
Vector Encoding over Lattices and Its Applications

Daniel Apon ∗ Xiong Fan † Feng-Hao Liu ‡

Abstract

In this work, we design a new lattice encoding structure for vectors. Our encoding can be used to
achieve a packed FHE scheme that allows some SIMD operations and can be used to improve all the prior
IBE schemes and signatures in the series. In particular, with respect to FHE setting, our method improves
over the prior packed GSW structure of Hiromasa et al. (PKC ’15), as we do not rely on a circular as-
sumption as required in their work. Moreover, we can use the packing and unpacking method to extract
each single element, so that the homomorphic operation supports element-wise and cross-element-wise
computation as well. In the IBE scenario, we improves over previous constructions supporting O(λ)-bit
length identity from lattices substantially, such as Yamada (Eurocrypt ’16), Katsumata, Yamada (Asi-
acrypt ’16) and Yamada (Eprint ’17), by shrinking the master public key to three matrices from standard
Learning With Errors assumption. Additionally, our techniques from IBE can be adapted to construct
a compact digital signature scheme, which achieves existential unforgeability under the standard Short
Integer Solution (SIS) assumption with small polynomial parameters.
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1 Introduction

Lattice-based cryptography has matured significantly since the early works of Ajtai [Ajt96] and Regev [Reg05].
Most cryptographic primitives, ranging from basic public-key encryption (PKE) [Reg05] to more advanced
schemes e.g., identity-based encryption (IBE) [CHKP10, ABB10], attribute-based encryption (ABE) [GVW13,
BGG+14], fully-homomorphic encryption (FHE) [Gen09, BV11, GSW13], etc., can be built from now-
canonical lattice hardness assumptions, such as Regev’s Learning with Errors (LWE). We refer readers to
a beautiful survey of the power of lattices and recent developments by Peikert [Pei15]. In addition to this
impressive progress in theory, a large efforts were made to design more efficient lattice-based cryptosystems
with smaller parameters, especially for the advanced ones. A key question that persists is, how efficient
(especially in space complexity) that lattice-based cryptosystems can be, while retaining a meaningful level
of concrete security. We hope to further determine whether the advanced lattice-based cryptosystems in-
herently require more space and/or can achieve relaxed notions of security. This is not only of theoretic
interests, but also can lead to more efficient designs in practice.

In this work, we make progress on the line by developing a novel type of lattice-based encoding,
which we call a vector encoding. This encoding, for example, can serve as the core component of lat-
tice ciphertexts. We show the usefulness of our new vector encoding abstraction by applying it across a
variety of lattice-based encryption schemes. Specifically, we show how to add single-instruction-multiple-
data (SIMD) style processing to the Gentry, Sahai, Waters [GSW13] fully homomorphic encryption (FHE)
scheme, without the circular security requirement of previous work [HAO15]. The SIMD technique allows
us to further construct lattice-based identity-based encryption (IBE) and digital signature schemes with a
constant number of (standard sized) matrices in its master public key (respectively, verification key). Our
results lead to a partial answer to the key question:

Lattice-based IBE is as compact as lattice-based PKE (Regev’s scheme) up to a constant factor.

We hope that the ideas and techniques developed in this work help lead to further progress in determining
the full-fledged of the question and optimizing lattice-based cryptosystems.

Fully-Homomorphic Encryption. Fully Homomorphic Encryption (FHE) is a type of encryption scheme
where additions and multiplications can be performed directly on the ciphertexts in order to compute on the
underlying, encrypted data. The first constructions were given by Gentry [Gen09] on ideal lattices and by
van Dijk, et al. [vDGHV10] over the integers. A second generation of FHE schemes, based on the LWE
problem, then emerged with the works of [BV11, BGV12]. Current FHE proposals are primarily based on
the “GSW-FHE” paradigm [GSW13], where the homomorphic operations are matrix addition and matrix
multiplication.

Of particular note for our work, Hiromasa, Abe, and Okamoto [HAO15] showed how to pack messages
SIMD-style in GSW-FHE ciphertexts, at the cost of additionally assuming circular security (unrelated to
bootstrapping). An interesting question is:

Question #1: Is there a (leveled) GSW-FHE scheme that benefits from SIMD-style message packing,
but which does not require a circular security assumption?

Identity-Based Encryption. Identity-Based Encryption (IBE), first introduced by Shamir [Sha84], en-
ables any pair of users to communicate securely and to verify each other’s signatures without exchanging
private or public keys. In particular, the public key of an IBE user may be an arbitrary string, such as
their email address. The first IBE proposals came from [BF01] based on bilinear maps. For lattice-based
constructions, Gentry, Peikert, and Vaikuntanathan [GPV08] gave the first proposal in the random oracle
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model, and the concurrent works of Cash et al. [CHKP10] and Agrawal et al. [ABB10] constructed the first,
lattice-based IBEs in the standard model.

A major drawback of the known lattice-based IBEs is that they either satisfy only the artificial notion of
selective security, where an adversary declares at the start of the security experiment which identity it will
attack, or they incur a large blow-up in the size of the master public key proportional to the security parameter
λ or in the tightness of the security reduction. Indeed, designing an adaptively-secure IBE with comparable
efficiency and concrete security guarantees to [GPV08] is a key focus of Peikert’s [Pei15] Question 9, which
we restate part of here:

Are there standard-model, adaptively secure lattice-based IBE/ABE/PE schemes that have comparable
efficiency and concrete security to the existing selectively secure ones?

A full solution to the above question remains elusive, but some progress has been made. In one direction,
Boyen and Li [BL16], building on the signature scheme of Katz and Wang [KW03], proposed lattice-based
IBE and signature schemes in the standard model that are adaptively secure and have a tight reduction to the
hardness of LWE with a slightly superpolynomial modulus, at the cost of a large master public key growing
with λ. (The additional space provided by this large public parameter is used to encode a pseudorandom
function key in their security proof.)

There has also been another sequence of recent works [Yam16, AFL16, ZCZ16, KY16] (for full details,
see Table 1) whose goal is to reduce the size of the master public key while retaining adaptive security, at the
cost of an inverse polynomial security reduction loss, growing with the number of adversarial key-queries
Q. Each of these works provide various trade-offs and achieve a master public key (MPK) with sublinear
o(λ) blow-up; we briefly review the history of this line below.

Beginning with the works of Cash et al. [CHKP10] and Agrawal et al. [ABB10], adaptively-secure
lattice-based IBEs in the standard model used O(λ)-many basic matrices in the MPK, where λ is the bit-
length of users’ identities (respectively, the security parameter). The first, significant improvement was due
to Yamada [Yam16], who showed how to use the natural homomorphisms of lattice trapdoors to decrease
the size of the MPK to O(λ1/µ), for arbitrary constant µ (say, 2 or 3), at the cost of using a superpolynomial
LWE modulus. Another trade-off was presented in a prior draft of this work [AFL16], achieving a somewhat
larger MPK of size λ/ log2 λ matrices, but ensuring that the LWE modulus could be a fixed polynomial.
Following this, Zhang et al. [ZCZ16] showed a distinct technique that allowed for an MPK of onlyO(log(λ))
matrices, under the assumption that the maximum number Q of secret keys any adversary obtains is known
ahead of time.1 Subsequent to that, Katsumata and Yamada [KY16] gave a ring-LWE-based IBE with an
MPK of size O(λ1/µ) and a fixed, polynomial LWE modulus.

Finally, we mention that very recently, in an independent and concurrent work, Yamada [Yam17] pro-
poses a novel, LWE-based IBE with slightly superlogarithmic ω(log(λ)) MPK blow-up, with some polyno-
mial modulus (but which seems hard to determine precisely).

This brings us to the following open question:

Question #2: Is there a standard-model, adaptively secure lattice-based IBE scheme that has a
completely short public parameter – i.e. a constant number of Zn×mq matrices in its MPK and uses a fixed,

polynomial modulus?

Digital Signatures. Digital Signatures are a standard cryptographic tool for securely authenticating digital
messages and documents. In the lattice world, there is a standard transformation that converts any identity-
based encryption scheme into a comparable digital signature scheme [Boy10]. We will use this connection
in the natural way to obtain a signature scheme with a similarly compact, public verification key out of the
identity-based encryption scheme that we explicitly construct first.

1Whether this assumption is realistic or not depends on context, but in many scenarios, it will be insufficient.
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1.1 Our Contributions

In this work, we positively answer the two questions by constructing a FHE scheme supporting SIMD-style
message packing, and an IBE scheme that is (essentially) as compact as lattice-based PKE scheme, under
the standard Learning With Errors assumption. Our contributions can be summarized in the following three
informal theorems.

Theorem 1.1 (FHE). Under the standard LWE assumption, there is a FHE scheme supporting SIMD-style
message packing up to O(log q) messages without increasing the sizes of the public-key and ciphertext,
where q is the modulus of LWE.

Theorem 1.2 (IBE). Under the standard LWE assumption, there is an IBE scheme with adaptive security
supporting identities of length n, where (1) the modulus q is a prime of size polynomial in the security
parameter n, (2) ciphertexts consist of a vector in Z2m+1

q , and (3) the public key consists of three matrices
in Zn×mq and one vector in Znq .

Additionally, following Boneh and Franklin [BF01], Agrawal et al. [ABB10] and Boyen [Boy10], we
show how to map our new IBE scheme into a similarly efficient digital signature scheme (see the Section 7
for details):

Theorem 1.3 (Signature). Under the standard Short Integer Solution (SIS) assumption, there is an existen-
tially unforgeable digital signature scheme supporting messages of length n, where (1) the modulus q is a
prime of size polynomial in the security parameter n, (2) signatures consist of a vector in Z2m

q , and (3) the
verification key consists of three matrices in Zn×mq .

1.2 Related Work

In this section, we provide a detailed comparison with the first adaptively-secure IBE construction [ABB10]
and several recent follow-up work [Yam16, ZCZ16, BL16, KY16, Yam17] on lattice-based IBE schemes.
This work improves and thus subsumes the prior draft in [AFL16], which achieves an adaptively secure IBE
scheme with a somewhat large MPK of size λ/ log2 λ matrices.

We start our discussions on the following two works: first, Zhang et al. [ZCZ16] (Crypto ’16) constructed
an IBE scheme with polylogarithmic number of matrices for the public parameters, while their security only
holds for Q-bounded adversary where the adversary can only obtain a prior-bounded Q number of private
keys. Moreover, this restriction cannot be removed even by using a complexity leverage argument, e.g.
setting Q to be super-polynomail, because the running time of the encryption algorithm in their scheme
is at least linear in Q. In our detailed comparison presented later, we only consider schemes that allow
any polynomially many key queries, and whose encryption running time is independent of the number of
queries allowed. Thus, we do not include the work [ZCZ16]. Another recent work by Boyen et al. [BL16]
(Asiacrypt ’16) focused on reducing the security loss of the security reduction, yet their scheme does not try
to optimize the size of the public parameters. Their parameters (public-key size) are roughly the same as the
work of [ABB10], which we will provide a detailed comparison in Table 1.

In another recent work, Yamada [Yam16] (Eurocrypt ’16) proposed an interesting primitive, namely
the parameterized identity based encryption (PIBE), and the IBE construction are derived by encoding the
identities using multiple independent PIBE. However, the IBE construction has to rely on a stronger LWE
assumption where the modulus-to-error ratio is λω(1), while all the other IBE constructions only rely on LWE
with modulus-to-error ratio a fixed polynomial in the security parameter λ. In a follow-up work, Katsumata
et al. [KY16] (Asiacrypt ’16) built an IBE scheme based on ring-LWE, which is essentially the same as the
ring analogue of the Yamada IBE [Yam16]. Their new security proof relies crucially on the underlying ring
structure and require a stronger assumption, i.e. ring-LWE with a fixed polynomial approximation factor.
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In a very recent work [Yam17], Yamada proposes new lattice IBEs with poly-logarithmic master public
key sizes. This improvement is based on new design of partitioning functions. Of his IBE constructions,
the best size of master public key he can achieve consists of ω(log λ) matrices. However, the approximation
factor of underlying LWE assumption is set to be some fixed polynomial poly(n), but was not determined
explicitly in their work.

Table 1: Comparison of Adptively Secure Lattice-based IBE Scheme
Schemes # of Zn×mq mat.

in |mpk|
# of Zmq vec. in

|ct|
LWE param 1/α Reduction Loss Remarks

[CHKP10]1 O(λ) O(λ) Õ(n1.5) O(εν+1/Qν)

[ABB10] O(λ) O(λ) Õ(n5.5) O(ε2 qQ)

[Yam16] O(λ1/µ) O(1) nω(1) O(εµ+1/nQµ)

[ZCZ16] O(logQ) O(1) Õ(Q2 · n6.5) O(ε/kQ2) Q-bounded
[AFL16] O(λ/ log2 λ) O(1) Õ(n6) O(ε2/qQ)

[KY16]2 O(λ1/µ) O(1) O(n2.5+2µ) O((λµ−1εµ/Qµ)µ+1) ring-based
[BL16] O(λ) O(1) superpoly(n) O(λ)

[Yam17]3 ω(log2 λ) O(1) O(n11) O(ε2/n2Q)

[Yam17]4 ω(log λ) O(1) poly(n) O(ε2/n2Q) Need
[BCH86, Bar89]

Ours5 3 O(1) Õ(n15.5) O(ε2/|Q|q)
1 ν > 1 is the constant satisfying c = 1 − 2−1/ν , where c is the relative distance of the underlying error

correcting code C : {0, 1}k → {0, 1}`. We can take ν as close to 1 as one wants.
2 µ is an arbitrary constant that typically is set to be 2 or 3.
3 IBE construction Based on Modified Admissible Hash Function.
4 IBE construction Based on Affine Functions.
5 Using the optimization specified in Section 6.7 to improve the reduction loss.

We compare with adaptively secure IBE schemes under the LWE assumption in the standard model.
|mpk|, |ct| show the size of the master public keys, ciphertexts respectively. To measure the space efficiency,
we count the number of basic components. Q and ε denote the number of key extraction queries and
the advantage, respectively. poly(n) (resp. superpoly(n)) represents fixed but large polynomial (super-
polynomial) that does not depend Q and ε. To measure the reduction cost, we show the advantage of
the LWE algorithm constructed from the adversary against the corresponding IBE scheme. To be fair, we
calculate the reduction cost by employing the technique of Bellare and Ristenpart [BR09] for all schemes.

