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Abstract
Algorand is a new cryptocurrency system that can confirm
transactions with latency on the order of a minute while scal-
ing to many users [15]. Algorand ensures that users never
have divergent views of confirmed transactions, even if some
of the users are malicious and the network is partitioned. In
contrast, existing cryptocurrencies allow for temporary forks
and therefore require a long time, on the order of an hour, to
confirm transactions with high confidence.

Algorand uses a new Byzantine Agreement (BA) protocol
to reach consensus among users on the next set of transactions.
To scale the consensus to many users, Algorand uses a novel
mechanism based on Verifiable Random Functions that allows
users to privately check whether they are selected to partici-
pate in the BA to agree on the next set of transactions, and to
include a proof of their selection in their network messages.
In Algorand’s BA protocol, users do not keep any private
state except for their private keys, which allows Algorand to
replace participants immediately after they send a message.
This mitigates targeted attacks on chosen participants after
their identity is revealed.

We implement Algorand and evaluate its performance on
1,000 EC2 virtual machines, simulating up to 500,000 users.
Experimental results show that Algorand confirms transac-
tions in under a minute, achieves 30× Bitcoin’s throughput,
and incurs almost no penalty for scaling to more users.

1 Introduction
Cryptographic currencies such as Bitcoin can enable new
applications, such as smart contracts [21, 41] and fair pro-
tocols [4], can simplify currency conversions [12], and can
avoid trusted centralized authorities that regulate transactions.
However, current proposals suffer from a trade-off between
latency and confidence in a transaction. For example, achiev-
ing a high confidence that a transaction has been confirmed
in Bitcoin requires about an hour long wait [7]. On the other
hand, applications that require low latency cannot be certain
that their transaction will be confirmed, and must trust the
payer to not double-spend [37].

Double-spending is the core problem faced by any cryp-
tocurrency, where an adversary holding $1 gives his $1 to two
different users.1 Cryptocurrencies prevent double-spending
by reaching consensus on an ordered log (“block-chain”) of
transactions. Reaching consensus is difficult because of the
open setting of cryptocurrencies. Since anyone should be able
to participate, an adversary can create an arbitrary number of

1Cryptographic signatures on transactions can easily ensure that only an
account owner can transfer money from that account.

pseudonyms (“Sybils”) [19] making it infeasible to rely on
traditional consensus protocols [14] that require a fraction of
honest users.

Bitcoin [33] and other cryptocurrencies [20, 44] address
this problem using a proof-of-work (PoW) scheme, where
users must repeatedly compute hashes to grow the block-
chain, and the longest chain is considered authoritative. PoW
ensures that an adversary does not gain any advantage by
creating pseudonyms. However, PoW allows the possibility
of forks, where two different block-chains have the same
length, and neither one supersedes the other. Mitigating forks
requires two unfortunate sacrifices: the time to grow the chain
by one block must be reasonably high (10 minutes in Bitcoin),
and applications must wait for several blocks in order to
ensure their transaction remains on the authoritative chain (6
blocks are recommended in Bitcoin [7]). The result is that it
takes about an hour to confirm a transaction in Bitcoin.

This paper presents Algorand, a new cryptocurrency system
designed to confirm transactions on the order of one minute.
The core of Algorand uses a Byzantine agreement protocol
called BA⋆ that scales to many users, which allows Algorand
to reach consensus on a new block with low latency and
without the possibility of forks. A key technique that makes
BA⋆ suitable for Algorand is the use of verifiable random
functions (VRFs) [30] to perform a random selection of users
in a private and non-interactive way, as we describe shortly. A
synchronous version of BA⋆ was presented at a workshop at a
high level [3]; and a technical report [15] describes Algorand
in detail.

Algorand faces three key challenges. First, Algorand
must avoid Sybil attacks where an adversary creates many
pseudonyms to influence the Byzantine agreement protocol.
Second, BA⋆ must scale to millions of users, which is far
higher than the scale at which state-of-the-art Byzantine agree-
ment protocols operate. Finally, Algorand must be resilient
to denial-of-service (DoS) attacks: Algorand should continue
to operate even if an adversary disconnects some of the users
in the system.

Algorand addresses these challenges using several tech-
niques, as follows.

Weighted users. To prevent Sybil attacks, Algorand as-
signs weights to each user. BA⋆ is designed to guarantee
consensus as long as a weighted fraction (a constant greater
than 2/3) of the users are honest. In Algorand, we weigh
users based on the money in their account. Thus, as long as
more than some fraction (e.g., 2/3) of the money is owned by
honest users, Algorand can avoid forks and double-spending.

Consensus by committee. BA⋆ achieves scalability by
choosing a committee—a small set of representatives ran-
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domly selected from the total set of users—to run each step
of its protocol. All other users observe the protocol mes-
sages, which allows them to learn the agreed-upon block.
BA⋆ chooses committee members randomly among all users
based on the users’ weights. This allows Algorand to ensure
that a sufficient fraction of committee members are honest.
However, relying on a committee creates the possibility of
targeted attacks against the chosen committee members.

Cryptographic sortition. To prevent an adversary from
targeting committee members, BA⋆ selects committee mem-
bers in a private and non-interactive way. This means that
every user in the system can independently determine if they
are chosen to be on the committee, by computing a function
(a VRF [30]) of their private key and public information from
the block-chain. If the function indicates that the user is cho-
sen, it returns a short string that proves this user’s committee
membership to all other users, which the user can then include
in network messages he sends. Since membership selection
is non-interactive, an adversary does not know which user to
target until that user starts participating in BA⋆.

Participant replacement. Finally, an adversary may tar-
get a committee member once that member sends a message
in BA⋆. BA⋆ mitigates this attack by requiring committee
members to speak just once. Thus, once a committee member
sends his message (exposing his identity to an adversary), the
committee member becomes irrelevant to BA⋆. BA⋆ achieves
this property by avoiding any private state (except for the
user’s private key), which makes all users equally capable of
participating, and by electing new committee members for
each step of the Byzantine agreement protocol.

We implement a prototype of Algorand and BA⋆, and use it
to empirically evaluate Algorand’s performance. Experimen-
tal results running on 1,000 Amazon EC2 VMs demonstrate
that Algorand can confirm a 1 MByte block of transactions
in 40 seconds with 50,000 users, that Algorand’s latency re-
mains nearly constant when scaling to half a million users,
that Algorand achieves 30× the transaction throughput of
Bitcoin, and that Algorand achieves acceptable latency even
in the presence of actively malicious users.

2 Related work
Proof-of-work. Bitcoin [33], the predominant cryptocur-
rency, uses proof-of-work to ensure that everyone agrees on
the set of approved transactions; this approach is often called
“Nakamoto consensus.” Bitcoin must balance the length of
time to compute a new block with the possibility of wasted
work [33], and sets parameters to generate a new block every
10 minutes on average. Nonetheless, due to the possibility
of forks, it is widely suggested that users wait for the block
chain to grow by at least six blocks before considering their
transaction to be confirmed [7]. This means transactions in
Bitcoin take on the order of an hour to be confirmed. Many
follow-on cryptocurrencies adopt Bitcoin’s proof-of-work ap-
proach and inherit its limitations. The possibility of forks

also makes it difficult for new users to bootstrap securely: an
adversary that isolates the user’s network can convince the
user to use a particular fork of the blockchain [24].

