
Context-Restricted Indifferentiability: Generalizing UCE and
Implications on the Soundness of Hash-Function Constructions

Daniel Jost Ueli Maurer

Department of Computer Science, ETH Zurich, Switzerland
{daniel.jost, maurer}@inf.ethz.ch

Abstract

Understanding how hash functions can be used in a sound manner within
cryptographic protocols, as well as how they can be constructed in a
sound manner from compression functions, are two important problems
in cryptography with a long history. Two approaches towards solving
the first problem are the random oracle model (ROM) methodology and
the UCE framework, and an approach to solving the second problem is
the indifferentiability framework.
This paper revisits the two problems and the above approaches and
makes three contributions. First, indifferentiability, which comes with a
composition theorem, is generalized to context-restricted indifferentiabil-
ity (CRI) to capture settings that compose only in a restricted context.
Second, we introduce a new composable notion based on CRI, called
RO-CRI, to capture the security of hash functions. We then prove that a
non-interactive version of RO-CRI is equivalent to the UCE framework,
and therefore RO-CRI leads to natural interactive generalizations of
existing UCE families. Two generalizations of split UCE-security, called
strong-split CRI-security and repeated-split CRI-security, are introduced.
Third, new, more fine-grained soundness properties for hash function
constructions are proposed which go beyond collision-resistance and
indifferentiability guarantees. As a concrete result, a new soundness
property of the Merkle–Damgård construction is shown: If the compres-
sion function is strong-split CRI-secure, then the overall hash function
is split secure. The proof makes use of a new lemma on min-entropy
splitting which may be of independent interest.

1

mailto:daniel.jost@inf.ethz.ch
mailto:maurer@inf.ethz.ch

Contents

1 Introduction 3
1.1 Related work . 4

2 Preliminaries 6
2.1 The (traditional) UCE framework . 6
2.2 Resources and Converters . 6
2.3 Indifferentiability . 7

3 Context Restricted Indifferentiability 9
3.1 The Limitations of General Composability . 9
3.2 Context-Restriction . 10
3.3 Composition . 11
3.4 Relation to Indifferentiability . 12
3.5 An Example of CRI: Diffie-Hellman Key Exchange 13

4 Random-oracle Context-Restricted Indifferentiability: generalizing UCE 14
4.1 Mapping Contexts to UCE Sources . 16
4.2 The Equivalence . 16

5 The relation between CRI and public-seed pseudo-random permutations 18
5.1 Public-seed pseudorandomness . 18
5.2 Ideal primitives and function families in CRI . 19
5.3 The equivalence . 20

6 Generalization of split security 21
6.1 Split security . 21
6.2 Strong-split security . 22
6.3 Strict min-entropy seeds . 23
6.4 The repeated-split source context set . 25
6.5 The relation between ICE and strong-split context-restricted indifferentiability . . 26

7 New Types of Soundness Statements for Hash Function Constructions 27
7.1 CRI of the Merkle–Damgård Construction . 27
7.2 Using RO-CRI to Analyze the Soundness . 33

A Proof of Lemma 6.6 33

References 37

2

1 Introduction

The random oracle model (ROM) [BR93] is an important tool towards establishing confidence
in the security of real world cryptographic constructions. The paradigm can be described in
two steps: first, to design a protocol and prove it secure in the ROM, thus using a random
oracle instead of a hash function; second, to instantiate the random oracle with a cryptographic
hash function. However, it is well known [CGH04] that no hash function realizes a random
oracle; hence, once the random oracle is instantiated the security proof degenerates to a heuristic
argument of the security. As a consequence, several different approaches have evolved to reinforce
the confidence in such a security argument.

A commonly accepted technique is to use a hash function construction Hf that was proven
indifferentiable from a random oracle when using an ideal compression function f . This re-
duces the security assumption about the hash function to the security assumption about the
compression function, thereby excluding attacks exploiting the construction of Hf from f . The
indifferentiability framework [MRH04] is a widely used framework that formalizes the proof
obligation.

