
Secretly Embedding Trapdoors into Contract Signing Protocols

Diana Maimut,1 and George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

ati@dcti.ro
2 Department of Computer Science

“Al.I.Cuza” University of Iaşi 700506 Iaşi, Romania,
george.teseleanu@info.uaic.ro

Abstract. Contract signing protocols have been proposed and analyzed for more than three decades
now. One of the main problems that appeared while studying such schemes is the impossibility of
achieving both fairness and guaranteed output delivery. As workarounds, cryptographers have put forth
three main categories of contract signing schemes: gradual release, optimistic and concurrent or legally
fair schemes. Concurrent signature schemes or legally fair protocols do not rely on trusted arbitrators
and, thus, may seem more attractive for users. Boosting user trust in such manner, an attacker may
cleverly come up with specific applications. Thus, our work focuses on embedding trapdoors into contract
signing protocols. In particular, we describe and analyze various SETUP (Secretly Embedded Trapdoor
with Universal Protection) mechanisms which can be injected in concurrent signature schemes and
legally fair protocols without keystones.

1 Introduction

Contract signing protocols have been proposed and extensively studied in the past. During the analysis of
such schemes, the impossibility of achieving both fairness and guaranteed output delivery became a central
problem for researchers. Trying to solve the aforementioned issue, cryptographers have developed various
contract signing schemes which can be categorized having in mind three different design types: 1 gradual
release [12, 14, 15, 18], 2 optimistic [2, 5, 17] and 3 concurrent [6] or legally fair [10] models. Concurrent
signatures or legally fair protocols do not rely on trusted third parties. Also, concurrent signature models
do not require too much interaction between users as compared to older paradigms like gradual release or
optimistic models. Such features may seem much more attractive for users. Building upon user trust in the
case of fair contract signing protocols, a (powerful) adversary may cleverly construct attack scenarios.

Digital signature schemes naturally arose as the central ingredient of modern contract signing protocols.
The use of digital signatures as a channel to convey information (subliminal channel) was first introduced and
studied by Simmons [21,22]. Another step was taken by Young and Yung [23–27], who combined subliminal
channels and public key cryptography in order to leak a user’s private key (SETUP attacks). The two authors
work in a black-box environment3, pointing out that other scenarios exist. In order for these attacks to work,
the manufacturer of the device has to be an accomplice. He will be the one that implements the mechanisms
to recover the keys.

Such an attack is likely to be applied in the case of auctions. In a possible scenario, participants receive
signing tokens from an auctioneer. When bidding, a participant uses his signing token. Hence, the bid is
acknowledged by the auctioneer’s co-signature. In order to raise the value of the bids, the auctioneer leaks
false bids for the competing participants. We assume that participants do not communicate using additional
channels.

Our work focuses on embedding trapdoors into contract signing protocols. In particular, we describe and
analyze two main SETUP mechanisms which can be injected in the concurrent signature scheme presented
in [6] and the legally fair protocol (without keystones) introduced in [10].
3 e.g. tamper proof devices

Structure of the Paper. We introduce notations, definitions and protocols used throughout the paper in
Section 2. In Sections 3 and 4 we present two main SETUP mechanisms which can be injected into concurrent
or legally fair signature schemes and analyze their security in the standard model and, respectively, Random
Oracle Model (ROM) [3]. We conclude in Section 5. We recall additional security models and Schnorr
signatures in Appendix A and provide supplementary SETUP mechanisms in Appendices B and C. ‘

2 Preliminaries

Notations. Let S be a finite set. We denote by x $←− S the operation of picking an element uniformly from S.
x||y represents the string obtained by concatenating y to x.
If and only if is further referred to as iff.
Unless otherwise specified, G is a cyclic group of order q, where q is a large prime number. Also, we denote

by g a generator of G.
xi and yi represent the private and public keys associated with user i: xi is considered to be randomly

chosen from Z∗q and yi = gxi .
The action of choosing a random element from an entropy smoothing4 (es) family H is further referred to

as “H is es”.
We denote by PPT algorithm a probabilistic polynomial-time algorithm.

2.1 Security Assumptions

Definition 1 (Discrete Logarithm Problem - dlp). Let G be a cyclic group of order n and g a generator
G. Given g, h $←− G, find a such that h = ga.

The number a is called the discrete logarithm of h to the base g and is denoted by logg h.

Remark 1. Two users A and B can choose a dlp based protocol in order to compute a common secret key K.
We further describe the Diffie-Hellman (dh) key exchange [7].

Alice Bob

xA
$←− Z∗q xB

$←− Z∗q
yA ← gxA yB ← gxB

yA−−−−−−−−−−−→
yB←−−−−−−−−−−−

K ← (yB)xA K ← (yA)xB

Fig. 1. The Diffie-Hellman key exchange protocol.

Definition 2 (Computational Diffie-Hellman - cdh and List Computational Diffie-Hellman of
Order 2 - lcdh2). Let G be a cyclic group of order n, g a generator G and let A be a PPT algorithm that
returns either an element (cdh) or a list of elements (lcdh2) from G. We define the advantages

ADV cdh
G,g (A) = Pr[A(gx, gy) = gxy|x, y $←− Z∗n]

ADV lcdh2
G,g (A) = Pr[gxy or gxz ∈ A(gx, gy, gz)|x, y, z $←− Z∗n].

If ADV cdh
G,g (A) or ADV lcdh2

G,g (A) is negligible for any PPT algorithm A, we say that the Computational
Diffie-Hellman problem or List Computational Diffie-Hellman problem of Order 2 is hard in G.
4 We refer the reader to Appendix A for a definition of the concept.