Roadmap. We present an overview of our technical approach in Section 2.3 and the necessary preliminary
background in Appendix A. We recall the extended gadget matrix and its (modified) Gaussian sampling
algorithm in Section 3. Our vector encoding scheme and its supported operations are described in Section 4.
The applications of vector encoding scheme in FHE, IBE and signature scenarios are presented in Section 5,
6.5 and 7 respectively.

Notations. Let λ be the security parameter, and let PPT denote probabilistic polynomial time. We use
bold uppercase letters to denote matrices M, and bold lowercase letters to denote vectors v. We write M̃
to denote the Gram-Schmidt orthogonalization of M. We write [n] to denote the set {1, ..., n}, and |t| to
denote the number of bits in the string t. We denote the i-th bit s by s[i]. We use In to denote the n × n
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identity matrix and 0n to for n× n zero matrix. We say a function negl(·) : N→ (0, 1) is negligible, if for
every constant c ∈ N, negl(n) < n−c for sufficiently large n.

2 Overview of Our Techniques

In this work, we design a new lattice encoding structure, and then show its applications to the settings of
FHE, IBE, and Signatures. Our new encoding uses the extended gadget defined in the prior draft of this
work [AFL16]. To demonstrate the techniques, we first recall the gadget matrix defined by Micciancio and
Peikert [MP12]: let G = g ⊗ In where g = (1, 2, 4, ..., 2blog qc). Micciancio and Peikert [MP12] developed
a G-trapdoor technique that given a matrix A ∈ Zn×mq , a short matrix R ∈ Zm×mq , and an invertible tag
matrix H ∈ Zn×nq , one can efficiently generate samples from the Gaussian distribution DΛuq (F),s where
F := (A|AR + HG). This technique can be used to improve the analysis of the SampleRight algorithm
used in the IBE/Signatures of the work [ABB10, Boy10], and their follow up work.

In a later work, Alperin and Peikert [AP14] simplified the FHE construction by Gentry, Sahai, and
Waters [GSW13] using the G notion. In particular, an encryption of x can be expressed as Cx = AR+xG
for some short R (similar to the syntax above). Alperin and Peikert [AP14] further showed how to compute
an encryption of x + y, x · y given Cx and Cy in a surprisingly simple way: Cx+y = Cx + Cy, and
Cxy = Cx ·G−1(Cy). Since the G−1 operation produces a small-norm matrix, the ciphertexts of Cx+y

and Cxy can be expressed as AR′ + (x+ y)G, and AR′′ + xyG respectively, for some small R′ and R′′.
The prior draft of this work [AFL16] and a series of concurrent work [Yam16, KY16] have observed that

the GSW structure above can be applied to the IBE setting, which was implicitly used in the work [ABB10].
At a high level, a central step of designing lattice-based scheme in these works [Yam16, AFL16, KY16] is to
design a hash function (with “partitioning” properties) that can be homomorphically evaluated. To achieve
a shorter key size, the prior work [AFL16] introduces a packed-GSW structure that allows to shrink the
number of public matrices. The essential technique uses a new GSW encoding structure with an extended
gadget matrix Gn,`,m = g` ⊗ In where g = (1, `, `2, ..., `blog` qc) for some ` > 2. Using the extended
matrix, the prior work proposed a new encoding structure H =

[
H1| · · · |Hd

]
∈ Zn×dnq for matrices Hi’s.

In the application [AFL16], a hash function is embedded into these matrices. Then the prior draft defined a
packed-GSW ciphertext as B = AR + HGdn,`,m. Using this packed structure, one can homomorphically
compute a hash function applied to an input embedded in (X1, . . . ,Xd) as follows:

BG−1
dn,`,m




X1

X2
...

Xd

 ·G
 = AR′ +

(∑
i∈d

HiXi

)
G, for some small R′.

The prior draft [AFL16] showed this packed structure can be used to design IBE with smaller public-key
size by a factor of log2 n.

However, the encoding method above can only support evaluation of an affine function. After the com-
putation, the resulting ciphertext becomes AR′+

(∑
i∈dHiXi

)
G. We are not sure how to further compute

on ciphertexts with AR′ + MG for M 6= αIn. (Note: a prior work [HAO15] needs to use a circular
assumption in order to allow further computation on the structure AR′ + MG for M 6= αIn. In this paper,
we get rid of the dependency on the assumption.) This is the main reason why the technique in our prior
draft [AFL16] is not compatible with the designs in another series of work [Yam16, KY16], which required
computation on non-linear functions, such as low-degree polynomials or low-depth circuits.
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2.1 New Lattice Encoding Method

To tackle the challenge, this work introduces an even simpler structure that allows a significantly richer
homomorphic operations. Our encoding can be used to achieve a packed FHE scheme that allows some
SIMD operations and can be used to improve all the prior IBE schemes in the series [Yam16, AFL16,
ZCZ16, KY16], and signatures [AS15]. Before demonstrating how to improve these applications, we first
overview our new encoding structure.

Let v = (v1, . . . , vd) ∈ Zdq be a vector. To encode the vector, we design the structure encode(v) =
Ev =

[
v1In| · · · |vdIn

]
·Gdn,`,m. This supports vector operations such as addition and scalar multiplication

in a natural way. Let matrix Ev1 and Ev2 be the encoding of vector v1,v2. Apparently, Ev1 + Ev2 is the
encoding of vector v1 + v2. For scalar multiplication, i.e. a · v, where a ∈ Zq, we compute

Ev ·G−1
dn,`,m (Ea) = Ev ·G−1

dn,`,m

(
aGdn,`,m

)
=
[
av1In| · · · |avdIn

]
Gdn,`,m = encode(av).

In addition to the vector operations, the encoding also supports packing and unpacking! That is, given
an vector encoding Ev, for every i ∈ [d] one can unpack the i-th coordinate to extract an encoding of
vi. Similarly, given encodings of v1, . . . , vd, one can obtain a packed vector encoding Ev. The operations
are quite simple and we refer the readers to Section 4.1 for details. The encoding structure is compatible
with the GSW ciphertexts: C = AR + Ev. By the packing and unpacking methods, we can perform
homomorphic operations not only for vector operations, but also the component-wise operations. This
supports a significantly richer class of homomorphic evaluations. From here, it is not hard to derive a
packed GSW scheme without using a circular assumption.

Further optimization over packed bits. For many applications, we are performing bit operations over
ciphertexts, such as evaluating a low-depth boolean circuit (e.g. integer multiplications). Using the above
packing methods, we can pack d bits into one vector encoding by setting v ∈ {0, 1}d. If we use a polynomial
modulus q = poly(n), then we can set d = O(log n), which means we can pack O(log n) bits in a GSW
ciphertext. In our application of IBE, however, we need to be able to pack ω(log n) bits in a single ciphertext
in order to get a scheme that has a constant number of matrices in the public key. To achieve this, we need
to further optimize the packing structure.

To tackle this challenge, we observe that actually an encoding xG can pack ν bits if ξ belongs to a larger
space [ξ] for ξ = 2ν , instead just {0, 1}. If ξ is not too large yet super-constant, then we can afford to do

a homomorphic equality test functionality eqc(x) =

{
1 if x = c

0 otherwise
by homomorphically evaluating the

Lagrange polynomial. Then by using the equality test functionality, we can design a method that given Ex
outputs Exi , where xi is the i-th bit of x for i ∈ [ν].

Using the above two structure, we can design a recursive packing structure for bits: let v ∈ [ξ]d, and

encode(v) = Ev =
[
v1In| · · · |vdIn

]
·Gdn,`,m.

From the encoding, we can unpack Evi first and then extract the j-th bit of vi to obtain an encoding of the
bit vij , i.e. Evij . Putting things together, we are allowed to pack ω(log n) bits in a GSW ciphertext for
polynomial modulus, i.e. q = poly(n). Note that if we can pack more bits by using a super-polynomial
modulus, yet at the cost of a stronger underlying computational assumption (LWE with super-poly q).

2.2 Application to Fully Homomorphic Encryption

Our new encoding can be easily used to design packed GSW FHE schemes as we mentioned above. The
ciphertext has the structure AR + Ev encrypting a v. Then naturally, we can apply the SIMD operations
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over vector space such as vector addition and scalar multiplication. Moreover, we can use the packing and
unpacking method to extract each single element, so that the homomorphic operation supports element-wise
and cross-element-wise computation as well. Our method improves over the prior packed GSW struc-
ture [HAO15] as we do not rely on a circular assumption as required in their work. On the other hand, the
prior scheme [HAO15] is able to pack more plaintexts (i.e. r × r for some r = poly(n)) for any modulus
q at the cost of blowing up the public key and the ciphertexts, i.e. their sizes grow explicitly with r. Our
scheme our scheme can pack ω(log n) bits for q = poly(n), and require super-polynomial q if we want to
pack more, but our public key and ciphertext remain the same size. Nevertheless, the ω(log n) parameter
for q = poly(n) is sufficient for us to derive an IBE scheme with 3 matrices in the public parameter. This is
a significant implication of the new encoding structure.

2.3 Application to Identity-based Encryption and Signatures

Our high-level approach to compact identity-based encryption from LWE begins by revisiting the lattice-
mixing and vanishing trapdoor techniques of Boyen [Boy10] and their use in Agrawal et al. [ABB10]. Our
prior draft [AFL16] and concurrent work [Yam16] have developed a new conceptual view of the public
parameters of the prior schemes [ABB10, Boy10]: Each matrix is (potentially) a fully homomorphic ci-
phertext, modeled after the Gentry-Sahai-Waters FHE scheme [GSW13], and our main goal will be to allow
senders to homomorphically evaluate a totally hidden hash function Hh on their chosen identities during
encryption. While prior work [AFL16] defined requirements of the hash function, such as “admissible
hash functions” and “abort-resistant hash functions”, our prior draft [AFL16] has observed that actually we
only need (almost) pairwise independent hash functions plus the random isolation technique of Valiant and
Vazirani [VV85]. We use the freedom afforded by this insight to obtain a conceptually simpler design.

The Agrawal-Boneh-Boyen IBE. We first review the construction and proof techniques of [ABB10].
Lattices in this type of system are built from “left” and “right” (sub)lattices, denoted A and B respectively.
Each of these two systems are associated with a distinct trapdoor. As was the case in [ABB10], the left
trapdoor TA serves as the true master secret msk of the real system. This left trapdoor is a “complete”
trapdoor, which enables generating secret keys skx for every string x allowed by the system. In contrast, the
right trapdoor TB is a “partially faulty” trapdoor used only in the security proof, which enables generating
secret keys skx for every string x except some adaptively chosen challenge identity x∗.

To encode identities x = (x1, ..., xn) according to [ABB10], the sender first constructs an identity-
specific lattice, called the target lattice for x,

[
A
∣∣ Y] =

[
A

∣∣∣∣ n∑
i=1

(−1)xiBi

]
by “mixing” a long public key (A,B1, ...,Bn). That is, if the i-th bit of the identity xi is 0, the sender
adds Bi; otherwise, the sender subtracts Bi. (Encryption then proceeds according to usual Dual Regev
PKE [GPV08] using “this” target lattice as the PK.)

In the security proof, a hash function Hh is embedded in the computation by using the the Leftover
Hash Lemma to replace each Bi with another matrix ARi + hiB for “short” Ri, random “polluter” B, and
hash key h = (h1, ..., hn). The identity encoding mechanism and hash are jointly designed so that the target
lattice for identity x, i.e. [A|

∑
(−1)xiBi] , becomes

[
A
∣∣ Yproof

]
=

[
A

∣∣∣∣
(

n∑
i=1

(−1)xiARi

)
+Hh(x)B

]
in the proof of security.
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Intuitively, for challenge identity x∗ and adaptively queried identities {x1, ...,xQ}, the security reduc-
tion will proceed whenever Hh(x∗) = 0 and for i ∈ [Q], Hh(xi) 6= 0. This is due to the fact that the matrix
B survives in the target lattices for all of {x1, ...,xQ}, but the matrix B vanishes on the target lattice for the
challenge identity x∗, and therefore, the security reduction can SampleRight with TB for every identity in
the adversary’s view, except the single challenge point x∗.

Later Improvements. The ABB approach was refined and improved in several ways. Micciancio and
Peikert [MP12] developed the G-trapdoor technique and then replaced the above B with G to get a tighter
analysis (with smaller parameters). Later on, a series of work [Yam16, AFL16, ZCZ16, KY16, Yam17]
observed that actually the structure of AR + xG allows homomorphic evaluations, so we can actually
design better hash function using less number of matrices. In this way, we can design a public homomorphic
evaluation procedure PubEval and set Y = PubEval(B1, . . . ,Bt). In the security proof, Yproof would
become AR∗ + Hh(x)G for some bounded ||R∗||, so the above trapdoor vanishing technique can be
applied. To achieve better efficiency, the series of work [Yam16, AFL16, ZCZ16, KY16, Yam17] designed
hash functions with shorter “keys” and therefore smaller number of matrices, i.e. smaller t, using low-degree
polynomials or integer multiplications plus modulo reduction. On the other hand, our prior draft considered
a packed GSW structure, yet the prior structure can only support affine operations, so the two approaches
cannot be combined to further improve the parameters. This work develops a new encoding (as we discussed
in the prior subsection) so that we can achieve best of the both. Next we highlight the insights.

Our New Insights. Using our packing/unpacking structure gives a simple improvement over all previous
schemes [Yam16, KY16, Yam17] that follows the design blueprint as stated above. At a high level, we
can start with a single matrix B and then unpack many matrices B1, . . . ,Bn. Then we apply the public
evaluation to obtain the matrix Y = PubEval(B1, . . . ,Bn). This can reduce the number of matrices by a
factor of ω(log n), and in particular, we can simply combine a construction of Yamada [Yam17] and our
new encoding to get an IBE scheme that only needs a constant number of matrices in the public parameter.
However, the hash function (more efficient one) in the work of Yamada [Yam17] does not have an “explicit”
computation procedure, so it is not easy to determine the concrete parameters needed in the scheme. The
procedure needs to first transform the integer multiplication and modulo reduction into a boolean circuit (in
NC1) using the method of a classic result [BCH86], and then transform the circuit into a branching program
using the Barrington Theorem [Bar89]. Finally they can apply the computation of [BV15] to obtain a “norm-
bounded” computation that does not blow up ||R∗|| by too much. This zigzag route is still unsatisfactory
as the process might introduce extra overhead and complications, and it is not straight-forward to determine
the modulus q we need: we know there exists a polynomial modulus q such that the scheme works, but it is
hard to determine what that is.

