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Abstract. Efficient and secure third party computation has many practical applications in cloud
computing. We develop new approach for building fully homomorphic encryption (FHE) schemes, by
starting with the intuition of using algebraic descriptions of the encryption and decryption functions
to construct a functionally complete set of homomorphic boolean operators. We use this approach to
design a compact efficient asymmetric cryptosystem that supports secure third party evaluation of
arbitrary boolean functions. In the process, we introduce a new hard problem that is a more difficult
variant of of the classical Isomorphism of Polynomials (IP) that we call the Obfuscated-IP.

1 Introduction

Multivariate cryptography is classically defined as the set of cryptographic schemes using the computational
hardness of PoSSo, the problem of solving a system of non-linear equations. There is a rather large varieties
of basic cryptographic primitives which can be achieved by multivariate cryptosystems : hash-functions [10],
stream-cipher [7,8], Zero-Knowledge (ZK) authentication scheme [40,57,56,45], signature (e.g. [49,42,24]),
asymmetric encryption (e.g. [43,6,32,49]) and a (somewhat) Fully Homomorphic Encryption (FHE) [2,3].

Homomorphic encryption has long been a subject of great interest in the field of cryptography due to its
potential applications in cloud computing for outsourcing analysis and hosting of private data. It was thought
infeasible until Gentry’s publication of a fully homomorphic encryption algorithm using ideal lattices [34].
FHE [34] is a very powerful cryptographic primitive which allows performing arbitrary computations over
encrypted data. In such a scheme, given a function f and a ciphertext c encrypting a plaintext m, it is
possible to transform c into a new ciphertext c′ which encrypts f(m).

In [2,3], the authors introduced a somewhat FHE scheme based on multivariate polynomials. The idea is to
start from a so-called Polly Cracker cryptosystems [6,32].The public-key of such systems is a multivariate
ideal I = 〈f1, . . . , fu〉 ⊂ K[x1, . . . , xn], and the secret-key is a Gröbner basis G of I. To encrypt a message
m ∈ K[x1, . . . , xn]/I, we compute

c =
∑

hifi +m = f +m, for f ∈ I.

The private key is a Gröbner basis G which allows computing efficiently m = c mod I = c mod G. Despite
their simplicity, our confidence in Polly Cracker-style schemes has been shaken as almost all such proposals
have been broken [26].
However, due to the multivariate ring structure, it has been noticed [2,3] that a Polly Cracker scheme allows
rather naturally homomorphic operations. Indeed:

c1 + c2 = (f1 +m1) + (f2 +m2) = (f1 + f2) + (m1 +m2), for f1, f2 ∈ I.

So that, m1 +m2 ≡ c1 + c2 mod I ≡ c1 + c2 mod G. We also have c1 × c2 ≡ m1 ×m2 mod G.



In [2,3], the authors introduced natural noisy variants of classical problems related to Gröbner bases which
also generalize previously considered noisy problems such as the Learning With Errors (LWE) problem [55] and
the approximate GCD (AGCD) problems of van Dijk et al. [59]. This also leads to present a new somewhat (and
doubly) homomorphic encryption scheme – Noisy Polly-Cracker – whose security can be provably reduced
to these problems.
In this paper, we present a new method for constructing a multivariate FHE.

1.1 State of the Art

FHE is broad and active field of research in cryptography. A good overview of the current state of the art is
provided by Armknecht, Boyd, Carr, Gjøsteen, Jaëschke, Reuter, and Strand in [5]. This work also brings
much needed canonicalization to various definitions of FHE, which we utilize in this paper. Current approaches
to FHE have been mainly based on lattice assumptions, e.g. [34,1,33,59,58] and [18,17,16,20,19,27].
Besides lattice-based, few attempts have been made to design FHE relying on different hardness assumptions.
In particular, code-based cryptography [4,12] seem to be an appealing and natural candidate for adapting
lattice-based FHE. However, [15] demonstrated that natural code-based analogues of lattice-based FHE can
not be secure; including in particular the construction of [4]. Note that [15] don’t imply that code-based FHE

cannot be constructed, but emphasized that different strategies should be used constructing such schemes.
Following the line of impossibility results, the authors of [37] prove several negative results for constructing
FHE on several algebraic structures. Let P be the plaintext space and Cs. [37] prove that no secure FHE can
be constructed if P and Cs are vector spaces, and if P and Cs are fields.
On the more practical side, evaluation of the AES circuit was demonstrated by Gentry et al [35]. Shoup
and Halevi’s HElib [41] has steadily improved in performance and implemented the BGV [16] scheme with
ciphertext packing. SEAL is another librairy [46], released from Microsoft research, which allows to perform
somewhat FHE.

1.2 Main Results

Hitherto, most fully homomorphic encryption schemes attempt to preserve the ring structure under various
probablistic encryption schemes based on lattices or LWE hardness assumptions. These approaches required
the introduction of various techniques such as bootstrapping, squashing, relinearization, and modulus switch-
ing for performing multiple evaluations, especially on deeper circuits. Another side-effect was that signifcant
machinery was required to transform ring operations to general circuits, which has lead to many classes of
homomorphic encryption schemes based on the type of operations they can perform[5].
Rather than attempting to develop more sophisticated techniques for addressing issues with existing ap-
proaches, we started with the simpler problem of efficiently constructing homomorphisms in a natural al-
gebraic way. With a set of homomorphisms for a functionally complete set of Boolean operators, we could
evaluate arbitrary circuits with as many hops as required as long as ciphertexts stayed compact.
The most trivial approach for construction of homomorphisms is to compose some monomorphism Encsk
with some transformation T composed with the retraction of a monomorphism Decsk. This composition
will be an algebraic representation of the homomorpism H[T ]. In more cryptographic terms– compose the
encryption function with some transformation composed with the decryption function. More formally, given
Encsk(m), Decsk(c), and some polynomial tranformation on plaintexts T (m1, . . . ,mn), we may construct a
homomorphic equivalent of T .

