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Abstract. We devise a virtual black-box (VBB) obfuscator for querying whether set elements are
stored within Bloom filters, with security based on the Ring Learning With Errors (RLWE) problem
and strongly universal hash functions. Our construction uses an abstracted encoding scheme that
we instantiate using the Gentry, Gorbunov and Halevi (GGH15) multilinear map, with an explicit
security reduction to RLWE. This represents an improvement on the functionality and security
guarantees compared with the conjunction obfuscator introduced by Brakerski et al. (ITCS 2016),
where security follows from a non-standard RLWE variant. Immediate applications of our work arise
from any common usage of Bloom filters, such as efficient set intersection testing. Our obfuscated
program allows this functionality to be executed in a non-interactive manner whilst preventing the
natural leakage that occurs when providing offline access to a Bloom filter. Compared to more general
obfuscators for evasive functions, we demonstrate a significant asymptotic reduction in size and
required computation for obfuscating set intersection queries. The obfuscator of Wichs and Zirdelis
(EPRINT 2017) requires O(4n logn) encodings for obfuscating circuits computing the intersection of
sets of size n, requiring the usage of additional primitives such as FHE to allow sets of polynomial size.
Our construction requires only O(kn) total encodings and operations for evaluation, where k << n.
Moreover, the size of our obfuscator is independent of the size of the elements that are contained in
the set. Our results, alongside recent and concurrent work, can be seen as another step forward in
obfuscating wider classes of evasive functions using standard assumptions and models.

1 Introduction

Program obfuscation [38, 5, 31] has become a central theoretical primitive in constructing “encrypted”
programs that reveal nothing about their internal workings, whilst preserving their functionality. There
are several definitions of security for a proposed obfuscator, the strongest (and perhaps most intuitive) is
known as Virtual Black-Box (VBB) obfuscation. Informally, a circuit obfuscator satisfying VBB security
is indistinguishable from an interaction with a simulator which only has oracle access to the underlying
functionality. Thus, any information contained within the original circuit is naturally hidden by the ob-
fuscation. Unfortunately, it was shown by Barak et al. [5] that VBB obfuscation is impossible to achieve
for general programs. Since this initial work, there have been a number of diverging strands of research
investigating what is possible with regards to program obfuscation.

Indistinguishability obfuscation. Firstly, the work of Garg et al. [31] developed an instantiation of
an obfuscator for all circuits in P/POLY that is secure with respect to the security definition of ‘indis-
tinguishability’ set out in [5]. This definition gives indistinguishability guarantees for an obfuscator acting
on two circuits that compute equivalent functionalities. There have been several follow-up constructions
such as [4, 34, 32] that use similar techniques to this initial work. These constructions are known as IO
obfuscators. The usage of indistinguishability obfuscation as a central primitive has increased rapidly (for
example [54, 15]) with various works achieving milestones of important cryptographic value.

All constructions of IO obfuscators rely on so-called cryptographic multilinear maps (MMAPs) [30, 20, 33]
with security proven in associated generic models. Furthermore, there have been polynomial-time attacks
on most of these IO constructions [50, 18, 19, 2] exploiting flaws in the generic models, and highlighting
disparities between the model and the current constructions. Currently standing constructions of IO are
based on little more than heuristics and it is a major open problem to solve whether we can build IO
obfuscators for all circuits using standard assumptions and models.

VBB obfuscation. Undeterred by the impossibility result, many recent works have constructed VBB
obfuscators when restricted to specific functionality classes. For example, Canetti [12] and Lynn et al. [45]



gave point-function obfuscators in the random oracle model, while Wee [56] developed a point-function
obfuscator based on strong one-way functions. Other work has seen developments in hyperplane obfusca-
tors [16] based on strong DDH, and more recently obfuscators for various families of evasive functions based
on strong assumptions over MMAPs [8, 3]. Brakerski et al. [10] gave a construction of a VBB conjunction
obfuscator based on a variant of Ring-LWE known as ‘entropic RLWE’. Very recently and concurrently to
this work, Wichs and Zirdelis [57] showed how to obfuscate a wide class of evasive ‘compute-and-compare’
functions based on the hardness of the LWE problem. Both of these works use the ‘directed encodings’
abstraction of the GGH15 [33] MMAP for obtaining their construction.

While uncertainty continues to surround constructions of IO obfuscators for general circuits from cryp-
tographic multilinear maps, advances in more specific constructions based on well-known assumptions
represent a separate and useful direction for future work.

Hardness assumptions over GGH15. As mentioned above, Brakerski et al. [10] constructed a di-
rected encoding scheme with DDH-like and entropic security properties. Furthermore, they show that the
GGH15 [33] MMAP instantiates such a scheme based on the ‘entropic’ Ring-LWE problem. This involves
distinguishing RLWE samples from uniform where secrets are constructed multiplicatively from public
Gaussian-sampled elements. This assumption is not derived directly from standard Ring-LWE and so it is
unknown whether we can base the hardness of it on well-known lattice problems.

Numerous subsequent works have explored the possibility of instantiating complex primitives from standard
assumptions using GGH15 as the foundation. These include obfuscating ‘compute-and-compare’ function-
alities from LWE [57], constructing constraint-hiding, constrained PRFs from LWE [13]. Separately, Goyal
et al. [37] demonstrated the separation of circular and IND-CPA security for symmetric-key bit encryption
schemes from LWE using a variant of GGH15.

1.1 Our results

We devise a VBB obfuscator for evaluating queries on Bloom filters [6] with hardness based solely on the
Ring-LWE problem and strongly universal hash functions. Our obfuscator constructs a public API for data
storage mechanisms; allowing a user to query whether elements are already stored or not without giving
away internal information. In particular, a direct application of our work allows for computing private set
intersections (PSI) non-interactively. Our security guarantees are meaningful in the same manner as [10];
i.e. when the set that is hidden is sampled with sufficient min-entropy (specifically α(λ) = λε for a security
parameter λ and some constant ε > 0) relative to the universe that it is sampled from. There are several
applications pertaining to private set intersection computation. For instance, using this functionality we
are able to instantiate the class of evasive circuits where the obfuscator has knowledge of all satisfying
inputs.

Our methods make use of the Graded External Diffie-Hellman (GXDH) hardness assumption over directed
encoding schemes, first introduced by Brakerski et al. [10]. It is shown that the GXDH security property
holds when instantiating the directed encoding scheme using GGH15, based on the hardness of standard
Ring-LWE. In addition, the work of [10] requires a non-standard variant of Ring-LWE for proving that
‘entropic’ security of their scheme holds. In this work, we require a similar property that we name ‘linear
entropic security’, the main difference being that our property can be instantiated in an additive manner;
see Section 4 for full details. The advantage of this is that we are able to derive security directly from
the hardness of the Ring-LWE problem in a sufficiently general case1 – see Section 3. As a result, our
construction makes advances in security over the work of [10] by removing the requirement for a non-
standard variant of RLWE. In summary, security of our VBB obfuscator rests upon a directed encoding
scheme that is computationally secure with respect to the GXDH and linear α-entropic (α-LE) security
properties. We show that such a scheme can be securely instantiated from GGH15 based on the hardness
of Ring-LWE alone. The techniques that used in constructing our obfuscator shares similarities with the
design of [3] for obfuscating polynomial root evaluation.

Finally, while the concurrent and more general results of Wichs and Zirdelis [57] could potentially be
leveraged to compute the same functionality – our work makes tangible gains in the efficiency of evaluation

1 We require a large number of public samples and specific assumptions of the width of the Gaussian.
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and in the size of the obfuscated program. In [57] the construction requires the conversion of a functionality
into a branching program before obfuscation takes place. Such a conversion requires usage of Barrington’s
theorem, resulting in branching programs of depth O(4d) for depth d circuits. Clearly, this is a huge blow-up
in the size of the program as well as the amount of computation required for evaluation. The ‘sort-compare-
shuffle’ set intersection circuit developed by Huang et al. [41] has depth Θ(n log(n)), where n is the size of
the set being queried. For this circuit, the work of [57] could only be used for obfuscating the intersections of
sets of logarithmic size with respect to the entire universe. Bootstrapping their obfuscator for polynomial-
depth circuits requires usage of fully homomorphic encryption on top of the existing construction. The
obfuscator of Brakerski et al. [10] could also be leveraged for set intersection queries by obfuscating (at
worst-case) a conjunction for each element in the set to be queried. Evaluating the intersection would then
amount to evaluating n obfuscated conjunctions for each set element. That is, the size of the obfuscator
is O(δn) and the number of evaluations required is therefore O(δn2), where δ is the size of the string in
each conjunction obfuscator.

Our work constructs an obfuscator for data storage queries that is of size O(kn) without using Barringtom’s
theorem. We eliminate the dependence on the size δ, replacing this with a statistical security parameter
k that determines the probability of false-positives occurring. Typically we have that k < δ and thus
an improvement. Specifically, the number of encodings required is 3L + 2 where L is the length of the
Bloom filter (and is chosen to be L = k · n log e). Furthermore, an honest evaluation requires worst-case
evaluation of L+ 3k− 2 multiplications of encodings, which is also O(kn). Our protocol presents the first
method of obfuscating the set intersection functionality that is both independent of the size of elements
and able to obfuscate a polynomially-sized set efficiently (without additional primitives). We view our
efficiency gains that we have on the more general obfuscator of [57] as mirroring the distinction between
works in secure computation literature that construct practical, specific set intersection functionality and
those constructing more general MPC frameworks with steeper computational overheads. We believe that
the investigation of asymptotically efficient obfuscators (without using Barrington’s theorem, for example)
from standard assumptions to be a valuable pursuit in creating obfuscators that are closer to practical
realisation.

Entropy requirements. Goldwasser et al. [36] (in brief) showed that LWE with n-dimensional secrets
drawn from a distribution with min-entropy α over Zq is at least as hard as standard LWE with altered
dimensions, in particular O(α/log q). No such result is known for RLWE.

In this work, we detail a linear variant of the entropic RLWE assumption [10] with a security reduction
to standard RLWE. Now that we can base security on standard RLWE, valuable future research would
assess the security of RLWE when secrets are drawn from specifically chosen distributions, as in [36].