By relying on Byzantine agreement, Algorand eliminates
the possibility of forks, enables one to rely on a block as soon
as it appears on the blockchain, and avoids the need to reason
about mining strategies [8, 22, 38]. As a result, transactions
are confirmed on the order of a minute.

Byzantine consensus. Byzantine agreement protocols have
been used to replicate a service across a small group of servers,
such as in PBFT [14]. Follow-on work has shown how to
make Byzantine fault tolerance perform well and scale to
dozens of servers [2, 16, 27]. One downside of Byzantine
fault tolerance protocols used in this setting is that they re-
quire a fixed set of servers to be determined ahead of time;
allowing anyone to join the set of servers would open up the
protocols to Sybil attacks. These protocols also do not scale
to the large number of users targeted by Algorand. BA⋆ is a
Byzantine consensus protocol that does not rely on a fixed
set of servers, which avoids the possibility of targeted attacks
on well-known servers. By weighing users according to their
currency balance, BA⋆ allows users to join the cryptocurrency
without risking Sybil attacks, as long as the fraction of the
money held by honest users is at least a constant greater than
2/3. BA⋆’s design also allows it to scale to many users (e.g.,
500,000 shown in our evaluation) using VRFs to fairly select
a random committee.

Most Byzantine consensus protocols require more than 2/3
of servers to be honest, and Algorand’s BA⋆ inherits this limi-
tation (in the form of 2/3 of the money being held by honest
users). BFT2F [28] shows that it is possible to achieve “fork∗-
consensus” with just over half of the servers being honest, but
fork∗-consensus would allow an adversary to double-spend
on the two forked block-chains, which Algorand avoids.

Honey Badger [31] demonstrated how Byzantine fault tol-
erance can be used to build a cryptocurrency. Specifically,
Honey Badger designates a set of servers to be in charge of
reaching consensus on the set of approved transactions. This
allows Honey Badger to reach consensus within 2 minutes
using 104 servers. One downside of this design is that the
cryptocurrency is no longer decentralized; there are a fixed set
of servers chosen when the system is first configured. Fixed
servers are also problematic in terms of targeted attacks that
either compromise the servers or disconnect them from the
network. Algorand achieves a better performance (confirm-
ing transactions on the order of a minute) without having to
choose a fixed set of servers ahead of time.

Pass and Shi’s hybrid consensus [34] tries to refine the
Honey Badger design to allow the set of servers to change
over time. Pass and Shi suggest using Bitcoin’s proof-of-work
block chain to select a new set of servers every day, and then
to use Byzantine consensus among those servers to confirm
transactions for the duration of a day. Although this makes the
set of Byzantine servers dynamic, it opens up the possibility
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of forks, especially on network partitions, due to the use of
proof-of-work consensus to agree on the set of servers; this
problem cannot arise in Algorand.

Pass and Shi’s paper acknowledges their design is secure
only with respect to a “mildly adaptive” adversary that cannot
compromise the selected servers within a day, and explicitly
calls out the open problem of whether it is possible to handle
fully adaptive adversaries. Ouroboros also relies on commit-
tees that are assumed to be incorruptible by the adversary
in at least a day [25]. Algorand’s BA⋆ explicitly addresses
this open problem by immediately replacing any chosen com-
mittee members. As a result, Algorand is not susceptible to
either targeted compromises or targeted DoS attacks.

Stellar [29] takes an alternative approach to Byzantine
consensus in a cryptocurrency, where each user can trust
other users, forming a trust hierarchy. Consistency is ensured
as long as all transactions share at least one transitively trusted
user, and that user is honest. Algorand avoids this assumption,
which means that users do not have to make complex trust
decisions when configuring their client software.

Proof of stake. Algorand assigns weights to users propor-
tionally to the monetary value they have in the system, in-
spired by proof-of-stake approaches [10]. There is a key
difference, however, between Algorand using monetary value
as weights and proof-of-stake cryptocurrencies. In a proof-
of-stake cryptocurrency, a malicious leader (who assembles
a new block) can create a fork in the network, but if caught
(e.g., since two versions of the new block are signed with his
key), the leader loses his money (this is the “stake”). The
weights in Algorand, however, are only to ensure that the
attacker cannot amplify his power by using pseudonyms; as
long as the attacker controls less than 1/3 of the monetary
value, Algorand can guarantee that the probability for forks
is negligible. Algorand may be extended to “punish bad
leaders”, but this is not required to prevent forks.

Proof-of-stake avoids the computational overhead of proof-
of-work and therefore allows reducing transaction confirma-
tion time. However, realizing proof of stake in practice is
challenging [5]. Since no work is involved in generating
blocks, a malicious leader can announce one block, sell his
credits in the currency (remove their stake), and then present
some other block to isolated users. Therefore some proof-of-
stake cryptocurrencies require a master key to periodically
sign the correct branch of the ledger in order to mitigate
forks [26]. This raises significant trust concerns regarding the
currency, and had also caused accidental forks in the past [35].
Algorand answers this challenge by avoiding forks, even if
the leader turns out to be malicious.

Trees and DAGs instead of chains. GHOST and SPECTRE
are two recent proposals for increasing Bitcoin’s throughput
by replacing the underlying chain-structured ledger with a
tree or directed acyclic graph (DAG) structures [39, 40], and
resolving conflicts in the forks of these data structures. Both

protocols rely on the Nakamoto consensus and are bound
by the latency of its proof-of-work. By carefully designing
the selection rule between two branches of the trees/DAGs,
they are able to substantially increase the throughput, but not
to eliminate the confirmation time users should wait before
accepting transactions that appear on the ledger. In contrast,
Algorand is focused on reducing transaction latency; in future
work, it may be interesting to explore whether tree or DAG
structures can similarly increase Algorand’s throughput.

3 Goals and assumptions
Algorand achieves two important goals:

Safety. With overwhelming probability, 1− 10−18, all
users agree on the same transactions, and the network is
always in a consistent state. More precisely, if a honest user
accepts a transaction, then the same transaction is accepted by
all honest users who see it. This holds even for isolated users
that are disconnected from the network—e.g., by Eclipse
attacks [24]. Accordingly, Algorand guarantees both low-
latency and high-confidence transaction confirmation.

Liveness. In addition to safety, Algorand also makes
progress (i.e., allows new transactions to be added to the log)
under an additional assumptions about network reachability
that we describe below. Algorand aims to reach consensus on
a new set of transactions within roughly one minute.