2

Remark 2. A similar with lcdh2 concept was introduced in [20] and proven to be equivalent with cdh.
Tweaking the proof from [20], we obtain that for an efficient PPT lcdh2 adversary A there exist an efficient
PPT algorithm B such that

ADV lcdh2
G,g (A) ≤ 2ADV cdh

G,g (B). (1)

It is easy to see that if the cdh assumption doesn’t hold, then the lcdh2 assumption doesn’t hold. If
the lcdh2 assumption doesn’t hold, then there exist a PPT algorithm A that has non-negligible lcdh2
advantage. We will use A to build an algorithm B that has non-negligible cdh advantage for (gx, gy) or
(gx, gz). Algorithm B simply runs A and then outputs two random elements from the list returned by A.
Thus we obtain the loose reduction (1).

Definition 3 (Decisional Diffie-Hellman - ddh). Let G be a cyclic group of order n, g a generator G
and let A be a PPT algorithm. We define the advantage

ADV ddh
G,g (A) =

∣∣∣Pr[A(gx, gy, gz) = 1|x, y $←− Z∗n, z ← xy]− Pr[A(gx, gy, gz) = 1|x, y, z $←− Z∗n]
∣∣∣ .

If ADV ddh
G,g (A) is negligible for any PPT algorithm A, we say that the Decisional Diffie-Hellman problem

is hard in G.

2.2 Security Models

Definition 4 (Pseudorandom Function - prf). A function F : {0, 1}n×{0, 1}s → {0, 1}m is a (t, q)-prf
if:

– Given a key K ∈ {0, 1}s and an input X ∈ {0, 1}n there is an efficient algorithm to compute FK(X) =
F (X,K).

– For any t-time oracle algorithm A, the prf-advantage of A, defined as

ADV prf
F =

∣∣∣Pr[AFK(·) = 1|K $←− {0, 1}s]− Pr[AF (·) = 1|F $←− F]
∣∣∣

is negligible for any PPT algorithm A, where F = {F : {0, 1}n → {0, 1}m} and A makes at most q queries
to the oracle.

Definition 5 (Secretly Embedded Trapdoor with Universal Protection - SETUP). A Secretly
Embedded Trapdoor with Universal Protection (SETUP) is an algorithm that can be inserted in a system such
that it leaks encrypted private key information to an attacker through the system’s outputs. The leakage is
achieved through a public key exchange protocol between an unsuspecting victim and the attacker.

Definition 6 (SETUP indistinguishability - ind-setup). Let C0 be a black-box system that uses a pair
of keys (pk, sk), where pk is the public key and sk the coresponding secret key. Let pkS be the public key used
by a SETUP mechanism as defined above, in Definition 5. Let KE be a public key exchange protocol that takes
as input pk and pkS. We consider C1 an altered version of C0 that contains a SETUP mechanism based on
KE. Let A be a PPT algorithm. We define the advantage

ADV ind-setup
KE,C0,C1

(A) =
∣∣∣Pr[AC1(sk,·)(pk, pkS) = 1]− Pr[AC0(sk,·)(pk, pkS) = 1]

∣∣∣ .
If ADV ind-setup

KE,C0,C1
(A) is negligible for any PPT algorithm A, we say that C0 and C1 are polynomially

indistinguishable.

3

2.3 Concurrent Signatures

In the case of classical contract signing protocols, users exchange complete signatures (e.g. [13]). Concurrent
signature protocols [6, 16] use “ambiguous” signatures that do not bind their author. An additional piece of
information called the keystone can later be used to lift the ambiguity. Thus, when the keystone is revealed,
signatures become simultaneously binding.

The standard algorithms corresponding to a concurrent signature are shortly described in Table 1.

Table 1. The algorithms of a concurrent signature.

Setup(`)
On input a security parameter `, this algorithm outputs the private and public keys
(xi, yi) of all participants and the public parameters pp = (M,K,F ,KeyGen), where
KeyGen : K → F is a selected function.

aSign(yi, yj , xi, e2,m)
On input the public keys yi and yj , the private key xi corresponding to yi, an element
e2 ∈ F and a message m ∈ M, this algorithm outputs an “ambiguous signature”
σ = 〈s, e1, e2〉, where s ∈ S and e1, e2 ∈ F .

aVerify(σ, yi, yj ,m)

On input an ambiguous signature σ = 〈s, e1, e2〉, public keys yi, yj
and a message m this algorithm outputs a boolean value satisfying

aVerify
(
σ′, yj , yi,m

)
= aVerify (σ, yi, yj ,m) ,

where σ′ = 〈s, e2, e1〉.

Verify(k, σ, yi, yj ,m)
On input k ∈ K , σ = 〈s, e2, e1〉, public keys yi, yj and message m, this algorithm
checks whether KeyGen(k) = e2 and outputs False if not; otherwise it outputs the
result of aVerify(σ, yi, yj ,m).

Concurrent signatures are used by two parties Alice and Bob as depicted in Figure 2.

Alice Bob

k
$←− K

f ← KeyGen(k)
σB ← aSign(yB , yA, xB , f,mB)

σB←−−−−−−−−−−−
TA ← aVerify(σB , yB , yA,mB)
if TA = False then abort
σA ← aSign(yA, yB , xA, f,mA)

σA−−−−−−−−−−−→
TB ← aVerify(σA, yA, yB ,mA)
if TB = False then abort

k←−−−−−−−−−−−

Fig. 2. The concurrent signature of messages mA and mB .

At the end of this protocol, both 〈k, σA〉 and 〈k, σB〉 are binding, and accepted by the Verify algorithm.

A Concrete Construction. To mount our SETUP attacks, we further use a concrete concurrent signature,
more precisely the protocol presented in [6]. The security of this protocol can be proven in the ROM, assuming
the hardness of computing discrete logarithms in a group G.

Chen et. al’s concurrent scheme is presented in Figure 3. The scheme makes use of two cryptographic
hash functions H1, H2 : {0, 1}∗ → Z∗q .