Obfuscation for evasive functionalities. VBB obfuscators with security based on non-standard as-
sumptions [8, 3] pre-dating [57, 10] showed that security was possible to achieve for evasive functions. An
evasive functionality requires that, for a function f : {0, 1}` 7→ {0, 1}, that there is only a small chance of
finding a ‘satisfying’ input x, such that f(x) = 1.2 The accepted security model for proving VBB obfusca-
tors secure is with respect to distribution ensembles D = {Dλ} that sample some evasive function f along
with a set of satisfying inputs x from Dλ. Evasive in this context means that x has sufficient min-entropy
α(λ) ≥ λε even when f is known. The simulator in the VBB security proofs is not given access to f and
hence f must be evasive.

Obfuscation for data storage. In this work, we make the same entropic requirements as above when
presenting distributional VBB security. Specifically, we consider a class of distributions Dα consisting of
distribution ensembles D = {Dλ}λ∈N of min-entropy α(λ); sampling (FS , S)←$Dλ, for a function FS and
some set S ⊂ S, taken from a large universe S. For y ∈ S we have that FS(y) = 1 if y ∈ S with all but
negligible probability. Recall, that α(λ) is the min-entropy of the set S when given access to FS .

We define a function FSBF = (BF , (h0, . . . , hk−1)) sampling (FSBF , S)←$Dλ. Here, (BF , (h0, . . . , hk−1))
is a description of a Bloom filter, where BF ∈ {0, 1}L is a bit array and h0, . . . , hk−1 are the hash
functions hi : S 7→ [L] used to compute queries. The function FSBF is a symbolic representation of the

2 This can be reversed, leaving the computational challenge as finding an input that results in an output of 0.
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functionality presented for evaluating queries.3 In this work, we will assume that hi←$H for some strongly
universal hash family H to guarantee that BF is uniformly distributed. In the following, we may write
(BF , (h0, . . . , hk−1), S) to include the set S that is being implicitly considered.

Set intersection for evasive sets. By obfuscating Bloom filters we provide a natural interface for
computing set intersection queries in an offline (or non-interactive) mode. However, sampling sets with
sufficient min-entropy enough to make FS evasive is likely to make it computationally difficult for an
evaluator to find any sets that intersect with the one hidden in the obfuscated data storage. As such, it is
not amiss to suggest that such a functionality is unlikely to be useful.

Our obfuscator becomes more meaningful when considering that there may be some small subsets of users
who are able to lower the min-entropy of the hidden set. Such a user may know some information that
allows them to predict some elements that may be contained in the obfuscated storage structure. In this
case, our obfuscator provides more meaningful functionality in terms of correctness – since the user will
learn some information about the intersection of their sets. However, we sacrifice the security guarantees
provided by the obfuscator in these cases since the real-world execution will be trivially distinguishable
from a simulation with no oracle access. Fortunately, for users without this knowledge security is still
maintained. As is noted by Wichs and Zirdelis [57], users can be separated into those who are provided
with functionality and those where security is guaranteed.

All current private set intersection (PSI) protocols require online computation between multiple parties –
this line of work was initiated by Freedman et al. [28] as a key facet of secure computation research (recent
works such as [41, 21, 51, 52, 27, 44, 42] have made current protocols very efficient). Our work could be
seen as a non-interactive alternative where PSI can be carried out offline. For example, one player can
obfuscate a Bloom filter representing their set and then disseminate this to other users. Unfortunately, we
cannot formalise the non-interactive PSI security requirement, since an adversary can test any set of any
(polynomially-bounded) length in an offline setting. However, our obfuscator naturally prevents learning
any information outside of those elements that are queried.

Obfuscating set intersection via hashing. We could provide a VBB obfuscator for evaluating the
intersection of sets that are sampled with sufficient min-entropy by simply publishing the hash output of
each set element. By modelling the hash function as a random oracle, we could guarantee that each output
was uniformly distributed across a finite domain. Moreover, providing that the distribution that samples
the set had sufficient min-entropy, then the evaluation would still be ‘evasive’.

In this work, we create a VBB obfuscator in the standard model since our hash functions only need to
satisfy strong universality. Moreover, the set intersection functionality is a subset of the functionality
offered by Bloom filters and so there is the possibility of building extensions to our design for computing
more expressive outputs.

1.2 Overview of technique

We provide a brief overview of the individual components underpinning our construction, along with an
intuition for the design itself.

Linear Entropic RLWE. Note that the Ring-LWE (RLWE) assumption, for a ring R, broadly states
that when s←$R, then the pair (A, sA+e) is indistinguishable from (A, u), for uniformly chosen u ∈ Rm,
uniform A ∈ Rm and short error e ∈ Rm. Alternatively, let D = {Dλ}λ∈N be a distribution ensemble
sampling strings x ∈ {0, 1}n with min-entropy α(λ). The linear entropic Ring-LWE assumption (LERLWE)
states that when s0, . . . , sn−1←$R are short ring elements; then the pair (A, sA+ e) is indistinguishable
from uniform where s =

∑
i xi · si is used as the secret. Note that in the original (multiplicative) entropic

RLWE assumption from [10], the secret is constructed using s =
∏
i s
xi
i . We actually consider a variant of

the LERLWE assumption where there are multiple bit strings x(j)←$Dλ for 0 ≤ j ≤ M − 1 and a fixed

element s̃ ∈ R such that s̃ =
∑
i x

(j)
i · si and the adversary receives (s0, . . . , sn−1) and b = s̃A + e or

b←$Rm.

3 Note that S is not presented with FSBF .
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Bloom filters. As in [10, 57], we consider a distributional VBB (or average-case) obfuscation security
model [40, 39, 26, 5]. This broadly states that a VBB function obfuscator is valid for a particular distribu-
tion class Dα. In our case, Dα is the class of distribution ensembles that sample Bloom filters ‘representing’
(we define this term explicitly in Definition 1) sets S ∈ S with min-entropy α(λ), for some large universe
S. For D = {Dλ}λ∈N ∈ Dα, we sample a Bloom filter as the tuple (BF , (h0, . . . , hk−1), S)←$Dλ where
BF is a binary array of length L encoding the set S and (h0, . . . , hk−1) are the set of hash functions that
enable queries to be computed, i.e. hi : S 7→ [0, L−1] for all i ∈ [0, k−1]. Concretely, we sample {hi}i∈[k−1]

from the strongly universal hash family H.4

Ring-based garbled Bloom filters. While the function we obfuscate works with respect to a standard
Bloom filter, the underlying construction is similar in appearance to the garbled Bloom filter defined in [27],
used for constructing an efficient PSI protocol. Our design is different in that the operations in our ‘garbled’
Bloom filter take place in a polynomial ring and that the query functionality is also substantially changed.

For a standard Bloom filter, we define a query function Query() such that

Query(y) =

k−1∧
i=0

BF [hi(y)] = 1.

The garbled Bloom filter abstraction used by Dong et al. [27] preserves the functionality of the Bloom
filter but alters the user interface. In particular, for querying an element y against a garbled Bloom filter
GBF , representing a set S, we have (with high probability) that y ∈ S if

Query(y) =

k−1⊕
i=0

GBF [hi(y)] = y

where ⊕ denotes the XOR operation. The authors show that this functionality can be instantiated using
an XOR-based secret sharing scheme.

In this work, we define a ‘ring-based garbled’ Bloom filter, RGBF , associated with some ring R and with
a fixed parameter ρ̃ ∈ R. Now each entry in RGBF is an element of R and we have that some query y
satisfies y ∈ S (with high probability) if

Query(y) =

k−1∑
i=0

RGBF [hi(y)] = ρ̃.

Our definition seems more restrictive than the original garbled Bloom filter definition, but it is necessary
for the proof of security for our obfuscator. The formal definition of this construct is written below.

Definition 1. (Represented elements) Let (BF , (h0, . . . , hk−1), S) be a Bloom filter. An element y is
represented in a Bloom filter (with high probability), (BF , (h0, . . . , hk−1), S), if

BF [hi(y)] = 1

for all 0 ≤ i ≤ k − 1. If y is represented as such then we say that y ∈ S.

Definition 2. (Ring-based garbled Bloom filters) Let (BF , (h0, . . . , hk−1), S) be a Bloom filter, where BF
has length L = L(λ) (i.e. BF ∈ {0, 1}L). Let RGBF ∈ RL be the array in the ring-based garbled Bloom
filter for the ring R with fixed parameter ρ̃ ∈ R. Then for y represented in the Bloom filter, RGBF
satisfies the following:

k∑
i=1

RGBF [hi(y)] = ρ̃.

We can redefine the tuple for the Bloom filter as (RGBF , (h0, . . . , hk−1), S, ρ̃).

4 See Section 2.2 for details.
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Remark 1. An explicit RGBF object is never presented to an evaluator. This representation can merely
be thought of as an intermediate step towards obfuscating a Bloom filter query function FSBF . Therefore,
in cases where BF [i] = 0 we simply mirror these as zeroes in RGBF , since we do not stipulate valid
conditions for these entries until obfuscation.

Directed encodings. Brakerski et al. [10] devise an abstract interpretation of the GGH15 [33] MMAP
known as a directed encoding scheme. Directed encoding schemes are specialised to computations along a
line, rather than a more general graph-based topology as enforced in GGH15. For some ring R and public
keys A,A′ ∈ Rm, we define an encoding of a short ring element s ∈ R with respect to a path A→ A′ as
a short matrix R ∈ Rm×m, such that

AR = sA′ + e

for some short Gaussian error e ∈ Rm. From this stand point, we are able to multiply encodings as long as
they form a connected path in a graph. For example, encodings R1,R2 with respect to paths A0 → A1 and
A1 → A2. The result of performing R1 ·R2 is a matrix R× encoded with respect to the path A0 → A2.
The work of [10] did not require additions but noted that it was possible in the directed encoding scheme
paradigm. Indeed, we can define additions of any encodings that are encoded with respect to the same
path segment.