Encsk(T (m1, . . . ,mn)) = Encsk(T (Decsk(c1), . . . ,Decsk(cn)))

H [T ] (c1, . . . , cn) = Encsk(T (Decsk(c1), . . . ,Decsk(cn)))

Decsk(H [T ] (c1, . . . , cn)) = T (m1, . . . ,mn) (1)

While this provides an intuitive basis for constructing homomorphisms that is correct by construction, it is
not clear how to apply this to arbitrary functions. In particular, many possible functions may not have closed
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form representations that can be leveraged or even worse– leak information about the decryption function.
By leveraging multivariate cryptography we get explicit algebraic representations for the encryption and
decryption functions and a set of well studied hard problems related to function composition.
Our contribution is a novel compact ∞-hop fully homomorphic cryptosystem based on a new hardness
assumption we are calling Obfuscated Isomorphism of Polymorphism (Obfuscated-IP) related to the well
studied Functional Decomposition and Isomorphism of Polynomial problems from multivariate cryptography.
By avoiding relinearization, bootstrapping, and squashing we were able to achieve an efficient scheme with
practical key sizes.
For convenience, We call the set of functionally complete homomorphic operators that a client can one time
provision a server for the purposes of computation the homomorphic public key to distinguish it from the
public key.
We avoid the most common pitfalls of algebraic cryptosystems that try decorate easily invertible structures
with randomness. We do so by not basing the trapdoor function on the difficulty of calculating the Gröbner
basis / determination of ideals. Instead, we introduce a novel problem called Obfuscated-IP that is at least
as hard as IP.

1.3 Organization of the Paper

In section 2 we introduce some basic definitions for the multivariate problems we are relying, some notation
for describing our cryptosystem, and composition chains. Next, in section 3 we introduce a new symmetric
key multivariate cryptosystem and establish it’s security properties. In section 4, we provide a general method
for constructing homomorphisms for the cryptosystem described in section 3, provide a few examples for
some common circuits, and show how to use homomorphic XOR to create a public key for other parties to
encrypt data for owner of the public key.In section 5, we do a basic analysis of its security and estimate levels
of security based on cryptosystem parameters. Finally, in section 6 we provide some basic benchmarking of
our implementation in C++ and JavaScript.

2 Preliminaries

Historically, the first multivariate public-key encryption scheme – known as C∗ – has been proposed by Mat-
sumoto and Imai [43]. C∗ permits to do public-key encryption as well as signature. C∗ has been completely
Patarin [48], but the general principle inspired a a whole generation of researchers that proposed improved
variants of the Matsumoto-Imai (MI) principle, e.g. [49,42,51,21,24]. The basic idea of these variants is to
construct a public-key g ∈ K[x1, . . . , xn]m which is equivalent to a set of multivariate polynomials with a
specific structure. For instance, derived from some univariate polynomial over an extension, a triangular sys-
tem, . . . [60,61]. Although the scheme presented here differs significantly from known multivariate encryption,
its security is deeply related to hard problems that classically arise in multivariate cryptography.

2.1 Functional Decomposition of Polynomials (FDP)

FDP is a classical problem in computer algebra which asks to decompose – if possible – a set of multi-
variate polynomials. In cryptography, the problem appeared in the security analysis of 2R/2R− schemes
[52,11]. Let h = (h1, . . . , hu) ∈ K[x1, . . . , xn]u be a set of multivariate polynomials. We shall say that
(f = (f1, . . . , fu),g = (g1, . . . , gn)) ∈ K[x1, . . . , xn]u ×K[x1, . . . , xn]n is a decomposition of h if:

f ◦ g = (f1(g1, . . . , gn), . . . , fu(g1, . . . , gn)) = h = (h1, . . . , hu).

Given h = (h1, . . . , hu) ∈ K[x1, . . . , xn]u, FDP is the problem of recovering a decomposition (f ,g) ∈ K[x1, . . . , xn]u×
K[x1, . . . , xn]n. Observe that taking h = f and g = (g1, . . . , gn) = (x1, . . . , xn), or f = (x1, . . . , xu) and
g = (h1, . . . , hu, 0, . . . , 0) will lead to a valid, but trivial, decomposition of h. To avoid these cases, we fix the
degrees of a decomposition. Thus, let dh, df , dg > 1 be positive integers strictly greater than one. We define:
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FDP(dh, df , dg)
Input : h = (h1, . . . , hu) ∈ K[x1, . . . , xn]u, with the his all of degree dh.
Question : Find – if any – polynomials (f = (f1, . . . , fu),g = (g1, . . . , gn)) ∈ K[x1, . . . , xn]u×K[x1, . . . , xn]n

of degree df and dg respectively such that
f ◦ g = h.

In [62,28], the authors presented algorithms for solving FDP(4, 2, 2), i.e. decomposing quartics polynomials
into quadratic polynomials. It appears that the hardness of the problem depends on the ratio u/n. If this
ratio is equal to to 1, then [62,28] return a decomposition in polynomial-time. More generally, the algorithm
from [28] works in polynomial-time. An algorithm for solving the general FDP(dh, df , dg) is presented in [31].
The algorithm is also efficient when the ratio u/n is constant. We emphasize that the algorithms [62,28,31]
work actually work in the “tame case”, i.e. when char(K) - dg.
In this paper, we consider FDP when char(K) | dg, that is the “wild case”. It appears that the wild case has
been has much less investigated than the tame case. This presumed hardness of the wild case motivated
the design of a variety of schemes [11] based on the hardness of FDP with K = F2. In a series of papers
[44,36,25], the constructions from [11] have been broken. A key ingredient of [36] is a distinguisher between
decomposable polynomials and random polynomials. The idea is to consider the rank of the partial derivatives
of an instance h(h1, . . . , hu) ∈ K[x1, . . . , xn]u of FDP. The distinguisher relies on a heuristic assumption about
the rank of partial derivatives of random set of polynomials h = (h1, . . . , hu) ∈ K[x1, . . . , xn]u. In [36], the
heuristic has been experimentally verified for K = F2.

Note that FDP remains an hard problem since if has been proven NP-Hard by Dickerson [22,23]. Hard
instances of FDP appeared when the ratio u/n is not a constant.

2.2 Isomorphism of Polynomials (IP)

The Isomorphism of Polynomials (IP) problem, introduced by Patarin [50], is in some sense a sub-case of
FDP in which we try decomposing into linear polynomials. The IP problem is defined is as follows:
Isomorphism of Polynomials (IP)
Input: ((f = (f1, . . . , fm),g = (g1, . . . , gm)) ∈ K[x1, . . . , xn]m ×K[x1, . . . , xn]m.
Question : Find – if any – a pair of invertible matrices (A,B) ∈ GLn(K)×GLm(K) such that:

g(x) = f(x ·A) ·B, with x = (x1, . . . , xn)T.