To tackle this challenge, we revisit the trapdoor vanishing paradigm and design a hash function that
can be explicitly computed homomorphically without using these transformations. Therefore, the concrete
polynomial modulus q can be calculated in a straight-forward way. More specifically, we first start from
an insight from our prior draft [AFL16] that actually we only need (almost) pairwise independent hash
functions plus the random isolation technique of Valiant and Vazirani [VV85]. Therefore, the task is reduced
to designing a “short-key” almost pairwise independent hash function, so we can embedded the hash key to
the public matrixces Bi’s. In particular, we design a new hash function in the following way.

We map an ID a ∈ {0, 1}n as a degree n−1 polynomial in Zq[x] with the natural coefficient embedding
(i.e. the coefficient of xi−1 is the i-th bit of the vector a), and let fa denote the polynomial. Then we
consider the following hash function hz,α,β(a) = α · fa(z) + β, where z ∈ [n2], α ∈ Zq and β ∈ Zq. We
can prove that actually this hash function is an almost pairwise independent hash function from {0, 1}n to
Zq. However, if we take a closer look at the isolation technique of Valiant and Vazirani [VV85], it requires
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that the range of the hash function has roughly the same size of |Q|, which is not true in this design. In fact,
this is the reason why some of the prior work [ABB10] requires q > 2Q. See further details in Section 6.1.

While prior work [KY16, Yam17] developed different techniques to handle this issue, this work uses an
even conceptually simpler approach – parallel repetition. That is, we consider a hash function

Hz,α,β(a) = [hz1,α1,β1(a), hz2,α2,β2(a), . . . , hzd,αd,βd(a)].

We can easily show that the parallel repeated function H remains almost pairwise independent, and we
can set d such that the size of the range, i.e. qd, approximates |Q|. Finally, we just need to compute
AR + encode(H(a))Gdn,`,m for the appropriate parameter d.

The overall procedures has the following structure: first we unpack B1, . . . ,Bn from a given matrix
B. Then we homomorphically compute the parallel repeated hash function H coordinate-by-coordinate to
obtain (B∗1, . . . ,B

∗
d). Finally, we pack these matrices together and obtain B∗, which will be equal to AR+

encode(H(a))Gdn,`,m. Finally, we observe that the Gaussian sampling algorithm in the work [MP12] car-
ries directly to the extended matrix Gdn,`,m. That is, if we have a short matrix R∗ and a full-ranked (column)
tag H′ ∈ Zn×dnq , then the original Gaussian sampling algorithm in the work [MP12] can be applied directly
generate Gaussian samples from the Gaussian distribution DΛuq (F),s where F := (A|AR′ + H′Gdn,`,m).
This suffices to implement the SampleRight algorithm used by the trapdoor vanishing framework as we
discussed above.

Improving Signature Schemes. Boyen [Boy10] presented a signature scheme that uses a similar structure
of the IBE scheme [ABB10]. Our improvement of the IBE scheme can be easily carried to the setting of
signature schemes in the same way. We present the construction in Section 7.

3 Gadget Matrices and Generalized Gaussian Sampling

We first recall the gadget matrix [MP12, AP14], and the extended gadget matrix technique appeared in [AFL16],
that are important to our construction.

Definition 3.1. Let m = n · dlog qe, and define the gadget matrix

Gn,2,m = g ⊗ In ∈ Zn×mq

where vector g = (1, 2, 4, ..., 2blog qc) ∈ Zdlog qe
q . We will also refer to this gadget matrix as “powers-of-two”

matrix. We define the inverse function G−1
n,2,m : Zn×mq → {0, 1}m×m which expands each entry a ∈ Zq of

the input matrix into a column of size dlog qe consisting of the bits of binary representations. We have the
property that for any matrix A ∈ Zn×mq , it holds that Gn,2,m ·G−1

n,2,m(A) = A.

As mentioned by [MP12] and explicitly described in [AFL16], the results for Gn,2,m and its trapdoor
can be extended to other integer powers or mixed-integer products. In this direction, we give a generalized
notation for gadget matrices as follows:

For any modulus q ≥ 2, for integer base 2 ≤ ` ≤ q, let gT` :=
[
1, `, `2, ..., `k`−1

]
∈ Z1×kb

q for
k` = dlog` qe. (Note that the typical base-2 gT is gT2 .) For row dimension n and ` as before, we let
Gn,`,nk` = gT` ⊗ In ∈ Zn×nk`q . The public trapdoor basis TGn,`,nk`

is given analogously. Similar to the
above padding argument, Gn,`,nk` ∈ Zn×nk`q can be padded into a matrix Gn,`,m ∈ Zn×mq for m ≥ nk`

without increasing the norm of T̃Gn,`,m
from that of ˜TGn,`,nk`

.
Following [Xag13] and [AP14], we now introduce a related function — the Batch Change-of-Base

function G−1
n′,`′,m′(·) — as follows:
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For any modulus q ≥ 2, and for any integer base 2 ≤ `′ ≤ q, let integer k`′ := dlog`′(q)e. For any
integers n′ ≥ 2 and m′ ≥ n′k`′ the function G−1

n′,`′,m′(·) takes as input a matrix from Zn′×m′q , first computes
a matrix in {0, 1, ..., `′ − 1}n′ log`′ (q)×m′ using the typical G−1 procedure (except with base-`′ output), then
pads with rows of zeroes as needed to form a matrix in {0, 1, ..., `′ − 1}m′×m′ . For example, the typical
base-2 G−1 = G−1

n,2,m takes Zn×mq to {0, 1}m×m as expected.

Gaussian sampling using gadget matrix. Here we tweak the algorithm proposed in [MP12] of using
gadget matrix G to sample from a discrete Gaussian over a desired coset of Λ⊥(A). We first recall the
definition of generalized Gdn,`,m-trapdoor in [MP12] as follows:

Definition 3.2 (Generalized G-trapdoor). Let A ∈ Zn×mq and Gdn,`,m ∈ Zdn×mq be matrices with m ≥ n.
A Gdn,`,m-trapdoor for A is a matrix R ∈ Zm×m such that

A

[
R
Im

]
= HGdn,`,m

for some full column rank matrix H ∈ Zn×dnq . We refer to H as the tag of the trapdoor.

In the above definition, we only need the tag matrix H to be full column rank, instead of being invertible
as required in [MP12]. The precise goal of sampling is, given a Gdn,`,m-trapdoor R (with tag H) for matrix
A and a syndrome u ∈ Znq , to sample from the spherical discrete Gaussian distribution DΛ⊥u (A),s for a
relatively small parameter s.

Lemma 3.3. There is an efficient algorithm SampleDO(R, Ā,H,u, s), where R is a Gdn,`,m-trapdoor for
matrix Ā with full-rank tag matrix H, a vector u ∈ Znq and an oracle O for Gaussian sampling over a
desired coset Λvq (Gdn,`,m). It will output a vector drawn from a distribution within negligible statistical
distance of DΛu(A),s, where A = [Ā| − ĀR + HGdn,`,m].

The following description of algorithm SampleDO(R, Ā,H,u, s) is adapted from [MP12]:

• Input: An oracle O for Gaussian sampling over a desired coset Λ⊥v (Gdn,`,m) with fixed parameter
r
√

ΣGdn,`,m
≥ ηε(Λ

⊥(Gdn,`,m)), matrix Ā ∈ Zn×mq , trapdoor matrix R ∈ Zm×m, full-rank tag
matrix H ∈ Zn×dnq defining A = [Ā| − ĀR + HGdn,`,m] and a syndrome u ∈ Znq .

• Offline phase: Choose a fresh perturbation p← DZ2m,r
√

Σp
, where Σp = Σ−

[
R
I

]
ΣG[RT|I]. Let

p = (p1,p2) and compute w̄ = Ā(p1 −Rp2) and w = Gdn,`,m · p2.

• Online phase: Compute the right-inverse matrix of H to be H̄ ∈ Zdn×nq , such that HH̄ = In. Let
v = H̄(u− w̄)−w and sample z ← DΛ⊥v (Gdn,`,m) by calling oracle O(v).

• Output: Return x = p+
[
R
I

]
z.

We note that in comparison to the algorithm SampleDO in [MP12], the only difference is in the online phase,
we use the right-inverse matrix of H. The correctness proof and analysis remain the same as in [MP12],
thus we omit the proof here.

4 Compact Encoding for Vectors

In this section, we first present our new compact encoding for vectors, which substaintially generalizes the
encoding from the prior draft of this work [AFL16]. This new idea leads to significant improvements in the
settings of fully homomorphic encryption (FHE), identity-based encryption (IBE), and signature schemes
described in later sections.
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4.1 Encoding for Vectors in Zdq
Consider the vector space Zdq . For vector v = (v1, ..., vd) ∈ Zdq , we define the following encoding algorithm
which maps a d-dimensional vector to an n×m matrix.

encode(v) = Ev =
[
v1In| · · · |vdIn

]
·Gdn,`,m (1)

Similarly, we also define the encoding for an integer a ∈ Zq as: encode(a) = Ea = aGn,2,m.

Remark. Here the encoding structure Ev requires parameters n, d, `,m, q specified in the application. For
notational simplicity, we do not include these parameters as indices in the notation Ev. We assume that these
parameters are known to all the following algorithms (Pack,Unpack,RecPack,RecUnpack). Concrete set-
ting of these parameters should be specified for each individual application.

The above encoding supports the following two operations naturally: (1) vector space operations, and
(2) packing and unpacking. Below we define these procedures.

Vector space operations. Let matrix Ev1 and Ev2 be the encoding of vector v1,v2. Apparently, Ev1 +
Ev2 is the encoding of vector v1 + v2. For scalar multiplication, i.e. a · v1, where a ∈ Zq, we compute

Ev ·G−1
dn,`,m

(
aGdn,`,m

)
=
[
av11In| · · · |av1dIn

]
Gdn,`,m = encode(av)

For computing the inner product between Ev1 and v2 = (v21, ..., v2d), the procedure is as follows

Ev1 ·G−1
dn,`,m

(v21In
...

v2dIn

Gn,2,m

)
= 〈v1,v2〉 ·Gn,2,m

Packing and Unpacking. Intuitively, the packing procedure transforms d encodings of integers to an
encoding of a d-dimensional vector, while the unpacking procedure unpacks the vector into d encodings of
integers. The formal syntax is the following: let d be a parameter implicitly included in the algorithms.

• Pack({Eai}di=1): On input d encodings Eai for ai ∈ Zq, the procedure outputs an encoding Ea for
vector a = (a1, ..., ad).

• Unpack(Ev, i): On input an encoding Ev for a vector v and an index i ≤ d, the procedure outputs an
encoding Evi for i-th coordinate vi.

We instantiate the above two algorithms as follows. For i ∈ [d], define matrix Ui as the dn×n extended
unit matrix:

UT
i = [0n| · · · |0n|In|0n| · · · |0n] (2)

i.e. only the i-th block is the identity matrix In and other blocks are zero matrices 0n.

• Pack({Eai}di=1): It outputs
∑

i∈[d] Eai ·G
−1
n,2,m

(
UT
i ·Gdn,`,m

)
= [a1In| · · · |adIn] ·Gdn,`,m.

• Unpack(Ev, i): It outputs Evi = Ev ·G−1
dn,`,m(UiGn,2,m) = viGn,2,m.
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4.2 Further Optimization of Packing/Unpacking over Bits

For many applications, we need to perform operations over (the GSW) encoding of bits. Using the above
packing methods, we can pack d bits into one vector encoding by setting v ∈ {0, 1}d. In this section, we
propose an optimization that can pack d · ν bits into one vector encoding for some ν = ω(1). This method
is the key step leading towards a lattice-based IBE scheme with a constant number of matrices in the public
key as we will demonstrate in Section 6.5.

To pack more bits, we are going to use a vector of larger integers instead of just bits, i.e. v = (v1, . . . , vd)
in [ξ]d for some small ξ = 2ν , not just {0, 1}d. In this way, each element vi can further encode ν bits,
and therefore in total we can pack dν bits. Then we show an unpacking algorithm that given an integer-
encoding of vi can unpack the j-th bit of vi for j ∈ [ν]. We note that the “noise” (might appear in different
forms/names in different settings) of the unpacking algorithm grows with ξξ (see Lemma 5.4 for further
references), so this gives us a constraint that ν cannot be too large. In our IBE setting we can set ν = ω(1),
and for convenience we can think of both ξ and ν as some small ω(1) for the rest of the paper.

Recursive Packing Algorithm. We first show a recursive packing algorithm. Intuitively, the recursive
packing algorithm RecPack takes encoding Evij = vijGn,2,m for i ∈ [d], j ∈ [ν], where vij ∈ {0, 1},
as input, and outputs Ev as encoding of v = (v1, ..., vd). The description of RecPack is as follows: let
d, ξ = 2ν be parameters implicitly included in the algorithm.

RecPack({Evij}i∈[d],j∈[ν]): Given the encoding {Evij} for vij ∈ {0, 1}, the recursive packing does:

1. For i ∈ [d], compute Evi =
∑ν

j=1 EvijG
−1
n,2,m(2jGn,2,m).

2. Output Ev = Pack({Evi}i∈[d]) =
[
v1In| · · · |vdIn

]
·Gdn,`,m, where vi is the decimal representa-

tion of {vi1, . . . , viν}.

Next, we present a recursive unpacking algorithm for the above encoding. We first present a method
to unpack an integer encoding Ex = xGn,2,m for x ∈ {0, 1, . . . , ξ} for ξ = 2ν . Recall that we will set
ν = ω(1) small enough (yet super-constant) so that 2ν = ω(1) is also small enough (yet still super-constant).
Then we present a natural recursive unpacking algorithm that can unpack dν bits. Our first step relies on the
equality test functionality as elaborated below.

Equality Test Algorithm. Given an integer encoding Ex = xGn,2,m for x ∈ {0, 1, . . . , ξ} for ξ = 2ν ,
we can homomorphically evaluate the encoding regarding the following function:

eqc(x) =

{
1 if x = c

0 otherwise

Using this equality-test functionality, we can extract each bit of x as presented below, and therefore unpack
ν bits out of the encoding Ev. This gives a natural recursive unpacking method, i.e., one can first unpack d
integer encodings Ev1 , . . . ,Evd from a vector encoding Ev, and from each Evi we can further unpack ν of
bit encodings.

Next we describe the algorithm EqTest(c,Ex) that achieves the functionality eqc(x). For simplicity of
notation, we abbreviate the subscript of Gn,2,m as G below, and let z be a parameter implicitly included in
the algorithm.