Algorand makes standard cryptographic assumptions such
as public-key signatures and hash functions. Algorand as-
sumes that honest users run bug-free software. As mentioned
earlier, Algorand assumes that the fraction of money held by
honest users is above some threshold p (a constant greater
than 2/3), but that an adversary can participate in Algorand
and own some money. We believe that this assumption is
reasonable, since it means that in order to successfully attack
Algorand, the attacker must invest substantial financial re-
sources in it. Algorand assumes that an adversary can corrupt
targeted users, but that an adversary cannot corrupt a large
number of users that hold a significant fraction of the money
(i.e., the amount of money held by honest, non-compromised
users must remain over the threshold).

To ensure safety, Algorand makes no assumptions about the
network; the attacker can have full control of the network. To
ensure liveness, Algorand requires that more than a threshold
of honest users can communicate with each other.

4 Overview
Algorand requires each user to have a public key.2 Algorand
maintains a log of transactions, called a blockchain. Each
transaction is a payment signed by one user’s public key
transferring money to another user’s public key. Algorand
grows the blockchain in asynchronous rounds, similar to
Bitcoin. In every round, a new block, containing a set of
transactions, is appended to the blockchain.

2In the rest of this paper, we refer to Algorand software running on a
user’s computer as that user.
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Figure 1: An overview of transaction flow in Algorand.

Algorand users communicate through a gossip protocol.
The gossip protocol is used by users to submit new transac-
tions. Each user collects a block of pending transactions that
they hear about, in case they are chosen to propose the next
block, as shown in Figure 1. Algorand uses BA⋆ to reach
consensus on one of these pending blocks.

BA⋆ executes in steps, communicates over the same gossip
protocol, and produces a new agreed-upon block. Once BA⋆
announces consensus, all transactions in this block are con-
sidered to be confirmed. The rest of this section provides a
more detailed overview of Algorand’s main components.

Gossip protocol. Algorand implements a gossip network
(similar to Bitcoin and other P2P networks) where each user
selects a small random set of peers to gossip messages to. To
ensure messages cannot be forged, every message is signed
by the private key of its original sender; other users check that
the signature is valid before relaying it. To avoid loops, users
do not relay the same message twice. Algorand implements
gossip over TCP and weighs peer selection based on how
much money they have, so as to mitigate pollution attacks.

Block proposal (§6). All Algorand users execute crypto-
graphic sortition to determine whether they are selected to
propose a block in a given round. We describe sortition in §5,
but at a high level, sortition ensures that a small fraction of
users are selected at random, weighed by their account bal-
ance, and provides each selected user with a priority, which
can be compared between users, and a proof of the chosen
user’s priority. Selected users distribute their block of pend-
ing transactions through the gossip protocol, together with
their priority and proof. To ensure that users converge on
one block with high probability, blocks are prioritized based
on the proposing user’s priority, and users wait for a certain
amount of time to receive the block.

Agreement using BA⋆ (§7). Block proposal does not guar-
antee that all users received the same block, and in fact, Algo-
rand does not rely on the block proposal protocol for safety.
To reach consensus on a single block, Algorand uses BA⋆.
Each user initializes BA⋆ with the highest-priority block that
they received. BA⋆ executes in repeated steps, illustrated in

Figure 2: An overview of one step of BA⋆. To simplify the figure, each user
is shown twice: once at the top of the diagram and once at the bottom. Each
arrow color indicates a message from a particular user.

Figure 2. Each step begins with cryptographic sortition (§5),
where all users check whether they have been selected as
committee members in that step. Committee members then
broadcast a message which includes their proof of selection.
These steps repeat until, in some step of BA⋆, enough users
in the committee reach consensus.3 As discussed earlier, an
important feature of BA⋆ is that committee members do not
keep private state except their private keys, and so can be
replaced after every step, to mitigate targeted attacks on them.

Efficiency. BA⋆ guarantees that if all honest users start with
the same initial block (i.e., the user with the lowest block
credential was honest), then BA⋆ establishes consensus over
that block and terminates precisely in 3 steps. In the worst
case of a particularly lucky adversary, all honest users reach
consensus on the next block within expected 13 steps [15].

5 Cryptographic sortition
Cryptographic sortition is an algorithm for choosing a random
subset of users according to per-user weights; that is, given a
set of weights wi and the weight of all users W = ∑ j w j, the
probability that user i is selected is proportional to wi/W . The
randomness in the sortition algorithm comes from a publicly-
known random seed; we describe later how this seed is chosen.
To allow a user to prove that they were chosen, sortition
requires each user to have a public/private key pair, (pki,ski).

Sortition is implemented using verifiable random functions
(VRFs) [30]. Informally, on any input string x, VRFski(x)
returns two values: a hash and a proof. The hash is an l-bit-
long value that is uniquely determined by ski and x, but is
indistinguishable from random to anyone that does not know
ski. The proof π enables anyone that knows pki to check that
the hash indeed corresponds to x, without having to know ski.

Using VRFs, Algorand implements cryptographic sortition
as shown in Algorithm 1. Sortition requires a role parameter
that distinguishes the different roles that a user may be se-
lected for; for example, the user may be selected to propose
a block in some round, or they may be selected to be the

3Steps are not synchronized across users; each user checks for selection
as soon as he observes the previous step had ended.
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member of the committee at a certain step of BA⋆. Algo-
rand assigns a threshold τrole for each role to set the expected
number of users selected for that role.

procedure Sortition(ski,seed,role,wi,W ):
⟨hash,π⟩ ← VRFski(seed||role)
if hash < 2l · τrole · wi

W then return ⟨hash,π⟩ ;
else return ⊥ ;

Algorithm 1: The cryptographic sortition algorithm. l is the
length (in bits) of the VRF output.

Given a random seed, the VRF outputs a pseudo-random
hash value, which is essentially uniformly distributed between
0 and 2l − 1. By checking if the resulting hash is below a
threshold based on τrole and wi, the algorithm ensures that, on
average, τrole users are selected, according to their weights
(wi for user i). If a user is not selected, sortition returns
⊥. However, an adversary that does not know ski cannot
guess if user i is chosen (more precisely, cannot guess any
better than just by randomly guessing based on the weights).
The pseudocode for verifying the sortition proof, shown in
Algorithm 2 follows the same structure.

procedure VerifySort(pki,hash,π,seed,role,wi,W ):
if hash >= 2l · τrole · wi

W then return false ;
else return VerifyVRFproofpki

(hash,π,seed||role) ;
Algorithm 2: Pseudocode for verifying sortition of user i.

5.1 Choosing the seed
Sortition requires a seed that is chosen at random and publicly
known. In the context of Algorand, each round requires a new
seed that is publicly known by everyone for that round, but
cannot be controlled by the adversary; otherwise, an adversary
may be able to choose a seed that favors the selection of
corrupted users.

The seed for Algorand’s round r is determined using VRFs
with the seed of the previous round r−1. More specifically,
during the block proposal stage of round r−1, every user u
selected for block proposal also computes a proposed seed
for round r as ⟨seedr,π⟩ ← VRFsku(seedr−1||r). Algorand
requires that sku be chosen by u well in advance of seedr−1
being determined (§5.2). This ensures that even if u is mali-
cious, the resulting seedr is pseudo-random.