IP is not NP-Hard unless the polynomial-hierarchy collapses, [53,54]. There are quite few algorithms, such
as [53,29,13], for solving IP. In particular, [29] proposed to solve IP by reducing it to a system of (overdefined)
nonlinear equations whose variables are the unknown coefficients of the matrices. It was conjectured in [29],
but never proved, that the corresponding system of nonlinear equations can be solved in polynomial time
as soon as the IP instances considered are not homogeneous. Indeed, by slicing of the polynomials degree
by degree, one can find equations in the coefficients of the transformation allowing one to recover the
transformation. More recently, [14] presented exponential (in the number of variables n) algorithms for
solving quadratic homogeneous instances over finite fields. If K = F2, [14] described an heuristic algorithm
of complexity 2n/2. For bigger fields K = Fq, q > 2, [14] gives a probabilistic algorithm of complexity
q2n/3. In [9], the authors also considered a special case where IP can be solved in polynomial-time (when
f = (xd1, . . . , x

d
n)).

2.3 Definitions

We recall below some definitions introduced in [5] that we adopt in this paper. This will allow to state the
properties of our fully homomorphic scheme in a general framework.

Definition 2.3.1 (C-Evaluation Scheme). Let C be a set of circuits. A C-evaluation scheme for C is a tuple
of probabilistic polynomial-time algorithms (Gen,Enc,Eval,Dec) such that:
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– Gen(1λ, α) is the key generation algorithm. It takes two inputs, security parameter λ and auxiliary input
α, and outputs a key triple (pk, sk, evk), where pk is the key used for encryption, sk is the key used for
decryption and evk is the key used for evaluation.

– Enc(pk,m) is the encryption algorithm. As input it takes the encryption key pk and a plaintext m. Its
output is a ciphertext c.

– Dec(sk, c) is the decryption algorithm. As input it takes the decryption key sk and a ciphertext c. Its
output is the message m. We have Dec(sk,Enc(pk,m)) = m.

– Eval(evk, C, c1, . . . , cn) is the evaluation algorithm. It takes as inputs the evaluation key evk, a circuit
C ∈ C and a tuple of inputs that can be a mix of ciphertexts and previous evaluation results. It produces
an evaluation output.

In what follows, P denotes the plaintext space. When performing homomorphic computations the image of
Eval can be disjoint from the image of Enc. For this reason formal definitions often refer to space of fresh
ciphertexts X to distinguish them from ciphertexts outputs of Eval.

Definition 2.3.2 (Fresh Ciphertext Space). Let (pk, sk, evk) ← Gen(1λ). The fresh ciphertext space is
defined as

X = {c | ∃m ∈ P such that Pr[Enc(pk,m) = c > 0]}.

We can formalize correctness of a C-evaluation scheme.

Definition 2.3.3 (Correct Decryption). A C-evaluation scheme (Gen,Enc,Eval,Dec) is said to correctly
decrypt if ∀m ∈ P :

Pr[Dec(sk,Enc((pk,m)) = m] = 1,

where sk and pk are outputs of Gen(1λ, α).

Definition 2.3.4 (Correct Evaluation). A C-evaluation scheme (Gen,Enc,Eval,Dec) is said to correctly
evaluate all circuits in C if for all ci ∈ X , where mi ← Dec(evk, ci), for every C ∈ C and some negligible
function ε,

Pr[Dec(sk,Eval(evk, C, c1, . . . , cn)) = C(m1, . . . ,mn)] = 1− ε(λ)

where sk and pk are outputs of Gen(1λ, α).

The next definition formalize the requirement that homomorphic operations do not result in much ciphertext
expansion, and the output length depends only on the security parameter.

Definition 2.3.5 (Compactness). A C-evaluation scheme (Gen,Enc,Eval,Dec) is said to be compact if there
is a polynomial p, such that for any key-triple (pk, sk, evk) output by Gen(1λ, α), any circuit C ∈ C and all
ciphertexts ci ∈ X , the size of the output Eval(evk, C, c1, . . . , cn) is not more than p(λ) bits, independent of
the size of the circuit.

Definition 2.3.6 (Compactly Evaluate). A C-evaluation scheme (Gen,Enc,Eval,Dec) is said to compactly
evaluate all circuits in C if scheme is compact and correct.

Sometimes it is desirable to perform computation in two or more stages, where the results from one stage
could be fed in as inputs for a later stage. This requires that outputs of Eval also be valid inputs to Eval,
something that is not required by Definition 2.3.4.

Definition 2.3.7 (Staged computation). A computation Ci,n in i-stages of width n is defined by a set
of circuits Ck` index by 1 ≤ k ≤ i, i ≤ ` ≤ n, where Ck` has kn inputs. Starting with initial plaintexts
m01,m02, . . . ,m0n we compute in stages

mk` = Ck`(m01,m02, . . . ,m0n,mk−1,1, . . . ,mk−1,n)

for each stage 1 ≤ k ≤ i an1 ≤ ` ≤ n. The output of the staged computation is mi1,mi2,min.
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It is possible to stage homomorphic comptuation in using the same approach as describe above. Let (pk, evk, sk)←
Gen(1λ) and let c01, c02, . . . , c0n be a sequence of ciphertexts from X . The ciphertexts ck` for 1 ≤ k ≤ i, i ≤
` ≤ n can be computed by applying Eval in stages.

ck` = Eval(evk, c01, Ck`, c02, . . . , c0n, ck−1,1, . . . , ck−1,n)

This homomorphic evaluation in stages is known i-hop homomorphic encryption. We can now proceed to
define formal notions of correctness for i-Hop and ∞-hop homomorphic schemes.

Definition 2.3.8 (i-Hop correctness). Let (pk, evk, sk)← Gen(1λ, α) and let Ci,n = Ck` be any staged com-
putation where n is polynomial in λ. and c0 = (c01, ..., c0n)inX n. A C-evaluation scheme (Gen,Enc,Eval,Dec)
is i-hop correct if

Pr[Dec(sk,Eval(evk,Ci,n, c0) = Ci,n(Dec(sk, c0))] = 1− ε(λ),

where ε is a negligible function and the probability is taken over the distribution of possible outcomes of the
Eval algorithm outputs.

