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Abstract

Proxy re-encryption (PRE) and Proxy re-signature (PRS) were introduced by Blaze, Bleumer
and Strauss [Eurocrypt ’98]. Basically, PRE allows a semi-trusted proxy to transform a cipher-
text encrypted under one key into an encryption of the same plaintext under another key,
without revealing the underlying plaintext. Since then, many interesting applications have been
explored, and many constructions in various settings have been proposed, while PRS allows a
semi-trusted proxy to transform Alice’s signature on a message into Bob’s signature on the same
message, but the proxy cannot produce new valid signature on new messages for either Alice or
Bob.

Recently, for PRE related progress, Cannetti and Honhenberger [CCS ’07] defined a stronger
notion – CCA-security and construct a bi-directional PRE scheme. Later on, several work
considered CCA-secure PRE based on bilinear group assumptions. Very recently, Kirshanova
[PKC ’14] proposed the first single-hop CCA1-secure PRE scheme based on learning with errors
(LWE) assumption. For PRS related progress, Ateniese and Hohenberger [CCS’05] formalized
this primitive and provided efficient constructions in the random oracle model. At CCS 2008,
Libert and Vergnaud presented the first multi-hop uni-directional proxy re-signature scheme in
the standard model, using assumptions in bilinear groups.

In this work, we first point out a subtle but serious mistake in the security proof of the work
by Kirshanova. This reopens the direction of lattice-based CCA1-secure constructions, even in
the single-hop setting. Then we construct a single-hop PRE scheme that is proven secure in
our new tag-based CCA-PRE model. Next, we construct the first multi-hop PRE construction.
Lastly, we also construct the first PRS scheme from lattices that is proved secure in our proposed
unified security model.

1 Introduction

Proxy re-encryption (PRE) allows a (semi-trusted) proxy to transform an encryption of m under
Alice’s public key into another encryption of the same message under Bob’s public key. The proxy,
however, cannot learn the underlying message m, and thus both parties’ privacy can be maintained.
This primitive (and its variants) have various applications ranging from encrypted email forward-
ing [BBS98], securing distributed file systems [AFGH05], to digital rights management (DRM)
systems [Smi05]. In addition application-driven purposes, various works have shown connections
between re-encryption (and its variants) with other cryptographic primitives, such as program
obfuscation [HRsV07, CCV12, CCL+14] and fully-homomorphic encryption [CLTV15, ABF+13].
Thus studies along this line are both important and interesting for theory and practice.

Another primitive, called proxy re-signature (PRS), allows a semi-trusted proxy to transform
Alice’s signature σA on a message µ into Bob’s signature σB on the same message µ, but the proxy
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cannot produce new valid signature on new messages for either Alice or Bob. PRS is employed in
various applications, such as providing a proof that a certain path in a graph is taken.

Both concepts of PRE and PRS were introduced by Blaze, Bleumer, and Strauss [BBS98],
who also gave the first construction of a CPA (i.e. chosen-plaintext attacks) secure bi-directional
multi-hop PRE scheme under the Decisional Diffie-Hellman assumption, and a restricted PRS con-
struction. Later on, Ateniese and Hohenberger [AH05] formalized security notions for PRS, and
gave two PRS constructions (one is bi-directional, and the other one is uni-directional) based on
bilinear maps in the random oracle model. Ateniese, Fu, Green and Hohenberger [AFGH05] con-
structed the first CPA secure uni-directional scheme based on bilinear maps, yet their construction
can only support a single-hop re-encryption. Hohenberger et al. [HRsV07] and Chase et al. [CCV12]
used an obfuscation-based approach and constructed CPA secure uni-directional single-hop PRE
scheme (and its variants). Recently, Chase et al. [CCL+14], using the obfuscation-based approach,
constructed the first CPA secure uni-directional multi-hop PRE scheme based on lattices assump-
tions.

For the PRE part, as argued that CPA security can be insufficient for some useful scenarios,
Canetti and Hohenberger [CH07] considered a natural stronger security notion — chosen-ciphertext
attacks (CCA) security where the adversary has access to a decryption oracle. Intuitively, this
security notion guarantees that the underlying message of the challenge ciphertext remains hid-
den even if the adversary can somehow obtain decryptions of other ciphertexts. They give a
meaningful security formulation of CCA secure PRE, and then constructed the first CCA-secure
bidirectional multi-hop PRE scheme. Later, Shao et al. [SCL10] constructed a CCA-secure
uni-directional single-hop PRE, and Chow et al. [CWYD10] proposed another CCA-secure uni-
directional scheme in random oracle model. Libert and Vergnaud [LV08b] improved the result
by constructing a CCA uni-directional single-hop PRE without random oracles, and this remains
the state of the art of the current construction (for the setting of uni-directional CCA-PRE un-
der the definition of [CH07]). We note that it is unclear how to extend security of the previous
obfuscation-approach [HRsV07, CCV12, CCL+14] (that are only CPA-secure) to the CCA setting.
One particular technical challenge is that the re-encryption key output by the simulator might be
distinguishable given the CCA decryption oracle, and thus the previous security analyses cannot
go through. For CPA security, our understanding is quite well — we know how to construct PRE
schemes that are uni-directional and multi-hop in the standard model. However, for CCA security,
our understanding in the standard model is much limited in the following sense. First, there is no
known scheme that achieves both uni-directional and multi-hop at the same time. Moreover, all
currently known constructions [BBS98, AFGH05, CH07, LV08b, SCL10, CWYD10, ABPW13] are
based on Diffie-Hellman-style assumptions. Very recently, Kirshanova [Kir14] proposed a single-
hop construction based on lattices, and argued that it is CCA1 secure1. However, after a careful
examination of her security proof, we found a subtle mistake in the security proof, and thus how to
construct a lattice-based PRE that achieves CCA1-security, (even for the single-hop case) remains
open.

For the PRS part, Ateniese and Hohenberger [AH05] left some open problems such as how
to construct uni-directional PRS where the proxy can only translate signatures in one direction.
Can we avoid the random oracle analysis? Libert and Vergnaud [LV08a] answered these questions
positively by constructing the first multi-use unidirectional PRS in standard model relying on a
new computational assumption in bilinear group.

In this paper, we study lattice-based PRE and PRS constructions. In particular, we make

1CCA1 security is weaker in the sense that the attacker does not have the decryption oracle after receiving the
challenge ciphertext.
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contributions in the following four folds:

• First, we point out a subtle mistake in the security proof of the work [Kir14] (the CCA1 con-
struction), and argue that this is not easy to fix.

• Second, we propose a new model called tag-based CCA that lies in between the CCA1 and
CCA2 model. We construct a lattice-based PRE scheme that achieves a slightly relaxed version
functionality (and thus slightly relaxed security). We then describe a generic transformation
from the relaxed functionality to the full-fledged one using know techniques (i.e., zero-knowledge
proofs).

• Third, we define a selective notion of tag-based CCA security for multi-hop PRE where the
attacker needs to commit to a tree structure for the challenging ciphertext at the beginning.
Then we prove that our basic single-hop construction, with a slight modification, can be extended
to the multi-hop setting and achieve such a security notion. This is, to our knowledge, the first
construction of multi-hop PRE that achieves a relaxed yet meaningful notion of CCA security.

• Lastly, we propose a simpler and unified security model for PRS which captures more dynamic
settings. We show that the idea of our multi-hop PRE model and the construction can be
extended to construct PRS that achieves the security notion. This is the first (to our knowledge)
multi-hop unidirectional PRS from lattices.

1.1 Technique Highlights

In the following, we highlight our technical ideas for the four contributions as described above.

Part I: the subtle mistake in the work [Kir14]. The subtle mistake comes in the security
proof where the work [Kir14] constructs two adjacent hybrids that are distinguishable. For clari-
fication of exposition, we first briefly present the main idea of the construction [Kir14]. Then we
will point out where the subtlety is and explain why the problem cannot be easily fixed.

Basically, the PRE construction can be regarded as an extension of CCA-secure public key
encryption scheme in [MP12]. For concreteness, we consider two users: User 1 has public key
pk1 = (A0,A1,A2,H), and User 2 has public key pk2 = (A′0,A

′
1,A

′
2,H

′), where each public
key consists of four matrices. The secret key of User 1 consists of low-norm matrices R1,R2

satisfying A1 = −A0R1,A2 = −A0R2, and it is similar for the case of User 2. We note that the
readers here do not need to worry about the dimensions. To encrypt under pk1, we consider an
encryption matrix Au = [A0|A1 + HG|A2 + HuG], where Hu is a random invertible matrix (as a
tag to the ciphertext), then encrypt messages using the dual-Regev style encryption [GPV08], i.e.
ct = sTAu + e+ encode(m). Similarly, we can encrypt under pk2 with the same structure.

To generate a re-encryption key from User 1 to User 2, the work [Kir14] considers a short matrix
X satisfying the following relation:

[A0|A1 + HG|A2 + HuG]

X00 X01 X02

X10 X11 X12

0 0 I

 = [A′0|A′1 + H′G|A′2 + HuG].

In particular, for the last column of the re-encryption key matrix, it holds that

[A0|A1 + HG]

[
X02

X12

]
= A′2 −A2. (1)
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It is not hard to see that ct ·X = sT ·A′u + ẽ + encode(m), a ciphertext of m under pk2, so the
correctness property is guaranteed.