4

Alice Bob

k
$←− K

f ← H1(k)
δB

$←− Z∗q
ηB ← H2

(
gδByfA‖mB

)
eB ← ηB − f mod q
sB ← δB − eBxB mod q
σB ← 〈sB , eB , f〉

σB←−−−−−−−−−−−

TA ← H2
(
gsByeBB yfA‖mB

)
mod q

if TA 6= eB + f then abort
δA

$←− Z∗q
ηA ← H2

(
gδAyfB‖mA

)
eA ← ηA − f mod q
sA ← δA − eAxA mod q
σA ← 〈sA, eA, f〉

σA−−−−−−−−−−−→

TB ← H2
(
gsAyeAA yfB‖mA

)
mod q

if TB 6= eA + f then abort
k←−−−−−−−−−−−

Fig. 3. Chen et al. concurrent signature.

2.4 Legally Fair Signatures without Keystones

In [10] the authors present a new contract signing paradigm that does not require keystones to achieve legal
fairness. Their provably secure co-signature construction recalled in Figure 4 is based on Schnorr digital
signatures5.

In Figure 4, L represents a local non-volatile memory used by Bob and H1 : {0, 1}∗ → Z∗q denotes a
cryptographic hash functions. During the protocol, Alice makes use of a publicly known auxiliary signature
scheme σ that uses her secret key xA.

3 SETUP Attacks on Concurrent Signatures

We present a SETUP mechanism6 which can later be used by an external attacker Eve to recover either
Alice’s or Bob’s secret key. To implement her attack, Eve needs a valid pair of (private and public) keys
(xE , yE = gxE). The public key yE is stored in a volatile memory on the victim’s device. We further assume
that Eve has access to the data transmitted during the protocol.

Changes required by the SETUP mechanisms will further be underlined using red colored text within
Protocol 5.

Description. The SETUP mechanism requires:

– one pseudorandom function PRF : K × Z∗q → Z∗q , where K is the key space;
– a function H : G→ K;

5 recalled in Appendix A
6 Another mechanism (detailed in Appendix B) naturally arises.

5

Alice Bob

yA,B ← yA · yB yA,B ← yA · yB
δA

$←− Z∗q δB
$←− Z∗q

rA ← gδA rB ← gδB

ρ← H1(0‖rB)
ρ←−−−−−−−−−−−

t← σ(rA‖Alice‖Bob) rA,t−−−−−−−−−−−→
if t is incorrect then abort
store t in L

rB←−−−−−−−−−−−
if H1(0‖rB) 6= ρ then abort
r ← rA · rB r ← rA · rB
e← H1(1‖m‖r‖Alice‖Bob) e← H1(1‖m‖r‖Alice‖Bob)
sA ← δA − exA mod q sB ← δB − exB mod q

store sB in L
sB←−−−−−−−−−−−

if sB is incorrect then abort
sA−−−−−−−−−−−→

if sA is incorrect then abort
s← sA + sB mod q s← sA + sB mod q

if {m, r, s} is valid then
erase t, sB from L

Fig. 4. The legally fair signature (without keystones) of message m.

– a protocol needs to reach breakpoint 2 for an attacker to recover Alice’s secret key;
– a protocol needs to reach breakpoint 1 for an attacker to recover both secret key.

The value f is transmitted during the protocol and is available to Eve. Hence, she can recover user i’s
secret key simply by computing PRF(H(yxEi), f) and extracting xi from si by calculating e−1

i (si − δi), where
i denotes either Alice or Bob.

Compared to the mechanism presented in Appendix B, this SETUP attack requires only one successful
protocol to recover Alice’s and Bob’s secret key.

Malicious Co-Signers: Requirements. If Eve is replaced by Alice, a protocol needs to reach breakpoint 1 . When
replaced by Bob, a protocol needs to reach breakpoint 2 .

Security Analysis. We present the main security results, more precisely Theorems 1 and 2, and provide
the reader with the necessary proofs.

When referring to the security analysis presented in the current section, Θ is considered an additional
security parameter and refers to the maximal number of protocol iterations.

Theorem 1. If ddh is hard in G and H is a one-to-one function7, then the protocols presented in Figure 3
and Figure 5 are ind-setup in the standard model. Formally, let A be an efficient PPT ind-setup adversary.
There exist two efficient PPT algorithms B1, B2 such that

ADV ind-setup
DH,P3,P5

(A) ≤ 4ADV ddh
G,g (B1) + 4ADV prf

PRF(B2).
7 A function for which every element of the range of the function corresponds to precisely one element of the domain.

6

Alice Bob

k
$←− K

f ← H1(k)
K1 ← H(yxBE)
δB ← PRF(K1, f)
ηB ← H2

(
gδByfA‖mB

)
eB ← ηB − f mod q
sB ← δB − eBxB mod q
σB ← 〈sB , eB , f〉

breakpoint 1
σB←−−−−−−−−−−−

TA ← H2
(
gsByeBB yfA‖mB

)
mod q

if TA 6= eB + f then abort
K2 ← H(yxAE)
δA ← PRF(K2, f)
ηA ← H2

(
gδAyfB‖mA

)
eA ← ηA − f mod q
sA ← δA − eAxA mod q
σA ← 〈sA, eA, f〉

breakpoint 2
σA−−−−−−−−−−−→

TB ← H2
(
gsAyeAA yfB‖mA

)
mod q

if TB 6= eA + f then abort
k←−−−−−−−−−−−

Fig. 5. Protocol 3 with a SETUP mechanism.

Proof. We denote the protocols presented in Figure 3 and Figure 5 by P3 and P5. Let A be an ind-setup
adversary trying to distinguish between P3 and P5. We show that A’s advantage is negligible. We construct
the proof as a sequence of games in which all the required changes are applied to P5. Let Wi be the event
that A wins game i.