Definition 2.3.9 (i-Hop). Let i ∈ N . We say that a C-evaluation scheme (Gen,Enc,Eval,Dec) is i-hop if
j-hop correctness holds for all j with 1 ≤ j ≤ i.

Definition 2.3.10 (∞-Hop). A C-evaluation scheme (Gen,Enc,Eval,Dec) is said to be ∞-hop if j-hop
correctness holds for all j.

∞-hop is a natural extension of existing definitions (e.g., i-Hop, multi-hop, poly-hop), and allows for an
unlimited number of hops.

3 Symmetric Multivariate Encryption Scheme

We describe here a simple randomized secret-key encryption scheme that will serve as a primitive of our
FHE scheme (described in Section 4). The symmetric scheme is a variant of the CCA-secure scheme of [38,
Section 5] instantiated with a composition chain as defined below:

Definition 3.0.11. Let ` > 1 be an integer and f1, . . . , f` ∈ F2[y1, . . . , yn]n be multivariate quadratic
polynomials. We shall call composition chain:

f := f` ◦ · · · ◦ f1 ∈ F2[y1, . . . , yn]n.

We shall call length of composition chain the integer `.

It can be mentioned that multivariate composition chains have been already considered in the literature as
a basic building block for pseudo-random number generators as well as hash functions, e.g. [47,39]. Note
that these papers use composition chains of structured polynomials. Here, we consider composition chains
of random polynomials.

3.1 Description

The cryptosystem is parametrized with two parameters n, ` ∈ N, where n is the plaintext length in bits and
` ≥ 2 is the length of composition chain. The secret-key algorithm, that will be denoted by MQSE, is defined
by a a set of three polynomial time algorithms (Gen,Enc,Dec) which are defined as follows:

– sk = (M, f) ← Gen(1(n,`)) which returns a matrix chosen uniformly at random M ∈ GL2n(F2) and
a composition chain f with n-tuples of multivariate quadratic polynomials f1, . . . , f` ∈ F2[y1, . . . , yn]n

chosen uniformly at random.
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– Enc(sk,m) is a probabilistic algorithm that takes a message m ∈ Fn2 selects an r ∈ Fn2 uniformly at
random and returns an encryption of m. It is defined as:

Encsk(m, r) := M

[
m + f(r)

r

]
. (2)

– Dec(sk, c) is deterministic algorithm that uses the secret key sk to return a message m ∈ F2 decrypted
from ciphertext c ∈ F2. It defined as follows:

m = Decsk(c) :=
[
π1,2(M−1c) + f(π2,2(M−1c))

]
. (3)

Theorem 3.1.1. The MQSE scheme is correct.

Proof. Let c = Encsk(m, r) be as in (2). The correctness of the algorithm is simple to show from expanding
M−1c.

M−1c = M−1Encsk(m, r) =

[
m + f(r)

r

]
Substituting back in and evaluating the projection functions completes the proof.

Decsk(c) = [(m + f(r)) + f(r)] = m

3.2 Security Analysis

The difference between MQSE and the scheme of [38, Section 5] is first on the use of the matrix M in
MQSE. However, the fundamental difference is that the scheme of [38, Section 5] must be instantiated with
a pseudo-random function to achieve CCA-security.
An adversary with an Oracle capable of generating k plaintext-ciphertext pairs {(mi, ci) ∈ F2n

2 × F2n
2 | 1 ≤

i ≤ k} will be able to interpolate the decryption polynomials by solving for their coefficients.

[m1 . . .mk] = D



(c1)1 . . . (ck)1
... · · ·

...
(c1)2n . . . (ck)2n

... · · ·
...

(c1)2n(c1)2n−1 . . . (ck)2n(ck)2n−1
... · · ·

...
(c1)2n . . . (c1)1 . . . (ck)2n . . . (ck)1


(4)

Thus the adversary can learn the decryption polynomial in θ(
[∑2`

i=1

(
i
2n

)]3
) time/space, which approaches

exponential as 2` → 2n. The above technique will also apply to any symmetric scheme in code book mode.

4 Multivariate Fully Homomorphic Encryption

In this section we extend the MQSE scheme described in Section 3 to an ∞-hop C-evaluation homomorphic
scheme by providing a general method for constructing arbitrary homomorphisms of sets of multivariate
polynomial functions. We also providing specific constructions for multiplication by a matrix, XOR, and
AND. For brevity, we skip NOT, which can be represented using XOR and a constant. Finally, we define
homomorphic public key and show that it has a functionally complete set of homomorphic operators that
can be used by an untrusted server to evaluate arbitrarily deep circuits.
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4.1 Generic Approach

Let g : (Fn2 )k → Fn2 be a k-ary multivariate polynomial function. We adapt the approach described in (1)
(Section 1.2) to provide a general algorithm for constructing the homomorphic equivalent H[g] of g for
ciphertexts. To do so, we consider the secret-key scheme of Section 3. Let then S = (Gen,Enc,Dec) be an
instantiated MQSE(n, `) scheme with secret key sk = (M, f)← Gen(1(n,`)). The idea of the FHE scheme is to
derive a multivariate function H[g] such that

H[g](x1, . . . ,xk) = Encsk ◦ g(Decsk(x1), . . . ,Decsk(xk)),with x1, . . . ,xk ∈ F2n
2 .

To do so, we introduce the concept of obfuscated composition chain and re-randomization transform. Before
that, we define some projection operators. These operators will allow to simplify the description of our FHE

scheme.

Definition 4.1.1. Let k ≥ 1 be an integer. For all i, 1 ≤ i ≤ k, we define the vector projection πi,k : Fkn2 → Fn2
as follows:

πi,k : x =


x1
x2
...
xkn

 7→

x(i−1)n+1

x(i−1)n+2

...
xin

 .

The next function will be useful for generating a new random vector from several input ciphertexts.

Definition 4.1.2. Let x1, . . . ,xk ∈ F2n
2 and R1, . . . ,Rk ∈ GLn(F2) be matrices chosen uniformly at random.

We define a re-randomization transform R[1,...,k] : (F2n
2 )k → Fn2 as follows:

R[1,...,k](x1, . . . ,xk) :=

k∑
j=1

Rjπ2,2(M−1xj).