Lastly, we can detect if a matrix R encodes the value of zero under A→ A′ by checking whether AR is
a short vector in Rm. This also allows for equality testing on encodings indexed with respect to the same
path.

Obfuscator overview. Ignoring technical details about the explicit rings for now, we give an overview
of how the obfuscation procedure works for a Bloom filter. Let RGBF be empty (each entry initialised
to zero) and defined as in Definition 2. Sample a short ring element r̃ and use this as the fixed parameter
ρ̃ = r̃.

Construction of the Bloom filter. To represent some element y in RGBF we first compute I =
{i0, . . . , ik−1} = {h0(y), . . . , hk−1(y)}. Then we sample k− 1 short ring elements sij for 0 ≤ j ≤ k− 2 and
finally calculate

sik−1
= ρ̃−

k−2∑
j=0

sij

 (1)

so that
k−1∑
j=0

sij = ρ̃.

We then place each sij into the entry given by hj(y), i.e. RGBF [hj(y)] = sij . When representing
future elements we can re-use entries used for previous elements. For example, suppose that we have
I ′ = {i′0, . . . , i′k−1} where there exists a strict subset J ⊂ I ′ such that for all l ∈ J then RGBF [l] 6= 0.
Then for t ∈ (I ′ \ J) we can sample |I ′ \ J |−1 new short elements sit . We can then sample the final
element as in Equation (1). We replay this procedure each time we add new elements to RGBF ; reusing
samples in entries that are non-zero. We require that |J |≤ k − 2 to ensure that each sum contains some
independently sampled elements. We discuss this requirement in greater detail in Section 2.4.

Generating the obfuscator. Once RGBF has been constructed, we can employ our directed encoding
scheme to encode each of the entries. Firstly we sample 2L short random ring elements ri,b for 0 ≤ i ≤ L−1
and b ∈ {0, 1} – two for each entry in the Bloom filter. Finally, let T < L be the number of entries in
RGBF still set to zero, then sample T short ring elements {r′0, . . . , r′T−1}.

To construct the obfuscator, firstly we associate an element ri,0 with each entry in RGBF . For entries
that are zero in RGBF we also associate a pair of the form:

(ri,1, ri,1r
′
i) (2)

and for entries that are non-zero we associate pairs:

(ri,1, ri,1si), (3)
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where RGBF [i] = si 6= 0. Let [x]a→b denote an encoding of x with respect to the path a → b. We now
sample L + 2 public keys A0, . . . ,AL+1 and compute encodings ζi = [ri,0]i→i+1 for each i ∈ [L − 1]. We
also encode both components of each of the pairs from Equations (2) and (3) such that:

vi = ([ri,1]i→i+1, [ri,1fi]i→i+1),

where fi = si for RGBF [i] 6= 0 and fi = r′i otherwise. Finally, we sample a short ring element r̂ and
construct a last pair (r̂, r̂ρ̃) and then produce a pair of encodings pzt = [(r̂, r̂ρ̃)]L→L+1 with respect to the
path L→ L+ 1. This last pair will be used to perform the final equality test that determines whether an
element is represented in the Bloom filter, or not.

The obfuscation of RGBF is then written as:

(A0, {ζi}L−1
i=0 {vi}

L−1
i=0 , pzt, {hj}

k−1
j=0 ), (4)

where we only need the first public key for evaluation (see Appendix A).

Querying the obfuscator. An entity who is given control of the obfuscator from Equation (4) is
able to evaluate elements y of their choosing and see if y is represented in the underlying Bloom filter.
Firstly, evaluate J = {h0(y), . . . , hk−1(y)} and let I = ([L − 1] \ J) be the set of indices that are not
chosen. We define an operation �, that operates over two pairs of encodings x̄ = ([x′]a→b, [x

′x]a→b),
ȳ = ([y′]b→c, [y

′y]b→c) in the following way:

x̄� ȳ = ([x′y′]a→c, [x
′y′(x+ y)]a→c)

and we can define a subtraction operation � analogously. Roughly speaking, we multiply the encodings
in the first component of the pair together and with the opposed second component. Finally, we add the
second components together to retrieve an encoding containing a random multiple of (x + y) along the
union of the two paths. Now compute:

vθ = ([rθ]0→L, [rθθ]0→L) =

�
j∈J

vj

 ·(∏
i∈I

ζi

)
(5)

where the computation is interleaved such that operations take place in the order defined by the sequentially
chosen paths 0→ 1, 1→ 2, . . . with respect to the encodings.5 We give a diagrammatic representation in
Figure 1 of how operations along a path are computed.

ζ0

v0

ζ1

v1

ζ2

v2

ζ3

v3

ζ4

v4

ζ5

v5

ζ6

v6

ζ7

v7

Fig. 1. Example of evaluation for J = {1, 4, 5} and I = {0, 2, 3, 6, 7}. We use dashed arrows to indicate that �
operation is used, full arrows indicate standard multiplication of encodings. Note that the first time we move from
the top branch to the lower branch we simply compute a multiplication – i.e. in this example we would compute
ζ0 · v1 but we compute (ζ0 · v1 · ζ2 · ζ3) � v4 on the second occasion.

To learn the output of the query in Equation (5) we finally compute:

vθ � pzt = ([rθ r̂]0→L+1, [rθ r̂(θ − ρ̃)]0→L+1)

where θ = ρ̃ if and only if y is represented in RGBF by Definition 2 (with high probability). Therefore,
we can now use the ZeroTest(·) procedure, provided by our encoding scheme, to test if [rθ r̂(θ− ρ̃)] encodes

5 For multiplying ζi = ([ri,0]) with vi+1 = ([ri+1,1], [ri+1,1fi+1]) we multiply ζi directly with both components in
vi,1, and vice-versa if the path was reversed.
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zero or not (returning ‘1’ and ‘0’ in these respective cases). If y is not represented in RGBF then we are
likely to find that θ 6= ρ̃ and thus

ZeroTest([rθ r̂(θ − ρ̃)]0→L+1) = 0,

otherwise it will return 1.

Security of the obfuscator. The security of our obfuscator relies on the fact that the function we are
computing is evasive, the security guarantee erodes when satisfying inputs are found.6 Subsequently, the
probability of selecting an element y that satisfies the obfuscator is necessarily small. The distribution class
that we can obfuscate translates naturally to those that sample sparse sets with sufficient min-entropy
from a large universe. As noted before, we can use the GXDH and linear α-entropic security properties
(Section 4) of our directed encoding scheme to prove security in this setting.

2 Preliminaries

2.1 Notation

For a set N = {0, . . . , n} we write x ∈ [n] for representing that x ∈ N (we count from 0 unless stated
otherwise). This should not be confused with encodings in the directed encoding framework, where we
write [a]b→c for a value a that is encoded along the path b → c. If a is an array then each component of
the array is encoded individually; see Section 4 for more details. For a message distribution M, we use
x←$M to denote the sampling of x uniformly from the distribution. We use the acronym PPT to denote
‘probabilistic polynomial time’. Vectors are denoted by bold-face, e.g. x. For two vectors, x and y, we
denote their inner product by 〈x,y〉. We use the infinity norm (‖·‖∞) over a vector x to characterise the
size of x. For a string x ∈ {0, 1}L we denote the ith character by xi.

2.2 Entropy

Definition 3. (Average min-entropy [25]) Let X and Z be random variables that are possibly dependent
on each other. The average min-entropy of X conditioned on Z is:

∼
H∞(X|Z) = − log

(
E[2−H∞(X|z=Z)]

)

Definition 4. (Strongly universal hash family) Let H be a family of hash functions h : X 7→ [m− 1] for
some universe X and a m ∈ Z. Then H is a strongly universal hash family if, for all x, y ∈ X such that
x 6= y and h←$H:

Pr[h(x) = h(y)] = 1/m2.

This is equivalent to the statement that, for h←$H, then Pr[h(x) = t] = 1/m for x ∈ X and any t ∈ [m−1].

Definition 5. (Classes of distributions) We consider classes D of efficiently distribution ensembles D =
{Dλ}λ∈N over Bloom filter evaluation functions FSBF for a set S ∈ S. Furthermore, for a function α(λ),

then an ensembleD = {Dλ}λ∈N ∈ Dα such that (FSBF , S, aux)←$Dλ satisfies
∼
H∞(S|(FSBF , aux)) ≥ α(λ).

We say that ensembles D ∈ Dα have min-entropy α(λ).

6 As mentioned previously, if we intentionally provide knowledge to some users that reduces the min-entropy of
the set then we can provide more meaningful functionality.
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2.3 VBB Obfuscation

We discuss the notion of distributional VBB obfuscation, using the same definition as in [10]. We use the
distributional notion of security since our obfuscator satisfies security for specific choices of distribution
ensemble.

Definition 6. (Distributional VBB obfuscator) Consider a circuit family C = {Cn}n∈N with input size n
and let O be a PPT algorithm, which takes as input a circuit C ∈ C, a security parameter λ ∈ N, and
outputs a boolean circuit O(1λ, C) – this circuit does not have to be in C. Let D be a class of distribution
ensembles D = {Dλ}λ∈N that sample (C, aux)←$Dλ with C ∈ C and aux representing arbitrary auxiliary
information. O is an obfuscator for D over the circuit family C, if it satisfies the following properties:

1. Functionality: For a negligible function negl, then for all circuits C ∈ C, we have

Pr
[
∀x ∈ {0, 1}n : C(x) = O(1λ, C)(x)

]
≥ 1− negl(λ)

where the probability is taken over the random coin tosses of O.
2. Polynomial slowdown: For every λ ∈ N and C ∈ C, the circuit O(1λ, C) is of size at most poly(|C|, λ).
3. Distributional virtual black-box: For every (non-uniform) polynomial size adversary A, there exists a

(non-uniform) polynomial-size simulator, Sim, such that for every distribution ensemble D = {Dλ} ∈
D, and every (non-uniform) polynomial-size predicate P : C 7→ {0, 1}, then:∣∣∣∣ Pr
(C,aux)∼Dλ,O,A

[A(O(1λ, C), aux) = P (C)]− Pr
(C,aux)∼Dλ,Sim

[SimC(1λ, 1|C|, aux) = P (C)]

∣∣∣∣ < negl(λ)

(6 )

2.4 Bloom filter preliminaries

Bloom filters are commonly used as efficient data storage objects. They have been used extensively in
private set operations research [27, 22, 23, 43] in order to lower the overheads for participating entities. In
short, they are useful in any situation where quick data storage and querying is required. In this section,
we give a formal overview of the functionality offered by these constructs.