Game 0. The first game is identical to the ind-setup game8. Thus, we have

|2Pr[W0]− 1| = ADV ind-setup
DH,P3,P5

(A). (2)

Game 1. In this game, yxAE and yxBE from Game 0 become gzA and gzB , where zA, zB
$←− Zq. Since this is

the only change between Game 0 and Game 1, A will not notice the difference assuming the ddh assumption
holds. Formally, this means that there exists an algorithm B1 such that

|Pr[W0]− Pr[W1]| = 2ADV ddh
G,g (B1). (3)

Game 2. Since H is one-to-one then we can make the change K1,K2
$←− Zq and adversary A will not

notice. Formally, this means that

Pr[W1] = Pr[W2]. (4)

Game 3. The last change we make is δA, δB
$←− Zq. Adversary A will not notice the difference, since PRF

is a pseudorandom function. Formally, there exist an algorithms B2 such that

|Pr[W2]− Pr[W3]| = 2ADV prf
PRF(B2). (5)

8 as in Definition 6

7

The changes made to P5 in Game 1 - Game 3, transformed it into P3. Thus, we have

Pr[W3] = 1/2. (6)

Finally, the statement is proven by combining the equalities (2)− (6). ut

Remark 3. From Theorem 1, the maximum advantage an ind-setup adversary can obtain in the standard
model is

ADV ind-setup
DH,P3,P5

(A) ≤ 4ΘADV ddh
G,g (B1) + 4ΘADV prf

PRF(B2).

The advantage remains negligible if parameter Θ is polynomial.

Theorem 2. If cdh is hard in G and H is hash function, then the protocols presented in Figure 3 and
Figure 5 are ind-setup in the ROM. Formally, let A be an efficient PPT ind-setup adversary. There exist
two efficient PPT algorithms B1, B2 such that

ADV ind-setup
DH,P3,P5

(A) ≤ 4ADV cdh
G,g (B1) + 4ADV prf

PRF(B2).

Proof. We will use the same notations as in the proof for Theorem 1.
Game 0. The first game is identical to the ind-setup game9. Thus, we have

|2Pr[W0]− 1| = ADV ind-setup
DH,P3,P5

(A). (7)

The challenger picks a random oracle H : G→ Z∗q at random from the set of all such functions. A can make
a sequence of queries of the following type.

Hash oracle query10: A presents the challenger with m ∈ G, who responds with H(m).
Game 1. At the beginning of the game choose K1,K2

$←− Z∗q . The challenger’s way to respond to queries
becomes:

Hash oracle query11: A presents the challenger with m ∈ G. The challenger responds with

– K1, if m = yxAE ;
– K2, if m = yxBE ;
– H(m), otherwise.

Since we have replaced the values yxAE and yxBE throughout the game, we have

Pr[W0] = Pr[W1]. (8)

Game 2. In this game, we revert to the original hash oracle query (i.e the challenger responds with H(m)
for all m). Let F be the event that the adversary makes a query with m← yxAE or m← yxBE . Game 1 and
Game 2 are identical until F occurs. Thus, we have

|Pr[W1]− Pr[W2]| ≤ Pr[F]. (9)

We need to prove that

Pr[F] = ADV lcdh2
G,g (C), (10)

where C is an algorithm that takes as input yE , yA and yB. C will play the role of the challenger in Game
2. Algorithm C has a list of queries and responses, such that if A makes a query that matches one of the
previous queries, C can return the previous output. At the end of the game, algorithm C will output a list
9 as in Definition 6

10 Game 0
11 Game 1

8

with all the responses to A’s queries. It is easy to see that the probability of C returning a list containing
yxAE or yxBE is the same as Pr[F].

Game 3. In this game we choose δA, δB
$←− Zq. Adversary A will not notice the difference, since PRF is a

pseudorandom function. Formally, there exist an algorithm B2 such that

|Pr[W2]− Pr[W3]| = ADV prf
PRF(B2). (11)

The changes made to P5 in Game 1 - Game 3, transformed it into P3. Thus, we have

Pr[W3] = 1/2. (12)

Finally, the statement is proven by combining the equalities (7)− (12). ut

Remark 4. From Theorem 6, the maximum advantage an ind-setup adversary can obtain in the ROM is

ADV ind-setup
DH,P3,P5

(A) ≤ 4ΘADV cdh
G,g (B1) + 4ΘADV prf

PRF(B2).

The advantage remains negligible if parameter Θ is polynomial.

4 SETUP Attacks on Legally Fair Signatures without Keystones

To implement her attack12, Eve works in the same environment described in Section 3.
As in Section 3, changes required by the SETUP mechanisms will further be underlined using red colored

text in Protocol 6.

Description. The SETUP mechanism requires:

– a pseudorandom function PRF : K × Z∗q → Z∗q , where K is the key space;
– a function H : G→ K;
– a protocol needs to reach breakpoint 1 for an attacker to recover Alice’s secret key;
– a protocol needs to reach breakpoint 2 for an attacker to recover both secret key.

By jB we understand a counter incremented each time Bob runs the protocol.
The value ρ is transmitted during the protocol and is available to Eve. Hence, she can recover Alice’s

secret key simply by computing PRF(H(yxEA), ρ) and extracting xA from sA by calculating e−1(sA − δA).
To find the value of jB, Eve computes δB,` ← PRF(H(yxEB), `), r` = gδB,` and ` = `+ 1, until r` = rB.

Once jB is found, she can compute the secret key as e−1(sB − δB,`).
Compared to the mechanism presented in appendix C, this SETUP attack requires only one successful

protocol to recover Alice’s secret key. Attacking Bob instead of Alice is less efficient, since Eve must find the
current counter value.