Definition 4.1.3. Let ` > 1 be an integer, f1, . . . , f` ∈ F2[y1, . . . , yn]n be multivariate quadratic polynomials
and a composition chain:

f := f` ◦ · · · ◦ f1 ∈ F2[y1, . . . , yn]n.

Let also x1, . . . ,xk ∈ F2n
2 and K1, . . . ,K` ∈ GLkn(F2) be matrices chosen uniformly at random. We shall

call the sequence f ′ := f ′1 ◦ · · · ◦ f ′` an obfuscated composition chain where:

f ′1(x1, . . . ,xk) := K1


f1

(
π2,2(M−1x1)

)
...

f1

(
π2,2(M−1xk)

)
f1

(
R[1,...,k](x1, . . . ,xk)

)

 , (5)

and for i > 1:

f ′i(x) := Ki


fi

(
π1,k+1(K−1i−1x)

)
...

fi

(
πk,k+1(K−1i−1x)

)
fi

(
πk+1,k+1(K−1i−1x)

)

 for all x ∈ F(k+1)n
2 .
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Remark that the function computed by an obfuscated composition chain f ′ is a linear transformation of the
original composition chain f , i.e.:

f ′(x1, . . . ,xk) = K`



f
(
π2,2(M−1x1)

)
...

f
(
π2,2(M−1xk)

)
f
(
R[1,...,k](x1, . . . ,xk)

)


for all x1, . . . ,xk ∈ F2n

2 . (6)

With the machinery for an obfuscated composition chain out the way, we can express the H[g](x1, . . . ,xk)
in terms of obfuscated composition chain f ′ of f . This function is defined such that:

H[g](x1, . . . ,xk) = Encsk ◦ g
(
Decsk(x1), . . . ,Decsk(xk)

)
. (7)

We will see that H[g](x1, . . . ,xk) =

M

[
g
(
π1,2(M−1x1) + π1,k+1(K−1f ′), . . . , π1,2(M−1xk) + πk,k+1(K−1f ′)

)
+ πk,k+1(K−1f ′)

R[1,...,k](x1, . . . ,xk)

]
=

M

[
g
(
π1,2(M−1x1) + f(π2,2(M−1x1)), . . . , π1,2(M−1xk) + f(π2,2(M−1xk))

)
+ f
(
R[1,...,k](x1, . . . ,xk)

)
R[1,...,k](x1, . . . ,xk)

]
From (7) we see the order of g will play a big role in the complexity of the multivariate polynomials for
homomorphic evaluation.

4.2 Matrix Multiplication

We apply the generic construction from Section 4.1 to the simple case of homomorphic matrix multiplication.
Let T ∈ GLn(F2) and S = (Gen,Enc,Dec) be an instantiated MQSE(n, 2) scheme with secret-key sk =
(M, f)← Gen(1(n,2)). We construct a functionH[T] for the homomorpic evaluation of a matrix multiplication
by T on ciphertext vectors.

Definition 4.2.1. Let sk = (M, f) ← Gen(1(n,2)) and f1, f2 ∈ F2[y1, . . . , yn]n be the functions in the
composition chain f . Also, let R ∈ GLn(F2), and K1,K2 ∈ GL2n(F2) be chosen as described in Section 4.1.
Then the obfuscated composition chain f ′ : F2n

2 → F2n
2 for f is as follows:

f ′1(x) := K1

[
f1(π2,2(M−1x))

f1(Rπ2,2(M−1x))

]
,∀x ∈ F2n

2

f ′2(x) := K2

[
f2(π1,2(K−11 x))
f2(π2,2(K−11 x))

]
,∀x ∈ F2n

2

f ′(x) := f ′2(f ′1(x)),∀x ∈ F2n
2 .

It can be verified that this is the obfuscated composition chain of Definition 4.1.3 with k = 2.

We can now define our homomorphic function for matrix multiplication:

Proposition 4.2.1. Let the notations be as in Definition 4.2.1. For T ∈ GLn(F2), we define H [T] : F2n
2 →

F2n
2 as H [T] (x) :=

M

[
T[π1,2(M−1x) + π1,2(K−12 f ′(x))] + π2,2(K−12 f ′(x))

R · π2,2(M−1x)

]
. (8)

Then, it holds that:
Decsk(H[T](x)) = T · Decsk(x), ∀x ∈ F2n

2 .
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Proof. Let f(y1, . . . , yn) := f2(f1(y1, . . . , yn)) and x ∈ F2n
2 . From Definition 4.2.1 and according to (6), we

have that

f ′(x) = K2

[
f(π2,2(M−1x))

f(R · π2,2(M−1x))

]
.

Substitution into the definition of H [T] yields that

H [T] (x) = M

[
T · Decsk(x) + f(R · π2,2(M−1x))

R · π2,2(M−1x)

]
= Encsk(T · Decsk(x),R · π2,2(M−1x)).

Therefore:
Decsk(H[T](x)) = T · Decsk(x).

An alternate formulation of the homomorphic function (8) is

H [T]
(
Encsk(m, r)

)
= Encsk

(
T ·m,R · π2,2(M−1Encsk(m, r))

)
.

That is, the homomorphic function is equivalent to re-encryption of the linearly transformed decrypted input
with a modified random component r.

4.3 Binary Operations

We apply the generic construction from Section 4.1 to other operations such as bitwise XOR (denoted by
+) and bitwise AND (denoted by ×). As before, let S = (Gen,Enc,Dec) be an instantiated MQSE(n, 2)
scheme with secret key sk = (M, f) ← Gen(1(n,2)). We construct functions H[+] and H[×] for homomorpic
evaluation of + and × on ciphertext vectors x1,x2 ∈ F2n

2 .

Definition 4.3.1. Let sk = (M, f)← Gen(1(n,2)) and f1, f2 ∈ F2[y1, . . . , yn]n be the functions in the composi-
tion chain of f . Also, let R1,R2 ∈ GLn(F2),K1,K2 ∈ GL3n(F2) and R[1,2](x1,x2) = R1 ·π2,2(M−1x1)+R2 ·
π2,2(M−1x2) be chosen as described in Section 4.1. Then, the obfuscated composition chain f ′ : F4n

2 → F3n
2

for f is as follows:

f ′1(x1,x2) := K1

 f1(π2,2(M−1x1))
f1(π2,2(M−1x2))

f1

(
R[1,2](x1,x2)

)
 ,∀(x1,x2) ∈ F2n

2 × F2n
2

f ′2(x) := K2

 f2(π1,3(K−11 x))
f2(π2,3(K−11 x))
f2(π3,3(K−11 x))

 ,∀x ∈ F3n
2 , and

f ′(x1,x2) := f ′2(f ′1(x1,x2)),∀(x1,x2) ∈ F2n
2 × F2n

2 .