Let H be the space of hash functions h : R 7→ [L − 1], we require that H satisfies the strongly universal
hash family property from Definition 4. Let BF be an array of length L bits along with a uniformly
sampled set of k functions {hi}i∈[k−1]←$H. We desire the following functionality.

– Storage (Store()): For elements x ∈ R, evaluate xhi = hi(x) and thus set BF [xhi ] = 1 for all i.
– Querying (Query()): For some element y ∈ R, evaluate yhi = hi(y) and check that BF [yhi ] = 1 for all
i, if so return 1, else return 0.

We require that H is strongly universal to ensure that the bits that are set to 1 in the Bloom filter
are uniformly distributed. Since instantiations of strongly of strongly universal hash families exist [17],
then we can situate our construction in the standard model. We define a Bloom filter to be the tuple
(BF , (h0, . . . , hk−1), S) where S is the set represented in the array BF and (h0, . . . , hk−1) is the collection
of hash functions used for querying the array.

Parameter choices. A feature of Bloom filters is that there is a non-trivial false-positive probability
associated with querying elements. That is, it is possible to find y′ ∈ R such that Query(y′,BF )→ 1 but
where y /∈ S. However, as shown in [27], if p = 1− (1− 1/L)kn is the probability that a particular bit in
BF is set to 1 for a set of size n, then the upper bound of the false-positive probability is given by

ε = pk ×

(
1 +O

(
k

p

√
lnL− k ln p

L

))
,
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which is negligible in k, the number of hash functions. In practice, one will select the values of k and L
for a set of size n such that ε is capped at a specific low value. In [27] it is claimed that performance
optimality is achieved when

k =
L

n
ln 2, (7)

L ≥ n log2 e · log2 1/ε, (8)

where e is the base of the natural logarithm. By minimising L, we get the optimal value of k to be

k = log2 1/ε. (9)

It is helpful to imagine that parameters are always chosen optimally in this way (as in [27]). The proof
that these values are optimal can be found in [7].

Ring-based garbled Bloom filters. As noted in the introduction we use a ring-based variant of a
Bloom filter for a ring R that is inspired by the garbled Bloom filters introduced in [27]. Our variant
requires a fixed parameter ρ̃ and storing elements in the array RGBF requires sampling a set of indices
I and then for all i ∈ I we randomly sample si ∈ R and set RGBF [i] = si such that the following holds:

k−1∑
i=0

RGBF [hi(y)] = ρ̃.

In the above procedure certain elements in RGBF are reused for multiple storage iterations. We noted
previously that it is important that for y 6= y′ then the set J = {h0(y), . . . , hk−1(y)} should only coincide
with the set J ′ = {h0(y′), . . . , hk−1(y′)} on only k−2 points; i.e. |J ∩J ′|≤ k−2. In standard (and garbled)
Bloom filters, we can allow these sets to coincide on k− 1 points. The intuition behind this requirement is
that the non-zero entries in our Bloom filter are dependent upon the single target parameter ρ̃. Therefore,
this can be interpreted as giving away an extra secret share of the garbled elements. If sets coincide
on k − 1 points then we can reconstruct the kth element using this knowledge. This would have harmful
consequences for arguing the security of our construction. By limiting to only coinciding on k−2 points we
are able to guarantee independently chosen elements for the two entries that do not coincide. Consequently,
we can guarantee that each possible set of entries representing some stored element y ∈ S contain at least
one independently sampled element from Rq.

In order to exercise this requirement, we can merely pick parameters and replace k in Equations (7), (8)
and (9) by k + 1. Thus maintaining a level false-positive probability requires increasing the size of the
Bloom filter slightly.

Bloom filter obfuscators. Let CSBF be the class of Bloom filters of length L representing a set S ⊂ S,
where h0, . . . , hk−1←$H are the set of k corresponding hash functions. As mentioned previously, we require
that the set of hash functions {hi}i∈[k−1] is sampled from a strongly universal hash family H. Intuitively,
sampling from a distribution over CSBF returns both the set, S, and the Bloom filter representation, FSBF ,
of that set.

Let Dα be a class of distribution ensembles D = {Dλ}λ∈N sampling Bloom filters (BF , (h0, . . . , hk−1), S)
from CSBF , where S ∈ S has min-entropy α(λ) given (BF , (h0, . . . , hk−1)). Define a function FSBF : S 7→
{0, 1} where, for some query y ∈ S:

Pr
[
y ∈ S | FSBF (y) = 1

]
> 1− negl(λ) ,

and
Pr
[
y /∈ S | FSBF (y) = 0

]
= 1.

We abuse notation and typically write FSBF = (BF , (h0, . . . , hk−1)) since it is completely defined by
the array BF and the hash functions {hi}i∈[k−1]. We also redefine Dα to be the class of distribution
ensembles sampling (FSBF , S) where S has min-entropy α(λ) given FSBF . The entropic requirement over
the distribution class Dα ensures that FSBF is an evasive function; i.e. FSBF (y) = 1 occurs with very low
probability for any arbitrarily chosen y ∈ S.
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Definition 7. (Bloom filter obfuscator) Let Dα be the class of distribution ensembles D = {Dλ}λ∈N,
sampling (FSBF , S)←$Dλ where S ∈ S, that have min-entropy α(λ) given FSBF . We say that O is an
α(λ)-distributional VBB obfuscator for Bloom filters if it is a distributional VBB obfuscator for the class
Dα.

Definition 8. (α(λ)-entropic security) A Bloom filter obfuscator O satisfies α(λ)-entropic security if there
exists a PPT simulator Sim such that, for all efficiently samplable distributions D ∈ Dα with min-entropy
α(λ), we have:

(O(1λ, FSBF ), aux)
c
≈ (Sim(1λ, 1L, 1k), aux)

where (FSBF , S)←$D, and where aux is some auxiliary information.

As in [10], the simulator does not have access to the distribution D; so we can think of an obfuscator
satisfying this definition as hiding all properties of the underlying distribution. The simulator also has no
oracle access to FSBF and therefore it cannot learn anything about the Bloom filter that is being queried.
If the function that we evaluate is not evasive then the real world setting is trivially distinguishable from
the simulated world.

2.5 Lattice preliminaries

Lattices. An n-dimensional lattice of rank n is the set Λ of integer combinations of n linearly independent
vectors b0, . . . ,bn−1 ∈ Rn, that is:

Λ =

{
n−1∑
i=0

xibi : xi ∈ Z

}
.

The matrix B = [b0 | . . . | bn−1] is called a basis for Λ. The dual of a lattice Λ is the set Λ∗ = {x ∈
span(Λ) : ∀y ∈ Λ, 〈x,y〉 ∈ Z}.

Gaussian function. The Gaussian function ρs : Rm 7→ R with parameter s is defined as

ρs(x) = exp(−π||x||2/s2),

when s is omitted, it is assumed to be 1. The discrete Gaussian distribution DZ,Λ+c with parameter s over a
lattice coset Λ+c is the distribution that samples each element x ∈ Λ+c with probability ρs(x)/ρs(Λ+c),
where

ρs(Λ + c) =
∑

y∈Λ+c

ρs(y)

is a normalization factor.

B-bounded distributions. We say that a distributionD isB-bounded if for x←$D then Pr[‖x‖∞ ≤ B ] =
1. In this work, we require sampling from a one-dimensional truncated Gaussian over Z, DZ,σ, centred at
zero, with parameter σ. We take B = 6σ and discard any output x←$DZ,σ that has ‖x‖∞ > B. By [49]
(Lemma 4.4), all samples from the original discrete Gaussian are B-bounded with very high probability.

Smoothing parameter. For any ε > 0, the smoothing parameter ηε(Λ) is the smallest s > 0 such that
ρ1/s(Λ

∗ \ {0}) ≤ ε. When ε is omitted, it is some unspecified negligible function ε = n−ω(1) of the lattice
dimension or security parameter n, which may vary.

Trapdoor sampling. We detail lemmas that describe procedures for performing lattice trapdoor sam-
pling, more can be read of these procedures in the works of [35, 47, 1].

Lemma 1. (Trapdoor sampling) There is an efficient, randomised algorithm TrapSamp(1n, 1m, q) such
that, given integers n > 1, q > 2 and sufficiently large m = Ω(n log q), outputs a matrix A ∈ Zn×mq and a
trapdoor matrix T ∈ Zm×m where the distribution of A is computationally indistinguishable from uniform.
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Lemma 2. (Pre-image sampling) There is an efficient algorithm GaussSamp() that, with overwhelming
probability over all random choices, does the following. For any u ∈ Znq , and large enough s = Ω(

√
n log q),

then GaussSamp(A,T ,u, s) outputs a vector r ∈ Zm with norm ‖r‖∞ ≤ ‖r‖2 ≤ s
√
n such that A · r = u.

Lemma 3. (Indistinguishability of samples) The following distributions are within negl(n) statistical dis-
tance of each other for any l ∈ N:

– (A,T )← TrapSamp(1n, 1m, q); U ← Zn×lq ; R← GaussSamp(A,T ,U , s).

– (A,T )← TrapSamp(1n, 1m, q); R←$ (DZm,s)
l; U := AR ( mod q ).

Note that these lemmas also extend to the ring setting with A ∈ Rmq , T ∈ Rm×m, U ∈ Rk and R ∈ Rm×k.

Finally, we give the convolution theorem introduced by Micciancio and Peikert [48].