Malicious Co-Signers: Requirements. If Eve is replaced by Alice, a protocol needs to reach breakpoint 1 . Also,
Alice may choose to infect the protocols which directly involve her, keep an internal counter, and, thus,
avoid the need to use brute-force methods to obtain jB. When replaced by Bob, a protocol needs to reach
breakpoint 2 .

12 Another attack (detailed in Appendix C) naturally arises.

9

Alice Bob

yA,B ← yA · yB yA,B ← yA · yB
δB ← PRF(H(yxBE), jB)
rB ← gδB

ρ← H1(0‖rB)
ρ←−−−−−−−−−−−

δA ← PRF(H(yxAE), ρ)
rA ← gδA

t← σ(rA‖Alice‖Bob) rA,t−−−−−−−−−−−→
if t is incorrect then abort
store t in L

rB←−−−−−−−−−−−
if H1(0‖rB) 6= ρ then abort
ri ← rA · rB r ← rA · rB
e← H1(1‖m‖r‖Alice‖Bob) e← H1(1‖m‖r‖Alice‖Bob)
sA ← δA − exA mod q sB ← δB − exB mod q

store sB in L
breakpoint 1

sB←−−−−−−−−−−−
if sB is incorrect then abort

breakpoint 2
sA−−−−−−−−−−−→

if sA is incorrect then abort
si ← sA + sB mod q s← sA + sB mod q

if {m, r, s} is valid then
erase t, sB from L

Fig. 6. Protocol 4 with a SETUP mechanism.

Security Analysis. The main security results are presented in Theorems 3 and 4. The proofs are omitted
given the similarity with the ones presented in Section 3.

Theorem 3. If ddh is hard in G and H is a one-to-one function, then the protocols presented in Figure 4
and Figure 6 are ind-setup in the standard model. Formally, let A be an efficient PPT ind-setup adversary.
There exist two efficient PPT algorithms B1, B2 such that

ADV ind-setup
DH,P4,P6

(A) ≤ 4ADV ddh
G,g (B1) + 4ADV prf

PRF(B2).

Remark 5. From Theorem 3, the maximum advantage an ind-setup adversary can obtain in the standard
model is

ADV ind-setup
DH,P4,P6

(A) ≤ 4ΘADV ddh
G,g (B1) + 4ΘADV prf

PRF(B2).

The advantage remains negligible if parameter Θ is polynomial.

Theorem 4. If cdh is hard in G and H is a hash function, then the protocols presented in Figure 4 and
Figure 6 are ind-setup in the ROM. Formally, let A be an efficient PPT ind-setup adversary. There exist
three efficient PPT algorithms B1, B2 such that

ADV ind-setup
DH,P4,P6

(A) ≤ 4ADV cdh
G,g (B1) + 4ADV prf

PRF(B2).

10

Remark 6. From Theorem 4, the maximum advantage an ind-setup adversary can obtain in the ROM is

ADV ind-setup
DH,P4,P6

(A) ≤ 4ΘADV cdh
G,g (C) + 4ΘADV prf

PRF(B2).

The advantage remains negligible if parameter Θ is polynomial.

5 Conclusions and Future Work

In this paper we presented various SETUP mechanisms which can be injected in contract signing protocols.
We also analyzed the security of the proposed attack scenarios. The reader may easily observe that finding
Bob’s secret key requires less resources in the scenario described in Section 3 than the one described in
Section 4. These two main attacks can be implemented within independent protocol runs and maintain their
efficiency, while the mechanisms proposed in Appendices B and C need two consecutive runs to achieve13 the
same efficiency.

Possible countermeasures as well as other attack scenarios will be considered in future works.

Acknowledgments

The authors would like to thank Adrian Atanasiu and the anonymous reviewers for their helpful comments.

References

1. Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From Identification to Signatures
via the Fiat-Shamir Transform: Minimizing Assumptions for Security and Forward-Security. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages 418–433. Springer, 2002.

2. N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic Protocols for Fair Exchange. In Proceedings of
the 4th ACM Conference on Computer and Communications Security, CCS’97, pages 7–17. ACM, 1997.

3. Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols.
In Proceedings of the 1st ACM Conference on Computer and Communications Security - CCS’93, pages 62–73.
Springer, 1993.

4. Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. UCSD CSE, 207:207, 2005.
5. Christian Cachin and Jan Camenisch. Optimistic Fair Secure Computation. In Advances in Cryptology -

CRYPTO’00, volume 1880 of Lecture Notes in Computer Science, pages 93–111. Springer, 2000.
6. Liqun Chen, Caroline Kudla, and Kenneth G. Paterson. Concurrent signatures. In International Conference on

the Theory and Applications of Cryptographic Techniques, pages 287–305. Springer, 2004.
7. W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans. Inf. Theor., 22(6):644–654, September

2006.
8. Yevgeniy Dodis, Rosario Gennaro, Johan Håstad, Hugo Krawczyk, and Tal Rabin. Randomness Extraction and

Key Derivation Using the CBC, Cascade and HMAC Modes. In Annual International Cryptology Conference,
pages 494–510. Springer, 2004.

9. Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

10. Houda Ferradi, Rémi Géraud, Diana Maimuţ, David Naccache, and David Pointcheval. Legally fair contract
signing without keystones. In International Conference on Applied Cryptography and Network Security, pages
175–190. Springer, 2016.

11. Uriel Fiege, Amos Fiat, and Adi Shamir. Zero Knowledge Proofs of Identity. In Proceedings of the 19th Annual
ACM Symposium on Theory of Computing, STOC ’87, pages 210–217. ACM, 1987.