We also define:
φi = Decsk(xi) = π1,2(xi) + πi,3(K−12 f ′(x1,x2)), for i ∈ {1, 2}.

It can be verified that this is the obfuscated composition chain of Definition 4.1.3 with k = 3.

We are now in position to derive special public function allowing to perform more general homomorphic
operations than matrix multiplication (Section 4.2). We first describe the case of component-wise XOR (+).

Proposition 4.3.1. Let the notations be as in Definition 4.3.1. The homomorphic function for component-
wise XOR (+) is:

H [+] (x1,x2) := M

[
φ1 + φ2 + π3,3(K−12 f ′(x1,x1))

R[1,2](x1,x2)

]

10



Then, for all (x1,x2) ∈ F2n
2 × F2n

2 , it holds that

Decsk(H[+](x1,x2)) = Decsk(x1) + Decsk(x2).

Proof. Let f := f2 ◦ f1. From Definition 4.1.3 and Definition 4.3.1, we see that

f ′(x1,x2) = K2

 f(π2,2(M−1x1))
f(π2,2(M−1x2))

f
(
R[1,2](x1,x2)

)
 .

Substitution into the definition of H [+] yields that

H [+] (x1,x2) = M

[
Decsk(x1) + Decsk(x2) + f(R[1,2](x1,x2))

R[1,2](x1,x2)

]
= Encsk(Decsk(x1) + Decsk(x2),R[1,2](x1,x2)).

Therefore:
Decsk(H[+](x1,x2)) = Decsk(x1) + Decsk(x2).

The rationale for explicitly describing H [+] (x1,x2) is that XOR is required to represent boolean circuits in
algebraic normal form, which will come in useful later in the paper. For the same reason, we apply the same
approach to component-wise AND (×).

Proposition 4.3.2. Let the notations be as in Definition 4.3.1. The homomorphic function for component-
wise AND (×) is

H [×] (x1,x2) := M

[
φ1φ2 + π3,3(K−12 f ′(x1,x2))

R[1,2](x1,x2)

]
.

Then, for all (x1,x2) ∈ F2n
2 × F2n

2 , it holds that

Decsk(H[×](x1,x2)) = Decsk(x1)× Decsk(x2).

Proof. The function H [×] (x1,x2) is defined such that:

H [×] (x1,x2) = M

[
(Decsk(x1)× Decsk(x2)) + f(R[1,2](x1,x2))

R[1,2](x1,x2)

]
= Encsk(Decsk(x2)× Decsk(x2),R[1,2](x1,x2)).

In fact, the same idea can be generalized for any function g on two messages.

Proposition 4.3.3. Let the notations be as in Definition 4.3.1 and g : Fn2 × Fn2 → Fn2 be a function. The
homomorphic function H [g] associated to g is

H [g] (x1,x2) := M

[
g (φ1, φ2) + π3,3(K−12 f ′(x1,x2))

R[1,2](x1,x2)

]
.

For all (x1,x2) ∈ F2n
2 × F2n

2 , it holds that

Decsk(H[g](x1,x2)) = g(Decsk(x1),Decsk(x2)).

Proof. The function H [g] (x,y) is defined such that:

H [g] (x,y) = M

[
g(Decsk(x1),Decsk(x2)) + f(ν(x1,x2))

R[1,2](x1,x2)

]
= Encsk(g(Decsk(x1),Decsk(x2)), ).
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4.4 Formal Definition and Proofs

The goal of this part is to explain how to evaluate homorphically arbitrary circuits. To do so, we first
introduce SHIFT operators, that is LEFT-SHIFT(<<) and RIGHT-SHIFT(>>).

Definition 4.4.1. We define the LEFT-SHIFT (<<) and RIGHT-SHIFT(>>) operators as follows:

<<: x = [x1, x2, x3, . . . , xn]T 7→ [x2, x3, . . . , xn, 0]T ,

>>: x = [x1, x2, x3, . . . , xn]T 7→ [0, x1, . . . , xn−1]T .

We are now in position to define our FHE scheme.

Definition 4.4.2. MQFHE is a C–evaluation scheme consisting of a tuple of probabilistic polynomial time
algorithms (Gen,Enc,Eval,MQSE.Dec) defined by:

– Let x1, . . . ,xn ∈ F2n
2 , we define H[

∑n
i=1](x1, . . . ,xn) as the public function which allows to perform the

homomorphic evaluation of
∑n
i=1 xi.

– (pk, sk, evk)← Gen(1(n,`)) is a probablistic polynomial time key generation algorithm. The secret key is
generated by evaluating sk = MQSE.Gen(1(n,`)). Next, the evaluation key is generated using the secret key
according the methods in sections 4.1, 4.2, and 4.3 by computing evk = (H[

∑n
i=1],H[×],H[<<],H[>>]).

The public key utilizes the basis vectors ei ∈ Fn2 of a canonical basis of Fn2 , i.e. such that (ei)j = δi,j and
zero vectors 0 ∈ Fn2 combined with H[

∑n
i=1] to generate the public key

pk =
(
H

[
n∑
i=1

]
, {bi = MQSE.Enc(ei) | 1 ≤ i ≤ n} ∪ {zi = MQSE.Enc(0) | 1 ≤ i ≤ n}

)
.

Remark that MQSE.Enc is a randomized encryption, so that each encryption zi of zero can be indeed
different. Gen(1(n,`)) outputs (pk, sk, evk).

– Enc(pk,m) is a probabilistic encryption algorithm. Encryption of a message m ∈ Fn2 is performed using
pk by first choosing an index set r1, . . . , rn ∈ F2 to be a set subset of {1, . . . , n} uniformly at random
and output the result of the following sum.