EqTest(c,Ex): Given input an integer c ∈ {0, ..., ξ} (note ξ = 2ν) and an integer encoding Ex,
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1. Construct the Lagrange polynomial for integer c as

Lc(y) =
∏

0≤i≤ξ,i 6=c

y − i
c− i

=
∏

0≤i≤ξ,i 6=c

1

c− i
·

∏
0≤i≤ξ,i 6=c

(y − i) = `−1
c ·

∏
0≤i≤ξ,i 6=c

(y − i) (3)

where `c =
∏

0≤i≤ξ,i 6=c(c− i) ∈ Zq.
2. Compute the result as

ELc(x) = ExG
−1(Ex − 1 ·G) · · ·G−1(Ex − ξG)G−1(`−1

c G)

It is clear that Lagrange polynomial implements the functionality as it outputs 1 if and only if x = c, and
otherwise 0. To figure out the j-th bit of x, one can compute

∑
y∈Sij EqTest(y,Ex) where Sij is the set of

all numbers less than z such that their j-th bits are 1. If the j-th bit of x is 0, then all the equality tests will
be 0, so the sum is 0. If it is 1, then there is exactly one element, i.e. x in the set Sij such that EqTest(y,Ex)
outputs 1. Therefore, this correctly implements the unpacking algorithm for the integer encoding. Next we
formally define the procedure of the recursive unpacking that uses idea of the integer unpacking above.

Recursive Unpacking Algorithm. Using the above EqTest method, we can implement a recursive un-
packing algorithm that extracts d · ν bit-encodings from a vector encoding Ev for v ∈ [ξ]d. Here for each
i ∈ [d], we denote vi =

∑ν
i=1 vij2

j (note ν = log ξ), i.e. {vij} is the bit-decomposition of vi. Still, we let
d, ξ = 2ν be parameters implicitly included in the algorithm.

RecUnpack(Ev, (i, j)): Given the vector encoding Ev and index (i, j), the recursive unpacking runs the
following:

1. Run Evi = Unpack(Ev, i).

2. Construct a set Sik = {vi ≤ ξ|BD(vi)k = 1}, where BD(vi)k denotes the k-th bit of bit-
decomposition of integer vi.

3. Compute and output Evij =
∑

x∈Sij EqTest(x,Evi).

5 Application in GSW-FHE Setting

Gentry, Sahai, and Waters [GSW13] proposed a novel homomorphic encryption scheme (GSW), whose
multiplication between ciphertexts are simply matrix multiplication. Alperin and Peikert [AP14] simplified
the original GSW scheme using the gadget matrix defined by the work of Micciancio and Peikert [MP12].
Throughout this paper, we refer the GSW scheme as the simplified version of Alperin and Peikert [AP14]. In
this section, we present a natural application of our new encoding scheme as in Section 4.1 to the FHE set-
ting, which supports several Single-Instruction-Multiple-Data (SIMD) operation on ciphertexts. Our frame-
work does not rely on a circular assumption as required in the prior work of Hiromasa et al. [HAO15]. We
first recall algorithms (GSW.KeyGen,GSW.Enc,GSW.Dec) as follows:

• GSW.KeyGen(1λ): On input the security parameter λ, set parameters n = n(λ),m = O(n log q) and

choose a B-bounded error distribution χ(λ). Then sample a random vector s $← Zn−1
q and a random

matrix B
$← Z(n−1)×m

q . Output the secret key sk and public key pk as

sk = t = (−s, 1), pk = A =

[
B
b

]
where b = sTB + e and e← χm.
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• GSW.Enc(pk, µ): Choose a short random matrix as the randomness R $← {0, 1}m×m. Then output
the ciphertext of message µ as

C = AR + µGn,2,m

• GSW.Dec(sk,C): First define a vector w = (0, ..., 0, dq/2e) ∈ Znq , and then compute

v = tCG−1
n,2,m(w)

Output µ′ = b v
q/2e as the decrypted message.

Our new encoding method can be applied directly in the GSW scheme so that a single matrix can encrypt
a vector of d integers. The compact encryption can be described as:

• Comp.Enc(pk,v): Choose a short random matrix as the randomness R $← {0, 1}m×m. Then output
the ciphertext of message vector v as C = AR + Ev, where Ev =

[
v1In| · · · |vdIn

]
·Gdn,`,m. We

note that parameters d, ` will be implicit in all encoding structures Ev later in this section. See the
next remark for how to set these parameters.

As we discussed in Section 4.1 and 4.2, the vector encoding can perform the packing/unpacking opera-
tions. These operations can be easily applied to the GSW ciphertexts. In particular, we have the following
operations:

• Pack d GSW ciphertexts into one packed ciphertext of a vector, i.e. Pack({Ci}i∈[d]) outputs C∗;

• Unpack a packed ciphertext into d GSW ciphertexts, i.e. Unpack(C∗, i) outputs Ci for i ∈ [d];

• Recursively pack d · ν GSW bit-encryptions into one packed ciphertexts for parameter ν = ω(1), i.e.
RecPack({Cij}i∈[d],j∈[ν]) outputs C∗. Here parameters d, z = 2ν are implicitly included in both of
the algorithms RecPack and RecUnpack.

• Recursively unpack a packed ciphertext into d · ν GSW bit-encryptions , i.e. RecUnpack(C∗, (i, j))
outputs Cij for i ∈ [d], j ∈ [ν].

Parameter Selection: Here d, ν, ` are parameters depending on n, q and can be set differently according
to the application. In the FHE setting, we can set q = poly(n), ` = n, d = O(log n) and ν = ω(1), and it is
possible to set d larger if we use a super polynomial q. In our IBE setting, we can set q = poly(n), ` = n,
d = O(log n) and ν = ω(1). This suffices to give us an IBE scheme that only contains a constant number
of matrices in the public parameters. Details are presented in Section 6.5.

To bound the noise growth after homomorphic evaluating a function f , the concept of δ-expanding
below is implicitly used in various constructions, such as attribute-based encryption [BGG+14, GV15] and
predicate encryption [GVW15]. This definition was formalized in [Yam17] for the partitioning functions
(e.g. a particular type of hash functions) used in their IBE constructions. Here, we extend the definition to
generally circuits, e.g., f : X u → Y . Intuitively, the parameter δ is a bound of noise growth after evaluating
a function f .

Definition 5.1 (δ-expanding evaluation). Deterministic algorithms (PubEval,TrapEval) are δ-expanding
with a function (a circuit with u inputs) f : X u → Y if they are efficient and satisfy the follow properties:

• PubEval({Bi ∈ Zn×mq }i∈[u], f): On input matrices {Bi}i∈[u] that are GSW-encryption of x =
{xi}i∈[u] and a function f ∈ F , the public evaluation algorithm outputs Bf(x) ∈ Zn×mq as the
result.
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• TrapEval(x ∈ X u,A ∈ Zn×mq , {Ri}i∈[u], f): the trapdoor evaluation algorithm output Rf , such
that

PubEval({ARi + xiG}i∈[u], f) = ARf + f(x)G.

Furthermore, we have ||Rf || ≤ δ ·maxi∈[u] ||Ri||.

The definition can be extended to δ-expanding with a family of functions/circuitsF . I.e., (PubEval,TrapEval)
are δ-expanding with F if and only if for any f ∈ F , the algorithms are δ-expanding with f .

Next, for some simple function such as addition and multiplication, we already know the following facts:

Lemma 5.2 (Facts from [GSW13, BGG+14, AP14, BV15, GV15]). For an integer u, let x = (x1, . . . , xu)
be an input vector. There exist algorithms (PubEval,TrapEval) such that the following holds.

• Let function Addu : Zuq → Zq be defined as Addu(x) =
∑u

i=1 xi. The algorithms are u-expanding
with Addu.

• Let function Multbool : {0, 1} × Zq → Zq be defined as Multbool(b, x) = b · x.The algorithms are
m-expanding with Multbool.

• Let function Multu,p : [0, p− 1]u → Zq (each xi ∈ [0, p− 1] for some bounded p ≤ q) be defined as
Multu(xi) =

∏u
i=1 xi. The algorithms are mu(p− 1)u-expanding with Multu .

We next analyze our new (recursive) packing/unpacking algorithms using the notion of δ-expanding.
Before the analysis, we present a useful lemma for a norm upper bound on ||G−1

n,2,m(UT
i ·Gdn,`,m)||.

Lemma 5.3. Let Ui be the dn× n extended unit matrix as defined in Equation (2) for i ∈ [d], then we have
||G−1

dn,`,m(UiGn,2,m)|| ≤ ` log` q.

Proof. This bound can be proved by unfolding the formula as

G−1
dn,`,m(UiGn,2,m) = G−1

dn,`,m([0n×m| · · · |0n×m|g ⊗ In|0n×m| · · · |0n×m]T)

= [0m| · · · |0m|X⊗ In|0m| · · · |0m]T ∈ Zm×mq

where X ∈ [`]log` q×log q. By worst-case analysis on ||X||, we have ||G−1
dn,`,m(UiGn,2,m)|| ≤ ` log` q.

In the following we show the exact δ-expanding for algorithms (Pack,Unpack,RecPack,RecUnpack)
respectively:

Lemma 5.4. Let d, ` be the parameters of the encoding structure, and ξ = 2ν be the additional pa-
rameter used in the recursive packing/unpacking algorithms. Then there exist deterministic algorithms
(PubEval,TrapEval) that are (d log q)-expanding with the function Pack, (` log` q)-expanding with the func-
tion Unpack, (dν log2 q)-expanding with the function RecPack, and (mξO(ξ)` log q log` q)-expanding with
the function RecUnpack.

Remark: the recursive unpacking has an expanding factor that depends on ξξ. This factor can be set
small, (e.g. polynomially-bounded) for ξ = ω(1) for some small ω(1) function, e.g., ξ = log log n. This
also explains the constraint on how much we can pack further by the recursive packing as discussed in
Section 4.2.

Proof. We calculate the exact δ-expanding for algorithms (Pack,Unpack,RecPack,RecUnpack) respec-
tively as:
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• Pack({Cai}di=1): Given d GSW ciphertexts, unfold the equation as

Ca =
∑
i∈[d]

(ARi + Eai) ·G−1
n,2,m(UT

i ·Gdn,`,m) =
∑
i∈[d]

ARiG
−1
n,2,m(UT

i ·Gdn,`,m) + Ea

The expanding term

||
∑
i∈[d]

RiG
−1
n,2,m(UT

i ·Gdn,`,m)|| ≤ dmax
i
||RiG

−1
n,2,m(UT

i ·Gdn,`,m)|| ≤ d log q ·max
i
||Ri||

where the first inequality is by union bound, and we obtain the second inequality by worst-case estimate
on ||G−1

n,2,m(UT
i ·Gdn,`,m)||.

• Unpack(Cv, i): Given packed ciphertext Cv and index i, unfold the equation as

Cvi = CvG
−1
dn,`,m(UiGn,2,m) = ARG−1

dn,`,m(UiGn,2,m) + Evi

The expanding term RG−1
dn,`,m(UiGn,2,m) can be bounded by worst-case estimates on G−1

dn,`,m(UiGn,2,m)

as shown in Lemma 5.3, i.e. ||RG−1
dn,`,m(UiGn,2,m)|| ≤ ` log` q · ||R||.

• RecPack({Cvij}i∈[d],j∈[ν]): Given ciphertext Cvij for bits, unfold the first step as

Cvi =
∑
j∈[ν]

CvijG
−1
n,2,m(2jGn,2,m) =

∑
j∈[ν]

ARijG
−1
n,2,m(2jGn,2,m) + Evi

Similarly, the expanding term
∑

j∈[ν] RijG
−1
n,2,m(2jGn,2,m) can be bounded as

||
∑
j∈[ν]

RijG
−1
n,2,m(2jGn,2,m)|| ≤ νmax

j
||RijG

−1
n,2,m(2jGn,2,m)|| ≤ ν log q ·max

j
||Rij ||

By plugin d log q-expanding of algorithm Pack to the second step of RecPack, we can get dν log2 q-
expanding for RecPack.

• RecUnpack(Cv, (i, j)): Given a packed GSW ciphertext Cv and index (i, j), we first show how to in-
stantiate the algorithms TrapEval for the function of RecUnpackij . We use the notation fRecUnpackij to
denote the function. For i ∈ [d], j ∈ [ν], the function fRecUnpackij takes v = (v1, ..., vd) ∈ [ξ]d as input
and outputs vij , such that vi =

∑ν
j=1 vij2

j .

TrapEval(v,A,R, fRecUnpackij ): The trapdoor evaluation for recursive unpacking function fRecUnpackij
runs the following:

1. Compute Ri = R ·G−1
dn,`,m(UiGn,2,m), where Ui is the extended unit matrix defined in Equa-

tion (2)
2. Construct a set Sik = {vi ≤ ξ|BD(vi)k = 1}, where BD(x)k denotes the k-th bit of bit-

decomposition of integer x.
3. Compute and output

Rij =
∑
x∈Sij

(Ri

ξ∏
k=1

G−1
n,2,m((x− k) ·Gn,2,m)G−1

n,2,m(`−1
x Gn,2,m))

where `x is the denominator of Lagrange polynomial Lx(y) =
∏

0≤i≤ξ,i 6=x
y−i
x−i defined in Equa-

tion (3).
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The first step is the same as Unpack algorithm, which incurs (` log` q)-expanding. We unfold the third
step as

||Rij || =
∑
x∈Sij

||(Ri

ξ∏
k=1

G−1
n,2,m((x− k) ·Gn,2,m)G−1

n,2,m(`−1
x Gn,2,m))||

≤ ξ max
x∈Sij

||(Ri

ξ∏
k=1

G−1
n,2,m((x− k) ·Gn,2,m)G−1

n,2,m(`−1
x Gn,2,m))||

≤ ξ ·mξ(ξ − 1)ξ log q||Ri|| ≤ mξO(ξ) log q · ` log` q · ||R||

where the second inequality is obtained by union bound, the third inequality is by Lemma 5.2 and the last
step is by combing the (` log` q)-expanding in algorithm Unpack.

Additionally, we can also perform vector space operations over packed ciphertexts, such as vector addi-
tion, scalar multiplication, and inner product as described in Section 4.1. An interesting and useful setting
for encryption of vectors would be encrypting polynomials. If we view the coordinates of vector v as the
coefficients of a polynomial f , then we can use the method above to encode a degree-(d − 1) polynomial,
i.e. f(x) =

∑d−1
i=0 aix

i ∈ Zq[x].