12. Juan Garay, Philip MacKenzie, Manoj Prabhakaran, and Ke Yang. Resource Fairness and Composability of
Cryptographic Protocols. In Proceedings of the 3rd Theory of Cryptography Conference - TCC’06, volume 3876 of
Lecture Notes in Computer Science, pages 404–428. Springer, 2006.

13. Oded Goldreich. A Simple Protocol for Signing Contracts. In Advances in Cryptology, pages 133–136. Springer,
1984.

13 more or less

11

14. Shafi Goldwasser, Leonid Levin, and Scott A. Vanstone. Fair Computation of General Functions in Presence of
Immoral Majority. In Advances in Cryptology - CRYPT0’90, volume 537 of Lecture Notes in Computer Science,
pages 77–93. Springer, 1991.

15. S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete Fairness in Secure Two-Party
Computation. Jornal of the ACM, 58(6):1–37, December 2011.

16. Andrew Y. Lindell. Legally-Enforceable Fairness in Secure Two-Party Computation. In Topics in Cryptology -
CT-RSA’08, Lecture Notes in Computer Science, pages 121–137. Springer, 2008.

17. Silvio Micali. Simple and Fast Optimistic Protocols for Fair Electronic Exchange. In Proceedings of the 22nd
Annual Symposium on Principles of Distributed Computing, PODC’03, pages 12–19. ACM, 2003.

18. Benny Pinkas. Fair Secure Two-Party Computation. In Advances in Cryptology - EUROCRYPT’03, volume 2656
of Lecture Notes in Computer Science, pages 87–105. Springer, 2003.

19. Claus-Peter Schnorr. Efficient Identification and Signatures For Smart Cards. In Advances in Cryptology-
CRYPTO’89, volume 435, pages 239–252. Springer, 1989.

20. Victor Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs. IACR Cryptology ePrint
Archive, 2004:332, 2004.

21. Gustavus J. Simmons. The Subliminal Channel and Digital Signatures. In Workshop on the Theory and Application
of Cryptographic Techniques, pages 364–378. Springer, 1984.

22. Gustavus J. Simmons. Subliminal Communication is Easy Using the DSA. In Workshop on the Theory and
Application of Cryptographic Techniques, pages 218–232. Springer, 1993.

23. Adam Young and Moti Yung. The Dark Side of “Black-Box” Cryptography or: Should We Trust Capstone? In
Advances in Cryptology-CRYPTO’96, pages 89–103. Springer, 1996.

24. Adam Young and Moti Yung. Kleptography: Using Cryptography Against Cryptography. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages 62–74. Springer, 1997.

25. Adam Young and Moti Yung. The Prevalence of Kleptographic Attacks on Discrete-Log Based Cryptosystems. In
Annual International Cryptology Conference, pages 264–276. Springer, 1997.

26. Adam Young and Moti Yung. Malicious Cryptography: Exposing Cryptovirology. John Wiley & Sons, 2004.
27. Adam Young and Moti Yung. Malicious Cryptography: Kleptographic Aspects. In Topics in Cryptology-CT-RSA

2005, pages 7–18. Springer, 2005.

12

A Additional Preliminaries

Security Models

Definition 7 (Entropy Smoothing - es). Let G be a cyclic group of order n, K the key space and A a
PPT algorithm. Also, let H = {hi}i∈K be a family of keyed hash functions, where each hi maps G to Z∗n. We
define the advantage

ADV es
H(A) =

∣∣∣Pr[A(i, hi(z)) = 1|i $←− K, z $←− G]− Pr[A(i, h) = 1|i $←− K, h $←− Z∗n]
∣∣∣ .

If ADV es
H(A) is negligible for any PPT algorithm A, we say that H is entropy smoothing.

Remark 7. In [8], the authors prove that the CBC-MAC, HMAC and Merkle-Damgård constructions satisfy
the definition above as long as the underling primitives satisfy certain security properties.

Schnorr Signatures

ElGamal signatures [9] inspired the construction of many other dlp based signatures. We particular refer
to Schnorr signatures [19] for the purpose of our current work. This family of signatures is obtained by
converting interactive identification protocols into signatures14.

We shortly describe the algorithms of the Schnorr digital signature scheme in Table 2.

Table 2. Schnorr digital signature.

Setup(`)

On input a security parameter `, this algorithm selects large primes p, q such that q ≥ 2`
and p− 1 mod q = 0, as well as an element g ∈ G of order q in some multiplicative
group G of order p, and a hash function H1 : {0, 1}∗ → {0, 1}`. The output is a set of
public parameters pp = (p, q, g,G, H).

KeyGen(pp)
On input the public parameters `, this algorithm chooses uniformly at random x

$←− Z∗q
and computes y ← gx. The output is the couple (sk, pk) where sk = x is kept private,
and pk = y is made public.

Sign(pp, sk,m)

On input public parameters, a secret key sk, and a message m this algorithm selects a
random δ

$←− Z∗q , computes

r ← gδ e← H1(m‖r) s← δ − ex mod q

and outputs 〈r, s〉 as the signature of m.

Verify(pp, pk,m, σ)
On input public parameters, a public key, a message m and a signature σ = 〈r, s〉, this
algorithm computes e← H1(m, r) and returns True iff gsye = r; otherwise it returns
False.

14 as previously described in [1, 11] and implicitly used by ElGamal

13

B A Supplementary SETUP Attack on Concurrent Signatures

Description. Let H : G→ Z∗q be a hash function. Let α be either Alice or Bob. Then, δα,0 represents α’s
secret key xα, rα,0 represents α’s public key yα and rα,i ← gδα,i . As in Section 3, Eve has a valid pair of keys
(xE , yE), where yE is stored on the victim’s device.

Again, changes required by the SETUP mechanisms will further be underlined using red colored text in
Figure 7.