To prove security, the work [Kir14] uses a standard reduction argument based on the LWE
assumption: suppose there exists an adversary that can break the PRE scheme, then there exists
a reduction, with oracle access to the adversary, who can break the underlying LWE assumption.
For this type of proofs, typically the reduction needs to embed the hard instance (LWE instance
for this case), then simulates a scheme (PRE) to the adversary, and finally the reduction can use
the adversary to break the underlying hardness assumption. It is crucially important that the
simulated scheme cannot be distinguished by the adversary; otherwise, the adversary can always
output ⊥ if he detects the scheme is different from the real scheme, and such adversary is useless
to the reduction. The security proof in the work [Kir14] missed this point. At a high level, her
reduction simulated a PRE scheme that can be distinguishable by the adversary easily, so the whole
argument breaks down. Below we further elaborate on the details.

For simplicity we consider a simple case where there are only two honest users, Users 1 and 2
and the adversary only gets one re-encryption key from User 1 to User 2. The challenge ciphertext
comes from an encryption of User 1, i.e. pk1. For such case, the reduction of the work [Kir14]
pre-selects a tag matrix Hu∗ (for the challenge ciphertext), matrices R∗1,R

∗
2, and then embeds an

LWE instance A∗ in the encryption matrix: A∗u = [A∗| −A∗R∗1| −A∗R∗2 + (Hu −Hu∗)G]. In this
case, the reduction sets pk1 = (A0,A1,A2,H) to be (A∗,−A∗R∗1−H∗G,−A∗R∗2−Hu∗G,H∗) for
some random invertible H∗.

To generate re-encryption key from the challenge user 1 to User 2, the reduction first pre-samples
small matrices X00,X01,R

′
1,R

′
2, and a random invertible matrix H′. Then it computes:

A′0 = [A∗| −A∗R∗1]

[
X00

X10

]
, A′i = [A∗| −A∗R∗1]

[
X00

X10

]
·R′i, ∀i = 1, 2

The reduction sets

pk2 = (A′0,A
′
1,A

′
2,H

′), rk1→2 =

[(
X00
X10

) (
X00
X10

)
R′1

(
X00
X10

)
R′2

0 0 I

]

generated as above. Then obviously the matrices A′1,A
′
2 can be expressed as A′1 = A′0R

′
1,A

′
2 =

A′0R
′
2, where R′1,R

′
2 are small matrices and still act as secret key for User 2. Therefore, the

reduction can still use the same algorithm in the real scheme to answer decryption queries for User
2.

However, if A′2 is generated in this way, then it is easy to check and compare with Equation
(1):

[A0|A1 + HG]

[
X02

X12

]
= [A∗| −A∗R∗1]

[
X00

X10

]
·R′2 6= A′2 −A2. (2)

This means adversary, given the simulated pk1, pk2, rk1→2, adversary can easily tell whether
they are from the real scheme or the simulated scheme. Thus, the security proof in this way [Kir14]
is not correct.

A straightforward fix would be to set A′2 = [A∗| − A∗R∗1]

[
X00

X10

]
· R′2 + A2 = A′0 · R′2 + A2

so that Equations (1) and (2) match. But in this way it is not clear how to express A2 as A′0R
for some small matrix R, because it is not clear how to express A2 as A′0R̃ for some small R̃.
Note that R serves as the secret key of pk2 to simulate decryption queries. Consequently, it is not
clear how the reduction can answer decryption queries as the previous approach. It seems that

4



this construction/proof is facing a dilemma: either the reduction can answer the decryption queries
but the re-encryption key can be distinguished, or the reduction can generate an indistinguishable
re-encryption key but cannot answer the decryption queries.

Part II: our new construction for single-hop PRE. To overcome the dilemma, we consider
a new matrix structure: the setup algorithm outputs a public matrix A, and each user extends the
previous matrix structure to be Au = [A|A1 + HG|A2 + HuG], where A1 = −AR1,A2 = −AR2

and the matrices R1,R2 are the corresponding secret key. The shared matrix A offers a significant
advantage for the simulation: the reduction can embed the LWE instance A∗ as the public shared
matrix, and then sets

A′2 = [A∗| −A∗R∗1]

[
X00

X10

]
·R′2 −A∗R∗2.

This allows the reduction to express A′2 as A∗R for some small and known matrix R. Then the
reduction can use this to simulate the decryption queries, while the Equation (1) will match for the
real scheme and the simulated scheme. Our modified construction achieves a relaxed re-encryption
functionality in comparison to the construction proposed in [LV08b], i.e. the re-encryption key can
only transform well-formed ciphertexts into indistinguishable re-encrypted ciphertexts, but trans-
formation of maliciously chosen cihpertexts can be distinguished if the adversary has the secret key
of the target user. In Section 3, we present more detailed discussions and a simple transformation
from the relaxed functionality to the “full-fledged” functionality using zero-knowledge proofs2.

Part III: extension to multi-hop PRE. We further observe that the matrix structure in our
construction can be extended to the multi-hop case with a slight modification. Interestingly, our
scheme itself can support general network structures (for functionalities), yet our security proof (for
CCA security), however, requires the structure of tree-structured networks (i.e. the adversary can
only query re-encryption keys that form a tree among the users). If the adversary’s queries form
a general graph, then security of our scheme becomes unclear: we are not able to prove security
under the current techniques, but there is no known attack, either. We leave it as an interesting
open problem to determine whether our construction is secure under general network structures.

A technical reason for this phenomenon comes from the order of sampling for the simulation.
We give a simple example for illustration: let there be three parties in the network, Users one, two,
and three. It is easy for the reduction to simulate in the following order pk1, rk1→2, pk2, rk2→3, and
then pk3 without knowing a trapdoor of the LWE instance A∗. The reduction, however, would get
stuck if he needs to further generate rk1→3, which should be consistent with the already sampled
pk1 and pk3. We recall that the reduction is able to check whether rk1→3 is consistent with pk1

and pk3 in both the real scheme and the simulated scheme (as Equation (1)). Thus, the reduction
must simulate such consistency as the real scheme. Even though there are techniques from the
Ring-LWE [LPR10, GGH13] that allows sampling in the reverse order of pk3, rk2→3, pk2, rk1→2,
pk1, it does not help to solve the problem because the reduction still does not know how to generate
rk1→3 after pk1 and pk3 are sampled, without a trapdoor of A∗.

Part IV: unified model and construction for multi-hop PRS. An interesting observation
from our multi-hop CCA-PRE construction is that it is also compatible with the lattice signature
structure in the work of Boyen [Boy10]. In particular, in that work, the signature scheme has the
following structure: [A|Bµ], where is an encoded matrix for message µ. This message-dependent

2Under current techniques, zero knowledge proof systems based on pure lattices assumptions either require inter-
actions or random oracles.
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matrix can be extended to a similar structure similar to that in multi-hop PRE construction. Recall
that prior PRS work [AH05, LV08a] consider four scenarios for the security requirement. In each
scenario, the adversary has access to a subset of oracles (signing, re-signing, re-key generation),
and security requires that the adversary cannot forge a signature on behalf of honest users (whose
secret keys are not at the adversary’s hand). Our unified security model is based on the approach
of multi-hop PRE model with necessary modifications to fit into the signature framework.

1.2 Related Works

Proxy re-encryption. As mentioned above, in recent years, there has been multiple PRE con-
structions achieving different security notions from different assumptions. In addition to the bi-
directional PRE-CPA constructions [BBS98, CH07], there is also some work [AFGH05, HRsV07]
about building uni-directional PRE-CPA from various assumptions. For CCA-PRE construction,
we only know how to construct single-hop scheme from bilinear group assumption as shown in
work [LV08b], and single-hop scheme from LWE assumption in the random oracle model as shown
in [ABPW13]. Besides the above mentioned work, recently Nuñez et al. [NAL15] proposed a nice
framework capturing more fine-grained CCA-security of PRE, corresponding to the adversary’s
ability in the security experiment. Our multi-hop tag-based CCA-secure PRE construction de-
scribed in Section 5 can be categorized as CCA1,2 model in their paper regarding a special structure
(trees).

Proxy re-signature. Bi-directional PRS was considered in the literature [AH05, CP08]. The
generation of re-key algorithm needs to take inputs both users’ secret key. The more fine-grained
notion, uni-directional PRS scheme was proposed in [LV08a]. Shao et al. [SFZ+10] cooked up a
bilinear group based scheme (in random orcale model) that is insecure but proven secure in prior
PRS model [AH05, LV08a], but their result cannot be extended to the lattice setting.

2 Preliminaries

Notations. Let ppt denote probabilistic polynomial time. We use bold uppercase letters to
denote matrices, and bold lowercase letters for vectors. We let λ be the security parameter and
[n] denote the set {1, ..., n}. We use [·|·] to denote the concatenation of vectors or matrices, and
use `∞ norm for the norms of all vectors and matrices used in our paper. We say a function f(n)
is negligible if it is O(n−c) for all c > 0, and we negl(n) to denote a negligible function of n. Let
X and Y be two random variables taking values in Ω. Define the statistical distance, denoted as
∆(X,Y ) as

∆(X,Y ) :=
1

2

∑
s∈Ω

|Pr[X = s]−Pr[Y = s]|

Let X(λ) and Y (λ) be ensembles of random variables. We say that X and Y are statistically close
if d(λ) := ∆(X(λ), Y (λ)) is a negligible function of λ. We say two ensembles X(λ) and Y (λ) are
computationally indistinguishable (denoted as X(λ) ≈ Y (λ)) if for every ppt distinguisher D, it
holds that

|Pr[D(X(λ)) = 1]−Pr[D(Y (λ)) = 1]| = negl(λ)

2.1 Lattice Background

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span
is Rm. Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R,
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let ρσ,c(x) = exp(−π||x−c||2/σ2) be the Gaussian function on Rm with center c and parameter σ.

Next, we set ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ and DΛ,σ,c(y) :=
ρσ,c(y)
ρσ,c(Λ) .