6 Application in IBE Setting

In this section, we apply our new encoding in the setting of Identity-Based Encryption. In particular, we
construct an IBE scheme with 3 matrices (independent of the ID length n) in the public parameter. Our
presentation follows the flow. (1) We first revisit the partitioning strategy required by the trapdoor vanishing
framework as discussed in the overview. We show a conceptually simpler approach that actually almost
pairwise independent hash functions suffice for the framework. (2) We next present our new design of pair-
wise independent hash family in two steps: first we present a simple hash function as a building block while
a conditional probability might be too large; then we show how to adjust the probability by using a parallel
repetition. (3) We then show that our almost pairwise independent hash function can be homomorphically
evaluated with δ-expanding for some polynomial δ. (Recall Definition 5.1 for δ-expanding). (4) Using the
tools from (1-3), we are able to design the desired IBE and prove security.

6.1 Partitioning Strategy

We first revisit the partitioning strategy required to implement the trapdoor vanishing technique as discussed
in Section 2.3. At a high level, we need to design a hash function that isolates the challenge ID from all the
other ID queries. That is, given a set of ID queries Q and a challenge ID a∗ /∈ Q, our hash function should
separate them with a noticeable probability, i.e. H(a∗) = 0 but H(a) 6= 0 for all a ∈ Q. While prior
work [BB04] defined this type of requirements as “admissible hash functions” and “abort-resistant hash
functions”, our prior draft [AFL16] has observed that actually it suffices for (almost) pairwise independent
hash functions plus the random isolation technique of Valiant and Vazirani [VV85]. This will conceptually
simplify our design of hash functions presented in the coming section.

More specifically, recall that Unambiguous Satisfiability (USAT) is the promise problem of deciding if
a given boolean formula F is unsatisfiable, or has exactly one satisfying assignment. In [VV85], Valiant
and Vazirani show that a polynomial-time algorithm for USAT implies NP = RP. Their proof relies on a
key technical lemma about isolations of random hash functions. The idea is that by intersecting a formula
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F with sufficiently many random hyperplanes (each of which are affine in F ), the resulting formula F ′ will
have a unique solution x′ (also satisfying F ) with constant probability. In more detail, [VV85] shows that
for any pairwise independent hash function familyH : {0, 1}n → {0, 1}k and any setQ ⊂ {0, 1}n such that
2k−2 ≤ |Q| ≤ 2k−1 (i.e. the range of H approximates |Q|), it holds that PrH∈H

[∣∣H−1(0) ∩Q
∣∣ = 1

]
≥ 1

8 .
In this work, we show a similar lemma which captures the intuition: almost pairwise independent hash

functions have the isolation property as long as a conditional probability defined as below approximates
1/|Q|

Lemma 6.1. Let Q ⊆ {0, 1}n, A,B be integers such that B ≤ A, |Q| ≤ δB for some δ ∈ (0, 1), and
let H : {0, 1}n → Y be an almost pairwise independent hash function family which has the following
parameters:

• ∀a ∈ {0, 1}n, PrH←H[H(a) = 0] = 1/A;

• ∀a 6= b ∈ {0, 1}n, PrH←H[H(a) = 0|H(b) = 0] ≤ 1/B.

Then for any element a /∈ Q, we have

PrH∈H[H(a) = 0 ∧H(a′) 6= 0, ∀a′ ∈ Q] ∈
(

1− δ
A

,
1

A

)
.

Proof. For the lower bound, we can unfold the probability formula as follows:

PrH∈H[H(a) = 0 ∧H(a′) 6= 0,∀x′ ∈ Q]

=PrH∈H[∀a′ ∈ Q,H(a′) 6= 0|H(a) = 0] · PrH∈H[H(a) = 0]

=PrH∈H[∀a′ ∈ Q,H(a′) 6= 0|H(a) = 0] · 1

A

=
(

1− PrH∈H[∃a′ ∈ Q,H(a′) = 0|H(a) = 0]
)
· 1

A

≥
(

1−
∑
a′∈Q

PrH∈H[H(a′) = 0|H(a) = 0]
)
· 1

A
=

(
1− |Q|

B

)
· 1

A
≥ 1− δ

A
.

The first equality comes from the definition of conditional probability; the second equality comes from
the first property of the hash function; the third equality comes from the complement event; the first inequal-
ity comes from a union bound; the next equality comes from the second property of the hash function; the
last inequality comes from the constraint that |Q| ≤ δB.

For the upper bound, we have simply obtain the following:

PrH←H[H(a) = 0 ∧H(a′) 6= 0,∀a′ ∈ Q] ≤ PrH←H[H(a) = 0] = 1/A.

This completes the proof.

6.2 Our New Partitioning Function

As argued above, now our task is to design an almost pairwise independent hash family to serve as the
partitioning function in the IBE scheme. To achieve this, we consider two steps: first we define a basic hash
function, yet the conditional probability (i.e. 1/B) might not approximate an arbitrary |Q|−1 as required by
Lemma 6.1. Then we can simply use a parallel repetition to adjust the probabilities appropriately. In our
IBE security proof, we can adjust the number of repetition to adjust the conditional probability to one that
approximates |Q|−1 as required by Lemma 6.1.
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Step 1. We define a basic partition familyH : {0, 1}n → Zq where each function hz,α,β ∈ H is indexed by
an element z ∈ [2n2], α ∈ Zq and β ∈ Zq. The function maps a boolean string a = (a0, ..., an−1) ∈ {0, 1}n
to an integer in Zq as

hz,α,β(a) = α · fa(z) + β, (4)

where fa(x) =
∑n−1

i=0 aix
i is the polynomial indexed by a. We then show that this partition function has

the following properties:

Lemma 6.2. Let q be a prime and q ≥ 2n. For a random hash function from the familyH, (i.e. we randomly
choose integers z ∈ [2n2], α, β ∈ Zq), we have:

• ∀a ∈ {0, 1}n, Pr[hz,α,β(a) = 0] = 1/q.

• ∀a 6= b ∈ {0, 1}n, Pr[hz,α,β(b) = 0|hz,α,β(a) = 0] ≤ 1/n

Proof. For the first property, we can unfold the probability formula as follows:

Pr[hz,α,β(a) = 0]

=Pr[hz,α,β(a) = 0|fa(z) = 0]Pr[fa(z) = 0] + Pr[hz,α,β(a) = 0|fa(z) 6= 0]Pr[fa(z) 6= 0]

=Pr[β = 0]Pr[fa(z) = 0] + Pr[β = −αfa(z)]Pr[fa(z) 6= 0]

=
1

q
(Pr[fa(z) = 0] + Pr[fa(z) 6= 0]) =

1

q
.

The first equality is from the law of total probability; the second equality is from a direct computation; the
third equality is from the uniform distribution of β, so Pr[β = w] = 1/q for any element w ∈ Zq.

For the second property, the condition can derive:

hz,α,β(a) = 0 ⇐⇒ β = −αfa(z)

To calculate the conditional probability, we plugin the above equation into hz,α,β(b) = 0 and obtain:

α(fα(z)− fβ(z)) = 0 ⇐⇒ α(fα − fβ)(z) = 0

Therefore, we can unfold the probability formula as

Pr[hz,α,β(b) = 0|hz,α,β(a) = 0] = Pr[α(fα − fβ)(z) = 0]

≤Pr[α = 0] + Pr[(fα − fβ)(z) = 0] ≤ 1

q
+

n

2n2
≤ 1

n

The first inequality is by the union bound; the second inequality is because deg(fα − fβ) ≤ n so the
polynomial has at most n roots; the third inequality is because q ≥ 2n. This completes the proof.

Clearly, the conditional probability in the second property is a fixed 1/n and thus cannot approximate
1/|Q| for all different polynomial-sized set |Q| as required by Lemma 6.1. To tackle this issue, we consider
to adjust the probabilities using a parallel repetition.

Step 2. Next, we propose a parallel repetition version of the partition function defined as Equation (4). Let
ν ≥ u be parameters, and we consider a family H(u,ν) as the u-parallel repetition of the basic hash family
H padded with (ν − u) 0’s. That is, H(u,ν) : {0, 1}n → Zνq where each hash function hz,α,β ∈ H(u,ν) is
indexed by vectors z ∈ [2n2]u and α,β ∈ Zuq . The function hz,α,β : {0, 1}n → Zνq is defined as

hz,α,β(a) = (hz1,α1,β1(a), ..., hzu,αu,βu(a), 0, ..., 0). (5)

Similarly, we can prove the following lemma.

19



Lemma 6.3. For a random hash function from the family H(u,ν), (i.e. we randomly choose integer vectors
z ∈ [1, 2n2]u,α,β ∈ Zuq ), we have:

• ∀a ∈ {0, 1}n, Pr[hz,α,β(a) = 0] = (1/q)u.

• ∀a 6= b ∈ {0, 1}n, Pr[hz,α,β(b) = 0|hz,α,β(a) = 0] ≤ (1/n)u

Proof. By the independence of each coordinate of z,α,β, obviously ∀a ∈ {0, 1}n we can get

Pr[hz,α,β(a) = 0] = (1/q)u,

Similarly, by independence we can unfold the second probability formula as

Pr[hz,α,β(b) = 0|hz,α,β(a) = 0] =

u∏
i=1

Pr[hzi,αi,βi(b) = 0|hzi,αi,βi(a) = 0] ≤ 1

nu
.

In the scheme and security proof of our IBE scheme, we are evaluating the ν-folded hash function
homomorphically. In the security proof, we can have the freedom to set u appropriately such that the
conditional probability approximates 1/|Q|. Thus, we can apply the prior Lemma 6.1 to analyze the success
probability of the reduction in the proof.

6.3 Evaluate the Partitioning Function, Homomorphically

In this part, we show how to homomorphically evaluate the partitioning function, both the basic and parallel
repetition version. The description of (PubEval(a,t),TrapEval(a,t)) for function h′a(z, α, β) = hz,α,β(a) =

α · fa(z) +β : {0, 1}n → Zq is as follows, where algorithms (PubEval(a,t),TrapEval(a,t)) are indexed by a
pre-specified identity a and parameters t = 2 log(2n). Our task is to homomorphically compute αfa(z)+β.

To compute this homomorphically (with small δ expanding factor) is not straight-forward. First we
observe that the identity vector a has bit-length n, and therefore the polynomial fa has degree n − 1.
To compute fa(z), it seems that we must be able to compute zn−1 homomorphically. However, to our
knowledge, this computation might not be in NC1, so it is not clear how to compute it under a polynomial
modulus q. Even though computing zn−1 can be done as a tree of integer multiplications of depth log n,
an integer multiplication however, might not be computed in a constant depth. Thus, a direct homomorphic
computation using known techniques might not work.

To tackle this challenge, we use the fact that a is a public know ID, and one can compute in the clear
f(1), f(2), . . . , f(2n2). We know that f(z) must be one of them, so the computation can be done by the
summation

∑
i∈[2n2](z? = i)f(i), where (z? = i) outputs the bit whether z equals i. We can show that

this procedure is δ-expanding for some bounded polynomial δ. Therefore, if we have the encoding of the
bit-decomposition of z, then we can homomorphically compute this quantity. In what follows, we modify
the idea above and show a way to homomorphically compute the desired function αfa(z) + β.

In the following context, we set t = 2 log(2n) , let B1, . . . ,Bt be the matrices that encode each bit of
z. We let Bt+1 and Bt+2 as the matrices that encode α and β, and let h′a be the function described above.
Now we are ready to present the procedure.

PubEval(a,t)({Bi}i∈[t+2], h
′
a): The public evaluation does:

1. For each i ∈ [2n2], first compute fa(i) =
∑n

j=1 aji
j and bit-decompose fa(i) to get {fa(i)j}j∈[log q],

then compute

B′αfa(i) =

log q∑
j=1

fa(i)j ·Bt+1G
−1
n,2,m(2jGn,2,m).

20



2. For i ∈ [2n2], j ∈ [t], calculate

Bi,j = PubEval(ijGn,2,m,Bj ,Multbool) + PubEval((1− ij)Gn,2,m,Gn,2,m −Bj ,Multbool).

Then for i ∈ [2n2], compute B̄i = PubEval({Bi,j}j∈[t],Multt).

3. Compute and output B∗ = Bt+2 +
∑

i∈[2n2] PubEval(B̄i,B
′
fa(i),Mult2).

TrapEval(a,t)((z, α, β),A, {Ri}i∈[t+2], h
′
a): The trapdoor evaluation algorithm does:

1. Parse the matrices {Ri}i∈[t+2] as encoding of (z, α, β), i.e. {Ri}i∈[t] is used to encode (z1, ..., zt) ∈
{0, 1}t, Rt+1 is for α and Rt+2 is for β, where {zi}i∈[t] is the bit representation of z.

2. For i ∈ [2n2], first compute fa(i) =
∑n

j=1 aji
j and bit-decompose fa(i) to get {fa(i)j}j∈[log q],

then compute

R′αfa(i) =

log q∑
j=1

TrapEval(A, (Im, fa(i)j), (Rt+1G
−1
n,2,m(2jGn,2,m), α · 2j),Multbool)

3. Define an equality test circuit eqy(y
∗) to be

eqy(y
∗) =

{
1 if y∗ = y

0 otherwise

For i ∈ [2n2], instantiate the equality test circuit eqi(z) as z?i =
∏
j∈[t] xnor(zj , ij), calculate

Rzj ,ij = TrapEval(A, (Rj , zj), (Im, ij),Multbool)+TrapEval(A, (−Rj , 1−zj), (Im,−ij),Multbool)

as the matrix denoting xnor(zj , ij). Next, compute

R̄i = TrapEval({xnor(zj , ij)}i∈[t],A, {Rzj ,ij}i∈[t],Multt)

4. Compute and output

R∗ = Rt+2 +
∑
i∈[2n2]

TrapEval(A, (R̄i, z?i), (R
′
αfa(i), hi,α,β(a)),Multbool)

Here the first step computes an encoding for αfa(i) for each i, i.e. matrix B′αfa(i). Then in the second
step, we do an integer comparison check whether z? = i, stored in the matrix B̄i. Finally we do the
homomorphic summation of

∑
i∈[2n2](z? = i)αf(i) + β. Next, we prove that the procedure is δ-expanding

for some bounded polynomial δ.

Lemma 6.4. (PubEval(a,t),TrapEval(a,t)) defined above is O(n2m2 log q)-expanding for the function h′a :
{0, 1}n → Zq as defined above.