This seed (and the corresponding VRF proof π) is included
in every proposed block, so that once Algorand reaches agree-
ment on the block for round r−1, everyone knows seedr at
the start of round r. If the block does not contain a valid seed
(e.g., because the block was proposed by a malicious user and
π is not a valid VRF proof), users treat the entire proposed
block as if it were empty, and use a cryptographic hash func-
tion H (which we assume is a random oracle) to compute the
associated seed for round r as seedr = H(seedr−1||r). The
value of seed0, which bootstraps seed selection, can be chosen

at random at the start of Algorand by the initial participants
using distributed random number generation [13].

5.2 Choosing sku well in advance of the seed
Computing seedr requires that every user’s secret key sku is
chosen well in advance of seedr−1. To enforce this, whenever
Algorand performs cryptographic sortition in round r, it uses
the keys (and the associated weights) from round r− k. This
ensures that, as long as k is suitably large, an adversary u
choosing a key sku in round r− k cannot predict the seed for
round r. This is the case because the seed for round r depends
on the secret keys of the agreed-upon block proposers for
rounds r− k through r, and it is highly unlikely that all of
those k block proposers will be controlled by the attacker.

Our technical report [15: §6.4] formally analyzes the seed
selection process, and proves that k = ⌈log 1

2
F⌉, where F is

a negligible probability, deemed acceptable for forks. For
Algorand’s targeted probability (10−18), k = 60 is sufficient
to avoid an adversary influencing the seed.

6 Block proposal
To ensure that some block is proposed in each round, Algo-
rand sets the sortition threshold for the block-proposal role,
τproposer, to be greater than 1 (although Algorand will reach
consensus on at most one of these proposed blocks). Our
technical report proves that choosing τproposer = 26 ensures
that a reasonable number of proposers (at least one, and no
more than 70, as a plausible upper bound) are chosen with
very high probability (1−10−12) [15].

Minimizing unnecessary block transmissions. One risk of
choosing several block proposers is that each will gossip their
own proposed block. For a large block (say, 1 MByte), this
can incur a significant communication cost. To reduce this
cost, the sortition hash is used to prioritize block proposals
(smaller hash means higher priority). Algorand users discard
messages about blocks that do not have the highest priority
seen by that user so far. Algorand also gossips two kinds of
messages: one contains just the priorities and proofs of the
chosen block proposers (from cryptographic sortition), and
the other contains the entire block, which also includes the
proposer’s sortition hash, and proof. The first kind of message
is small (about 200 Bytes), and propagates quickly through
the gossip network. These messages enable most users to
learn who is the highest priority proposer, and thus discard
blocks of lower-priority proposers.

Waiting for block proposals. Each user must wait a certain
amount of time to receive block proposals via the gossip pro-
tocol. Choosing this time interval does not impact Algorand’s
safety guarantees but is important for performance. Waiting
a short amount of time will mean no received proposals. If
the user receives no block proposals, he or she initializes
BA⋆ with the empty block, and if many users do so, Algo-
rand will reach consensus on an empty block. On the other
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hand, waiting too long will receive all block proposals but
also unnecessarily increase the confirmation latency.

To determine the appropriate amount of time to wait for
block proposals, we consider the plausible scenarios that a
user might find themselves in. When a user starts waiting for
block proposals for round r, they may be one of the first users
to reach consensus in round r−1. Since that user was able
to complete round r−1, sufficiently many users have sent a
message for the last step of BA⋆ in that round, and therefore,
most of the network is at most one step behind this user. Thus,
the user must somehow wait for others to finish the last step of
BA⋆ from round r−1. At this point, some proposer in round
r that happens to have the highest priority will gossip their
priority and proof message, and the user must somehow wait
to receive that message. Then, the user can simply wait until
they receive the block corresponding to the highest priority
proof (with a timeout λBLOCK, on the order of a minute, after
which the user will fall back to the empty block).

It is impossible for a user to wait exactly the correct amount
for the first two steps of the above scenario. Thus, Algorand
estimates these quantities (λSTEPVAR, the variance in how long
it takes different users to finish the last step of BA⋆, and
λPRIORITY, the time taken to gossip the priority and proof
message), and waits for λSTEPVAR + λPRIORITY time to identify
the highest priority. §10 experimentally shows that these
parameters are, conservatively, 10 seconds and 5 seconds,
respectively. As mentioned above, Algorand would remain
safe even if these estimates were inaccurate.

Malicious proposers. Even if some block proposers are ma-
licious, the worst case scenario is that they trick different
Algorand users into initializing BA⋆ with different blocks.
This could in turn cause Algorand to reach consensus on an
empty block, and possibly take additional steps in doing so.
However, it turns out that even this scenario is relatively un-
likely. In particular, if the adversary is not the highest priority
proposer in a round, then the highest priority proposer will
gossip a consistent version of their block to all users. If the
adversary is the highest priority proposer in a round, they
can propose the empty block, and thus prevent any real trans-
actions from being confirmed. However, this happens with
probability of at most 1− p, by Algorand’s assumption that
at least p > 2/3 of the weighted user are honest.

7 BA⋆
The execution of BA⋆ consists of two phases. In the first
phase, BA⋆ reduces the problem of agreeing on a block to
agreement on a binary value. In the second phase, BA⋆
reaches agreement on a bit that indicates whether the consen-
sus is on a block from the first phase, or whether it is on ⊥
(the empty block). Each phase consists of several interactive
steps; the first phase always takes two steps, and the second
phase takes one step if the highest-priority block proposer
was honest (sent the same block to all users), and an expected

11 steps in the worst case of a malicious highest-priority
proposer colluding with a large fraction of committee partic-
ipants at every step. To decide whether to move from one
step to the next, BA⋆ counts the “votes” committee members
cast and checks if they exceed a threshold fraction T of the
expected number of selected committee members, denoted by
τcommittee; we discuss how to choose T and τcommittee in §7.1.

BA⋆ provides the following guarantees:

1. All honest users agree on the same block. This ensures
Algorand’s safety.

2. If more than a fraction T of the weighted users are both
honest and start with the same block, then all honest users
agree on that block. This ensures Algorand’s progress.

A key aspect of BA⋆’s design is that it keeps no secrets, ex-
cept for user private keys. This allows any user observing the
messages to “passively participate” in the protocol, i.e., verify
signatures, count votes, and reach the agreement decision.