Enc(pk,m) = pk = H

[
n∑
i=1

]
(m1b1 + r1z1, . . . ,mnbn + rnzn). (9)

– Eval(evk, C, c1, . . . , . . . , ck) is probabilistic polynomial time algorithm for evaluating a circuit C ∈ C on
ciphertexts ci ∈ F2n

2 . As all Boolean circuits can be represented in an equivalent canonical algebraic
normal form fC over F2 equivalent to C, whose representation is simple to compute from the gate
description of C. Evaluating H[fC ] in terms of evk requires generating evaluation trees for the monomials
in the algebraic normal form, which we describe in Theorem 4.4.1. Output H[fC ](c1, . . . , c2).

Theorem 4.4.1. MQFHE can evaluate all circuits correctly. More formally, let f(x) ∈ F2[x1, . . . , xn]n be
some n-bit polynomial function in algebraic normal form. An untrusted server can compute H [f ] (c), with
c = MQSE.Enc(x), by evaluating a tree with internal nodes consisting of homomorphic operators and leaf
nodes consisting of c or ci.

Proof. we proceed by demonstrating that evaluating arbitrary circuits on an untrusted server can be per-
formed by evaluating an equivalent tree of functionally complete homomorphic operators: XOR(+), AND(×),
LEFT-SHIFT(<<), RIGHT-SHIFT(>>). To handle constant terms we will require n ciphertexts ci =
Esk(ωi) with ωi ∈ Fn2 and (ωi)j = δi,j . In practice RIGHT-SHIFT(>>) is not required for most common
circuits, but it simplifies the following proof.
In order to show that we can homomorphically evaluate any arbitrary polynomial function over F2[x1, . . . , xn]
we will provide a constructive, albeit inefficient, algorithm for building a tree that represents that evaluation.
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We start by showing how to build a tree that is the equivalent of a linear monomial xj at some particular
index i. This tree will simply consists of n− j nodes of H [<<], followed by n nodes of H [>>], followed by
i nodes of H [<<], with a ciphertext c as the leaf node.
Next, we consider the set of possible plaintext monomials M for function f .

M =

{∏
i∈m

i

∣∣∣∣∣m ∈ P({x1, . . . , xn})/∅

}
(10)

The homomorphic equivalent of these monomials, H [M ] has a straighforward representation.

H [M ] =

{
H

[∏
i∈m

i

] ∣∣∣∣∣m ∈ P({x1, . . . , xn})/∅

}
(11)

As multiplication is associative, we can compute the overall homomorphic product a single term at time.
With this observation a tree can be constructed for each possible set index monomial m ∈ P({x1, . . . , xn})/∅
using the following algorithm. By replacing the leaf nodes in the product tree, with a subtree representing the

Algorithm 1 Build tree for monomial m

m′ ← m
choose i ∈ m′
m′ ← m′/{i}
if |m′|> 0 then

currentNode← H [×]
currentNode.rightChild← i

else
currentNode← i

end if
while |m′|> 0 do

choose i ∈ m′
m′ ← m′/{i}
if |m′|> 0 then

newNode← H [×]
newNode.rightChild← currentNode
currentNode← newNode

end if
currentNode.leftChild← i

end while
return currentNode

corresponding linear monomial at a desired index, we can now build out trees that represent homomorphic
evaluations of functions with monomial m at index j.

(fm,j)i =

{
m i = j
0 i 6= j

(12)

Since f(x) =
∑n
i=1 ωi+

∑
m,j fm,j(x) we can leverage Algorithm 1 with H [+] insteadof H [×] in order chain

together the trees corresponding to each H [fm,j ] and ci using homomorphic XOR.

Proposition 4.4.2. MQFHE has compact ciphertexts and supports ∞-hop evaluations.
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Proof. Ciphertext output from Enc and Eval have a fixed length of twice the corresponding plaintext length.
Repeated evaluations of Eval do not accumulate noise and are compact so they can be used for an unlimited
number of evaluations without any side-effects.

5 Security Analysis

The goal of this part is to analyse the security of the scheme described in Section 4.

We first consider the version of the scheme described in Section 4.2. More precisely, let R ∈ GLn(F2),M,K1,K2 ∈
GL2n(F2) and f1, f2 ∈ F2[x1, . . . , xn]n. As explained in Section 4.2, we consider the obfuscated composition
chain defined as:

f ′1(x1) := K1

[
f1(π2,2(M−1x1))

f1(Rπ2,2(M−1x1))

]
f ′2(x) := K2

[
f2(π1,2(K−11 x))
f2(π2,2(K−11 x))

]
f ′(x) := f ′2(f ′1(x))

In our setting, f ′, f ′2, and f ′1 are publicly known. The security of the scheme relies on the hardness to recover
the matrices R,M,K1,K2 ∈ GL2n(F2) and/or the polynomials f1, f2 ∈ F2[x1, . . . , xn]n. Note that K1 and
K2 allow to reveal f2.
We can remark that K1 and K2 verify a peculiar relation:

K−12 f ′2(K1x) :=

[
f2(π1,2(x))
f2(π2,2(x))

]
.

Observe that f2(π1,2(x)) = f2(x1, . . . , xn) and f2(π2,2(x)) = f2(xn+1, . . . , x2n).
Let M1 (rep. M2) be the set of monomials in x1, . . . , xn (resp. xn+1, . . . , x2n). Given f ′2 ∈ F2[x1, . . . , x2n]2n,
the problem is then to recover (S,U) ∈ GL2n(F2) × GL2n(F2) such that π1,2(U · f ′2(Sx)) only involved
monomials from M1 and π2,2(U · f ′2(Sx)) only involved monomials from M2. Stated differently, the instance
obfuscated-IP (Obfuscated Isomorphism of Polynomials) we consider is as follows:

obfuscated-IP (oIP)
Input: g ∈ F2[x1, . . . , x2n]2n be quadratic polynomials.
Question: Find (S,U) ∈ GL2n(F2)×GL2n(F2) such that:

π1,2(U · g(S · x)) ∈ F2[x1, . . . , xn]n and π2,2(U · g(S · x)) ∈ F2[xn+1, . . . , x2n]n.

obfuscated-IP is a variant of the classical Isomorphism of Polynomials (IP) problem introduced by J.
Patarin in [50]. Recall that in IP the problem is to find two matrices between two sets of algebraic equations.
Following the approach of [30], we will show that obfuscated-IP can be solved with Gröbner bases tech-
niques.