Proof. By the m-expanding property of algorithm Multbool stated in Lemma 5.2, the matrix ||R′αfa(i)|| ≤
log2 q · ||Rt+1||. Similarly, we have ||R̄i|| ≤ mt||Rzj ,ij || ≤ 2m log qmaxi∈[t] ||Ri||. Then, we can bound
the norm of R∗ as

||R∗| ≤ 2n2 max
i∈[2n2]

TrapEval(A, (Rz?i , z?i), (R
′
αfa(i), hi,α,β(a)),Multbool)

≤ 2n2 · 2m log q ·m ·max
i∈[t]
||Ri|| = O(n2m2 log q) ·max

i∈[t]
||Ri||.
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Next we describe the algorithms (PubEval
(a,ν,t)
|| ,TrapEval

(a,ν,t)
|| )) for the parallel-repetition counterpart

of the partitioning function. The function is defined as

h′a(z,α,β) = (hz1,α1,β1(a), ..., hzν ,αν ,βν (a)).

We consider that the algorithms receive two packed matrices B and B′. Then they can (recursively) unpack
the matrices into ν × t matrices (with t matrices in a group) and run ν-repetitions of the prior algorithms.
Finally the algorithms can pack the ν results into a single matrix.

Remark. Here we note that if the input vectors (z,α,β) have the following format: the last (ν −
u) components of all the vectors are 0, then the function h′a(z,α,β) is consistent with the function
(hz1,α1,β1(a), ..., hzu,αu,βu(a), 0, . . . , 0) as h0,0,0(a) = 0. This computes the family Hu,ν as required in
Lemma 6.3.

Let t, ` be the parameters used for the encoding structure i.e. Gtn,`,m, and z = 2ν be the parameter used
by the recursive packing and unpacking algorithms. Then we describe the following algorithms. Here the
matrix B recursively encodes {zij}i∈[t],j∈[ν], and the matrix B′ encodes (α1, β1, α2, β2, . . . , αν , βν).

PubEval
(a,ν,t)
|| (B,B′,h′a): Given two matrices B,B′ ∈ Zn×mq , the public evaluation algorithm does:

1. For i ∈ [t], j ∈ [ν], recursively unpack matrix B as

Bij ← RecUnpack(B, (i, j));

For j ∈ [2ν], unpack matrix B′ as

B′j ← Unpack(B′, i).

2. For j ∈ [ν], compute B∗j ← PubEval(a,t)({Bij}i∈[t],B
′
2j−1,B

′
2j , h

′
a).

3. Output B∗ ← Pack({B∗j}j∈[ν]).

TrapEval
(a,ν,t)
|| ((z,α,β),A,R,R′,h′a): The trapdoor evaluation algorithm does:

1. For i ∈ [t], j ∈ [ν], recursively unpack matrix R as

Rij ← RecUnpack(R, (i, j));

For j ∈ [2ν], unpack matrix R′ as

R′j ← Unpack(R′, i).

2. For j ∈ [ν], compute R∗j ← TrapEval(a,t)((zj , αj , βj),A, {Rij}j∈[t],R
′
2j−1,R

′
2j , h

′
a).

3. Output R∗ ← Pack({R∗j}j∈[ν]).

Lemma 6.5. Let `, t, ξ be parameters as defined above. Then the algorithms (PubEval
(a,ν,t)
|| ,TrapEval

(a,ν,t)
|| )

are max(δ1, δ2)δ3δ4 = (νn2m3ξO(ξ)` log2 q log` q)-expanding for partitioning function h′a be defined
above, where δ1 = ` log` q, δ2 = mξO(ξ)` log q log` q, δ3 = O(n2m2 log q), δ4 = ν log q.
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Proof. By Lemma 5.4, the algorithm Unpack and RecUnpack in the first step incur (` log` q) = δ1-
expanding and (mξO(ξ)` log q log` q) = δ2-expanding respectively. The second step, running TrapEval
on partitioning function h′a results in O(n2m2 log q) = δ3-expanding as shown in Lemma 6.4. Lastly, the
third step Pack incurs (ν log q) = δ4-expanding. Therefore, in total, the (PubEval

(a,ν,t)
|| ,TrapEval

(a,ν,t)
|| ) is

max(δ1, δ2)δ3δ4-expanding, where max(δ1, δ2)δ3δ4 = νn2m3zO(z)` log2 q log` q.

The expanding factor might look large, yet it can be set to some fixed polynomial according to our IBE
parameter selection: ν = ω(1), ξ = ω(1), ` = n. See details in the next section.

6.4 IBE Construction

We construct an IBE scheme based on the partition function h′a : {0, 1}n → Zνq with its associated evalu-

ating algorithm (PubEval
(·,ν,t)
|| ,TrapEval

(·,ν,t)
|| ). We consider the identity space ID = {0, 1}n and boolean

message space {0, 1}. The description of IBE construction Π = (Setup,KeyGen,Enc,Dec) is as follows:

• Setup(1λ): On input the security parameter λ, the setup algorithm generates a matrix A ∈ Zn×mq

associated with its trapdoor TA using algorithm TrapGen(q, n,m). Then the algorithm picks two

random matrices B,B′ $← Zn×mq and a random vector u $← Znq

mpk = (A,B,B′,u), msk = TA.

The algorithm sets global parameters ν, `, t where we present in the parameter selection section later.

• KeyGen(mpk,msk, id): On input mpk,msk and an identity a = id ∈ ID, the key generation algorithm
first computes

Bid ← PubEval
(a,ν,t)
|| (B,B′,h′a)

Sample a short vector r ∈ Z2m using

r ← SampleLeft(A,Bid,TA,u, s1)

such that [A|Bid] · r = u mod q. Output skid = r.

• Enc(mpk, id, µ): On input the mpk, an identity a = id ∈ ID and a message µ ∈ {0, 1}, the encryption
algorithm first computes

Bid ← PubEval
(a,ν,t)
|| (B,B′,h′a)

Then sample a random vector s $← Znq , noise vectors e0, e1 ← DZm,s2 and integer e1 ← DZ,s3 . Next,
compute and output ciphertext ct = (c0, c1)

c0 = sT[A|Bid] + (eT0 , e
T
1 ), c1 = sTu+ e1 + µ · bq/2c

• Dec(skid, ct): On input a secret key skid = r and ciphertext ct = (c0, c1), the decryption algorithm
outputs

µ′ = Round(c1 − 〈c0, r〉 mod q) ∈ {0, 1}
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6.5 Correctness Proof and Parameters Selection

We prove the correctness of IBE scheme as follows:

Lemma 6.6. The identity-based encryption scheme Π is correct (c.f. Definition A.2).

Proof. When the cryptosystem is operated as specified, we have during decryption,

µ′ = Round (c1 − (〈c0, r〉 mod q))

= Round

⌊q
2

⌋
µ+ e− (eT0 |eT1 )r︸ ︷︷ ︸

small


= µ ∈ {0, 1}

where the second equality follows from the definitions of c0, c1, and r, and the third equality follows if
e− (eT0 |eT1 )r is indeed small, which holds w.h.p. by setting parameters appropriately as below.

This completes the proof of correctness.

Parameter Selection. For arbitrarily small constant δ > 0, we set the system parameters according to
Table 2.

Parameters Description Setting
λ security parameter
n PK-lattice row dimension λ

m PK-lattice column dimension n1+δ

q modulus n7.5+εm8

s1 SampleLeft and SampleDO width n4+εm3.5

s2 vector error width n3.5+εm3.5

s3 integer error width
√
n log1+ε(n)

s4 ReRand width n3+εm3.5

` integer-base parameter n

ν number of repetitions log log n

t The z range in partitioning function 2 log 2n

Table 2: IBE Parameters and Example Setting

These values are chosen in order to satisfy the following constraints:

• To ensure correctness, we require |e− (eT0 |eT1 )r| < q/4; here we bound the dominating term:

|eT1 r| ≤ ||eT1 || · ||r|| ≈ s2

√
m · s1

√
m = ms1s2 < q/4.

• For SampleLeft, we know ||T̃A|| = O(
√
n log(q)), so require that the sampling width s satisfies

s1 >
√
n log(q) · ω(

√
log(m)).

• For SampleDO, we know || ˜TGνn,`,m
|| ≤
√
`2 + 1 and that

s1 ≥
√
||R∗||2 + 1

√
|TGνn,`,m

|+ 2

≥
√
mνn2m3zO(z)` log2 q log` q ·

√
`2 + 1

= O(n4+εm3.5)
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Therefore, we need the (joint) sampling width s to, in fact, satisfy the stronger constraint

s1 ≥ n4+εm4.5

• To apply the Leftover Hash Lemma, we need m ≥ (n+ 1) log(q) + ω(log(n)).

• To apply Regev’s reduction, we need s3 >
√
nω(log(n)) (s3 here is an absolute value, not a ratio).

• To use algorithms ReRand in security proof (c.f. Lemma A.7), we need s4 >
√
||R∗||2 + 1 and

s2 = 2s3s4.

6.6 Security Proof

In this part, we show the security proof of our IBE construction as follows:

Theorem 6.7. Assuming the hardness of the standard LWE assumption, our IBE construction is fully secure
(cf. Definition A.3).

Proof. We prove the security of our IBE construction by a sequence of hybrids, where the first hybrid is
identical to the original security experiment ExptIBEA (1λ) as in Definition A.3. We show that if a PPT

adversary A that makes at most |Q| secret key queries, can break the IBE scheme described above with
non-negligible advantage ε (i.e. success probability 1

2 + ε), then there exists a reduction that can break the
LWE assumption with advantage poly(ε)− negl(λ). Given such an adversary A, we consider the following
hybrids.

The Sequence of Hybrids (H0,H1,H2,H3,H4) :

Hybrid H0: This is the original security experiment ExptIBEA (1λ) from Definition A.3 between the adver-
sary A and the challenger.

Hybrid H1: Hybrid H1 is identical to hybrid H0 except that we add an abort event that is independent
of the adversary’s view. Let |Q| be the maximum size of that A can query, ε be the advantage of
A in H0, and n, `, q be the parameters specified in Section 6.5. Now this hybrid experiment selects
u = dlogn(2|Q|/ε)e, so that we have nu ≥ 2|Q|/ε ≥ nu−1. Then it choose a random partitioning
function h∗z,α,β by randomly choosing z ∈ [2n2]u,α ∈ Zuq ,β ∈ Zuq , and passes it to the challenger.
Recall that the hash function maps input a ∈ {0, 1}n to:

h∗z,α,β(a) = (h∗z1,α1,β1(a), ..., h∗zu,αu,βu(a))

where h∗zi,αi,βi(a) = αi · fa(zi) + βi and fa(x) =
∑n−1

i=0 aix
i.

We then describe how the challenger behaves in hybrid H1 as follows:

• Setup: The same as hybrid H0 except the challenger keeps the hash function h∗z,α,β passed from
the experiment.

• Secret key and ciphertext query: The challenger responds to identity queries and challenge
ciphertext query (with a random choice of b ∈ {0, 1}). We use setQ = {ai} to denote the query
set, and by definition challenge identity a∗ ∩Q = ∅.
• Guess: In the guess phase, the adversary outputs his guess b′ ∈ {0, 1} for b. The challenger

now does the abort check: h∗z,α,β(a∗) = 0 and h∗z,α,β(ai) 6= 0 for all ai ∈ Q. If the condition
does not hold, the challenger overwrites b′ with a freshly random bit in {0, 1}, and we say the
challenge aborts the game.
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Note that the adversary never sees the random hash function, and has no idea if an abort event took
place. While it is convenient to describe the abort action at the end of the game, nothing would change
if the challenger aborted the game as soon as the abort condition becomes true.

Hybrid H2: In hybrid H2, we change the method of generating matrix B in master public key. Recall that
in hybrid H1, matrix B is chosen at random from Zn×mq . In hybrid H2, for i ∈ [u], the challenger
randomly chooses integers zi ∈ [2n2], αi ∈ Zq, βi ∈ Zq. For i ∈ [t], j ∈ [ν], set matrix Eij as

Eij =

{
zijGn,2,m if j ≤ u
0n×m otherwise

then compute
E = RecPack({Eij}i∈[t],j∈[ν],0n×m, ...,0n×m︸ ︷︷ ︸

(ν−u)t

)

Next, set matrix E′ for encoding {αi} and {βi} as

E′ = [α1In|β1In| · · · |αuIn|βuIn|0n| · · · |0n︸ ︷︷ ︸
νt−2u

] ·Gtνn,`,m

Then, the challenger sets
B = AR + E, B′ = AR′ + E′

where R,R′ ∈ {−1, 1}m×m is randomly chosen. Additionally, the challenger uses the matrix R,R′

to generate the challenge ciphertext (c∗0, c
∗
1) in the following way:

• Choose a uniformly random vector s ∈ Znq , an error vector e ← DZm,s3 and an error integer
e← DZ,s3 .

• Compute R∗ ← TrapEval
(a∗,ν,t)
|| ((z,α,β),A,R,R′, h∗z,α,β). Then set challenge ciphertext

c∗0 ← ReRand([Im|R∗], sTA + eT, s3, s4), c∗1 := sTu+ e+
⌊q

2

⌋
µ

The rest of the hybrid is unchanged.

Hybrid H3: In hybrid H3, we change how matrix A in the master public key mpk is generated, and as well
the method of answering secret key queries. Recall that in hybrid H2, matrix A ∈ Zn×mq is sampled
with its trapdoor TA using algorithm TrapGen(q, n,m). To answer a secret key query for an identity
ai ∈ {0, 1}n, the secret key is generated using algorithm SampleLeft associated with the trapdoor
TA.

In hybrid H3, the challenger first samples a random matrix A ∈ Zn×mq (without any trapdoor), and
then sets matrix B in the same way as hybrid H1. The challenger responds to the secret key query
of ID ai = (ai1, ..., ain) ∈ {0, 1}n by first computing whether h∗z,α,β(ai) = 0. If it is 0, then the
challenger aborts as the previous hybrid. Otherwise, the challenger uses the algorithm SampleDO (c.f.
Lemma 3.3) with the trapdoor TGun,`,m

to reply as follows:

r ← SampleDO
(
Rai ,A,E

′
ai ,u, s1

)
where the matrices Eai and Rai are

E′ai = [h∗z1,α1,β1(ai)In| · · · |h∗zu,αu,βu(ai)In|0n| · · · |0n] ·Gνn,`,m

Rai = TrapEval
(ai,ν,t)
|| ((z,α,β),A,R,R′, h∗z,α,β)
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By the δ-expanding of (PubEval
(ai,ν,t)
|| ,TrapEval

(ai,ν,t)
|| ), we have

PubEval
(ai,ν,t)
|| (B,B′) = Bai = ARai + E′aiGνn,`,m

From the above computation, it is not hard to see that the challenger is able to answer the key query
using SampleDO as long as h∗z,α,β(ai) 6= 0. We remark that (1) the δ-compatibility guarantees that
the norm |Rai | ≤ δ|R| that (2) if the challenger does not abort, the relational invariant between the
secret key and public key is the same as the original experiment (real scheme), as guaranteed by the
SampleDO algorithm: [

A
∣∣∣Bai] · r = u mod q

Hybrid H4: Hybrid H4 is identical to hybrid H3 except that the challenge ciphertext (c∗0, c
∗
1) is chosen as a

random independent element in Z2m
q × Zq.