Alice Bob

ki
$←− K

fi ← H1(ki)
δB,i ← H(yδB,i−1

E)
ηB,i ← H2

(
gδB,iyfiA ‖mB,i

)
eB,i ← ηB,i − fi mod q
sB,i ← δB,i − eB,ixB mod q
σB,i ← 〈sB,i, eB,i, fi〉

breakpoint 1
σB,i←−−−−−−−−−−−

TA ← H2
(
gsB,iy

eB,i
B yfiA ‖mB,i

)
mod q

if TA 6= eB,i + fi then abort
δA,i ← H(yδA,i−1

E)
ηA,i ← H2

(
gδA,iyfiB ‖mA,i

)
eA,i ← ηA,i − fi mod q
sA,i ← δA,i − eA,ixA mod q
σA,i ← 〈sA,i, eA,i, fi〉

breakpoint 2
σA,i−−−−−−−−−−−→

TB ← H2
(
gsA,iy

eA,i
A yfiB ‖mA,i

)
mod q

if TB 6= eA,i + fi then abort
ki←−−−−−−−−−−−

Fig. 7. Iteration i of Protocol 3 with a supplementary SETUP mechanism.

Eve can decide to recover Alice’s secret key whenever she wants. To do that, she must first compute
δA,i = H(rxEA,i−1). Eve recovers rA,i−1 from an older protocol in which Alice was involved, more precisely the
i− 1 one. Thus, Eve calculates

gsA,i−1y
eA,i−1
A ≡ gsA,i−1+eA,i−1xA ≡ gδA,i−1 ≡ rA,i−1.

Eve’s final goal is finding xA which can be achieved by computing e−1
A,i(sA,i − δA,i). The values eA,i and sA,i

are transmitted during the protocol and are public. Similarly, she can recover Bob’s secret key.

The most efficient way to recover secret keys is by observing two consecutive protocol iterations that need
to reach breakpoint 2 .

Exceptions. An exception is iteration 1, since δα,0 is already known. Thus, only protocol 1 needs to reach
breakpoint 2 . Eve can also recover secret keys at iteration i by computing all intermediary values, δα,j for
0 ≤ j < i. This method is computationally costly.

14

Malicious Co-Signers: Requirements. If Eve is replaced by Alice, the most efficient way to recover secret keys
is by observing two protocol iterations that need to reach breakpoint 1 .

If Eve is replaced by Bob, the most efficient way to recover secret keys is by running two protocol iterations
that need to reach breakpoint 2 .

Security Analysis. We present the main security results, more precisely Theorems 5 and 6, and provide
the reader with the necessary proofs.

When referring to the security analysis presented in the current section, Θ is considered an additional
security parameter and refers to the maximal number of protocol iterations.

Theorem 5. Let i be an integer smaller than Θ. If ddh is hard in G and H is es, then iterations i of the
protocols presented in Figure 3 and Figure 7 are ind-setup in the standard model. Formally, let A be an
efficient PPT ind-setup adversary then there exist two efficient PPT algorithms B1, B2 such that

ADV ind-setup
DH,P3,P7

(A) ≤ 4ADV ddh
G,g (B1) + 4ADV es

H(B2).

Proof. We denote iterations i of the protocols presented in Figure 3 and Figure 7 by P3 and P7. Let A be an
ind-setup adversary trying to distinguish between P3 and P7. We show that his advantage is negligible. We
present the proof as a sequence of games and all the required changes are made to P7. Let Wi be the event
that A wins game i.

Game 0. The first game is identical to the ind-setup game15. Thus, we have

|2Pr[W0]− 1| = ADV ind-setup
DH,P3,P7

(A). (13)

Game 1. In this game, yδA,i−1
E and yδB,i−1

E from Game 0 become gzA,i and gzB,i , where zA,i, zB,i
$←− Zq.

Since this is the only change between Game 0 and Game 1, A will not notice the difference assuming the
ddh assumption holds. Formally, this means that there exists an algorithm B1 such that

|Pr[W0]− Pr[W1]| = 2ADV ddh
G,g (B1). (14)

Game 2. Since H is es then we can make the change δA,i, δB,i
$←− Zq and adversary A will not notice.

Formally, this means that there exists an algorithm B2 such that

|Pr[W1]− Pr[W2]| = 2ADV es
H(B2) (15)

The changes made to P7 in Game 1 and Game 2, transformed it into P3. Thus, we have

Pr[W2] = 1/2. (16)

Finally, the statement is proven by combining the equalities (13)− (16). ut

Remark 8. From Theorem 5, the maximum advantage an ind-setup adversary can obtain in the standard
model is

ADV ind-setup
DH,P3,P7

(A) ≤ 4ΘADV ddh
G,g (B1) + 4ΘADV es

H(B2).

The advantage remains negligible if parameter Θ is polynomial.

Theorem 6. Let i be an integer smaller than Θ. If cdh is hard in G, then iterations i of the protocols
presented in Figure 3 and Figure 7 are ind-setup in the ROM. Formally, let A be an efficient PPT ind-setup
adversary then there exist an efficient PPT algorithms C such that

ADV ind-setup
DH,P3,P7

(A) ≤ 4ADV cdh
G,g (C).

15 as in Definition 6

15

Proof. We will use the same notations as in the proof for Theorem 5.
Game 0. The first game is identical to the ind-setup game16. Thus, we have

|2Pr[W0]− 1| = ADV ind-setup
DH,P3,P7

(A). (17)

The challenger picks a random oracle H : G→ Z∗q at random from the set of all such functions. A can make
a sequence of queries of the following type:

Hash oracle query17: A presents the challenger with m ∈ G, who responds with H(m).
Game 1. At the beginning of the game choose zA,i, zB,i

$←− Z∗q . We change the challenger’s way to respond
to queries as follows:

Hash oracle query18: A presents the challenger with m ∈ G. The challenger responds with:

– zA,i, if m = y
δA,i−1
E ;

– zB,i, if m = y
δB,i−1
E ;

– H(m), otherwise.