Theorem 1. (Convolution theorem [48]) Let Λ be an n-dimensional lattice, z ∈ Zm a non-zero integer
vector, si ≥

√
2‖z‖∞ ·η(Λ), and Λ+ci arbitrary cosets of Λ for 0, . . . ,m−1. Let yi be independent vectors

with distributions DZ,λ+ci,si , respectively. Then the distribution of

y =

m−1∑
i=0

ziyi

is statistically close to DZ,Y,s where Y = gcd(z)Λ+c, c =
∑
i zici, and s =

√∑
i(zisi)

2. When gcd(z) = 1
and

∑
i zici ∈ Λ, then y is distributed statistically close to DZ,Λ,s.

2.6 The Ring Learning with Errors problem

We work with a simple variant of the Ring-LWE (RLWE) problem [46] (sometimes more commonly known
as the Polynomial LWE problem introduced in [9]). We will denote our formulation of the problem by
RLWEn,m,q,χ for parameters n,m, q, χ.

Definition 9. (RLWE) Let n be a power of two, let φ(x) = xn + 1 and let R = Z[x]/〈φ(x)〉. Let q
be such that q ≡ 1 mod 2n and define Rq = R/qR. Let m ∈ N and let χ be a distribution over the
integers. The RLWEn,m,q,χ problem is the problem of distinguishing {(ai, ai · s + ei (mod (φ(x), q))}i∈[m]

from {(ai, ui)}i∈[m], where s, ei←$χ, ai, ui←$Rq.

3 Linear entropic RLWE

In this section, we detail a variant of the RLWE assumption known as the linear entropic RLWE assumption
(LERLWE). We need this variant for proving the security of our scheme; though we show that we can
derive LERLWE from standard RLWE in a sufficiently general case.

Definition 10. (LERLWE) Let n,m, q, χ, L be parameters of λ and Rq as defined for the standard RLWE
assumption. Let D = {Dλ} be an efficiently samplable distribution ensemble sampling strings x from {0, 1}L
with min-entropy α(λ). The linear entropic RLWEn,m,q,χ (LERLWE) problem is to distinguish between:

({sj}j∈[L−1], {(ai, s · ai + ei)}i∈[m−1])

and
({sj}j∈[L−1], {(ai, ui)}i∈[m−1])

where sj , ei←$χ, s =
∑
j∈[L−1] xj · sj, and ai, ui are sampled uniformly from Rq (for all i, j as above).
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Secondly, we define a stronger and more general interpretation of the LERLWE assumption where there

are M strings x(β) of hamming weight k. Then we sample a fixed element s̃ such that s̃ =
∑L−1
j=0 x

(β)
j sj .

Intuitively, first sample a fixed element s̃ from χ and sample M different strings x(0), . . . , x(M−1) from
{0, 1}L with the same entropic restriction as before. Let P be an array of L slots initialised to 0 and let

I(β) = {i0, . . . , ik−1} be the set of indices such that x
(β)
ij

= 1. Then, do the following for each β ∈ [M − 1]:

1. Let j∗ be some index such that P [ij∗ ] = 0 for some ij∗ ∈ I(β).
2. For j ∈ I(β) where j 6= j∗, if P [ij ] = 0 then sample sij ←$χ, else if P [ij ] 6= 0 then let sij = P [ij ].

3. Let sij∗ = s̃−
∑
ij∈I,j 6=j∗ x

(β)
ij
sij and set P [ij∗ ] = sij∗ .

For indices l such that P [l] is still equal to 0, sample s′l←$χ and set P [l] = s′l. The adversary is then given
P and either receives samples of the form (ai, s̃ · ai + ei) for i ∈ [m− 1]; or (ai, ui) for uniformly sampled
ai, ui from Rq, as before.

We name the variant above the ‘Fixed’ LERLWE assumption (FLERLWEM,k) since we fix a consistent
summed secret s̃ for M different strings of hamming weight k.

Definition 11. (FLERLWEM,k) Let n,m, q, χ,Rq be as before; let L = L(λ),M = M(λ), k = k(λ) be
some additional parameters. Let P be an array of length L with all entries set to 0 and let D = {Dλ}λ∈N be
an efficiently samplable distribution ensemble sampling strings x ∈ {0, 1}L of hamming weight k with min-
entropy α(λ). Sample x(β) ← Dλ for β ∈ [M−1] and s̃←$χ. For each β ∈ [M−1] let I(β) = {i0, . . . , iKβ−1}
be indices where x

(β)
i = 1 and compute the following:

– let j∗ ∈ I(β) be some index where P [ij∗ ] = 0, for j 6= j∗ if P [ij ] = 0 sample a short ring element
sij ←$Rq, else let sij = P [ij ];

– let sj∗ = s̃−
∑
ij∈I,j 6=j∗ sij , and let P [ij ] = sij for all ij ∈ I(β).7

For any indices l such that P [l] = 0 still, sample sl←$χ and let P [l] = sl. The FLERLWEM,k
n,m,q,χ problem

is to distinguish between:
(P, (ai, gi = s̃ · ai + ei)), and (P, (ai, gi = ui))

where ei←$χ, and ai, ui are sampled uniformly from Rq (for all i, j as above).

3.1 RLWE =⇒ FLERLWE

The work of Brakerski et al [10] introduced a multiplicative variant of the RLWE assumption, our work
introduces the first usage of the linear variant. Our confidence in the hardness of FLRLWE can be based
on the hardness of RLWE in a generalised case.

Informally, we can construct a distinguishing problem that is equivalent to the one seen in the FLERLWEM,k

problem based on the samples seen in the RLWE problem. Our proof makes use of the ‘convolution’ theorem
proposed by Micciancio and Peikert [48] (Theorem 3.3), restated in Theorem 1. Let s̃ be the secret in an
instance of the RLWE problem, with a distinguisher AR. AR samples S = (s0, . . . , sL−1) from a Gaussian
distribution with associated parameter σ. We assume that s̃ is sampled from a truncated Gaussian with
standard deviation kσ where k is the size of subsets that we consider for our subset sum.

Theorem 1 essentially states that for x ∈ ZL, the distribution induced by
∑
i xisi, for si←$DZ,σ, is

statistically close to DZ,kσ. Recall that s̃←$DZ,kσ, i.e. sampled from a truncated Gaussian distribution.
Let Xs̃ be a set such that, for all x ∈ Xs̃ we have

∑
i xisi = s̃, for any s̃ that can be sampled from

DZ,kσ. Then, by taking L sufficiently large, we can guarantee that |Xs̃| ≥M for all such s̃. Note, that the
sampling of strings does not change, and so the entropic requirement for sampling is unaffected.

7 If P [ij ] 6= 0 for all ij ∈ I(β) then sample x(β) again.

13



Finally, if AF is an adversary attempting to break FLERLWEM,k, AR provides P = S along with a sample
(a, g) where either g = a · s̃ + e or g = u for uniformly sampled u. In the first case, there are at least

M possible (uniformly distributed) strings x(β) ∈ {0, 1}L that satisfy s̃ =
∑
i x

(β)
i · si. Therefore, the two

cases are equivalent to the two cases seen by AF in the real FLERLWEM,k problem and thus we can bound
the advantage by that of AR. We provide a formal proof of this argument in Lemma 4.

Lemma 4. (RLWE =⇒ FLERLWEM,k) Let n,m, q be parameters of the ring Rq and let L = L(λ), M =
M(λ), k = k(λ) be additional chosen parameters. Let χk = DZ,kσ be the B-bounded discrete Gaussian
for parameter σ and B = 6σ (i.e. truncation applied for values greater than 6σ). Let χ be the discrete
Gaussian DZ,σ. Let AR be a distinguisher attempting to distinguish samples in the RLWEn,m,q,χk problem,

and likewise AF an adversary attempting to solve the FLERLWEM,k
n,m,q,χk

problem. Then we have that:

Adv(AF) ≤ Adv(AR),

when L ≥ log2(Mτ) for τ = |χ| (i.e. the number of choices in the distribution).

Proof. AR receives a sample of the form (a, g) where a ∈ Rq is a uniformly sampled ring element and
either g = as̃+ e for s̃, e←$χk or g = u where u is uniformly sampled from Rq.

AR samples s0, . . . , sL−1←$χ. Let D = {Dλ}λ∈N be a distribution ensemble that samples x ∈ {0, 1}L with
hamming weight k, with min-entropy α(λ). By Theorem 1 the distribution produced by

L−1∑
i=0

xi · si

is statistically close to DZ,kσ (since kσ =
√

(
∑
i xiσ)2 for x with hamming weight k). Therefore, we can

naturally say that it is statistically close to χk since the bound B = 6σ is set appropriately.

Let Y be a random variable associated with χk, then the probability Pr[Y = s], for some s, is statistically
close to the probability Pr[X = xs ] where xs ∈ {0, 1}L satisfies s =

∑
i xs,isi for a random variable X.

Let Xs denote the set of values xs that satisfy this property. Notice, that there are
(
L
k

)
possible strings

xs ∈ {0, 1}L that have hamming weight k. By choosing L such that k,M << L, then we can ensure that
|Xs| ≥M (with high probability) for all s samplable from χk (since this is a finite set). The same applies
for the secret s̃ that is sampled in the original RLWE sample (a, g).

Finally, AR invokes AF with P = {s0, . . . , sL−1} and the sample (a, g). In both cases for g this simulates
the FLERLWEM,k

n,m,q,χ game. Specifically, when g = as̃+ e there are at least M possible strings x ∈ {0, 1}L
such that s̃ =

∑
i xisi, and these are uniformly distributed. In the second case the distribution is trivially

simulated. Thus the proof is complete. ut

Remark 2. Note that Lemma 4 constructs a reduction with a slightly different structure to that shown in
Definition 11. That is, in the statement of FLERLWE there are M elements within P that are sampled
as sums of other elements and s̃, but these are replaced with L independently sampled elements in the
reduction.

4 Directed encoding schemes

In this section, we detail the abstract interface that we use for our directed encoding scheme. Directed
encoding schemes can be thought of as a special case of GGH15 where the graded encoding is specialised
to a line rather than a graph topology. The definition that we use is similar to those used in [10, 57] except
that we define additions between encodings that lie on the same path segment. It is shown in [10] that the
GGH15 MMAP [33] securely implements the directed encoding paradigm. That is, that the GXDH and
entropic security properties are fulfilled. In Appendix A we show that the same paradigm also instantiates
the α-LE security property (Definition 14) that we require, assuming the hardness of FLERLWEM,k.