Analysis of Hybrids. The only difference between hybrids H0 and H1 is the abort event. We argue that the
adversary still has non-negligible advantage in H1 even though the abort event can happen. More formally,
we will use Lemma 28 in the full version of the work [ABB10], which is described as follows.

Lemma 6.8. Let I be aQ+1- ID tuple (id∗, id1, . . . , id|Q|) denoted the challenge ID along with the queried
ID’s, and ε(I) define the probability that an abort does not happen in hybrid H1. For i = 0, 1, we set Ei be
the event that b = b′ at the end of hybrid Hi. Assuming ε(I) ∈ [εmin, εmax], then we have∣∣∣∣Pr[E1]− 1

2

∣∣∣∣ ≥ εmin

∣∣∣∣Pr[E0]− 1

2

∣∣∣∣− 1

2
(εmax − εmin)

The lemma was analyzed by Bellare and Ristenpart [BR09], and further elaborated in the work [ABB10].
As our overall proof just uses this lemma in a “black-box” way, we do not include its proof for simplicity of
presentation. Next, we show indistinguishability between all the remaining consecutive hybrids.

Lemma 6.9. Hybrid H1 and H2 are statistically indistinguishable.

Proof. We show that hybrid H2 is statistically close to H1 using Lemma A.8. Note that the first difference
between the two hybrids is how the matrices B,B′ and the error vector e1 in the challenge ciphertext were
generated. All the other matrices/vectors are generated identically. In H1, (B,B′, e1) together with the
public matrix A look like (A,B,B′), yet in H2, they look like (A,B = AR + E,B′ = AR′ + E′).

By Lemma A.8, we know that the following two distributions are statistically close:

(A,B,B′) ≈ (A,B = AR + E,B′ = AR′ + E′)

where matrices B,B′ is sampled from uniform distribution over Zn×mq .The second difference lies in the
generation of challenge ciphertext. The c∗0 component in hybrid H1 and H2 are generated respectively as,

c∗0 = sT[A|Bid∗ ] + (eT0 , e
T
1 ), c∗0 ← ReRand([Im|R∗], sTA + e, s3, s4)

where R∗ ← TrapEval
(a∗,ν,t)
|| ((z,α,β),A,R,R′, h∗z,α,β), the error vectors (e0, e1) is sampled from

DZm,s2 and e is sampled from DZm,s3 . By Lemma A.7, the distribution of c∗0 in hybrid H2 is negligible
close to the following:

c∗0 = sTA[Im|R∗] + (eT0 , e
T
1 ) = sT[A|Bid∗ ] + (eT0 , e

T
1 )

By setting the parameters as in Section 6.5, we can apply Lemma A.7. This completes the proof of the
claim.
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Lemma 6.10. Hybrid H2 and H3 are statistically indistinguishable.

Proof. We show that hybrid H2 is statistically close to H3 using Lemmas A.11 and A.12. Note that in hybrid
H3, the public matrix A is sampled from TrapGen(q, n,m) along with a trapdoor, and secret key queries are
answered using algorithm SampleLeft; in hybrid H3, A is sampled directly from the uniform distribution
over Zn×mq , and these secret key queries are answered using algorithm SampleDO.

By Lemma A.11, matrix A in hybrid H2 is distributed close to uniform distribution over Zn×mq as in
hybrid H3. For Gaussian parameter s set appropriately as in Section 6.5, SampleLeft and SampleDO are
distributed identically by Lemma A.12. Therefore, hybrid H2 and H3 are statistically indistinguishable.

Lemma 6.11. Assuming the hardness of LWE assumption, hybrid H3 and H4 are computationally indistin-
guishable.

Proof. Suppose there exists an adversary who has non-negligible advantage in distinguishing hybrid H2 and
H3, then we can construct a reduction B that breaks the LWE assumption using the adversary A. Recall in
Definition A.9, an LWE instance is provided as a sampling oracleO that can be either uniformly randomO$

or a pseudorandom Os for some secret random s ∈ Znq . The reduction B uses adversary A to distinguish
the two oracles as follows:

Invocation. Reduction B requests m+ 1 instances from oracle O, i.e. pair (ai, bi) for i = 0, ...,m.

Setup. Reduction B constructs master public key mpk as follows:

1. Set matrix A ∈ Zn×mq to be the first m vectors ai in pairs (ai, bi) for i = 0, ...,m− 1.

2. Assign the (m+ 1)-th LWE instance am+1 to be vector u ∈ Znq .

3. Construct the reminder of master public key, namely matrices B,B′ as in hybrid H2.

4. Send mpk = (A,B,B′,u) to A.

Queries. ReductionB answers identity queries as in hybrid H3, including aborting the simulation if needed.

Challenge ciphertext. When adversary A sends message (µ0, µ1) and challenge identity a∗, reduction B
does the following:

1. Set v ∈ Zmq the first m integers bi in LWE pairs (ai, bi), for i = 0, ...,m− 1.

2. Set challenge ciphertext (c∗0, c
∗
1) as

c∗0 = v∗, c∗1 = bm+1 + µb∗
⌊q

2

⌋
where v∗ ← ReRand([Im|R∗],v, s3, s4), and R∗ ← TrapEval

(a∗,ν,t)
|| ((z,α,β),A,R,R′, h∗z,α,β).

3. Send challenge ciphertext (c∗0, c
∗
1) to adversary A.

Guess. After being allowed to make additional queries, A guesses if it is interacting with a hybrid H3 or
H4 challenger. Our simulator outputs the final guess as the answer to the LWE challenge it is trying
to solve.

We can see that whenO = Os, the adversary’s view is as in hybrid H3; whenO = O$, the adversary’s view
is as in hybrid H4. Hence, B’s advantage in solving LWE is the same as A’s advantage in distinguishing
hybrids H3 and H4.
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Completing the Proof. Recall that |Q| is the upper bound of the number of the adversary’s key queries,
and ε is the advantage of the adversary in H0. By our setting of parameters in H1, we have |Q| ≤ 0.5εnu.
By setting δ := 0.5ε in Lemma 6.1, we know that

Pr
h∗z,α,β

[
h∗z,α,β(a∗) = 0

∧
∀ai ∈ Q : h∗z,α,β(ai) 6= 0

]
∈
(

1− 0.5ε

qu
,

1

qu

)
.

Thus, we know that for any (Q+ 1)-tuple I denoting a challenge id along with ID queries, we have ε(I) ∈(
1−0.5ε
qu , 1

qu

)
. Then by setting [εmin, εmax] = [1−0.5ε

qu , 1
qu ] in Lemma 6.8, we have∣∣∣∣Pr[E1]− 1

2

∣∣∣∣ ≥ 1− 0.5ε

qu

∣∣∣∣Pr[E0]− 1

2

∣∣∣∣− 0.5ε

2qu
=

(1.5− ε) · ε
2qu

≥ ε

4qu
. (6)

Note that
∣∣Pr[E0]− 1

2

∣∣ = ε is the advantage of A in H0, and the second inequality follows from the fact that
1.5− ε ≥ 0.5.

Next we show that the quantity ε
4qu is still non-negligible (even though qu might look large). Recall

that we set u = dlogn(2|Q|/ε)e, so that we have nu ≥ 2|Q|/ε ≥ nu−1. This implies 1
nu ≥

ε
2n|Q| . Since

q is polynomial in our setting, so we have q = O(nc) for some constant c. Then we can further derive:
ε/4qu ≥ ε2

4·2c|Q|cq . This quantity is non-negligible as long as ε is non-negligible, q is polynomial for our
setting of parameters, |Q| is polynomially bounded, which implies |Q|c is polynomially bounded as well.

Then for i = 1, 2, 3, 4 we denote Ei as the event that the adversary successfully guesses the challenge
bit, i.e. b = b′, at the end of hybrids H1,H2,H3 and H4, respectively. From Lemmas 6.9 and 6.10, we know
that the adjacent hybrids are indistinguishable, and thus we have

Pr[E1] ≈ Pr[E2], Pr[E2] ≈ Pr[E3]. (7)

It is obvious that Pr[E4] = 1
2 , as in this hybrid the challenge bit is independent of the adversary’s view.

From Lemma 6.11, we know that

|Pr[E3]− Pr[E4]| =
∣∣∣∣Pr[E3]− 1

2

∣∣∣∣ ≤ AdvLWE
B (1λ). (8)

Suppose A has non-negligible advantage ε in H0. By the above computation, we know that

ε2

4 · 2c|Q|cq
≤
∣∣∣∣Pr[E1]− 1

2

∣∣∣∣ ≈ ∣∣∣∣Pr[E2]− 1

2

∣∣∣∣ ≈ ∣∣∣∣Pr[E3]− 1

2

∣∣∣∣ ≤ AdvLWE
B (1λ),

which implies AdvLWE
B (1λ) ≥ ε2

4·2c|Q|cq − negl(λ). This means the reduction B defined in Lemma 6.11
breaks the LWE assumption with non-negligible probability. This reaches a contradiction, which completes
the proof of Theorem 6.7.

6.7 Optimizing the Security Analysis

Our security analysis can be optimized so that the reduction B’s advantage can be lower bounded better, i.e.,
AdvLWE

B (1λ) ≥ O
(

ε2

|Q|q

)
where ε is the advantage of the adversary A in attacking the IBE scheme. To

achieve this, we need to slightly modify the basic hash function. It is not hard to see that the analysis carries
almost the same as above, so we do not repeat the analysis for simplicity of presentation.

We recall that our basic partitioning function in Section 6.2: given an identity a ∈ {0, 1}n, the hash
function works as follows: hz,α,β(a) = α · fa(z) + β for α, β ∈ Zq, z ∈ [2n2]. Then we show that
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• ∀a ∈ {0, 1}n, Pr[hz,α,β(a) = 0] = 1/q.

• ∀a 6= b ∈ {0, 1}n, Pr[hz,α,β(b) = 0|hz,α,β(a) = 0] ≤ 1/n,

and with a parallel repetition we can adjust the probability to 1/qu and 1/nu respectively.
After a more careful examination of the proof, we observed that the security loss comes from the gap

between 1/q and 1/n, and the reduction loss can be reduced to O
(

ε2

|Q|q

)
if we can design a hash function

where the conditional probability is roughly 1/q. To achieve this, we still consider using multiple α’s and
z’s with only one single β. That is, we consider the following hash family H′ that contains the following
functions:

h′z1,z2,...,zc,α1,...,αc,β(a) =
∑
i∈[c]

αi · fa(zi) + β,

for c = dlogn qe, zi ∈ [n2], αi ∈ Zq, β ∈ Zq for all i ∈ [c]. With a similar analysis, we can prove that a
random function from this family has the following parameters:

• ∀a ∈ {0, 1}n, Prh′←H′ [h′(a) = 0] = 1/q.

• ∀a 6= b ∈ {0, 1}n, Prh′←H′ [h′(b) = 0|h′(a) = 0] ≤ 2/q.

The first property is exactly the same as Lemma 6.4, and the conditional probability can be upper
bounded by Pr[αj = 0|∃j ∈ [c] : (fa−fb)(zj) 6= 0]+Pr[(fa−fb)(zi) = 0 ∀i ∈ [c]] ≤ 1/q+1/nc ≤ 2/q.
From here, the same parallel repetition technique can adjust the parameters to 1/qu and (2/q)u, respectively.
We note that c is a fixed constant as q is a fixed polynomial. This will only incur a constant blowup on the
number of z’s we need, and this can be packed by the recursive packing algorithm within the same matrix.
(In our IBE scheme, the matrix is B.) The expanding factor of the homomorphic computation will only
blow up by a constant factor, so it will not affect the other parameters.

Now we are ready to revisit the security loss in the proof with these new parameters. We can set
u = logq/2[2|Q|/ε] so that (q/2)u ≥ 2|Q|/ε ≥ (q/2)u−1. The security analysis remains the same, except

we can derive a better lower bound for the success probability in Equation 6. We observe that 2u−1

qu−1 ≥ ε
2|Q| ,

and therefore 1
qu ≥

ε
2u|Q|q . Putting things together, we have ε

4qu ≥
ε2

2u+2|Q|q = O( ε
|Q|q ). The last equality

comes from the fact that u is a constant (note that |Q| is a polynomial, so logq/2 |Q| is a constant). This
proves what we desired.

7 Application in Signature Setting

We can apply the technique in our IBE scheme to optimize the fully secure signature scheme proposed
by Boyen in [Boy10], where we can obtain a fully secure signature scheme with constant size verifi-
cation key. We assume the message space is M = {0, 1}n. Our fully secure signature scheme Σ =
(Setup,Sign,Verify) is as follows:

• Setup(1λ): On input the security parameter λ, the setup algorithm generates a matrix A ∈ Zn×mq as-

sociated with its trapdoor TA using algorithm TrapGen(q, n,m). Pick two random matrices B,B′ $←
Zn×mq and a random vector u $← Znq

vk = (A,B,B′,u), sk = TA
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• Sign(sk,µ) : On input vk, sk and a message µ ∈M, the key generation algorithm first computes

Bµ ← PubEval
(µ,ν,t)
|| (B,B′)

Sample a short vector r ∈ Z2m using

r ← SampleLeft(A,Bµ,TA,u, s)

such that [A|Bµ] · r = u. Output σµ = r.

• Verify(vk,µ, σµ) : On input a verification key vk, a message µ, and a signature σµ, the verification
algorithm does:

1. First check the signature σµ = r is a small but non-zero vector, i.e. 0 6= |r| ≤
√

2ms.

2. Check whether the following equation holds:

[A|Bµ] · r = 0 mod q

where Bµ ← PubEval
(µ,u,t)
|| (B,B′).

3. If both the verification steps pass, then output 1 (accept); otherwise output 0 (reject).

The correctness and security proofs (from Short Integer Solution) are the same as in [Boy10], with the
modified partitioning function computation and simulation of matrices B,B′ as shown in the IBE’s security
proof (cf. Section 6.6). In what follows, we sketch the proof of unforgeability of the signature scheme Σ as
follows:

Theorem 7.1. Assuming the hardness of the standard SIS assumption, our signature scheme Σ is unforge-
able (c.f. Definition A.5).