Initialization (Alg. 3). BA⋆ starts running on each user’s
computer for a given round with Initialize(), shown in Al-
gorithm 3. The block argument to Initialize() is the highest-
priority block received during block proposal. As long as the
block is valid (has the seed for the next round, and does not
contain double-spending transactions), BA⋆ tries to reach con-
sensus on the hash of the block (which makes the reduction
phase more efficient than running directly on the block). If
BA⋆ reaches consensus on a hash of a non-empty block, then
at least a T fraction of the weighted users initialized BA⋆ with
that block, and that block is widely available even if a few
users did not receive it during block proposal. The initialize
procedure also sets a timeout for terminating the first step of
BA⋆, this is λBLOCK (the time it takes to propagate a block,
since some users may receive the block and start the first step
at most λBLOCK after this user) plus λSTEP, the time Algorand
allocates to run any other step in BA⋆.

procedure Initialize(round,block):
state.r← round
state.step← REDUCTION_STEP_ONE
state.done← false
// terminate first step with TIMEOUT after λBLOCK + λSTEP

SetTimer(StepCompletion(TIMEOUT), λBLOCK + λSTEP)
if DoubleSpends(block) or ¬ValidSeed(block) then

state.block←⊥
StartStep(⊥)

else
state.block← block
StartStep(H(state.block))

end
Algorithm 3: Initializing BA⋆ for round round with the
proposed block. H is a cryptographic hash function.
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Starting a step (Alg. 4). Algorithm 4 shows the pseudocode
for StartStep() which starts every step of BA⋆. This code
invokes Sortition() from Algorithm 1 to check if the user
is chosen to participate in the committee at each step. If
the user is chosen for this step, the user gossips a signed
message containing the value passed to StartStep(); depending
on the phase, this can either be the hash of the block (for the
reduction phase) or either ACCEPT or REJECT (for the binary
consensus phase).

procedure StartStep(v):
// check if already handled enough messages to complete
v’← argmaxvalue state.counts[state.r][state.step][value]
if state.counts[state.r][state.step][v’]> T · τcommittee then

return StepCompletion(v’) ;
// check if user is in committee using Sortition (Alg. 1)
role← “committee”||state.step
ret← Sortition(state.sk,seedstate.r−1,role,

state.weight[state.pk],state.W )
// only committee members originate a message
if ret ̸=⊥ then
⟨sorthash,π⟩ ← ret
Gossip(⟨state.pk,Signedstate.sk(

state.r,state.step,sorthash,π,v)⟩)
end

Algorithm 4: Starting a step of BA⋆, voting for value v.
state.sk and state.pk is the user’s private/public key pair.

Counting votes (Alg. 5). In each step, MessageHandler()
counts how many votes (with valid signatures and proofs)
each user received for each value, as shown in Algorithm 5.
As soon as one value has more than T · τcommittee votes, Mes-
sageHandler() calls StepCompletion(). (τcommittee is the ex-
pected number of users that Sortition() selects for the commit-
tee, and is the same for each step). Note that all the processing
in Algorithm 5 can be performed by all users as they relay
messages in the gossip network. This allows us to replace
committee members at each step.

Step completion (Alg. 6). Algorithm 6 shows StepComple-
tion(), which is called when either a user receives T ·τcommittee
votes for the same value (in which case v is this value), or
there was a time-out (in which case v is TIMEOUT). Step-
Completion distinguishes between the two phases of BA⋆.
If another step is required (concensus was not yet reached),
then the completion procedure sets a timer for that new step
(allowing it to run up to λSTEP seconds), and the initializes
that step.

The first two steps implement the Turpin and Coan re-
duction [42] from an arbitrary value agreement (the hash of
the next block), to a binary value agreement. In the first
step of the reduction the committee members gossip the hash
of the block they received (when Initialize calls StartStep).
In the second step they gossip a hash that received at least

procedure MessageHandler(m):
// ignore from past rounds; defer future rounds
if m.r < state.r then return;
if m.r > state.r then return HANDLELATER;
// discard messages with invalid signature or proof
if VerifySignature(m) ̸= OK then return;
if VerifySort(m.src,m.sorthash,m.π,state.seedm.r−1,
“committee′′||m.step,state.weight[m.src],state.W ) ̸= OK
then return;

// discard duplicate senders; track all messages
if m.src ∈ state.senders[m.r][m.step] then return;
state.senders[m.r][m.step].add(m.src)
state.messages[m.r][m.step].add(m)
// count src’s vote
state.counts[m.r][m.step][m.value]++
// relay the message to others in the P2P network
Gossip(m)
// if this step is complete, call StepCompletion
if state.counts[m.r][m.step][m.value]> T · τcommittee then

if state.step = m.step then
StepCompletion(m.value) ;

end
Algorithm 5: MessageHandler(), called for every incoming
message m.

T · τcommittee of the votes in the first step, or ⊥ if no such hash
exists. When REDUCTION_STEP_TWO completes, BA⋆ starts
agreement on a bit, which is the core of the BA⋆ protocol and
described next. Importantly, the Turpin-Coan reduction does
not modify any private state, the property that BA⋆ needs to
replace committee members.

In all following steps committee members vote to ACCEPT
the hash value, or REJECT and use the empty block. The
ConcludeBinaryStep function, explained next, is called to
check whether agreement on either ACCEPT or REJECT was
reached, and if not, to decide on the value for the next vote.

Agreement on a bit (Alg. 7). To agree on a bit, StepCom-
pletion calls ConcludeBinaryStep, shown in Algorithm 7,
which receives the value for which the user counted at least
T · τcommittee votes in the current step. If neither ACCEPT nor
REJECT received that many votes, then the input for Conclude-
BinaryStep is TIMEOUT. ConcludeBinaryStep sets state.done
to mark whether agreement was established. It also returns
an ACCEPT or REJECT value, which should be the user’s vote
in the next step (if selected to be in the committee).

To agree on a bit, BA⋆ repeats three steps until reaching
consensus: BIN_STEP_ACCEPT, BIN_STEP_REJECT, and
BIN_STEP_COIN. At the end of each step, a user who has
seen more than T · τcommittee votes for either ACCEPT or RE-
JECT adopts that value for the next step. Importantly, we
must select the committee to be large enough such that it
is extremely unlikely that some users adopt ACCEPT while
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procedure StepCompletion(v):
if state.step = REDUCTION_STEP_ONE then

// no state changes, just re-gossip the value v
// when starting the next step (at the end of this func.)

else if state.step = REDUCTION_STEP_TWO then
// save the hash; we next agree whether to accept it
state.hash_of_block← v
if state.hash_of_block =⊥ then v← REJECT;
else v← ACCEPT;
// proceed to start binary agreement

else // completed a binary step
// if finished, ConcludeBinaryStep sets state.done
v← ConcludeBinaryStep(v)

end
ClearTimer()
if state.done then

// reached consensus
if v = ACCEPT then

NotifyConsensus(state.hash_of_block) ;
else NotifyConsensus(⊥) ;

else // we need another step, consensus not yet reached
// terminate new step if not complete in λSTEP sec
SetTimer(StepCompletion(TIMEOUT), λSTEP)
state.step++
StartStep(v)

end
Algorithm 6: Step completion. Called from MessageHan-
dler with v, the “popular value” that received more than
T · τcommittee votes, or TIMEOUT.

procedure ConcludeBinaryStep(v):
if state.step = BIN_STEP_ACCEPT (mod 3) then

if v = REJECT then return REJECT;
else if v = ACCEPT then state.done← true ;
return ACCEPT

else if state.step = BIN_STEP_REJECT (mod 3) then
if v = ACCEPT then return ACCEPT;
else if v = REJECT then state.done← true ;
return REJECT

else // BIN_STEP_COIN (mod 3)
if v ∈ {ACCEPT,REJECT} then return v;
else return CommonCoin();

end
Algorithm 7: Completing a step in the binary agreement
phase. The input is v ∈ {ACCEPT,REJECT,TIMEOUT}.

others adopt REJECT. We discuss this requirement, and set
the appropriate committee size, in §7.1.