More recently, Bellare et al. [BHK14] proposed the notion of universal computational
extractors (UCE). This notion is based on the observation that for most “real world” protocols
proven secure in the random oracle model, instantiating the random oracle with a concrete hash
function is not known to be insecure. The UCE framework revisits the question of what it means
for a family of functions to “behave like a random oracle” and formalizes a new security notion for
hash functions aimed at bridging in a systematic and broad manner the gap between the general
impossibility result and the apparent security of concrete protocols. The UCE framework has
been applied to a set of applications, including security under key-dependent attacks, security
under related-key attacks, garbling schemes, proofs of storage, and deterministic encryption. The
security of many of these applications is defined as a multi-stage game, since the two-stage nature
of UCE makes it hard to apply it directly to scenarios whose security definition is formalized
using a more traditional monolithic central adversary.

Contributions. Our contributions are three-fold. First, we introduce a generalization of
indifferentiability called context-restricted indifferentiability (CRI). This generalization allows us
to model that a resource does not compose generally but can only be used within a well-specified
set of contexts.

Second, we apply the general context-restricted indifferentiability framework to the random
oracle and whether it can be instantiated with a hash function within certain contexts, called
random-oracle context-restricted indifferentiability (RO-CRI) security. Moreover, we show that
the original UCE definition is a special case of RO-CRI security1. Thereby we propose an
alternative interpretation of the UCE framework in a traditional single-stage adversary model
and provide well-defined composition guarantees. To this end we define the set of non-interactive
contexts and then prove that every UCE class can be mapped to a subset of non-interactive
contexts such that the UCE problem and the context-restricted indifferentiability statement
become equivalent. This treatment directly leads to a generalization of the UCE framework
that does not restrict itself to non-interactive contexts and allows for some limited interaction
between the source and the distinguisher. More specifically, we propose two generalizations of the

1UCE is often understood as a more general paradigm than the original definition introduced by Bellare et al.
and many variants thereof exists. Some of them are not directly captured by the RO-CRI definition.

3

split-source UCE class that we call strong-split security and repeated-split security, respectively.
Moreover, we prove that interactive computational extractor (ICE) security [Mit14] implies
strong-split security, establishing it as an intermediate notion between the (weak) original UCE
notion and the stronger ICE notion.

Finally, we propose that context-restricted indifferentiability, and thereby UCE, could be
viewed as a more fine-grained version of indifferentiability. In particular, we propose to use
RO-CRI security as a tool for analyzing the soundness of hash function constructions and
recommend candidate constructions to come with such proofs. As an example, we prove that the
Merkle–Damgård scheme is split-secure if the underlying compression function is strong-split
secure (as opposed to the usual much stronger assumption of the compression function being a
random function). We thereby generalize a lemma on min-entropy splitting by Damgård et al.,
which we believe might be of independent interest.

1.1 Related work

We now discuss the relation between context-restricted indifferentiability and some related notions,
including variants of UCE as well as variants of indifferentiability.

Universal Computational Extractors. The UCE framework was introduced by Bellare
et al. [BHK13] as a tool to provide a family of notions of security for keyed hash functions,
refining the predominant random oracle methodology. Since then, the impossibility of various
UCE-classes has been shown by Brzuska et al. [BFM14; BM15] and Bellare et al. [BST16], and
the possibility of a specific UCE-class in the standard model has been shown by Brzuska and
Mittelbach [BM14]. Bellare et al. [BHK14] have also suggested to use the UCE framework to
study the domain extension of a finite input-length random oracle to a UCE secure variable input
length random oracle. Their motivation is mainly based on finding more efficient constructions if
they only require the UCE security of the variable input length random oracle.