Let Sm denote the set of vectors in Rm whose length is 1. Then the norm of a matrix R ∈ Rm×m
is defined to be supx∈Sm ||Rx||. We have the following lemma, which bounds the norm for some
specified distributions.

Lemma 2.1 ([ABB10]). Regarding the norm defined above, we have the following bounds:

• Let R ∈ {−1, 1}m×m be chosen at random, then Pr[||R|| > 12
√

2m] < e−2m.

• Let R be sampled from DZm×m,σ, then we have Pr[||R|| > σ
√
m] < e−2m.

Randomness extraction. We will use the following lemma to argue the indistinghishability of
two different distributions, which is a generalization of the leftover hash lemma proposed by Dodis
et al. [DRS04].

Lemma 2.2 ([ABB10]). Suppose that m > (n + 1) log q + w(log n). Let R ∈ {−1, 1}m×k be
chosen uniformly at random for some polynomial k = k(n). Let A,B be matrix chosen randomly
from Zn×mq ,Zn×kq respectively. Then, for all vectors w ∈ Zm, the two following distributions are
statistically close:

(A,AR,RTw) ≈ (A,B,RTw)

Learning With Errors. The LWE problem was introduced by Regev [Reg05], who showed that
solving it on the average is as hard as (quantumly) solving several standard lattice problems in
the worst case, when the error distribution is instantiated as discrete Gaussian distribution with
proper parameters.

Definition 2.3 (LWE). For an integer q = q(n) ≥ 2, and an error distribution χ = χ(n) over
Zq, the learning with errors problem LWEn,m,q,χ is to distinguish between the following pairs of
distributions:

{A,ATs+ x} and {A,u}

where A
$← Zn×mq , s

$← Znq , u
$← Zmq , and x← χn.

Small Integer Solution. The SIS problem was first suggested to be hard on average by Ajtai
[Ajt99] and then formalized by Micciancio and Regev [MR04]. It is known to be as hard as certain
worst-case problems (e.g., SIVP) in standard lattices[Ajt99, MR04, GPV08, MP13].

Definition 2.4 (SIS). For any n ∈ Z, and any functions m = m(n), q = q(n), β = β(n), the
average-case Small Integer Solution problem (SISq,n,m,β) is: Given an integer q, a matrix A ∈ Zn×mq

chosen uniformly at random and a real β ∈ R, find a non-zero integer vector z ∈ Zm − {0}, such
that Az = 0 mod q and ||z|| ≤ β.

G-trapdoors and sampling algorithms. We briefly describe the main results in [MP12]: the
definition of G-trapdoor and the algorithms InvertO and SampleO. Roughly speaking, a G-trapdoor
is a transformation, represented by a matrix R from a public matrix A to a special matrix G. The
formal definition is as follows:
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Definition 2.5 ([MP12]). Let A ∈ Zn×mq and G ∈ Zn×wq be matrices with m ≥ w ≥ n. A G-
trapdoor for A is a matrix R ∈ Zm−w × w such that A

[
R
I

]
= HG for some invertible matrix

H ∈ Zn×nq . We refer to H as the tag or label of the trapdoor. The quality of the trapdoor is
measured by its largest singular value s1(R).

In order to embed matrix G into a uniformly looking matrix A together with a transformation
R, we should start with a uniform matrix A0 and a matrix R, and construct A = [A0|−A0R+HG].
For an appropriate chosen dimensions (A,AR) is negligible from uniformly random distribution
by the Lattice-based Leftover Hash Lemma.

Following the work of Micciancio and Peikert [MP12], our scheme uses a special collection of
elements defined over ring R = Zq[x]/(f(x)), where f(x) = xn+fn−1x

n−1 + · · ·+f0 is a irreducible
modulo every p dividing q. Since R is a free Zq-module of rank n, thus elements of R can be
represented as vectors in Zq relative to standard basis of monomials 1, x, ..., xn−1. Multiplication
by any fixed element of R then acts as a linear transformation on Znq according to the rule

x · (a0, ..., an−1)T = (0, a0, ..., an−2)T − an−1(f0, f1, ..., fn−1)T

and so can be represented by an matrix in Zn×nq relative to the standard basis. In other words,
there is an injective ring homomorphism h : R → Zn×nq that maps any a ∈ R to matrix H = h(a)
representing multiplication by a. As introduced in [MP12], we need a very large set U = {u1, ..., ul}
with the “unit differences” property: for any i 6= j, the difference ui − uj ∈ R∗, and hence
h(ui − uj) = h(ui)− h(uj) ∈ Zn×nq is invertible.

Lemma 2.6 ([MP12]). There is an efficient algorithm SampleO(R,A′,H,u, s), where R is a G-
trapdoor for matrix A with invertible tag H, a vector u ∈ Zn and an oracle O for Gaussian
sampling over a desired coset Λv

q (G). It will output a vector drawn from a distribution within
negligible statistical distance of DΛu(A),s, where A = [A′| −A′R + HG].

In the following, we provide two extensions of the LWE inversion algorithms proposed by Mic-
ciancio and Peikert [MP12], which would be used in the security proof and scheme respectively.

• InvertO(R1,R2,A, b): On input a vector b = sTA + eT, a matrix A = [A0| −A0R1 + H1G| −
A0R2+H2G] and its corresponding G-trapdoor R1,R2 with invertible tag H1,H2, the algorithm

first computes b′ = bT
[R1+R2

I
I

]
, and then run the oracle O(b′) to get (s′, e′). The algorithm

outputs s = (H1 + H2)−1s′ and e = b− sTA.

• Invert′O(R1,R2,A, b): On input a vector b = sTA + eT, a matrix A = [A0| −A0R1| −A0R2 +
H2G] and its corresponding G-trapdoor R1,R2 with invertible tag H1,H2, the algorithm first

computes b′ = bT
[R1+R2

I
I

]
, and then run the oracle O(b′) to get (s′, e′). The algorithm outputs

s = H−1
2 s′ and e = b− sTA.

3 Proxy Re-Encryption: Syntax and Security Definitions

In this section, we first recall the syntax of single-hop PRE [LV08b], and then we define a new variant
of CCA-PRE security, i.e. tag-based CCA-PRE security that captures constructions associated with
tags. However, for lattice-based constructions, our current technique cannot achieve the full-fledged
PRE construction in that the re-encryption algorithm does not provide the full-fledged functionality
in that it does not fully implement the regular re-encryption oracle which decrypts first, outputs ⊥
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if the decrypted value is invalid, and outputs a fresh ciphertext of the same message, otherwise. Our
re-encryption algorithm guarantees the functionality when the input ciphertexts are well-formed,
but if the input ciphertexts are not well-formed, the re-encryption algorithm is not able output ⊥,
yet it can only output re-encrypted ciphertexts that will be decrypted to ⊥. The difference seems
subtle, but it plays an important role in the security we can achieve. We will elaborate on this
later.

We remark that our relaxed functionality is not far from the full-fledged functionality if the
input-ciphretext provider is required to prove the validity of the ciphertexts. We note that there
exists an efficient lattice-based Σ protocol [AJL+12] with interaction, and we can further use the
Fiat-Shamir transform [FS87] to achieve a NIZK proof system if a random oracle is assumed.
We also note that the full-fledged re-encryption oracle requires the ability to distinguish valid
ciphertexts from invalid ciphertexts, which implies a verifiable encryption. As we are not aware
of any pure lattice-based verifiable encryption schemes in the plain model, i.e. without a random
oracle nor interaction, it remains unclear how to achieve the full functionality of the re-encryption.
We leave this as an interesting open problem.

The relaxed the re-encryption algorithm provided meaningful security guarantees and allows
a modular design that achieves the full-fledged functionality, e.g., the proxy additionally requests
a proof of well-formness of the input ciphertexts. The Σ-proofs in the work [AJL+12] are quite
practical, so in practice, our scheme can be combined with either the Σ-proof or the Fiat-Shamir
transform to achieve the full-fledged functionality.

3.1 Single-Hop PRE Syntax

We recall the syntax of uni-directional PRE, which can be regarded as a natural extension of
bi-directional case defined in [CH07] and later studied in uni-directional scenario by Libert and
Vergnaud [LV08b]. The PRE scheme consists a tuple of ppt algorithms (Setup,KeyGen,Enc,Dec,
ReKeyGen,ReEnc), which can be defined as follows:

• pp← Setup(1λ) generates the public parameters pp.

• (pk, sk)← KeyGen(pp) generates (pk, sk) for each user.

• ct ← Enc(pk, µ, i) encrypts a message µ at level i ∈ {1, 2}. The re-encryption can only operate
on ciphertexts that are at level 1.

• µ′ = Dec(sk, (ct, i)) decrypts a ciphertext ct.

• rki→j ← ReKeyGen(pki, ski, pkj) computes the re-encryption key rki→j .

• (ct′, 2) ← ReEnc(rki→j , (ct, 1)) computes the re-encrypted ciphertext ct′. If the well-formedness
of ciphertext ct is publicly verifiable, the algorithm should output “invalid” when ct is ill-formed.

Correctness. For correctness, we consider two cases for the PRE scheme: one for “fresh” cipher-
texts generated by encryption algorithm, and the other for re-encryption ciphertexts generated by
the re-encryption algorithm. We say that a single-hop PRE scheme is correct if the following holds.

• For any pp← Setup(1λ), any (pk, sk)← KeyGen(pp), any message µ and level i ∈ {1, 2}, it holds
that

Pr[Dec(sk,Enc(pk, µ, i)) = µ] = 1− negl(λ)
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• For any pp← Setup(1λ), any (pki, ski), (pkj , skj)← KeyGen(pp), any message µ, it holds that

Pr[Dec(skj ,ReEnc(rki→j , ct)) = µ] = 1− negl(λ)

where ct← Enc(pki, µ, 1), rki→j ← ReKeyGen(pki, ski, pkj).