BIN_STEP_ACCEPT guarantees that if all honest users en-
tered with ACCEPT, then all of them learn that agreement was
reached on the hash of the block. BIN_STEP_REJECT guar-
antees that if all honest users entered the step with REJECT,
then they all agree on REJECT.

In BIN_STEP_COIN all users compute a random “common
coin,” meaning a binary value (ACCEPT or REJECT) that is

predominantly the same for all users. Although this may
sound circular, the users need not reach formal consensus on
this common coin; its purpose is to, informally, push a “stuck
consensus” towards either ACCEPT or REJECT.

Any honest user who did not observe more than T ·
τcommittee votes for either ACCEPT or REJECT adopts the
value of the common coin. If only some of the honest users
counted more than T · τcommittee votes for ACCEPT (respec-
tively REJECT), and the common coin is ACCEPT (respec-
tively REJECT), then all honest users will be in agreement
on ACCEPT (respectively REJECT). In this case, BA⋆ will
terminate in the following BIN_STEP_ACCEPT (respectively
BIN_STEP_REJECT).4 Thus, if all users were to use the same
randomly-chosen coin value, they would reach consensus
with probability 1/2. By repeating these steps, the probability
of consensus quickly approaches 1.

We next show how to implement a coin that, with proba-
bility p > 2

3 , is both random and is observed by most users.
This leads to consensus with probability 1

2 · p > 1
3 at each

BIN_STEP_COIN.

Implementing the common coin (Alg. 8). Every
BIN_STEP_COIN, BA⋆ attempts to synchronize users
on a coin that is decided at random and is publicly available
to everyone. To implement this coin we take advantage of
the VRF-based committee member hashes attached to all of
the messages. Every user sets the common coin to be the
least-significant bit of the lowest hash it observed in this step,
as shown in Algorithm 8. Notice that hashes are random
(since they are produced by a VRF), so their least-significant
bits are also random. The common coin is used only when
BIN_STEP_COIN times out, giving sufficient time for all
votes to propagate through the network. If the committee
member with the lowest sortition hash is honest, then all
users that received his message observe the same coin.

procedure CommonCoin():
if state.messages[state.r][state.step].empty() then

return REJECT
end
m←MinSorthash(state.messages[state.r][state.step])
if m.sorthash = 0 mod 2 then return ACCEPT;
else return REJECT;
Algorithm 8: Computing a coin common to all users.

If a malicious committee-member happens to hold the low-
est sortition hash, then he might send it to only some users.
This may result in users observing different coin values, and
thus will not help in reaching consensus. However, since
sortition hashes are pseudo-random, the probability that an
honest user has the lowest hash is p, and thus there is at least

4As we explained above, the committee is sufficiently large such that the
case where some users observed enough votes to adopt ACCEPT while others
observed enough votes to adopt REJECT is extremely unlikely.
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a p > 2
3 probability that the lowest sortition hash holder will

be honest.

7.1 Analysis
The fraction p> 2

3 of weighted honest users in Algorand must
translate into a “sufficiently honest” committee for BA⋆. BA⋆
has two parameters at its disposal: τcommittee, which controls
the expected committee size, and T , which controls the num-
ber of votes needed to reach consensus (T · τcommittee). We
would like T to be as small as possible for liveness, but we
also need T to be sufficiently large to ensure safety. Moreover,
the smaller T is, the larger τcommittee needs to be, to ensure
that an adversary does not obtain enough votes by chance.

To make these constraints precise, let us denote the number
of honest committee members by g and the malicious ones
by b; in expectation, b+ g = τcommittee, but b+ g can vary
since it is chosen by sortition. To ensure safety, BA⋆ requires
1
2 g+b≤ T · τcommittee. This requirement guarantees that two
different values cannot both be “popular enough” to trigger
the call to StepCompletion() in MessageHandler(). To ensure
that Algorand can reach agreement on the next block and
make progress, we must ensure that g > T · τcommittee.

Due to the probabilistic nature of how committee members
are chosen, there is always some small chance that the b and
g for some step fail to satisfy the above constraints, and BA⋆’s
goal is to make this probability negligible. We choose T such
that the liveness constraint is satisfied with probability 1−
10−12, assuming all users are online; that is, BA⋆ may fail to
make progress because some users are disconnected, but BA⋆
should not fail to make progress because of an unfortunate
sortition outcome. Figure 3 plots the τcommittee that is needed
to satisfy the safety constraint, as a function of p, for two
different probabilities of safety violation, 10−12 and 10−18.
The results show that, as p approaches 2

3 , the committee size
grows quickly. However, at p = 80%, τcommittee = 4,000 can
ensure safety with probability of 1−10−18 (using T =0.69).
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Figure 3: The committee size, τcommittee, sufficient to limit the probability of
violating safety to either 10−12 or 10−18. The x-axis specifies p, the fraction
of honest users. ⋆ marks the parameters selected in our implementation.

Given a suitable choice of τcommittee, BA⋆ ensures safety
even if an adversary has full control of the network, can create

network partitions, and can propose different blocks in each
partition. As a result, Algorand guarantees that its blockchain
will not fork even in the presence of such a powerful attacker.
In Algorand, the attacker cannot spoof credentials of commit-
tee members (from one partition) so as to convince users (in
another partition) that consensus exists over the block they
received. If a partition does not have sufficiently many users
to approve the next block, then users running BA⋆ in that
partition will continuously time out BA⋆ steps (calling Step-
Completion with TIMEOUT) and neither approve nor reject
new blocks. Once sufficiently many users can communicate
to establish consensus over the next block, those users will
reach agreement and continue to approve blocks in the follow-
ing rounds. Detailed proofs of BA⋆’s correctness, including
safety and liveness, are provided in the technical report [15].

8 Algorand
Building Algorand on top of the primitives we have described
so far requires Algorand to address a number of higher-level
issues, which this section discusses.

Bootstrapping the system. In order to deploy Algorand, a
common genesis block must be provided to all users, along
with the initial cryptographic sortition seed. As §5 mentions,
at round r, Algorand must use user’s public keys (and weights)
from round r− k to ensure the seeds remain pseudo-random.
We resolve this issue at bootstrapping by repeating an empty
block k times after the genesis block.