Proposition 5.0.3. Let g ∈ F2[x1, . . . , x2n]2n and (S,U) ∈ GL2n(F2) × GL2n(F2) be a solution of oIP on

g. Then, the components of S,U,S−1 and U−1 vanish a system of, at most, 4n2 + 2n
(∑2

i=0

(
2n
i

)
−
(
n
i

))
∈

O(n3) cubic equations in 8n2 ∈ O(n2) variables.

Proof. Let M be the set of monomials in x1, . . . , x2n. Let also (X,Y ) be two formal matrices of size 2n× 2n.
We define

gπ1,2(X,Y ) = π1,2(Y · g2(X · x)) = (g
π1,2

1 , . . . , gπ1,2
n ) ∈ F2[x1, . . . , xn]n.
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and

gπ2,2(X,Y ) = π2,2(Y · g2(X · x)) = (g
π2,2

1 , . . . , gπ2,2
n ) ∈ F2[x1, . . . , xn]n.

Let i, 1 ≤ i ≤ n and m1 ∈ M\M1. We denote by Coefficient(m1, g
π1,2

i ) the coefficient of m2 in the polynomial
g
π1,2

i . Similarly, for m2 ∈ M \M2, we denote by Coefficient(m2, g
π2,2

i ) the coefficient of m2 in g
π2,2

i .

We remark that Coefficient(m2,g
π1,2(X,Y )) and Coefficient(m2,g

π1,2(X,Y )) are cubic polynomials in the
components of X and Y . We have then 4n2 variables. Also, by the very definition of (S,U) ∈ GL2n(F2) ×
GL2n(F2), we have for all i, 1 ≤ i ≤ n:

Coefficient(m1, g
π1,2

i (S,U)) = 0, ∀m1 ∈ M \M2,

Coefficient(m2, g
π2,2

i (S,U)) = 0,∀m2 ∈ M \M1.

The number of monomials in M1 (resp. M2) is
∑2
i=0

(
n
i

)
. The number of monomials in M is

∑2
i=0

(
2n
i

)
yielding a set of 2n

(∑2
i=0

(
2n
i

)
−
(
n
i

))
equations in the components of X and Y .

To conclude, we need to include algebraically the fact that the solutions that we are looking are invertible
matrices. To do so, we introduce two new formal matrices X∗ and Y ∗ of size 2n×2n. We can then introduce
the following quadratic equations:

X∗ ·X = I2n X ·X∗ = I2n Y · Y ∗ = I2n Y ∗ · Y = I2n,

with I2n being the identity matrix of size 2n× 2n.

We now consider the version of the scheme described in Section 4.3. More precisely, let K1,K2 ∈ GL3n(F2)
and f2 ∈ F2[x1, . . . , xn]n. More precisely, we consider the following relation:

f ′2(x) := K2

 f2(π1,3(K−11 x))
f2(π2,3(K−11 x))
f2(π3,3(K−11 x))


As previously, we remark that:

K−12 f ′2(K1x) :=

 f2(π1,3(x))
f2(π2,3(x))
f2(π3,3(x))


We have slightly more general form that the oIP problem introduced before. This motivates to introduce the
following parametrized problem:
oIP(k)
Input: g ∈ F2[x1, . . . , xkn]kn be quadratic polynomials.
Question: Find (S,U) ∈ GLkn(F2)×GLkn(F2) such that:

π1,k(U · g(S · x)) ∈ F2[x1, . . . , xn]n,

π2,k(U · g(S · x)) ∈ F2[xn+1, . . . , x2n]n,

...

πk,k(U · g(S · x)) ∈ F2[x(k−1)n+1, . . . , xkn]n

Following the same approach than Proposition 5.0.3, we have:

Proposition 5.0.4. Let g ∈ F2[x1, . . . , x3n]3n and (S,U) ∈ GL3n(F2) × GL3n(F2) be a solution of oIP on

g. Then, the components of S,U,S−1 and U−1 vanish a system of, at most, 4n2 + 3n
(∑2

i=0

(
3n
i

)
−
(
n
i

))
∈

O(n3) cubic equations in 8n2 ∈ O(n2) variables.
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6 Benchmark

We implemented MQFHE in C++ and used Emscripten to port it to JavaScript to run tests in the browser.
Our current implementation is single threaded and has only had minor optimizations (no manual vectoriza-
tion) + compiling with gcc -O3. As our scheme has relatively low hardware requirements we were able to
run benchmarks on a standard 15” MacBook Pro Retina.

– Processor: 2.5 GHz Intel Core i7 with 6MB shared L3 cache
– RAM: 16 GB of 1600 MHz DDR3 onboard memory

We used the steady clock from std::chrono and averaged runtimes over 100 runs with random initializations
with n = 64, 128 and ` = 2. Some operations ran more expensively than expected (e.g. LMM) and will be
revisited with new highly optimized benchmarking versions.

Operation C++ Emscripten JavaScript Port

Generate private and bridge key (64-bit): 0.00866544s 0.1876s
Generate public key (64-bit): 0.153361s 0.86047s

Compute encrypted LMM (64-bit): 0.00515336s 0.048094s
Compute encrypted XOR (64-bit): 0.00003927s 0.000349s
Compute encrypted AND (64-bit): 0.00010069s 0.000815s

Generate private and bridge key (128-bit): 0.0570461s 1.2367s
Generate public key (128-bit): 1.28326s 7.9566s

Compute encrypted LMM (128-bit): 0.0000372425s 0.36909s
Compute encrypted XOR (128-bit): 0.000120598s 0.00207s
Compute encrypted AND (128-bit): 0.000194966s 0.00404s
Compute encrypted ADD (128-bit): 0.021877929s n/a

Compute encrypted MULT (128-bit): 1.409277131s n/a
Table 1. Average FHE operation runtime

The sizes of the keys are:

Key Size (64-bit) Size (128-bit)

PrivateKey < 50KB < 330KB
BridgeKey < 70KB < 412KB
PublicKey < 2.4MB < 18.5MB

Table 2. Key sizes
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bases in Public Key Cryptography: An open letter to a scientist who failed and a challenge to those who have
not yet failed. Journal of Symbolic Computations, 18(6):497–501, 1994.
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8. Côme Berbain, Henri Gilbert, and Jacques Patarin. QUAD: A multivariate stream cipher with provable security.
J. Symb. Comput., 44(12):1703–1723, 2009.
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