3.2 Single-Hop PRE Security Definitions

In the security part, we first present the CCA-PRE definition proposed in [LV08b] with minor mod-
ifications – in particular the definition of derivative in security model. Next, we describe a weaker
security model considered in [Kir14], whose restriction is: the re-encryption queries submitted by
the adversary are only allowed between honest users. Then we propose an intermediate model,
where the capability of re-encryption oracle is slightly weaker than its counterpart in [LV08b]. In-
tuitively, we say a ciphertext is well-formed if it is an encryption of a message under the claimed
public key. In the re-encryption oracle in [LV08b], the well-formedness of ciphertext is public verifi-
able, i.e the verification only needs public keys. However, in our intermediate model, the verification
needs the assistance of secret keys. Let A denote any ppt adversary, and Π be a PRE scheme. We
define the notion of CCA-secure PRE in the uni-directional setting using the following experiment
ExptCCA-PREA (1λ), which describes the interaction between several oracles and an adversary A. As
we discussed before, we include public parameters pp in each user’s public key pk and secret key
sk, so we will omit pp in the description for simplicity. The experiment ExptsingleA (1λ) consists of
an execution of A with the following oracles with detail as follows:

• The challenger runs setup algorithm pp← Setup(1λ) and initializes two empty sets H = ∅, C = ∅.
Then he sends pp to adversary A.

• Proceeding adaptively, adversary A has access to the following oracles:

Uncorrupted key generation oracle: Obtain a new key pair (pki, ski) ← KeyGen(pp). Send
pki back to adversary A, set the honest user set H = H ∪ {i} and pass the the tuple
(i, pki, ski) to re-encryption key generation oracle OReKeyGen and decryption oracle ODec.

Corrupted key generation oracle: Obtain a new key pair (pki, ski)← KeyGen(pp). Send the
key pair (pki, ski) back to adversary A, set the corrupted user set C = C ∪ {i} and pass
the tuple (i, pki, ski) to re-encryption key generation oracle OReKeyGen and decryption oracle
ODec.

Re-encryption key generation oracle OReKeyGen: On input an index pair (i, j) from the ad-
versary, if the query (i, j) is made after accessing the challenge oracle, then output ⊥ if
i = i∗. Otherwise, do the following:

– If the pair (i, j) is queried for the first time, the oracle returns a re-encryption key
rki→j ← ReKeyGen(pki, ski, pkj);

– else (the pair (i, j) has been queried before), the oracle returns the re-encryption key
rki→j .

Re-encryption oracle OReEnc: On input (i, j, (ct, k)), the oracle returns a special symbol ⊥ if
(ct, k) is not a well-formed first level ciphertext, or j ∈ C and (i, ct) = (i∗, ct∗) . Otherwise,
it computes re-encrypted ciphertext ct′ ← ReEnc(rki→j , ct) and sends back (ct′, 2).

Decryption oracle ODec: On input (i, ct), if i /∈ C ∪ H or ct is not a valid ciphertext, then
return a special symbol ⊥. It also outputs a special symbol ⊥ if (i, ct) is a Derivative (c.f.
Definition 3.2) of the challenge pair (i∗, ct∗). Otherwise, it returns Dec(ski, ct) to adversary
A.

10



Challenge oracle: This oracle can be queried only once. On input (i∗, µ0, µ1), where i∗ ∈ H
and no re-encryption key from i∗ to corrupted users C has been queried by adversary, the
oracle chooses a bit b ∈ {0, 1} and returns ct∗ ← Enc(pki∗ , µb, 1) as the challenge ciphertext,
and passes i∗ to re-encryption key generation oracle OReKeyGen, and (i∗, ct∗) to re-encryption
oracle OReEnc.

Decision oracle: This oracle can be queried only once. On input b′ from adversary A, the
oracle outputs 1 if b′ = b, and 0 otherwise.

The advantage of an adversary in the above experiment ExptsingleA (1λ) is defined as |Pr[b′ =
b]− 1

2 |.

Definition 3.1 (CCA-PRE model). A uni-directional PRE scheme is CCA-PRE secure if all ppt

adversaries have at most a negligible advantage in experiment ExptsingleA (1λ).

In our PRE construction, every ciphertext is associated with a tag u chosen randomly in the
encryption algorithm, thus we call our security model tag-based CCA security. In [LV08b], a pair
(i, ct) is called derivative of the challenge ciphertext pair (i∗, ct∗) if Dec(ct, ski) ∈ {µ0, µ1}, where
{µ0, µ1} are the challenge message pair. We achieve a slightly stronger notion of derivative as
defined in the following

Definition 3.2 (Derivative). A pair (i, (ct, u)) is called derivative of the challenge ciphertext pair
(i∗, (ct∗, u∗)) if u = u∗.

Remark 3.3. It is obvious to see that tag-based CCA security is stronger than CCA1 security
(where the adversary cannot access the decryption oracle after the challenge ciphertext), and is
slightly weaker than CCA2 security. This relaxation is meaningful and can be nearly the best we
can achieve if we further require the property of unlinkability for re-encrypted ciphertexts. That
is, if we want the re-encrypted algorithm to produce statistically indistinguishable ciphertexts, i.e.
the re-encrypted ciphertexts are almost identically distributed as fresh ones, then arguably it is not
possible to achieve CCA2 security, because the decryption oracle cannot distinguish a re-encryption
of challenge ciphertext from a fresh ciphertext, so an adversary can easily break the security game
by querying the decryption oracle with a re-encrypted ciphertext of the challenge ciphertext. For
tag-based schemes, where the tag remains the same for re-encrypted ciphertexts, we can ensure that
the challenge ciphertext will not be decrypted by the decryption oracle due to derivative definition
(c.f. Definition 3.2). The tag-based CCA security guarantees the challenge ciphertext remains
hidden, even if the adversary can obtain decryptions of ciphertexts with other tags.

The above security model only captures the CCA security of ciphertexts on the first level. We
also present the CCA security of ciphertexts on the second level. Since the challenge ciphertext is
on the second level, which means it cannot be further re-encrypted to ciphertext under other public
keys, so there is no need to restrict the re-encryption queries regarding the challenge ciphertext.
We highlight the difference comparing to security model of first level ciphertexts in the following
definition.

Definition 3.4 (Second-level security). The difference of experiment between second-level security
and the security definition in Definition 3.1 are below:

• In challenge oracle: the oracle returns ct∗ ← Enc(pki∗ , µb, 2) as the challenge ciphertext.

• The re-encryption oracle OReEnc does not need to check whether the queried tuple is the same as
challenge ciphertext.
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Definition 3.5 (PRE with Relaxed Functionality). A PRE scheme with a relaxed functionality
if the re-encryption algorithm outputs statistically close to the distribution of fresh ciphertexts of
the second level when the input ciphertexts are well-formed. That is, if (ct, 1) is a well-formed
ciphertext, then ReEnc(rki→j , (ct, 1)) is statistically close to (ct′, 2)← Enc(pkj ,Dec(ct, 1), 2). If the
input ciphertexts are not well-formed, then only Dec(skj , (ct

′, 2)) = ⊥ is guaranteed.

Remark 3.6. As we argued above, the relaxed functionality does not completely implement the
re-encryption oracle OReEnc as in the above definition. The difference can be bridged by a crypto
proof system, (either interactively or non-interactively) assuming the input ciphertext is associated
with a proof. We present the formal description of this idea in the full version of this paper.

In our construction, we do not allow querying the relaxed functionality directly with arbitrary
input ciphertexts re-encrypted to a corrupted party, e.g., invalid input ciphertexts chosen by the
adversary to some corrupted Party j. As the transformation can leak the re-encryption key, if the
adversary corrupts Party j and can obtain a re-encryption key rki→j, then he can easily break the
security of pki.

We note that the the CCA model of [Kir14] is weaker than the model considered in this paper.
In particular, the model [Kir14] has the following restrictions: the re-encryption key queries (or
re-encryption queries) submit by adversary A are restricted among honest users (we ignore the
re-encryption queries within corrupted users, since adversary can generate by himself).

3.3 Multi-Hop Proxy Re-Encryption

As mentioned in the introduction, the security model of multi-hop is defined with respect to a
tree committed by the adversary before obtaining the public parameters. Let L = L(λ) de-
notes the maximum level the system supports. A multi-hop PRE scheme consists of algorithms
(Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc). In comparison with single-hop PRE, we only empha-
size the difference in algorithms (Setup,Enc,ReKeyGen).

• pp← Setup(1λ, 1L) generates public parameters pp.

• ct← Enc(pki, µ, κ) computes a ciphertext ct for message µ at level κ. The re-encryption can only
operate on ciphertexts at level κ ∈ [L− 1].

• rkκi→j ← ReKeyGen(pki, ski, pkj , κ) computes a re-encryption key from level κ of public key pki to
level κ+ 1 of public key pkj as rkκi→j .

Correctness. The correctness of multi-hop PRE can be defined similarly as single-hop PRE, i.e.
by requiring successful decryption for “fresh” ciphertexts and re-encrypted ciphertext.

Security definitions. Next, we present the security definitions of multi-hop PRE. We first define
an experiment Exptmulti

A (1λ) between a challenger associated with several oracles and an adversary
A :

• In the beginning of the experiment, adversaryA commits to challenger a tree structure T = (V,E)
and target level κ∗, where the root r of the tree serves as the target user. The challenger first
runs a Deep-First Search to associated each edge with a level index `(i), by increasing from
root user’s target level κ∗, and updates the edge set by augmenting each pair (i, j) with its
level index (i, j, `(i)). The challenger then runs pp ← Setup(1λ, 1L); for every user i ∈ V , the
challenger computes (pki, ski)← KeyGen(pp) and for every (i, j, κ) ∈ E, the challenger computes
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re-encryption keys {rkκi→j}. He then sets H = V , K = {rkκi→j}(i,j,κ)∈E . Additionally, the
challenger maintains a graph G = (V ′, E′) initially set to V ′ = V , E′ = E. The challenger then
sends (pp, {pki}i∈V ) to adversary A.