Proof (sketch): Suppose there exists an adversary A that can break the unforgeability of the signature
scheme Σ, then we can construct a reduction B that can simulate the the attack environment and use the
forgery of adversary A to solve the SIS problem.

Invocation. Reduction B receives a random SISq,n,m,β instance A ∈ Zn×mq , and is asked to output a
solution to A · r = 0 mod q, such that 0 6= ||r|| ≤ β.

Setup. Reduction B sets matrices B,B′ in vk as follows: randomly chooses integers zi ∈ [2n2], αi ∈
Zq, βi ∈ Zq. For i ∈ [t], j ∈ [ν], set matrix Eij as

Eij =

{
zijGn,2,m if j ≤ u
0n×m otherwise

then compute
E = RecPack({Eij}i∈[t],j∈[ν],0n×m, ...,0n×m︸ ︷︷ ︸

(ν−u)t

)

Next, set matrix E′ for encoding {αi} and {βi} as

E′ = [α1In|β1In| · · · |αuIn|βuIn|0n| · · · |0n︸ ︷︷ ︸
νt−2u

] ·Gtνn,`,m

Then, the challenger sets
B = AR + E, B′ = AR′ + E′

where R,R′ ∈ {−1, 1}m×m is randomly chosen. Then B sends vk = (A,B,B′) to adversary A.
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Queries. Reduction B answers signature queries from A on message µi ∈ {0, 1}n as follows:

1. Abort the simulation if

h∗z,α,β(µi) = (h∗z1,α1,β1(µi), ..., h
∗
zu,αu,βu(µi)) = 0

2. Otherwise, the challenger uses the algorithm SampleDO (c.f. Lemma 3.3) with the trapdoor
TGtn,`,m

to reply as follows:

ri ← SampleDO
(
Rµi ,A,Eµi ,u, s

)
where the matrices Eµi and Rµi are

E′µi = [h∗z1,α1,β1(µi)In| · · · |h∗zu,αu,βu(µi)In|0n| · · · |0n]

Rµi = TrapEval
(µi,ν,t)
|| ((z,α,β),A,R,R′, h∗z,α,β)

3. Output the signature ri for message µi to adversary A.

Forgery. Reduction B receives a forged signature r∗ = (r∗0, r
∗
1) on a new message µ∗, and does:

1. Abort the reduction if

h∗z,α,β(µ∗) = (h∗z1,α1,β1(µ∗), ..., h∗zu,αu,βu(µ∗)) 6= 0

2. Otherwise, we have

[A|AR∗] ·
(
r∗0
r∗1

)
= 0

where R∗ ← TrapEvalµ
∗

|| ((z,α,β),A,R,R′, h∗z,α,β).

3. Output r = r∗0 + R∗r∗1 as the SIS solution of matrix A.

Analysis of Proof. The reduction is valid if B can complete the simulation without aborting with a sub-
stantial probability that is independent of the view of adversary A and the queries it makes. It follows
from the bound of hash function in Lemma 6.1, that if an adversary successfully forges a signature with
probability ε, by setting δ := 0.5ε in Lemma 6.1, then reduction B solves SIS instance with probability

ε′ ≥ π (1− ε)
nu

≥ π (1− ε)ε
2|Q|

≥ (1− ε)ε
3|Q|

where π is the probability that r = r∗0+R∗r∗1 is a non-zero solution to SIS instance A given B does not abort
the simulation, and π ≥ 2/3. Recall that we set u = dlogq(2|Q|/ε)e, so that we have nu ≥ 2|Q|/ε ≥ nu−1,
which implies 1

nu ≥
ε

2n|Q| .
This concludes the proof sketch.
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A Preliminaries

A.1 Fully Homomorphic Encryption

We recall the definition of (leveled) fully homomorphic encryption in the following. A (leveled) FHE is a
tuple of algorithms Π = (Setup,Enc,Eval,Dec) described as follows:

• Setup(1λ, 1d): Given input the security parameter λ and maximum supported depth d, the setup
algorithm outputs secret key sk and public key pk.

• Enc(pk, µ): On input pk and a message µ, the encryption algorithm outputs a ciphertext ct.

• Eval(pk, C, (ct1, ..., ct`)): On input a boolean circuit C of depth≤ d along with ` ciphertexts (ct1, ..., ct`),
the evaluation algorithm outputs an evaluated ciphertext ct.

• Dec(sk, ct): On input some ciphertext ct and a secret key sk, the decryption algorithm outputs a
message µ.

Definition A.1 ((leveled) FHE). We call a scheme Π = (Setup,Enc,Eval,Dec) described above a (leveled)
FHE scheme, if it satisfies:

Correctness: Let (sk, pk) ← Setup(1λ, 1d) and cti ← Enc(pk, µi), for i ∈ [`]. Let C be any boolean
circuit of depth ≤ d and ct← Eval(pk, C, (ct1, ..., ct`)). Then we have Dec(ct, sk) = C(µ1, ..., µ`).

Semantic security: For any polynomial d = d(λ) and any two messages µ0, µ1, the following distributions
are computationally indistinguishable

(pk,Enc(pk, µ0)) ≈ (pk,Enc(pk, µ1))

where (pk, sk)← Setup(1λ, 1d).

Compactness: The size of the evaluated ciphertext, i.e. ct← Eval(pk, C, (ct1, ..., ct`)), should be indepen-
dent of circuit C and `, but can depend on λ and d.

A.2 Identity Based Encryption

We recall that identity based encryption (IBE) was introduced by Shamir [Sha84], and that Boneh and
Franklin [BF01] proposed the first construction based on bilinear groups. An IBE scheme Π consists of a
tuple of algorithms (Setup,KeyGen,Enc,Dec):

• Setup(1λ): Given the security parameter λ, the setup algorithm outputs the master key pair (mpk,msk).

• KeyGen(msk, id ∈ ID): Given the master secret key msk and an identity id, the key generation
algorithm then outputs a secret key skid for the identity id.

• Enc(mpk, id, µ): Given mpk, an identity id and a message µ, the encryption algorithm outputs a
ciphertext ct.

• Dec(skid, ct): Given secret key skid and a ciphertext ct, the decryption algorithm decrypts ciphertexts
to messages µ′ using the secret key skid.

Definition A.2 (Correctness). We say an IBE scheme Π is correct if for every identity id ∈ ID, every message
µ ∈M, and every (mpk,msk)← Setup(1λ),

Pr[Dec(skid,Enc(mpk, id, µ)) = µ] ≥ 1− negl(λ).
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For the security definition of IBE, we use the following experiment to describe it. Formally, for any PPT

adversary A, we consider the experiment ExptIBEA (1λ):

1. Setup: A challenger runs the Setup(1λ) algorithm, and sends the master public key mpk to the adver-
sary.

2. Query Phase I: Proceeding adaptively, the adversaryA queries a sequence of identities (id1, ..., idm).
On the i-th query, the challenger runs KeyGen(msk, idi), and sends the result skidi to A.

3. Challenge: Once adversary A decides that Query Phase I is over, it outputs the challenge identity id∗

and two length-equal messages (µ∗0, µ
∗
1), under the constraint that the challenge identity id∗ has never

been queried before. In response, the challenger selects random b ∈ {0, 1}, and sends the ciphertext
Enc(mpk, id∗, µ∗b) to A.

4. Query Phase II: Adversary A continues to issue identity queries (idm+1, ..., idn) adaptively, under
the restriction that idi 6= id∗. The challenger responds by issuing keys skidi as in Query Phase I.

5. Guess: Adversary A outputs a guess b′ ∈ {0, 1}.

We define the advantage of adversary A in attacking an IBE scheme Π as

AdvIBE
A (1λ) =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣
where the probability is over the randomness of the challenger and adversary.

Definition A.3 (IBE security). We say an IBE scheme Π is fully secure, if for all PPT adversaries A, we
have

AdvIBE
A (1λ) ≤ negl(λ)

A.3 Signature Scheme

A signature scheme for message spaceM consist of three algorithms Σ = (Setup,Sign,Verify) with details
as follows:

• Setup(1λ): Given security parameter λ, the setup algorithm outputs signing key sk and verification
key vk.

• Sign(sk, µ ∈M): Given secret key sk and message µ ∈M, the signing algorithm outputs a signature
σ for the message.

• Verify(vk, µ, σ): Given verification key vk, a message µ and a signature σ, the verification algorithm
outputs 1 (accept) or 0 (reject).

Definition A.4 (Correctness). We say a signature scheme Σ is correct, if for any message µ ∈ M and any
(sk, vk)← Setup(1λ), we have

Pr[Verify(vk, µ,Sign(sk, µ)) = 1] = 1

For the unforgeability of signature scheme Σ, we use the following experiment to describe it. Formally,
for any PPT adversary A, we consider the experiment ExptsigA (1λ):

1. Setup: A challenger runs the Setup(1λ) algorithm, and sends the verification key vk to the adversary.
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2. Query Phase: Proceeding adaptively, the adversary A queries a sequence of messages (µ1, ..., µm).
On the i-th query, the challenger runs σi ← Sign(sk, µi), and sends the result σi to A.

3. Forgery: Once adversary A decides that Query Phase is over, it outputs a message/signature pair
(µ∗, σ∗), where message µ∗ is not queried before.

We define the advantage of adversary A in attacking an IBE scheme Π as

Advsig
A (1λ) = Pr[Verify(vk, µ∗, σ∗) = 1]

where the probability is over the randomness of the challenger and adversary.

Definition A.5 (Unforgeability). We say a signature scheme Σ is unforgeable, if for all PPT adversaries A,
we have

Advsig
A (1λ) ≤ negl(λ)

A.4 Lattice Background

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span is Rm.
The basis of Λ is a linearly independent set of vectors whose linear combinations are exactly Λ. Every integer
lattice is generated as the Z-linear combination of linearly independent vectors B = {b1, ..., bm} ⊂ Zm.
For a matrix A ∈ Zn×mq , we define the “q-ary” integer lattices:

Λ⊥q = {e ∈ Zm|Ae = 0 mod q}, Λu
q = {e ∈ Zm|Ae = u mod q}

It is obvious that Λuq is a coset of Λ⊥q .
Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R, let

ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and parameter σ. Next,
we let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ, and let DΛ,σ,c(y) :=

ρσ,c(y)
ρσ,c(Λ) . We

abbreviate this as DΛ,σ when c = 0.
Let Sm denote the set of vectors in Rm whose length is 1. Then the norm of a matrix R ∈ Rm×m

is defined to be supx∈Sm ||Rx||. Then we have the following lemma, which bounds the norm for some
specified distributions.

Lemma A.6 ([ABB10]). With respect to the norm defined above, we have the following bounds:

• Let R ∈ {−1, 1}m×m be chosen at random, then we have Pr[||R|| > 12
√

2m] < e−2m.

• Let R be sampled from DZm×m,σ, then we have Pr[||R|| > σ
√
m] < e−2m.

The following lemma, proposed in [KY16], on noise rerandomization plays an important role in the
security proof of our IBE construction.

Lemma A.7 (Noise rerandomization). Let q,m,m′ be positive integers and r be a positive real number
satisfying r > max{ω(

√
logm), ω(

√
logm′)}. Let b1 ∈ Zmq be arbitrary vector and e1 chosen fromDZm,r.

Then for any V ∈ Zm+m′ and positive real s > |V|, there exists a PPT algorithm ReRand(V, b1 + e1, r, s)
that outputs b2 such bT2 = bT1 V + eT2 where e2 is distributed statistically close to DZm′ ,2rs.

Randomness Extraction. We will use the following lemma to argue the indistinghishability of two dif-
ferent distributions, which is a generalization of the leftover hash lemma proposed by Dodis et al. [DRS04].

Lemma A.8 ([ABB10]). Suppose that m > (n + 1) log q + ω(log n). Let R ∈ {−1, 1}m×k be chosen
uniformly at random for some polynomial k = k(n). Let A,B be matrix chosen randomly from Zn×mq ,Zn×kq

respectively. Then, for all vectors w ∈ Zm, the two following distributions are statistically close:

(A,AR,RTw) ≈ (A,B,RTw)
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Learning With Errors. The LWE problem was introduced by Regev [Reg05], who showed that solving
it on average is as hard as (quantumly) solving several standard lattice problems in the worst case.

Definition A.9 (LWE). For an integer q = q(n) ≥ 2, and an error distribution χ = χ(n) over Zq, the
Learning With Errors problem LWEn,m,q,χ is to distinguish between the following pairs of distributions (e.g.
as given by a sampling oracle O ∈ {Os,O$}):

{A, sTA + x} and {A,u}

where A
$← Zn×mq , s $← Znq , u $← Zmq , and x $← χm.

Short Integer Solution. The SIS problem was first suggested to be hard on average by Ajtai [Ajt99] and
then formalized by Micciancio and Regev [MR04].

Definition A.10 (SIS). For any n ∈ Z, and any functionsm = m(n), q = q(n), β = β(n), the average-case
Short Integer Solution problem (SISq,n,m,β) is: Given an integer q, a matrix A ∈ Zn×mq chosen uniformly
at random and a real β ∈ R, find a non-zero integer vector z ∈ Zm \ {0}, such that Az = 0 mod q and
||z|| ≤ β.

Micciancio and Regev [MR04] showed that solving the average-case SISq,n,m,β problem for certain
parameters is as hard as approximating the Shortest Independent Vector Problem in the worst case to within
certain γ = β · Õ(

√
n) factors.

Sampling Algorithms. We will use the following algorithms to sample short vectors from specified lat-
tices.

Lemma A.11 ([GPV08, AP10]). Let q, n,m be positive integers with q ≥ 2 and sufficiently large m =
Ω(n log q). There exists a PPT algorithm TrapGen(q, n,m) that with overwhelming probability outputs a
pair (A ∈ Zn×mq ,TA ∈ Zm×m) such that A is statistically close to uniform in Zn×mq and TA is a basis
for Λ⊥q (A) satisfying

||TA|| ≤ O(n log q) and ||T̃A|| ≤ O(
√
n log q)

except with negl(n) probability.

Lemma A.12 ([GPV08, CHKP10, ABB10]). Let q > 2,m > n. There is an algorithm SampleLeft(A,B,TA,u, s):
It takes as input: (1) a rank-n matrix A ∈ Zn×mq , and any matrix B ∈ Zn×m1

q , (2) a “short” basis TA for
lattice Λ⊥q (A), a vector u ∈ Znq ,, (3) a Gaussian parameter s > ||T̃A|| · ω(

√
log(m+m1)). Then outputs

a vector r ∈ Zm+m1 distributed statistically close to DΛuq (F),s where F := (A|B).
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