Let Rq be a ring and let M⊆ Rq be a message distribution over Rq.
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Definition 12. (Directed encoding scheme) A directed encoding scheme associated with a message space
M⊆ Rq is a tuple of PPT algorithms:

(Setup(·),Encode(·),REncode(·),Mult(·),Add(·),ZeroTest(·))

which work in the following way.

– (pk, ek) ← Setup(1λ, 1κ) : On input a security parameter λ and an upper bound κ on the number of
‘levels’ in the encoding scheme, outputs a public key pk and a private encoding key ek.

– v ← Encode(pk0, ek0, pk1, s) : On input a key pair (pk0, ek0), a ‘target’ public key pk1 and a message
s ∈M, outputs an encoding v = [s]0→1.

– v ← REncode(pk0, ek0, pk1, 1
λ) : Same as above, except that no input message is specified and the

output v encodes a randomly sampled message m ∈M.
– v ← Mult(v1, v2) : On input encodings v1 = [s1]i−1→i and v2 = [s2]i→i+1, outputs an encoding v =

[s1 · s2]i−1→i+1.
– v ← Add(v1, v2) : On input encodings v1 = [s1]i→i+1 and v2 = [s2]i→i+1, outputs an encoding v =

[s1 + s2]i→i+1

– b ← ZeroTest(pk0, v) : On input an encoding v = [s]0→1 and source public key pk0, outputs a bit
b ∈ {0, 1} where b = 1 if and only if s = 0 and b = 0 otherwise.

Remark 3. In the work of [10] they alternatively define an equality test rather than the zero test that we
provide. The difference between these tests is purely semantic.

Correctness. We require the following correctness properties to hold with probability 1− negl(λ).

– For all i, j for which i < j < l ≤ κ, let v1 = [s1]i→j , v2 = [s2]j→l. Then Mult(v1, v2) = v∗ where
v∗ = [s1 · s2]i→l.

– For all i < κ and v1, v2 ← Encode(pk0, ek0, pk1, s1),Encode(pk0, ek0, pk1, s2), we have ZeroTest(pk0, v1−
v2) = 1 iff s1 = s2.

Note that we only require the first public key pk0 for performing equality/zero testing. If an encoding is
malformed we do not provide any correctness guarantees.

Security properties. Below we define the GXDH2 and GXDH1 security properties, these are derivations
of the original GXDH security game that is shown in [10]. We also give a formal description of the linear
α-entropic property (α-LE) that we use for proving security of our obfuscator in Section 5.

GXDH security. Define the GXDH2 security game using the expgxdh and exprand experiments shown in
Figure 2.

Definition 13. (GXDH2 security) For every polynomial κ = κ(λ), the outputs of the experiments detailed
in expgxdh(1λ, 1κ) and exprand(1λ, 1κ) should be computationally indistinguishable for all PPT adversaries.
That is, the advantage of any such adversary in expgxdh should be bounded by a negligible function.

Let GXDH1 represent the same two experiments, expgxdh and exprand, except where the output is modified
to only include (pk0, pk1, ek0, u).

Linear α-entropic security. As in [10] we are required to define an additional security requirement
for our directed encoding scheme abstraction. We show in Appendix A that our instantiation of a directed
encoding scheme satisfies this property based on the hardness of the FLERLWEM,k problem (or RLWE, by
extension).
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expgxdh

1 : (pk0, ek0)← Setup(1λ, 1κ);

2 : (pk1, ek1)← Setup(1λ, 1κ);

3 : r, s←M;

4 : u← Encode(pk0, ek0, pk1, r);

5 : v ← Encode(pk0, ek0, pk1, rs);

6 : Output (pk0, pk1, ek0, u, v);

exprand

1 : (pk0, ek0)← Setup(1λ, 1κ);

2 : (pk1, ek1)← Setup(1λ, 1κ);

3 : u, v ← REncode(pk0, ek0, pk1, 1
λ);

4 : Output (pk0, pk1, ek0, u, v);

Fig. 2. Experiments expgxdh and exprand for the GXDH2 security game.

Definition 14. (Linear α-entropic security) For parameters k = k(λ), M = M(λ), L = L(λ), κ = L+ 1
and let D = {Dλ}λ∈N be an efficiently samplable distribution that samples strings of hamming weight k from

{0, 1}L with min-entropy α(λ). Let I = {i0, . . . , ik−1} contain the string indices where x
(β)
i = 1. Let P be

an array of length L initialised to 0. Sample key pairs (pk, ek)← Setup(1λ, 1κ), (pk′, ek′)← Setup(1λ, 1κ).
Sample t̃←$M. For each β ∈ [M − 1] do the following:

– sample x(β)←$Dλ and let j∗ be some index such that P [ij∗ ] = 0;
– for j 6= j∗: if P [ij ] = 0, sample fij ←$M; else if P [ij ] 6= 0, let fij = P [ij ];
– let fij∗ = t̃−

∑
ij∈I,j 6=j∗ fij and set P [ij∗ ] = fij∗

For any indices l such that P [l] = 0 still, sample f ′l ←$M and let P [l] = f ′l . Shuffle P and let A
be a PPT adversary that receives (pk, ek, pk′, P, vκ) where, either vκ ← Encode(pk, ek, pk′, t̃), or vκ ←
REncode(pk, ek, pk′, 1λ). A PPT adversary A succeeds if they distinguish between the cases with non-
negligible advantage.

The α-LE security property contains a significant amount more structure in comparison to the entropic
security property of [10]. In particular, we fix a parameter t̃ and require that there are multiple strings
x(β) that satisfy a subset sum of the publicly sampled elements up to t̃. Observe for both gxdh and α-LE
that we do not give access to the full encoding parameters, by withholding the encoding key ek′. This is
in contrast with the GCAN assumption used by Brakerski and Rothblum [8].

5 The obfuscator

In this section, we detail how we can use the abstracted directed encoding scheme shown in Section 4 to
instantiate a Bloom filter obfuscator satisfying α-entropic security.

5.1 Construction

Let Γ be a directed encoding scheme as defined in Section 4. We associate Γ with a message distribution
M over the ring Rq = R/qR. Let Dα be a class of distribution ensembles D = {Dλ}λ∈N sampling
(FSBF , S)←$Dλ where S has min-entropy α = α(λ) given FSBF . Let (BF , (h0, . . . , hk−1), S) ∈ CSBF be a
Bloom filter of length L representing the set S and hash functions hj : S 7→ [L− 1] for j ∈ [k− 1] sampled
from a strongly universal hash family H.8 We abuse notation and write that FSBF = (BF , (h0, . . . , hk−1))
though FSBF actually describes the result of evaluating

FSBF (y) =

k−1∧
j=0

BF [hj(y)]

8 Parameters L, k are chosen as in Section 2.4 to prevent false positives occurring.
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for some given input element y ∈ S.

We define O(1λ, FSBF ) → (ΠS , aux) to be the obfuscator that takes a functionality FSBF as input and
outputs an obfuscated version of it, ΠS . An evaluator can interact with ΠS using valid inputs for the
function FSBF and receiving correct outputs without learning the underlying set S.

First the obfuscator computes the ring-based, garbled Bloom filter given by (RGBF , (h0, . . . , hk−1), S, ρ̃),
encoding the set S – we continue to use FSBF to denote the function that we are obfuscating. This procedure
is given in Figure 3.

O: Computation of RGBF

– Sample ρ̃←$M.
– For each y ∈ S compute J = {hj(y)}j∈[k−1] and for all yj ∈ J sample syj ←$M for j ≤ k − 2. Compute

syk−1 = ρ̃− (

k−2∑
j=0

syj )

and then, if RGBF [yj ] = 0, set RGBF [yj ] = syj for j ∈ [k − 1].
– Output (RGBF , (h0, . . . , hk−1), S, ρ̃).

Fig. 3. Method for constructing RGBF from a Bloom filter BF for a set S.

The obfuscator then proceeds with sampling new random elements from M and encoding these using Γ.
We provide the rest of the construction in Figure 4.

O: Construction of ΠS

– Let κ = L+ 1, choose (pki, eki)← Setup(1λ, 1κ) for i ∈ [κ]
– Sample ηi, ri ←$M for i ∈ [L− 1].
– For j where RGBF [j] = 0 sample γj ←$M. For i ∈ [L − 1], let fi = γi for RGBF [i] = 0 and let fi =

RGBF [i] = si 6= 0, otherwise.
– Compute L pairs ci = (ri, ri · fi) for each i ∈ [L− 1].
– Sample r̂←$M and compute cρ̃ = (r̂, r̂ · ρ̃).
– For i ∈ [L− 1], compute encodings

vi = [ci]i→i+1 = (Encode(pki, eki, pki+1, ri),Encode(pki, eki, pki+1, ri · fi)),

and
ζi = [ηi]i→i+1 = Encode(pki, eki, pki+1, ηi)

– Additionally, compute an encoding:

vκ = [cρ̃]L→L+1 = (Encode(pkL, ekL, pkL+1, r̂),Encode(pkL, ekL, pkL+1, r̂ · ρ̃)).

– Output the obfuscated program as

ΠS = (pk0, {ζi}i∈[L−1], {vi}i∈[L−1], vκ, (h0, . . . , hk−1)). (10)

Fig. 4. Method for constructing the obfuscator ΠS .

5.2 Evaluation

Let y∗ ∈ S be an element that we wish to query on the obfuscated program. Now that we have shown
how to construct ΠS we must show how we can evaluate the obfuscated program for learning whether y∗

satisfies y∗ ∈ S. Recall that ΠS is an obfuscated data structure that represents the set S. In particular,
the obfuscation should take elements in the universe S as input and output 0 if y∗ /∈ S and 1 otherwise.
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Observe, that for an encoding ζ0 = [η0]0→1 and v1 = ([r1]1→2, [r1f1]1→2), we can compute

ζ0 · v1 = ([η0r1]0→2, [η0r1f1]0→2).

The same holds if the paths were reversed, though the order of multiplication must also change.

