitcoin,” in IEEE Symposium on Security
and Privacy, S&P 2014, San Jose, CA, 2014, pp. 443–458.

[49] “Blockchain info,” ”https://blockchain.info/charts/blocks-size”,
[Online].

[50] J. Benet, “Ipfs-content addressed, versioned, p2p file system,”
arXiv preprint arXiv:1407.3561, 2014.

[51] D. M. Petar Maymounkov, “Kademlia: A peer-to-peer information
system based on the xor metric,” in International Workshop on Peer-
to-Peer Systems, vol. 2429, MA, USA, March 2002, pp. 53–65.

[52] B. W. Amit Sahai, “How to use indistinguishability obfuscation:
deniable encryption, and more,” in Proceedings of the forty-sixth
annual ACM symposium on Theory of computing, STOC 2014, New
York, USA, 2014, pp. 475–484.

[53] Y. Kan, Z. Kuan, R. Ju, and S. Xuemin, “Security and privacy in
mobile crowdsourcing networks: challenges and opportunities,”
IEEE Communications Magazine, vol. 53, no. 8, pp. 75–81, 2015.

[54] “Crowdbc,” ”https://github.com/lim60/crowdBC”, 2017, crowd-
BC User Guide.

[55] “Ethereum market,” ”https://etherscan.io/”, [Online].