• Adversary A has access to the following oracles adaptively:

Honest key generation oracle: Obtain a new key pair (pki, ski) ← KeyGen(pp) for a new
index i. The oracle updates the honest users set H = H∪{i} and V ′ = V ′∪{i}, and then sends
pki to adversary A.

Corrupt key generation oracle: Obtain a new key pair (pki, ski) ← KeyGen(pp) for a new
index i. The oracle updates the corrupted users set C = C ∪ {i} and V ′ = V ′ ∪ {i}, and sends
(pki, ski) to adversary A.

Decryption oracle ODec: On input (i, (ct, κ)), if i /∈ V ′ or κ ≤ L or ct is not a valid ciphertext,
then return a special symbol ⊥. It also outputs a special symbol ⊥ if (i, ct) is a Derivative of the
challenge pair (i∗, ct∗), which means Dec(ct, ski) ∈ {µ0, µ1}. Otherwise, it returns Dec(ski, ct)
to adversary A.

Re-encryption oracle OReEnc: On input (i, j, (ct, κ)), the oracle outputs ⊥ if the ciphertext
ct is not well formed. Otherwise,

– If the edge (i, j, κ) ∈ E′, then find re-encryption key rkκi→j , and computes ct′ ← ReEnc(rkκi→j , ct).
Then send back (ct′, κ+ 1) to adversary A.

– If edge (i, j, κ) /∈ E′, j ∈ V and κ = `(j)− 1, then output ⊥.

– Otherwise, call re-encryption key generation oracle OReKeyGen with input (i, j, κ) to obtain
re-encryption key rkκi→j , and send back σ′ ← ReEnc(rkκi→j , σ) to adversary.

Re-encryption key generation oracle OReKeyGen: On input user index i, j and level index κ,
the oracle outputs ⊥ if j ∈ C and the edge (i, j, κ) is not an admissible edge (c.f. Definition 3.7)
with respect to edge set E and target user and level (r, κ∗). Otherwise,

– If (i, j, κ) ∈ E′, then search for the re-encryption key rkκi→j in set K, and send back rkκi→j
to adversary A.

– Otherwise, compute and send back rkκi→j ← ReKeyGen(pki, ski, pkj , κ) to adversary A, then
updates set E′ = E′ ∪ (i, j, κ),K = K ∪ {rkκi→j)}.

Challenge oracle: This oracle can be queried only once. On input (µ0, µ1), the oracle chooses
a bit b ∈ {0, 1} and returns ct∗ ← Enc(pkr, µb, κ

∗) as the challenge ciphertext.

Decision oracle: This oracle can be queried only once. On input b′ from adversary A, the
oracle outputs 1 if b′ = b, and 0 otherwise.

The advantage of an adversary in the above experiment Exptmulti
A (1λ) is defined as |Pr[b′ = b]− 1

2 |.

Definition 3.7 (Admissible edge). We call edge (i, j, κ) a legal edge regarding edge set E and
vertex/level pair (t, κ∗), if there dose not exist a path {(t, s, κ∗), (s, r, κ∗ + 1), ..., (i, j, κ)} ∈ E ∪
{(i, j, κ)}.

Definition 3.8 (Multi-hop uni-directional CCA-PRE). A L-hop uni-directional PRE scheme is
CCA-PRE secure if all ppt adversaries have at most a negligible advantage in experiment Exptmulti

A (1λ).

Remark 3.9. For our multi-hop model and construction, we only consider the intermediate model,
i.e. the verification of well formedness of queried ciphertext to re-encryption needs the assistance of
secret keys. The generic transformation from intermediate security model to the model in [LV08b]
dose not work for multi-hop scenario. Therefore, we leave it as an interesting open problem.
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The following Figure 1 provides the idea of admissible edges: suppose adversary A first commits
the tree T = (V,E) as in Figure 1 and target level κ∗, where V = {r, i1, i2, i3, i4, i5} and edge set
E as in the figure. The challenger then runs a deep first traversal to associate each edge with its
starting level, e.g. (i1, r, `(i1) = κ∗ + 1), and updates the edge set E correspondingly. Adversary
can later request a corrupt user, named user j, and ask the re-encryption key generation oracle
OReKeyGen to generate re-encryption keys for (j, i2, κ

∗ + 2) (the red dashed line in Figure 1) and
(k, i3, κ) (the green dashed line in Figure 1), where κ 6= κ∗ + 3. For edge (j, i2, κ

∗ + 2), since there
is a path, i.e. {(r, i2, κ∗ + 1), (i2, j, κ

∗ + 2)} from the target level of root user (r, κ∗), thus the
edge (j, i2, κ

∗ + 2) is not admissible, which means OReKeyGen would output ⊥. However, since edge
(k, i3, κ) is admissible, oracle OReKeyGen would output re-encryption key rkκk→i3 to adversary A.

r, κ∗

i1

κ ∗+ 1

i2

i3

i4

κ ∗
+

3

i5
κ∗ + 3

k

κ
6= κ
∗ +

3
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j
κ
∗ + 2

κ
∗ + 1

Figure 1: Illustration of multi-hop PRE security model

4 Single-hop Tag-based CCA-Secure PRE Construction

In this section, we present our construction of single-hop PRE. The PRE system has message
space {0, 1}nk, which we map bijectively to the cosets of Λ/2Λ for Λ = Λ(Gt) via some encod-
ing function encode that is efficient to evaluate and invert. In particular, letting S ∈ Znk×nk
be any basis of Λ, we can map µ ∈ {0, 1}nk to encode(µ) = Sµ ∈ Znk. The PRE scheme
(Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) can be described as follows:

• Setup(1λ, 1N ): The global setup algorithm set the lattice parameter (n, k, q, s). Then it randomly
selects a matrix A ∈ Zn×nkq , and outputs the public parameter pp = (A, n,m, q, s).

• KeyGen(pp): The key generation algorithm for i-th user chooses random matrices Ri1,Ri2 ←
DZnk×nk,s, letting Ai1 = ARi1 mod q and Ai2 = ARi2 mod q. The public key is pki = Ai =
[A| −Ai1| −Ai2], and the secret key is ski = [Ri1|Ri2].

• Enc(pki,µ, `): The encryption algorithm does

– If ` = 1, choose non-zero u← U and let the message/level-dependent matrix

Ai,u,l = [A| −Ai1 + h(`)G| −Ai2 + h(u)G]

Choose s← Znq , e0, e1, e2 ← DnkZ,s. Let

bT = (b0, b1, b2) = 2(sTAi,u,` mod q) + eT + (0, 0, encode(µ)T) mod 2q

where e = (e0, e1, e2). Output the ciphertext ct = (u, b, 1).
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– If ` = 2, the algorithm uses the same procedure to encrypt the message, except it chooses error
e0, e1, e2 ← DnkZ,s′ , and outputs ct = (u, b, 2).

• Dec(ski, ct): The decryption algorithm

1. If ct does not parse or u = 0, output ⊥. Otherwise, reconstruct the message/level-dependent
matrix Ai,u,`

Ai,u,l = [A| −Ai1 + h(`)G| −Ai2 + h(u)G]

Call InvertO([Ri1|Ri2],Au, b mod q) to get values z ∈ Znq and e = (e0, e1, e2) for which
b = z + e mod q. If the algorithm Invert fail for any reason, output ⊥.

2. Check the length of the obtained error vectors.

3. Let v = b− e, and parse v = (v0,v1,v2). If v0 /∈ 2Λ(AT), output ⊥. Finally, output

encode−1(vT

Ri1 Ri2

I 0
0 I

 mod 2q) ∈ {0, 1}nk

if it exists, otherwise output ⊥.

• ReKeyGen(pki, ski, pkj): The re-encryption key generation algorithm does:

1. Use ski = [Ri1|Ri2] to run extended sampling algorithm SampleO to sample X01,X02,X11,X12 ∈
Znk×nk such that

[A| −Ai1 + h(1)G| −Ai2 + B]

I X01 X02

0 X11 X12

0 0 I

 = [A| −Aj1 + h(2)G| −Aj2 + B]

for any matrix B ∈ Zn×nk.
2. Output the re-encryption key

rki→j = {X01,X02,X11,X12}

• ReEnc(rki→j , ct): The re-encryption algorithm output a special symbol ⊥ if ` = 2. Otherwise, it
computes

bT · rki→j = sT[A| −Aj1 + h(1)G| −Aj2 + h(u)G] + e′T + ẽT + (0, 0, encode(µ)T)

where e′ = (e′0, e
′
1, e
′
2), ẽ← DZ3nk,s′ , and

e′0 = e0, e′1 = e0X01 + e1X11, e′2 = e0X02 + e1X12 + e2

Then, it outputs ct′ = (u, b′, 2).

Correctness. We show that our construction, with appropriate parameter setting specified in
Section 6.5, satisfies the correctness condition defined above.