Bootstrapping new users. Users that join the system need
to learn the current state of the system, which is defined to
be the result of a chain of BA⋆ consensus outcomes. To help
users catch up, Algorand generates a certificate for every
block that was agreed upon by BA⋆ (including empty blocks).
The certificate is an aggregate of the messages from BA⋆ that
is sufficient to allow any user to reach the same conclusion by
processing these messages. Importantly, the users must check
the sortition hashes and proofs just like in Algorithm 5, and
that all messages in the certificate are for the same Algorand
round and BA⋆ step. If the certificate accepts the new block,
then this step is BIN_STEP_ACCEPT (mod 3) , or if the certifi-
cate indicates REJECT, then this step is BIN_STEP_REJECT
(mod 3).

To support certificates, binary ACCEPT messages in-
clude the hash of the block that is being decided
(state.hash_of_block in Algorithm 6). ACCEPT certificates
(those containing ⌊T · τcommittee⌋+1 ACCEPT votes) are pro-
vided with the block that was accepted, so that users can
validate that its hash appears in all signed ACCEPT messages
in the certificate. REJECT certificates tell the user that the
block in consensus for that round was the empty block.

Certificates allow new users to validate prior blocks. Users
validate blocks in order, starting from the genesis block. This
ensures that the user knows the correct weights for verifying
sortition proofs in any given round.
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One potential risk created by the use of certificates is that
an adversary can provide a certificate that appears to show
that BA⋆ completed after some large number of steps. This
gives the adversary a chance to find a BA⋆ step number in
which the adversary controls more than a threshold of the
selected committee members (and to then create a signed
certificate using their private keys). We set the committee size
to be sufficiently large to ensure the attacker has negligible
probability of finding such a step number. For τcommittee >
1,000, the probability of this attack is less than 2−166 at every
step, making this attack infeasible.

Forward security. Attackers may attempt to corrupt users
over time. More precisely, since identities of committee mem-
bers are revealed after they send a message, an attacker can
observe which users took part in the committee at one execu-
tion step in BA⋆, and attempt to compromise their machine
later so as to obtain their private keys. If an attacker manages
to obtain more than a T fraction of the keys for the relatively
small committee, he could fake a certificate and create a fork.

Algorand resists such attacks by having users commit to a
different message-signing public key for every step, and pub-
lish their commitments on the blockchain. We use identity-
based encryption (IBE) [11] to allow users to concisely com-
mit to a long sequence of public keys (IBE user names of the
form ⟨r,s⟩ where r and s are the round and step number), and
to allow users to forget private keys immediately after they
use them. This ensures that, by the time a user’s identity is
exposed, they have already deleted the corresponding private
key. To limit the number of private keys users must create,
Algorand must make another assumption: that there are no
network partitions that preclude most Algorand users from
communicating for a very long epoch (e.g., a month). We
believe that this assumption is reasonable (e.g., the Internet
has not had such a large-scale outage in its entire history, even
though there have been instances of individual users or even
countries being cut off for weeks). The technical report [15:
§5.2] describes this construction in more detail.

Gossiping blocks. Algorand’s block proposal protocol (§6)
assumed that chosen users can gossip new blocks before an
adversary can learn the user’s identity and mount a targeted
DoS attack against them. In practice, Algorand’s blocks are
larger than the maximum packet size, so it is inevitable that
some packets from a chosen block proposer will be sent before
others. A particularly fast adversary could take advantage of
this to immediately DoS any user that starts sending multiple
packets, on the presumption that the user is a block proposer.

Formally, this means that Algorand’s liveness guarantees
are slightly different in practice: instead of providing liveness
in the face of immediate targeted DoS attacks, Algorand en-
sures liveness as long as an adversary cannot mount a targeted
DoS attack within the time it takes for the victim to send a
block over a TCP connection (a few seconds). We believe this
does not matter significantly; an adversary with such a quick

reaction time likely also has broad control over the network,
and thus can prevent Algorand nodes from communicating at
all. Another approach may be to rely on Tor [18] to make it
difficult for an adversary to quickly disconnect a user.

“Rich users.” To ensure that users with more than
τcommittee/all money fraction of the money in Algorand are
not under-represented in the committee, these (few) users
split their money to several keys, each holding less of this
fraction of money. Hence, such users may have more than
one vote in the committee.

Scalability. The communication costs for each Algorand
user depend on the expected size of the committee and the
number of block proposers, which Algorand sets through
τproposer and τcommittee (independent of the number of users).
As more users join, it takes a message longer to disseminate
in the gossip network. Algorand forms a random network
graph (each user connects to random peers), and our theo-
retical analysis suggests that dissemination time grows with
the diameter of the graph [15], which is logarithmic in the
number of users [36]. Experiments confirm that Algorand’s
performance is only slightly affected by more users (§10).

9 Implementation
We implemented a prototype of Algorand in C++, consisting
of approximately 5400 lines of code. We use Boost ASIO li-
brary for networking. Signatures and VRFs are implemented
over Curve 25519 [6], and we use SHA-256 for a hash func-
tion. We use the VRF construction outlined in Goldberg et
al [23: §4]. Our prototype does not implement forward se-
curity, but we expect it would have a negligible performance
effect.

In our implementation each user connects to 4 random
peers, accepts incoming connections from other peers, and
gossips messages to all of them. This gives us 8 peers on
average. We currently provide each user with an “address
book” file listing the IP address and port number for every
user’s public key. In a real-world deployment we imagine
users could gossip this information, signed by their keys, or
distribute it via a public bulletin board.

Figure 4 shows the parameters in our prototype of Algo-
rand; we experimentally validate the timeout parameters in
§10. p = 80% means that an adversary would need to control
20% of Algorand’s currency in order to create a fork. By
analogy, in the US, the top 0.1% of people own about 20% of
the wealth [32], so the richest 300,000 people would have to
collude to create a fork.

λPRIORITY should be large enough to allow block proposers
to gossip their priorities and proofs. Measurements of mes-
sage propagation in Bitcoin’s network [17] suggest that gos-
siping 1 KB to 90% of the Bitcoin peer-to-peer network takes
about 1 second. We conservatively set λPRIORITY to 5 seconds.

λBLOCK ensures that Algorand can make progress even if
the block proposer does not send the block. Our experiments
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Parameter Meaning Value

p assumed fraction of honest weighted users 80%
k round look-back for sortition 60 (§5.1)
τproposer expected # of block proposers 26 (§6)
τcommittee expected # of committee members 4,000 (§7.1)
T threshold of τcommittee for BA⋆ 69% (§7.1)
λPRIORITY time to gossip sortition proofs 5 seconds
λBLOCK timeout for receiving a block 1 minute
λSTEP timeout for BA⋆ step 20 seconds
λSTEPVAR estimate of BA⋆ completion time variance 10 seconds

Figure 4: Implementation parameters

(§10) show that about 10 seconds suffices to gossip a 1 MB
block. We conservatively set λBLOCK to be a minute.

λSTEP should be high enough to allow users to receive mes-
sages from committee members, but low enough to allow
Algorand to make progress (move to the next step) if it does
not hear from sufficiently many committee members. We
conservatively set λSTEP to 20 seconds. We set λSTEPVAR, the
estimated variance in BA⋆ completion times, to 10 seconds.