We also make the changes δA,i ← zA,i and δB,i ← zB,i in P7.
Since we have replaced the values yδA,i−1

E and yδB,i−1
E throughout the game, we have

Pr[W0] = Pr[W1]. (18)

Game 2. In this game, we revert to the original hash oracle query (i.e the challenger responds with H(m)
for all m). Let F be the event that the adversary makes a query with m← y

δA,i−1
E or m← y

δB,i−1
E . Game 1

and Game 2 are identical until F occurs. Thus, we have

|Pr[W1]− Pr[W2]| ≤ Pr[F]. (19)

We need to prove that

Pr[F] = ADV lcdh2
G,g (C), (20)

where C is an algorithm that takes as input yE , rA,i−1 and rB,i−1. C will play the role of the challenger in
Game 2. Algorithm C has a list of queries and responses, such that if A makes a query that matches one of
the previous queries, C can return the previous output. At the end of the game, algorithm C will output a
list with all the responses to A’s queries. It is easy to see that the probability of C returning a list containing
y
δA,i−1
E or yδB,i−1

E is the same as Pr[F].
The changes made to P7 in Game 1 and Game 2, transformed it into P3. Thus, we have

Pr[W2] = 1/2. (21)

Finally, the statement is proven by combining the equalities (17)− (21), ut

Remark 9. From Theorem 6, the maximum advantage an ind-setup adversary can obtain in the ROM is

ADV ind-setup
DH,P3,P7

(A) ≤ 4ΘADV cdh
G,g (C).

The advantage remains negligible if parameter Θ is polynomial.

16 as in Definition 6
17 Game 0
18 Game 1

16

C A Supplementary SETUP Attack on Legally Fair Signatures without
Keystones

Description. To implement an attack, Eve will work in almost the same environment as in Appendix B.
Thus, we only mention the differences between the environments.

As in Section 3, changes required by the SETUP mechanisms are further underlined using red colored
text in Figure 8.

Alice Bob

yA,B ← yA × yB yA,B ← yA × yB
δA,i ← H(yδA,i−1

E) δB,i ← H(yδB,i−1
E)

rA,i ← gδA,i rB,i ← gδB,i

ρi ← H1(0‖rB,i)
ρi←−−−−−−−−−−−

breakpoint 1

ti ← σ(rA,i‖Alice‖Bob)
rA,i,ti−−−−−−−−−−−→

if ti is incorrect then abort
store ti in L

breakpoint 2
rB,i←−−−−−−−−−−−

if H1(0‖rB,i) 6= ρi then abort
ri ← rA,i × rB,i ri ← rA,i × rB,i
ei ← H1(1‖mi‖ri‖Alice‖Bob) ei ← H(1‖mi‖ri‖Alice‖Bob)
sAi ← δA,i − eixA mod q sB,i ← δB,i − eixB mod q

store sB,i in L
breakpoint 3

sB,i←−−−−−−−−−−−
if sB,i is incorrect then abort

breakpoint 4
sA,i−−−−−−−−−−−→

if sA,i is incorrect then abort

si ← sA,i + sB,i mod q si ← sA,i + sB,i mod q
if {mi, ri, si} is valid then
erase ti, sB,i from L

Fig. 8. Iteration i of Protocol 4 with a supplementary SETUP mechanism.

The most efficient way for Eve to recover secret keys is taking into account the following requirements:

1. an iteration needs to reach breakpoint 4 ;
2. the previous protocol iteration needs to reach breakpoint 2 .

Malicious Co-Signers: Requirements. If Eve is replaced by Alice, the most efficient way to recover secret keys
is taking into account the following requirements:

1. an iteration needs to reach breakpoint 3 ;
2. the previous protocol iteration needs to reach breakpoint 2 .

17

If Eve is replaced by Bob, the most efficient way to recover secret keys is taking into account the following
requirements:

1. an iteration needs to reach breakpoint 4 ;
2. the previous protocol iteration needs to reach breakpoint 1 .

Security Analysis. The main security results are presented in Theorems 7 and 8. The proofs are omitted
given their similarities with the ones constructed in Appendix B.

Theorem 7. Let i be an integer smaller than Θ. If ddh is hard in G and H is es, then iterations i of the
protocols presented in Figure 4 and Figure 8 are ind-setup in the standard model. Formally, let A be an
efficiet PPT ind-setup adversary. There exist two efficient PPT algorithms B1, B2 such that

ADV ind-setup
DH,P4,P8

(A) ≤ 4ADV ddh
G,g (B1) + 4ADV es

H(B2).

Remark 10. From Theorem 7, the maximum advantage an ind-setup adversary can obtain in the standard
model is

ADV ind-setup
DH,P4,P8

(A) ≤ 4ΘADV ddh
G,g (B1) + 4ΘADV es

H(B2).

The advantage remains negligible if parameter Θ is polynomial.

Theorem 8. Let i be an integer smaller than Θ. If cdh is hard in G, then iterations i of the protocols
presented in Figure 4 and Figure 8 are ind-setup in the ROM. Formally, let A be an efficient PPT ind-setup
adversary. There exist an efficient PPT algorithms C such that

ADV ind-setup
DH,P4,P8

(A) ≤ 4ADV cdh
G,g (C).

Remark 11. From Theorem 8, the maximum advantage an ind-setup adversary can obtain in the ROM is

ADV ind-setup
DH,P4,P8

(A) ≤ 4ΘADV cdh
G,g (C).

The advantage remains negligible if parameter Θ is polynomial.

18

	Secretly Embedding Trapdoors into Contract Signing Protocols
	Diana Maimut-.25ex and George Teseleanu