Lemma 4.1 (Correctness). Let (Ai, (Ri1,Ri2)) and (Aj , (Rj1,Rj2)) be the public/secret key pair
for i, j-th user respectively in the PRE system. Let ct = (u, b, 1) be the ciphertext of plaintext µ
for i-th user, and ct′ = ReEnc(rki→j , ct) be the re-encrypted ciphertext for j-th user. Then as we
require above, it holds µ← Dec(ct′, skj).
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Proof. Parse ciphertext ct as ct = (u, b, 1). Per correctness, we have

bT = 2(sTAi,u,1 mod q) + eT + (0, 0, encode(µ)T) mod 2q

where Ai,u,1 = [A| −Ai1 + h(1)G| −Ai2 + h(u)G]. The re-encryption process can be re-phrased
as follows:

sT[A| −Ai1 + h(1)G| −Ai2 + h(u)G]

I X01 X02

0 X11 X12

0 0 I

+ noise + (0, 0, encode(µ)T)

= sT[A| −Aj1 + h(2)G| −Aj2 + h(u)G] + noise + (0, 0, encode(µ)T)

= sTAj,u,2 + noise + (0, 0, encode(µ)T)

where the noise terms is defined in algorithm ReEnc. It is obvious that the re-encrypted ciphertext
can be decrypted using j-th secret key, thus we omit the detail for decryption here.

4.1 Security Proof

We follow the intuition explained in the introduction part to prove security. Due to space constraint,
we omit the proofs of claims showing the indistinguishability between two consecutive hybrids, and
include these proofs in the full version.

Theorem 4.2. Assuming the hardness of LWEq,α′ (α′ = α/3 ≥ 2
√
n/q), the proxy re-encryption

scheme is CCA-PRE secure as defined in Definition 3.1.

Proof. First, using the same technique in [MP12], we can transform the samples from LWE dis-
tribution to what we will need below. Given access to an LWE distribution As,α′ over Zq × T
(where T = R/Z), we can transform its samples (a, b = 〈s,a〉/q + e mod 1) to have the form
(a, 2(〈s,α〉 mod q) + e′ mod 2q) for e′ ← DZ,αq, by mapping b to 2qb + DZ−2qb,s mod 2q where
s2 = (αq)2−(2α′q)2 ≥ 4n ≥ ηε(Z)2. The transformation maps the uniform distribution over Znq ×T
to the uniform distribution over Znq × Z2q. Once the LWE samples are of the desired form, we
construct column-wise matrix A∗ from these samples a and a vector b∗ from the corresponding b.
Without loss of generality, we randomly choose one uncorrputed user as the challenge user, which
will result in a polynomial loss in the security proof. We proceed via a sequence of hybrid games:

Hybrid H0 : The game H0 is exactly the CCA attack with the real system described above.

Hybrid H1 : In game H1, we change the way to generate uncorrupted pk, challenge ciphertext
ct∗ and re-encryption keys rk, that are hard to distinguish from the counterparts in game H0. We
set the public parameter matrix A = A∗, where A∗ is from LWE instance (A∗, b∗), and select a
random element u∗ ∈ U . We initialize two empty sets H and C.

• Uncorrupted key generation oracle: To obtain a public key for uncorrupted user of the
challenge user i∗ ∈ H, the oracle chooses random matrices Ri∗1,Ri∗2 from {−1, 1}m×m, then
output the public key to be

pki∗ = [A∗| −A∗Ri∗1 − h(1)G| −A∗Ri∗2 − h(u∗)G]

For uncorrupted query i ∈ H other than challenge user i∗, the oracle firstly chooses and stores
matrices Xi,01,Xi,11,Xi,02,Xi,12 from Dnk×nkZ,s , and set

Ai1 = [A| −Ai∗1]

[
Xi,01

Xi,11

]
Ai2 = [A| −Ai∗1]

[
Xi,02

Xi,12

]
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where Ai∗1 = ARi∗1,Ai∗2 = ARi∗2. Then the oracle outputs the public key for i-th query as

pki = [A| −Ai1 − h(2)G| −Ai2 + Ai∗2]

Also since the oracle does not reveal any secret key of uncorrupted users, the output of {pki}i∈C
other than the challenge ciphertext does not reveal the choice of u∗ as well.

• Corrupted key generation oracle: To obtain the pair of secret and public keys for corrupted
user i, the oracle chooses random matrices Ri1,Ri2 ← D, letting Ai1 = ARi1 mod q and Ai2 =
ARi2 mod q, sends back ski = [Ri1|Ri2] and sets C = C

⋃
{i}

• Re-encryption key generation oracle: On input (i, j), re-encryption oracle outputs ⊥ if
i = i∗ and j ∈ C. Otherwise, since there exist some differences in the key generation process
between the first query and the rest queries, we divide the process into two cases as follows. For
the cases where i ∈ C, the adversary can compute the re-encryption key from corrupted users to
any user by himself because of the fact that he has the secret key, thus we omit the cases here.

1. The generation of re-encryption key from challenge user i∗ to other user i ∈ H from level
1 to level 2: The oracle can use the pre-sampled matrices {X} in the generation of pki to
re-construct the re-encryption key rki∗→i as:

rki∗→i =

I Xi,01 Xi,02

0 Xi,11 Xi,12

0 0 I


where matrices Xi,01,Xi,11,Xi,02,Xi,12 are pre-sampled previously in the key generation ora-
cle. Each entry of the resulting re-encryption key is an inner product of a discrete Gaussian
vector and a vector consisting of {0, 1}, so the simulated re-encryption keys from challenge user
to other uncorrupted users have the same distribution as a re-encryption key in the scheme.

2. The generation of re-encryption key from user i ∈ H (i 6= i∗) to user j (j ∈ H
⋃
C) from level

1 to level 2: We first reconstruct the level-dependent matrix Ai for i-th users as:

Ai = [A| −Ai1 + (h(1)− h(2))G] = [A∗| −A∗R∗i1 + (h(1)− h(2))G]

where R∗i1 = Xi,01−Ri∗1Xi,11. We can still compute the re-encryption key matrix using Sample
algorithm in the same way as in H0, since matrix (h(1) − h(2))G is non-zero in encryption
matrix Ai. The generation of re-encryption keys in this case still uses algorithm SampleO,
thus the distribution of simulated re-encryption keys is statistically close to that in the real
scheme.

• Re-encryption oracle: On input query (i, j, ct) from adversary A, the oracle first parses ci-
phertext ct = (u, b, `), and outputs ⊥ if ` = 2 or u = u∗, j ∈ C when the re-encryption query is
made after the challenge query. The oracle answers the queries in following cases:

– i 6= i∗: In this case, the oracle uses the re-encryption key generated before to compute
b′ = ReEnc(rki→j , b) and output (u, b′, 2).

– i = i∗: In this case, the oracle first decrypts ciphertext by calling decryption oracle described
below on input (i∗, ct) to obtain µ. Then it computes b′ ← Enc(pki∗ , µ, 2;u) and outputs
(u, b′, 2).

• Decryption oracle: On decryption query (i, ct) from adversary A, the oracle first parses cipher-
text ct = (u, b, `), and outputs ⊥ if u = 0. If the decryption queries are made after the challenge
oracle query, then oracle outputs ⊥ if u = u∗. Then oracle divides the decryption process into
following four cases:

17



1. If i = i∗ and ` = 1, oracle reconstructs the message/level-dependent matrix Ai∗,u,1 as

Ai∗,u,1 = [A∗| −A∗Ri∗1| −A∗Ri∗2 + (h(u)− h(u∗))G]

Call Invert′O([Ri∗1|Ri∗2],Ai∗,u, b mod q) to get some z ∈ Zn and e. Then oracle performs
step 3 exactly as in Dec, except using [Ri∗1|Ri∗2] to decode message.

2. If i = i∗ and ` = 2, oracle reconstructs the message/level-dependent matrix Ai∗,u,2 as

Ai∗,u,1 = [A∗| −A∗Ri∗1 + (h(2)− h(1))G| −A∗Ri∗2 + (h(u)− h(u∗))G]

Call InvertO([Ri∗1|Ri∗2],Ai∗,u, b mod q) to get some z ∈ Zn and e. Then oracle performs step
3 exactly as in Dec, except using [Ri∗1|Ri∗2] to decode message.

3. If i 6= i∗ and ` = 1, oracle reconstructs the message/level-dependent matrix Ai,u,1 as

Ai,u,1 = [A∗| −A∗R∗i1 + (h(1)− h(2))G| −A∗R∗i2 −Ai∗3 + (h(u)− h(u∗))G]

= [A∗| −A∗R∗i1 + (h(1)− h(2))G| −A∗(R∗i2 + Ri∗2) + (h(u)− h(u∗))G]

where R∗i2 = (Xi,02 −Ri∗1Xi,12). Call algorithm InvertO([R∗i1|R∗i2 + Ri∗2],Ai,u,
b mod q) to get some z ∈ Zn and e. Then oracle performs step 3 exactly as in Dec, except
using [R∗i1|R∗i2 + Ri∗2] to decode message.

4. If i 6= i∗ and ` = 2, oracle reconstructs the message/level-dependent matrix Ai,u,2 as

Ai,u,2 = [A∗| −A∗R∗i1| −A∗R∗i2 −Ai∗3 + (h(u)− h(u∗))G]

= [A∗| −A∗R∗i1| −A∗(R∗i2 + Ri∗2) + h(u− u∗)G]

where R∗i2 = (Xi,02 −Ri∗1Xi,12). Call algorithm Invert′O([R∗i1|R∗i2 + Ri∗2],Ai,u,
b mod q) to get some z ∈ Zn and e. Then oracle performs step 3 exactly as in Dec, except
using [R∗i1|R∗i2 + Ri∗2] to decode message.

In summarize, the decryption oracle can answer any decryption queries for uncorrupted users as
long as u 6= u∗, which is ensure with overwhelming probability because u∗ is statistically hidden,
and by the “unit difference” property on set U we have h(u)−h(u∗) = h(u− u∗) is invertible, as
require by calling InvertO algorithm.