In addition, for two encodings v0, v1 on paths 0→ 1, 1→ 2 respectively, we define the operation � where

v0 � v1 = ([r0r1]0→2, [r0r1(f0 + f1)]0→2),

this can be thought of as an addition of encodings on sequential paths.9 As such, we do not define standard
multiplications for pairs of this form. In the below, we define an interleaved product; i.e. for some disjoint
sets I, J such that I ∪ J = [L− 1] we compute:(∏

i∈I
ζi

)
·

�
j∈J

vj


The notation above defines a shorthand notation for performing operations over encodings defined along
the paths they are indexed by. For example, if we want to compute ζ0, v1, ζ2, v3, v4, ζ5 – indexed along the
path from 0 to 6 sequentially – we denote ζ0 · v1 · ζ2 � v3 � v4 · ζ5 by defining J = {1, 3, 4} ⊂ I = [5] and
using the notation above.10 In summary, we ‘add’ (�) sequential pairs of encodings v0, v1 and we multiply
in all other cases. We refer back to Figure 1 for an example of how paths are traversed.

Let S′ ⊂ S be a set of elements that is used for querying the obfuscated program. We detail the evaluation
procedure in Figure 5. As above, we take J to be the set of k indices in the Bloom filter array that are
chosen by the functions hi←$H; I represents all other indices.

O: Evaluation of ΠS

– Parse ΠS as (pk0, {ζi}i∈[L−1], {vi}i∈[L−1], vκ, {hj}j∈[k−1]).
– Let y∗ ∈ S′ be a query element, and compute J = {hj(y∗)} for 0 ≤ j ≤ k − 1.
– Set I = [L− 1] \ J
– Compute the following interleaved product:

vy∗ =

(∏
i∈I

ζi

)
·

(
�
j∈J

vj

)
(11)

where vy∗ takes the form
vy∗ = [cy∗ ]0→L = ([ry∗ ]0→L, [ry∗θy∗ ]0→L)

for some value θy∗ ∈M.
– Finally, compute

xy∗ = vκ � vy∗ = ([ry∗ r̂]0→L+1, [ry∗ r̂(ρ̃− θy∗)]0→L+1).

– Let xy∗,1 = xy∗ [1] be the second component of xy∗ and output b← ZeroTest(pk0, xy∗,1).

Fig. 5. Procedure for evaluating the obfuscated program ΠS on some input y∗.

Correctness of evaluation. It is essential to show that the above evaluation procedure results in the
evaluator receiving the correct answer in all but a negligible amount of cases. In particular, we need to
show that:

Pr[ΠS(y∗) = 1 | y∗ ∈ S ] = 1, (12)

and, in addition:
Pr[ΠS(y∗) = 0 | y∗ /∈ S ] = 1− negl(λ) , (13)

for all inputs y∗ ∈ S.

9 Subtraction also holds in the same way, we denote this operation by �.
10 Note, that (ζ0 · v1 · ζ2) is a pair encoding and thus we compute (ζ0 · v1 · ζ2) � v3.
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Firstly, take the case where y∗ ∈ S. Then vy∗ from above is an encoding of the form:

vy∗ = ([ry∗ ]0→L, [ry∗θy∗ ]0→L)

where ry∗ is the accumulated product of randomness that is accrued during the interleaved product.
Consequently, θy∗ is the summation of all fj terms associated with j ∈ J = {hj(y∗)}. Since y∗ ∈ S, by the
construction of RGBF , we have that fj = sj for j ∈ [k− 1]. In particular, by the method of sampling we
have that ∑

j∈J
fj =

∑
j∈J

sj = ρ̃

and thus when we compute xy∗ we get

xy∗ = ([ry∗ r̂]0→L+1, [ry∗ r̂(ρ̃− θy∗)]0→L+1) = ([ry∗ r̂]0→L+1, [0]0→L+1).

Subsequently, computing b← ZeroTest(pk0, xy∗,1) we get that b = 1, which is the correct output.

Secondly, take the case where y∗ /∈ S. Then vy∗ takes the same form as above, except that for j ∈ J =
{hj(y∗)} we know ∃ a subset N ⊆ J (with high probability) such that fn = γn for all n ∈ [N ] where γn is
sampled fresh fromM. The probability of this not being the case is bounded by the negligible probability
of false positives occurring in the original Bloom filter. Now, we have that∑

j∈J
fj 6= ρ̃

with high probability (by the Schwarz-Zippel lemma) due to the presence of independently sampled el-
ements in the sum. As such, the output of ZeroTest(pk0, xy∗,1) is equal to 0 with high probability. This
result still holds when an adversary chooses arbitrary J with |J |= k′ 6= k, by the same argument.

5.3 VBB security

The final stage of our construction requires that we show that our obfuscator satisfies α-entropic secu-
rity, as shown in Definition 6. Our obfuscator clearly meets the functionality and polynomial slowdown
requirements of the definition.

Theorem 2. (α-entropic security) Let O be the obfuscator from Section 5. Based on the hardness of the
GXDH and α-LE security properties of our encoding scheme Γ, and the strongly universal hash family H,
O satisfies α-entropic security (Definition 8).

Proof. Let Sim(1λ, 1κ) denote the simulator that we consider when proving the security of our obfuscator
with κ = L + 1. First Sim(1λ, 1κ) chooses (pkj , ekj) ← Setup(1λ, 1κ) for j ∈ [κ]. For i ∈ [L − 1] it then
samples

{Ui}i←$REncode(pki, eki, pki+1, 1
λ),

{U ′i}i←$ (REncode(pki, eki, pki+1, 1
λ),REncode(pki, eki, pki+1, 1

λ)),

and
Uκ←$ (REncode(pkL, ekL, pkL+1, 1

λ),REncode(pkL, ekL, pkL+1, 1
λ)).

The hash functions h′0, . . . , h
′
k−1 are sampled freshly from H and so they still satisfy the strongly universal

property. These are defined independently of the functions h0, . . . , hk−1 used in the real-world execution.
Finally Sim(1λ, 1κ) outputs the simulated program:

Π̃ = (pk0, {Ui}i, {U ′i}i, Uκ, (h′0, . . . , h′k−1)), (14)

where the ordering of the output respects the ordering imposed by the path of encodings.

A key facet of Sim is that it does not have access to the set S and thus cannot construct a Bloom filter
for this set. Therefore, finding an element y∗ ∈ S that satisfies FSBF using the real program leads to a
distinguishing attack. By sampling S such that FSBF is evasive, an adversary has very low probability of
being able to sample such a satisfying y∗. Hence our obfuscator only satisfies security in this setting.

19



Let Dα be the class of distribution ensembles D = {Dλ}λ∈N sampling the pairs (FSBF , S)←$Dλ where S
has min-entropy α(λ) given FSBF . We want to show that the real program (ΠS , aux) is indistinguishable
from the simulated program (Π̃, aux) where ΠS ← O(1λ, FSBF ) and Π̃ ← Sim(1λ, 1κ). We first prove the
following lemma and then use this result to provide a proof for the overarching theorem.

Lemma 5. A PPT adversary A attempting to distinguish between the distributions shown in Equation (10)
and Equation (14) has advantage bounded by

negl(λ) +M ·
√

2πk(L− k)

L
·
(

k

L− k

)k
·
(
L− k
L

)L

Proof. Hybrid 0: This is the distribution as received directly from the obfuscated program ΠS as shown
in Equation (10).

Hybrid 1: This is the same as the distribution in Hybrid 0 except that we now sample an independent
set of hash functions (h′0, . . . , h

′
k−1)←$H, for the strongly universal hash family H.

Notably, there is now a high probability that no y ∈ S will satisfy the requirement that FSBF (y) = 1.
However, since FSBF is evasive in the real setting (Hybrid 0) by the sampling of S then the probability
of an adversary sampling a y ∈ S in Hybrid 0 that satisfies FSBF is bounded by negl(λ). Therefore, the
advantage of an adversary distinguishing between these two hybrids is bounded by the same negligible
probability.

Hybrid 2: This is the same distribution as in Hybrid 1, except that we replace vκ with the randomly
sampled encoding Uκ ← (REncode(pkL, ekL, pkL+1, 1

λ),REncode(pkL, ekL, pkL+1, 1
λ)). We argue that we

can bound the advantage of an adversary attempting to distinguish between the two games by an adversary
that is attempting to break the α-LE security of Γ. Let A′ be an adversary in the α-LE game, let A1,2 be
an adversary attempting to distinguish between Hybrid 1 and Hybrid 2. We show that A′ is able to create
two distributions for A1,2 that are indistinguishable from those in Hybrids 1 and 2.

LetD denote the distribution uniformly sampling Bloom filter functionalities FSBF = (BF , (h0, . . . , hk−1), S)
from the class CSBF . Let L1 denote the ‘hamming weight’ of BF . We write

(pk, ek, pk′, P, vκ) (15)

as the distribution received by A′ in the α-LE game where P is the array of length L1 containing el-
ements fi←$M for i ∈ [L1 − 1]. It is clear that, either vκ ← Encode(pk, ek, pk′, t̃) (for t̃←$M) or
vκ ← REncode(pk, ek, pk′, 1λ).

Sample a key pair (pk′′, ek′′)← Setup(1λ, 1κ) and elements r̂ ←M. Compute vr̂ ← Encode(pk′′, ek′′, pk, r̂)
and v′r̂ ← Encode(pk′′, ek′′, pk′, r̂) then let:

vκ = (v′r̂, vr̂ · vκ) = ([r̂]pk′′→pk′ , [r̂t̃ ]pk′′→pk′).

Secondly, sample L key pairs {(pki, eki)}i∈[L−1] ← Setup(1λ, 1κ) and then let (pkL, ekL) = (pk′′, ek′′) and
pkL+1 = pk′. Sample a set of L0 = (L−L1) elements §0 = (f ′0, . . . , f

′
L0−1) fromM. Sample additional sets

of values T = (η0, . . . , ηL−1) and R = (r0, . . . , rL−1) from M. Let §1 = P and notice that |§0 ∪ §1|= L.