10 Evaluation
Our evaluation quantitatively answers the following:

§10.1 What is the latency that Algorand can achieve for confirm-
ing transactions, and how does it scale as the number of
users grows?

§10.2 What throughput can Algorand achieve in terms of trans-
actions per second?

§10.3 What are Algorand’s CPU, bandwidth, and storage costs?

§10.4 How does Algorand perform when users go offline or
misbehave?

§10.5 Does Algorand choose reasonable timeout parameters?

To answer these questions, we deploy our prototype of
Algorand on Amazon’s EC2 using 1,000 m4.xlarge virtual
machines (VMs),5 each of which has 4 cores and up to 1 Gbps
network throughput. To measure the performance of Algo-
rand with a large number of users, we run multiple Algorand
users (each user is a process) on the same VM. By default,
we run 50 users per VM, and users propose a 1 MByte block.
To simulate commodity network links, we cap the bandwidth
for each Algorand process to 20 Mbps. To model network
latency we use inter-city latency and jitter measurements [43]
and assign each machine to one of 20 major cities around the
world; latency within the same city is modeled as negligible.
We assign an equal share of money to each user; the distribu-
tion of money does not change the number of messages that
each user processes. Graphs in the rest of this section plot
the time it takes for Algorand to complete an entire round,
and include the minimum, median, maximum, 25th, and 75th
percentile times across all users.

5We planned to use 2,000 VMs to simulate 1,000,000 users, but Amazon
EC2 did not have sufficiently many instances available.

10.1 Latency
Figure 5 shows results with the number of users varying from
5,000 to 50,000 (by varying the number of active VMs from
100 to 1,000). The results show that Algorand can confirm
transactions in well under a minute, and the latency is near-
constant as the number of users grows.
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Figure 5: Latency for one round of Algorand, with 5,000 to 50,000 users.

To determine if Algorand continues to scale to even more
users, we run an experiment with 500 Algorand user pro-
cesses per VM. This configuration runs into two bottlenecks:
CPU time and bandwidth. Most of the CPU time is spent
verifying signatures and VRFs. To alleviate this bottleneck in
our experimental setup, for this experiment we replace veri-
fications with sleeps of the same duration. We are unable to
alleviate the bandwidth bottleneck, since each VM’s network
interface is maxed out; instead, we increase λSTEP to 1 minute.

Figure 6 shows the results of this experiment, scaling the
number of users from 5,000 to 500,000 (by varying the num-
ber of VMs from 10 to 1,000). The latency in this experiment
is about 3× higher than in Figure 5, even for the same number
of users, owing to the bandwidth bottleneck. However, the
scaling performance remains flat all the way to 500,000 users,
suggesting that Algorand scales well.
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Figure 6: Latency for one round of Algorand in a configuration with 500
users per VM, using 10 to 1,000 VMs.
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10.2 Throughput
In the following set of experiments we deploy 50,000 users
on our 1,000 VMs (50 users per machine). Figure 7 shows
the results with a varying block size. The figure breaks the
Algorand round into two parts: block proposal (§6, at the
bottom of the graph) is the time it takes a user to obtain the
proposed block, and agreement (§7, at the top of the graph)
is the time it takes for BA⋆ to complete. The block proposal
time for small block sizes is dominated by the λPRIORITY +
λSTEPVAR wait time. For large block sizes, the time to gossip
the large block contents dominates.
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Figure 7: Latency for one round of Algorand as a function of the block size.

The results show that, at its lowest latency, Algorand com-
mits a 2 MByte block in about 40 seconds, which means it can
commit 180 MBytes of transactions per hour. For comparison,
Bitcoin commits a 1 MByte block every 10 minutes, which
means it can commit 6 MBytes of transactions per hour [9].
As Algorand’s block size grows past 2 MBytes, Algorand
achieves higher throughput at the cost of some increase to
latency. For example, with a 10 MByte block size, Algorand
commits about 450 MBytes of transactions per hour.

10.3 Costs of running Algorand
Users running Algorand incur CPU, network, and storage
costs. The CPU cost of running Algorand is modest; when
running 50 users per VM, CPU usage on the 4-core VM was
about 70%, meaning each Algorand process uses about 5%
of a core. In terms of bandwidth, each user in our experiment
with 1 MByte blocks and 50,000 users use about 6 Mbit/sec
of bandwidth. Algorand also stores block certificates in order
to prove to new users that a block is committed. This storage
cost is in addition to the blocks themselves. Each block
certificate is 600 KBytes, independent of the block size; for
1 MByte blocks, this would be a ∼60% storage overhead.

10.4 Misbehaving and offline users
Figure 8 shows the results for different fractions of offline
users (with 50,000 total users). The results show that Algo-
rand performs well as long as enough users are present to
reach consensus. Otherwise, BA⋆ hangs until enough users

come online; our experiment confirms this when we run with
35% of the users being offline. Algorand’s performance im-
proves slightly as users go offline, because fewer messages
are relayed by the gossip protocol.
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Figure 8: Latency for one round of Algorand with a varying fraction of
offline users, and 50,000 total users.

Algorand’s safety is guaranteed by BA⋆ (§7), but proving
this experimentally would require testing all possible attacker
strategies, which is infeasible. However, to experimentally
show that our Algorand prototype handles malicious users,
we choose one particular attack strategy. We force the block
proposer with the highest priority to equivocate about the pro-
posed block: namely, the proposer sends one version of the
block to half of its peers, and another version to others. Mali-
cious users that are chosen to be part of the BA⋆ committee
vote for both blocks. Figure 9 shows how Algorand’s perfor-
mance is affected by the weighted fraction of malicious users.
The results show that, at least empirically for this particular
attack, Algorand is not significantly affected.
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Figure 9: Latency for one round of Algorand with a varying fraction of
malicious users, out of a total of 50,000 users.

10.5 Timeout parameters
The graphs shown in this section confirm that BA⋆ steps finish
in well under λSTEP (20 seconds), that the difference between
25th and 75th percentiles of BA⋆ completion times is under
λSTEPVAR (10 seconds), and that blocks are gossiped within
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λBLOCK (1 minute). We separately measure the time taken to
propagate a block proposer’s priority and proof; it is consis-
tently around 1 second, well under λPRIORITY (5 seconds), con-
firming the measurements by Decker and Wattenhofer [17].

10.6 Ongoing work on improving performance
We continue to work on improving our implementation of
Algorand, and expect to reduce latency and increase through-
put.

11 Conclusion
Algorand is a new cryptocurrency that confirms transactions
on the order of a minute with a negligible probability of fork-
ing. Algorand’s design is based on a cryptographic sortition
mechanism combined with the BA⋆ Byzantine agreement pro-
tocol. Algorand avoids targeted attacks at chosen participants
using participant replacement at every step. Experimental re-
sults with a prototype of Algorand demonstrate that it achieves
sub-minute latency and 30× the throughput of Bitcoin, and
scales well to 500,000 users.
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