• Challenge oracle: The oracle produces challenge ciphertext (u, b, 1) on a message µ∗ ∈ {0, 1}nk
as follows. Let u = u∗, then the message/level-dependent matrix is Ai∗,u∗,1 = [A∗| −A∗Ri∗1| −
A∗Ri∗2]. Then oracle sets the first nk coordinates of challenge ciphertext b to be b0 = b∗, where
(A∗, b∗) is the LWE instance. The last 2nk coordinates can be set as

b1 = bT0 Ri∗1 + e1 mod 2q, b2 = bT0 Ri∗2 + e2 + encode(µ∗) mod 2q

where e1, e2 ∈ DnkZ,s. Then oracle output the challenge ciphertext ct = (µ∗, b).

Hybrid H2 : In game H2, the vector in LWE instance b̃∗ ∈ Znk2q is sampled uniformly random.

We change how the first nk coordinate of challenge ciphertext is created, by letting it be b̃∗. We
construct the pubic key for each user, answer the queries, and construct the last 3nk coordinates
of challenge ciphertext in the exactly way as in H1.

Claim 4.3. Hybrids H0 and H1 are statistically close.

Claim 4.4. Assuming the hardness of LWE assumption, then hybrid H1 and H2 are computationally
indistinguishable.

Claim 4.5. In hybrid H2, the probability of adversary wining the game is zero.

Combining hybrids H0,H1,H2 and the above claims, we complete the proof.
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4.2 Parameter Selection

In this section, we set the lattice parameters used in our construction. G ∈ Zn×nkq is a gadget
matrix for q = poly(n), n = poly(λ) and k = O(log q) = O(log n). For matrix A ∈ Zn×mq in the

public parameters and secret keys R ← D, we set m = O(nk) and D = Dm×nk
Z,w(

√
logn)

respectively.

We set the deviation s for discrete Gaussian distribution used in security proof to be s = w(
√

log n).
For the error rate α in the LWE assumption, we set sufficiently large 1/α = O(nk) · w(

√
log n).

5 Multi-hop Tag-based CCA-Secure PRE Construction

In this section, we present our construction for multi-hop tag-based CCA secure PRE scheme as
defined in Definition 3.8. The construction can be viewed as a natural variant of the single-hop
scheme presented in Section 4. The maximum times of re-encryption applied to the ciphertext
depends on the types of LWE assumptions.

We construct the large set U and encode messages µ ∈ {0, 1}nk using the same technique as
the single-hop case as Section 4. Here instead of encoding the level ` in the encryption matrix
(recall that in the previous scheme ` ∈ {1, 2}), in the multi-hop scheme, each user chooses a
random public element vi ∈ U . The encryption algorithm will choose a random element u ∈ U
(as a tag) for each encryption, and embeds the matrices h(vi), h(u) into the encryption matrix as:
Ai,u = [A| −Ai1 + h(vi)G| −Ai2 + h(u)G]. We describe the scheme in detail as follows:

• Setup(1λ, 1`): The setup algorithm sets the lattice parameter n = n(λ, `), k = k(λ, `), q = q(λ, `)
and Gaussian parameter s = s(λ, `). Then it randomly selects a matrix A ∈ Zn×nkq , and outputs
the public parameter pp = (A, n, k, q, s).

• KeyGen(pp): The key generation algorithm for i-th user chooses random matrices Ri1,Ri2 ←
DZnk×nkq ,s, letting Ai1 = ARi1 mod q and Ai2 = ARi2 mod q. The public key is pki = [A| −
Ai1| −Ai2], and the secret key is ski = [Ri1|Ri2].

• Enc(pki,µ, κ): The encryption algorithm chooses non-zero u ← U and let the message/user-
dependent matrix

Ai,u = [A| −Ai1 + h(κ)G| −Ai2 + h(u)G]

The rest of encryption algorithm is the same as encryption algorithm in single-hop CCA-PRE
scheme described in Section 4.

• Dec(ski, ct):The decryption algorithm does:

1. If ct does not parse or u = 0, output ⊥. Otherwise, reconstruct the message/user-dependent
matrix Ai,u

Ai,u = [A| −Ai1 + h(κ)G| −Ai2 + h(u)G]

The rest of decryption algorithm is the same as decryption algorithm in single-hop CCA-PRE
scheme described in Section 4.

• ReKeyGen(pki, ski, pkj , κ): The re-encryption key generation algorithm does:

1. First, it parses i-th public/secret key pair and j-th public key as follows:

pki = [A| −Ai1| −Ai2], ski = [Ri1|Ri2], pkj = [A| −Aj1| −Aj2]
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2. Use extended sampling algorithm SampleO to sample X01,X02,X11,X12 ∈ Znk×nk such that

[A| −Ai1 + h(κ)G| −Ai2 + B]

I X01 X02

0 X11 X12

0 0 I

 = [A| −Aj1 + h(κ+ 1)G| −Aj2 + B]

for any matrix B ∈ Zn×nk.
3. Output the re-encryption key

rkκi→j = {X01,X02,X11,X12}

• ReEnc(rkκi→j , ct): The re-encryption algorithm for tree-based PRE is the same as the counterpart
in single-hop CCA-PRE secure scheme in Section 4.

It is obviously to see that with appropriate parameter setting as specified in Section 5.2, the
correctness of the construction can be implied by the correctness of previous scheme as proof for
Lemma 4.1.

5.1 Security Proof

In this section, we prove our tag–based multi-hop PRE construction is CCA-secure as Definition 3.8.
As described in experiment Exptmulti

A (1λ), the adversary needs to commit a tree structure T before
obtaining public parameters and public keys for nodes in the tree. Given the tree T beforehand,
the reduction can simulate the public keys and re-encryption keys in a specified order. On the other
hand, if the structure is unknown, then it is unclear how the reduction can simulate all the rk’s in
an arbitrary order of queries. This limitation comes from current techniques in security proof, yet
there are no known attacks to the construction, to our knowledge. It is an interesting open problem
to determine whether the construction achieves the full security notion as defined in Definition 3.8.

Theorem 5.1. Assuming the hardness of LWEq,α′ where α′ = α/3 ≥ 2
√
n/q, the proxy re-

encryption scheme is CCA-secure as defined in Definition 3.8.

Intuition. At a high level, the reduction simulates the oracles described in experiment Exptmulti
A (1λ)

using LWE instance. In particular, the public key of the root user is generated by embedding the
committed information of challenge level κ∗ and a randomly chosen target tag t∗ for challenge
ciphertext, and for generating public keys of the vertex on the tree, the reduction first sample
re-encryption key for edges (associated with levels as described in Definition 3.8), then the public
key of vertex is a multiplication of re-encryption key and its parent’s public key. Generating public
key for vertex i in this manner ensures the trapdoor using for computing re-encryption keys dose
not vanish except for its tree level `(i). Therefore, for re-encryption key queries with respect to
admissible edges, the reduction can still obtain re-encryption key from the distribution. The reduc-
tion generates the public key for other users that are not on the tree, using the KeyGen algorithm,
thus the queries for re-encryption keys between these users or re-encryption keys towards these
users are not restricted. For the decryption query, the reduction can decrypt ciphertext as long as
the tag is not the target one t∗, since the trapdoor for decryption dose not vanish. At the end of
experiment, the adversary has to guess the random bit b′ selected in challenge oracle, where the
challenge ciphertext is computed from the LWE instance. Due to space constraint, we include the
proof in the full version.

20



5.2 Parameter Selection

G ∈ Zn×nkq is a gadget matrix for k = O(log q) = O(log n). For matrix A ∈ Zn×mq in the public

parameters and secret keys R ← D, we set m = O(nk) and D = Dm×nkZ,w(
√

logn)
respectively. We set

the deviation s for discrete Gaussian distribution used in security proof to be s = w(
√

log n). After
each re-encryption the noise will grow a

√
ms factor. For the error rate α in the LWE assumption,

we set sufficiently large 1/α = O(nk) · w(
√

log n). We use H to denote the maximum depth of the
tree structure used in our construction, and we have H = O(n/ log n). In order to achieve fixed
poly-log depth H, so q has to set to be greater then mH/2. Thus we have to rely sub-exponential
LWE to set q = 2n

ε
, 0 < ε < 1, then n = 2λ

ε
, 0 < ε < 1. We notice that in [LL15], Laine and

Lauter proposed an attack for LWE assumption when q is exponentially large (i.e. 2cn), but in our
setting, q = 2n

ε
is sub-exponentially in terms of the security parameter, so our assumption still

holds. If we want to rely on standard LWE assumption, then we can achieve constant depth by
setting q = poly(n), n = poly(λ).

6 Proxy Re-Signature with Selectively Chosen Tag

In this section, we present the syntax and security definition of PRS, and then describe our con-
struction.

6.1 Syntax and Correctness Definition

We first recall the syntax and security definition of PRS in [AH05, LV08a], then propose a simpler
and unified security model that captures the security requirements. Our model adapts the same
spirit of the prior security model of proxy re-encryption [CH07, LV08b], with necessary modifications
to fit into the signature framework. We also compare our new notion with the previous security
model in [AH05, LV08a].

Let L = L(λ) denotes the maximum level the PRS system supports. The scheme Σ =
(Setup,KeyGen, Sign,Verify,ReKeyGen,ReSign) is described as follows:

• pp← Setup(1λ, 1L) generates the public parameter pp for the whole system.

• (pk, sk)← KeyGen(pp, i) generates (pki, ski) for user i.

• σ ← Sign(ski, µ, κ) computes a signature σ for µ at level κ.

• Verify(pki, σ, µ, κ) outputs 1 (accept) or 0 (reject).

• rkκi→j ← ReKeyGen(pki, pkj , skj , κ) computes a re-signing key from the i-th user at level κ to the
j-th user at level κ+ 1.