Let J denote the indices where BF [j] = 0 and let I denote the indices such that BF [i] = 1 for all i ∈ I.
Correspondingly, let RGBF [j] = f ′j for each j ∈ J , where f ′j is a randomly chosen element from §0. For
i ∈ I, let RGBF [i] = fi for randomly chosen fi ∈ §1. Observe that RGBF [l] = fl for l ∈ [L− 1] where
we have fl ∈ §0 or fl ∈ §1.11

Compute the following encodings:

– ζl = [ηl]l→l+1;

11 We do not worry about choosing locations using h′0, . . . , h
′
k−1 since these hash functions are defined independently

the choice of BF by Hybrid 1.
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– vl = ([rl]l→l+1, [rlfl]l→l+1);

for l ∈ [L − 1]. Recall, that vκ is an encoding with respect to the path L → L + 1. Output the following
distribution:

(pk0, {ζl}l∈[L−1], {vl}l∈[L−1], vκ, (h
′
0, . . . , h

′
k−1)),

when vκ, from Equation (15), is an encoding of the value t̃ the distribution is equivalent to the one in
Hybrid 1. Alternatively, if vκ is a randomly sampled encoding, then the distribution is equivalent to the one
proposed in Hybrid 2. Thus, the distributions can be successfully constructed for A1,2 by an instantiation
of A′ and thus the bound is correct.

Hybrid 3.[i]: We define Hybrid 3.[−1] to be the same as Hybrid 2 and then define Hybrid 3.[i] for i ∈ [L−1]
such that Hybrid 3.[i] is the same as Hybrid 3.[i− 1] except that we swap vi for

U ′i ← (REncode(pki, eki, pki+1, 1
λ),REncode(pki, eki, pki+1, 1

λ)).

Let A2,3 be an adversary attempting to distinguish between Hybrids 3.[i] and 3.[i − 1]. Let Agxdh2 be an
adversary in the GXDH2 game, then we show that we can bound the advantage of A2,3 by the advantage
of Agxdh2.

Let (pk0, ek0, pk1, u, v) be the distribution in GXDH2, where r, s←$M and u ← Encode(pk0, ek0, pk1, r),
v ← Encode(pk0, ek0, pk1, rs); or u, v ← REncode(pk0, ek0, pk1, 1

λ). Note that each vi in Hybrid 3.[i − 1]
takes the form ([ri]i→i+1, [rifi]i→i+1) and in Hybrid 3.[i] it takes the form (U ′i,0, U

′
i,1) for some encodings

U ′i,0, U
′
i,1 ← REncode(pk0, ek0, pk1, 1

λ).

In particular, the distributions in Hybrids 3.[i−1] and 3.[i] are identical to the distributions seen by Agxdh2.
As such, the adversary A2,3 must have advantage bounded by the GXDH adversary and thus, bounded
by negl(λ) based on the GXDH hardness property.

Hybrid 4.[i]: Let Hybrid 4.[−1] be the distribution in Hybrid 3.[L− 1], define Hybrid 4.[i] to be the same
as Hybrid 4.[i− 1] except that we swap ζi for Ui ← REncode(pki, eki, pki+1, 1

λ) for i ∈ [L− 1]. Let A3,4 be
an adversary attempting to distinguish between Hybrids 4.[i− 1] and 4.[i] and let Agxdh1 be an adversary
in the GXDH1 game. Using an identical argument as the previous hybrid we can show that the advantage
of A3,4 is bounded by the advantage of Agxdh1. Thus, by the hardness of the GXDH security property, we
are done.

Note that the distribution in Hybrid 4.[L− 1] is of the form

(pk0, {Ui}i, {U ′i}i, Uκ, (h′0, . . . , h′k−1)),

which is clearly equivalent to the distribution shown in Equation (14). Notice that all proof hops require
only a negligible loss in security so there exists a negligible function, negl′, such that we can bound the
sum total of losses by negl(λ)

′
. However, notice that in Hybrid 0, the adversary knows that there exists

M subsets of size k that satisfy the obfuscator. By the final distribution the adversary has lost this
characteristic (with high probability), since all encodings are sampled randomly.

Consequently, the adversary has a probability of success equal to choosing any of M subsets of size k
from a total set of size L. Importantly, since the hash family H is strongly universal, then the output of
hi is uniform across [L − 1] for all i ∈ [k − 1]. As a result, the adversary’s best chance of winning is by
choosing k random entries and evaluating the obfuscator on these entries. Therefore, the total security loss
in distinguishing between the hybrid games is actually equal to:

Adv(A) = negl(λ)
′
+

M(
L
k

)
and so, by Stirling’s approximation, we have

Adv(A) ≈ negl(λ)
′
+M ·

√
2πk(L− k)

L
·
(

k

L− k

)k
·
(
L− k
L

)L
,

and thus the proof of Lemma 5 is concluded. ut
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Finally for proving Theorem 2, we have to prove that the bound provided by Lemma 5 is negligible for the
choice of parameters implied by the use of a Bloom filter. By Equation (8) we choose L = M ·log2 e·log2 1/ε,
where L is the length of the Bloom filter, M = |S| and ε is the chance of a false-positive occurring. Recall
that by Equation (7) we choose k = log2 1/ε so that we can make ε negligible in k.12 Thus, we can
additionally rewrite L as L = Mk log2 e and thus take L = O(Mk) and rewrite the quantity:

M ·
√

2πk(L− k)

L
·
(

k

L− k

)k
·
(
L− k
L

)L
as

B(k,M) = M ·
√

2π(M − 1)k

M
·
(

1

M − 1

)k
·
(
M − 1

M

)Mk

by replacing L with Mk.

We choose k large enough to make ε = 2−k negligible and thus it follows that (M − 1)−k for M ≥ 3
must also be negligible. Furthermore, (M − 1/M)Mk << 1 and

√
2π(M − 1)k/M <

√
2kπ. Therefore, we

have that B(k,M) < M
√

2πk · negl(k) and is thus negligible in the choice of k and polynomial in M .
In summary, we ensure that Adv(A) < negl∗(λ) for some negligible function negl∗ and thus the proof of
Theorem 2 is complete. ut

Acknowledgements. This work was supported by the EPSRC and the UK government as part of the
Centre for Doctoral Training in Cyber Security at Royal Holloway, University of London (EP/K035584/1).
We would also like to thank Martin Albrecht, Carlos Cid and Zvika Brakerski for reading earlier drafts of
this work and engaging in helpful discussions.

References

1. M. Ajtai. Generating Hard Instances of the Short Basis Problem, pages 1–9. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1999.
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A GGH15 instantiation of directed encodings

Here, we detail how we can instantiate the encoding scheme from Section 4 using the GGH15 MMAP with
a security reduction to RLWE. We do not address the correctness of the scheme or the proof of security of
the GXDH property since these are shown in [10]. The ZeroTest(·) algorithm that we define is analogous
to the EqualTest() algorithm used in this previous work. Furthermore, the correctness of additions over
encodings follows trivially by the correctness of additions in the GGH15 scheme.

Let R be a degree-n number ring Z[x]/〈φ(x)〉. Specifically we can take φ(x) = xn + 1, where n is a power-
of-two. Let q be a prime number and define Rq = R/qR as the associated quotient ring. Let σ ∈ R+ be
the Gaussian standard deviation parameter. We use the polynomial ring version of GGH15 so that we
have a commutative plaintext space, which we require for some of our operations.

Encoding scheme. The description of the encoding scheme closely follows the description shown in [10]
so a well acquainted reader can skip this.

– Setup(1λ, 1κ) runs (A,T )← TrapSamp(1λ) where

(pk, ek) = (A,T ) ∈ Rmq ×Rm×m.

– M = {s ∈ R : ‖s‖∞ ≤ m}

– v ← Encode(A0, T0,A1, s):

• Compute b1 = sA1 + e1 ∈ Rmq , where e1←$DRm,σ.

• Output a matrix R0→1 ← GaussSamp(A0,T0, b1, σ).13

13 By definition R0→1 ∈ Rm×m and A0R0→1 = b1 = sA1 + e1 ∈ Rmq .
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– REncode(A0,A1, 1
λ) is the public encoding procedure that simply samples a matrix R0→1 ← DZm×m,σ.

– Add(R,R′) = R + R′ with addition over Rq

– Mult(R,R′) = RR′ with multiplication also done over Rq

– b← ZeroTest(A0,R,R
′) where b = 1 if

‖A0(R−R′)‖∞ ≤ q/8

and b = 0 otherwise.

Security. The instantiation above is shown to be secure with respect to the GXDH security property
in [10] – the introduction of additions do not change the proof. As such, we will focus on proving that our
scheme satisfies the α-LE security property shown in Definition 14.

Lemma 6. Let n be a power of two, and let φ(x) = xn+1 and subsequently R = Z/〈φ(x)〉. Let q = 2ω(log λ)

such that q ≡ 1 mod 2n and define Rq = R/qR. Let m ∈ N and let χ = DRm,σ. Then, for every
k = k(λ),M = M(λ) the encoding scheme above satisfies α-LE (Definition 14) given the hardness of the
FLERLWEM,k

n,m,q,χ problem.

Proof. The proof for α-LE follows almost immediately from the hardness of the FLERLWEM,k
n,m,q,χ problem.

Let P be the array in the FLERLWEM,k
n,m,q,χ problem of length L and containing elements si←$χ, note that

the following two distributions are computationally indistinguishable as they follow the exact format of
the problem:

(A1, P, s̃ ·A1 + e)

and
(A1, P, u)

where A1, u are uniformly chosen from Rq and there are M strings x(β) ∈ {0, 1}L such that s̃ =∑L−1
i=0 x

(β)
i · si. The indistinguishability of these distributions immediately implies the indistinguishability

of the following:
(A0,T0,A1, P, c̃← Encode(A0,T0,A1, s̃))

= (A0,T0,A1, P, c̃← GaussSamp(A0,T0, s̃A1 + e, σ))

c
≈ (A0,T0,A1, P, c̃← GaussSamp(A0,T0, u, σ))

c
≈ (A0,T0,A1, P, c̃← REncode(A0,T0,A1, 1

λ))

and thus the proof is complete. ut
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