• ReSign(rkκi→j , µ, σ, κ) computes a re-signature σ′ under pkj if Verify(pki, σ, µ, κ) = 1, or ⊥ other-
wise.

Correctness. For all security parameter λ, any pp ← Setup(1λ, 1L), all couples of secret/public
key pairs (ski, pki), (skj , pkj) generated by KeyGen(pp), for any message µ and κ ∈ [L], it holds that

Verify(pki, µ, κ, Sign(ski, µ, κ)) = 1

Verify(pkj , κ+ 1, µ, σ) = 1

where σ = ReSign(rkκi→j , µ, κ, Sign(ski, µ, κ)) and rkκi→j ← ReKeyGen(pki, pkj , skj , κ).
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6.2 Security Definition

Security of PRS is first defined by Ateniese and Hohenberger [AH05], and then later Libert and
Vergnaud [LV08a] augmented the notion by associating re-keys with levels. The previous security
notion basically considers four scenarios, namely, external security, limited proxy security, delegatee
security, and delegator security, capturing signature unforgeability when the adversary obtains
signing/re-signing oracles and re-keys with respect to different scenarios. In this section, we define
a simpler and unified model that captures all these four scenarios. Our new definition is similar
to the CCA-PRE definition of multi-hop PRE (c.f. Definition 3.8). Due to space constraint, we
highlight the essential idea of our PRS security definition. The detailed one can be found in the
full version.

Intuitively, the adversary needs to commit to the tree structure and the target level before
seeing the public parameters pp and the public keys of the tree nodes. The root node along
with the committed level serve as the target pair for the adversary. Then adversary can register
honest and corrupt users of his choice in the experiment, and also ask signing oracle to sign an
arbitrary message using honest users’ secret key. Upon receiving valid signatures, the re-signing
oracle compute the re-signature by first looking up (or calculating) the appropriate re-signing key
and then doing the re-signing procedure. We also define the notion admissible edge for a (edge,
level) pair in the PRS scenario, where there does not exist a path from the newly added (edge,
level) pair to the target pair. The re-signing key generation oracle can only outputs re-signing keys
for admissible edge. We say the adversary wins the experiment if he can output a valid signature
for a message of the target pair, where the adversary never queries signing and re-signing oracle
about the message.

The definition of PRS scheme can be easily extended to a tag-based scheme where each signature
is associated with a tag. Similarly, we can consider the selective model where the adversary needs
to commit to the challenge tag at the beginning, or the adaptive model without this restriction. In
Section 6.1, we focus on constructing tag-based multi-hop PRS in selective model. We note that
the lattice-mixing and vanishing techniques in [Boy10] can help achieving adaptively chose tags.

In comparison with prior PRS security model. We briefly recall the four scenarios defined
in [AH05, LV08a]. External security captures the scenario that the adversary is outside PRS
system, where he only has access to signing and re-signing oracle. Limited proxy security means
the adversary acts as the proxy, where he can sign message on behalf of the delegatee or create
signatures for the delegator, unless the messages were first signed by one of the latter’s delegatees.
Delegatee security captures the scenario that the honest delegatee should be immune to a collusion
between the delegators and proxy. Delegator security captures the scenario that collusions between
the delegatees and proxy should be of no harm to the honest delegator.

Then we argue that our unified security model also captures the four desired scenarios above.
For external security, since the adversary in our model is provided the oracle access to signing and
re-signing oracle, the adversary can request the same information as that in the prior models. For
the case of limited proxy security, our security model allows the adversary to receive re-signing keys
and have access to the signing/re-signing oracles as the prior model, yet our selective security poses
some constraints that the adversary needs to commit to all paths to the target pair. Our security
model can emulate delegator security by restricting the committed tree from adversary to contain
a single vertex r and its target level to be maximum level L. Then, any added edge (i, r, κ) except
for κ = L− 1 is considered to be admissible for (r, L). Similarly, for delegator security, we can also
emulate this by setting the target level to be 1.
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6.3 Our PRS Construction

Now we present our PRS construction and its security proof sketch. For simplicity, we first present
the scheme with security regarding a selective chosen tag, where in the security experiment, the
adversary needs to commit to the challenge tag before obtaining public parameters and public keys.
In the full version, we also describe how to modify our construction, slightly, to achieve security
for adaptively chosen tags. Let the message space be M = Zq, and the tag space be T = Zq. The
description is the following:

• Setup(1λ, 1L): The setup algorithm sets the lattice parameters (n, q,m, s), then randomly chooses
a matrix A ∈ Zn×mq and vectors b,v ∈ Znq . Output the public parameter pp = (A, b,v, q, n,m).

• KeyGen(pp): The key generation algorithm computes (pki, ski) as follows:

1. Sample two small matrices Ri1,Ri2 from discrete Gaussian distribution DZm×m,s.

2. Compute Ai = A ·Ri1 mod q and A′i = A ·Ri2 mod q.

3. The public key pki and secret key ski for i-th user is

pki = (Ai,A
′
i), ski = (Ri1,Ri2)

• Sign(pp, ski, µ, κ): The signing algorithm does:

1. Randomly select a non-zero tag t ∈ Z∗q , and define the signing matrix to be

Ft,i,κ = [A|Ai + h(κ)G|A′i + tG]

2. Sample a vector r1 ← DZm,s, then sample vector (r0, r2) ∈ Z2m, using

(r0, r2)← SampleO(A, tG,Ri2,TG, b+ µv − (A′i + h(κ)G)r1, s)

Therefore, it holds that Ft,i,κ · σ = b+ µv mod q, where σ = (r0, r1, r2).

3. Output the signature (σ, t, i, κ).

• Verify(pp, pki, µ, (σ, t, i, κ)): The verification algorithm dose:

1. Parse the signature tuple as σ = (r0, r1, r2), tag t, user index i and level index κ, then first
check the norm of |σ| = |(r0, r1, r2)|. Output 0 if |σ| ≥ B.

2. Reconstruct the signing matrix

Ft,i,κ = [A|Ai + h(κ)G|A′i + tG]

and output 1 if Ft,i,κ · σ = b+ µv, otherwise output 0.

• ReKeyGen(pki, (skj , pkj), κ): The re-signing key generation:

1. Sample small matrices (X01,X11,X02,X12), using

(X01,X11)← SampleO(A, h(κ+ 1)G,Rj1,TG,Ai + h(κ)G, s),

(X02,X12)← SampleO(A, h(κ+ 1)G,Rj1,TG,A
′
i −A′j , s)

Therefore it holds that

[A|Aj + h(κ+ 1)G|A′j + tG]

I X01 X02

0 X11 X12

0 0 I

 = [A|Ai + h(κ)G|A′i + tG]
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2. Output the re-signing key rkκi→j = (X01,X02,X11,X12).

• ReSign(rkκi→j , (σ, t, i, κ), µ, pki): The re-signing algorithm does:

1. First parse σ = (r0, r1, r2). Output ⊥ if Verify(pp, pki, µ, (σ, t, i, κ)) = 0.

2. Otherwise, output the re-signature tuple (σ′, t, j, κ+ 1), where σ′ = rkκj→j · σ.

6.4 Security Proof

In this part, we show that our construction above is secure as in Definition 3.1 assuming the
hardness of SIS assumption. Due to space constraint, we include the proof in the full version.

Theorem 6.1. Assuming the hardness of SISq,n,m,β, the PRS construction described above is exis-
tential unforgeable as in Definition 3.1.

Intuition. At a high level, the reduction simulates the oracles described in Definition 3.1 using
the SIS instance, where the answers output by these simulated oracles are statistically close to
the answers in real execution. After querying these oracles, adversary would output a forgery
tuple (r, µ∗, σ∗, κ∗), where the reduction derives the solution to SIS instance from the forgery tuple.
Therefore, the probability of forging a signature for the PRS system is approximately the same
as breaking the SIS assumption. In particular, the public key of the root user is generated by
embedding the committed information of challenge level κ∗ and tag t∗, and for generating public
keys of the vertex on the tree, the reduction first sample re-signing key for edges (associated with
levels as described in Definition 3.1), then the public key of vertex is a multiplication of re-signing
key and its parent’s public key. Generating public key for vertex i in this manner ensures the
trapdoor using for computing re-signing keys dose not vanish except for its tree level `(i). Therefore,
for re-signing key queries with respect to admissible edges, the reduction can still obtain re-signing
key from the distribution. The reduction generates the public key for other users that are not on
the tree, using the KeyGen algorithm, thus the queries for re-signing keys between these users or
re-signing keys towards these users are not restricted. For the signing query, the reduction can
generate signatures from the same distribution as long as the tag is not the target one t∗, since the
trapdoor for computing signatures dose not vanish. At the end of experiment, adversary A outputs
a forgery tuple (r, µ∗, σ∗, t∗, κ∗), which vanishes the trapdoors in target user. Then, reduction can
derive an SIS solution from the forgery tuple.

6.5 Parameter Setting

Let λ be the security parameter. For L = polylog(λ) maximum allowed re-signing, we set the
parameters of our scheme based on standard SIS assumption as

q = nO(L), n = poly(λ), L = polylog(λ), m = O(n log q)

To ensure the SIS instance has a worst-case lattice reduction as shown in [MR04], i.e. q ≥
βω(
√
n log n), we set β = polylog(n). In order to achieve indistinguishability between real exe-

cution and reduction, the Gaussian parameter is set to be s = ω(
√

log n). As a signature produced
by algorithm Sign has the size of O(s

√
m), and after each re-signing, the size grows at the rate

of O(sm), so we set parameter used in verification to be B = ω(2L). Our PRS construction can
support L = poly(λ)-hop using subexponential SIS assumption.
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