Interactive Computational Extractors. In [FM16] Farshim and Mittelbach introduced
a generalization of UCE called interactive computational extractors. Generalizing UCE to
interactive scenarios is also one of our contributions. The generalization they propose and the
one we propose, however, differ on a very fundamental level and pursue different directions. ICE
makes the two stages of the original UCE definition symmetrical and thereby eliminates the
need for an uniformly random but publicly known key. The definition essentially allows the two
stages to jointly form queries using a buffer, even allowing interaction, as long as neither one
of the stages can predict the overall query. Their definition is very much motivated by making
UCE interactive and symmetrical without falling into obvious impossibility results. In contrast,
we exactly use the asymmetry of UCE to embed it in the traditional indifferentiability setting
with one dishonest and one honest party. Our context-restricted indifferentiability framework
is inherently motivated by giving a definition that is as general as possible while capturing
that certain ideal resources such as the random oracle might only compose in a restricted way.
Nevertheless, we prove that ICE security implies strong-split context-restricted indifferentiability,
relating the two frameworks. Whether the reverse direction is true for some natural context-sets
and notion of ICE security remains an interesting open problem, which might lead to a better
understanding of the various notions.

4

Public-Seed Pseudorandom Permutations. In [ST17] Soni and Tessaro introduce the
notion of public-seed pseudorandom permutations (psPRP) that are inspired by UCE. In fact,
they introduce a generalization of UCE, called public-seed pseudorandomness, of which both
psPRP and UCE are instantiations. For their psPRP notion they introduce the unpredictability
and reset-security notions analogous to UCE, and moreover they study the relations between
psPRP and UCE. In contrast to CRI, their definition is still purely game-based. Moreover,
we show in Section 5 that public-seed pseudorandomness can be interpreted as CRI with a
fixed real-world resource and a certain type of ideal-world resources, and thus CRI is a strict
generalization of their notion.

Reset Indifferentiability. The reset indifferentiability notion has originally been introduced
by Ristenpart, Shacham, and Shrimpton in [RSS11] as a workaround to the composition problems
in multi-stage settings they highlighted. This variant of indifferentiability has later been proven
to be equivalent to indifferentiability with stateless simulators in [DGHM13]. There are two
main differences to our notion of CRI: first, our notion uses the traditional single-stage setting of
the original indifferentiability framework, whereas reset indifferentiability focuses on multi-stage
settings. Second, and more important, our notion weakens the classical indifferentiability notion,
whereas reset indifferentiability strengthens it.

Resource-restricted indifferentiability. In [DGHM13], Demay et al. gave an alternative
interpretation of the shortcoming of the traditional composition theorem that was highlighted
in [RSS11]. They introduced the notion of resource-restricted indifferentiability, which makes
the memory used in the simulator explicit in contrast to the original definition which only
requires this memory to be polynomially bounded. They show that for security definitions where
memory inherently matters, such as the proof of retrievability example of Ristenpart et al., such a
fine-grained treatment is vital in order to get meaningful security statements. Again, their notions
differs from ours by strengthening indifferentiability while context-restricted indifferentiability is
a weakening.

Unsplittable Multi-stage Games. In [Mit14] Mittelbach presents a condition called un-
spittability on multi-stage games, which allows them to show that the composition theorem
of indifferentiability can be salvaged for iterative hash function constructions. This work is
similar to ours in the sense that it formalizes a condition in which situations the random or-
acle can be safely instantiated by a hash function. However, we would like to highlight that
context-restricted indifferentiability is a general paradigm that not only applies to iterative hash
function constructions but generally allows to formalize ideal resources which can only be used
in limited but explicit ways. In addition, the notion of context-restricted indifferentiability also
provides a weaker definition for the hash function construction, allowing to circumvent the known
impossibility results or finding more efficient constructions, whereas Mittelbach’s result assumes
that the hash function is indifferentiable from a random oracle in the traditional sense.

5

2 Preliminaries

2.1 The (traditional) UCE framework

To circumvent the trivial and well-known impossibility result that no hash function family is
indifferentiable from a random oracle, Bellare, Hoang, and Keelveedhi [BHK14] introduced the
UCE framework to formalize a weaker version of what it means for a family of keyed hash
functions to behave like a random oracle. The UCE framework defines a two-stage adversary,
where only the first stage—the source S—has access to the oracle (either the hash function or
the random oracle) and only the second stage—the distinguisher D—has access to the hash key
hk. The source provides some leakage L to the distinguisher that then decides with which system
the source interacted. The definition of the security game is presented in Algorithm 1. Here,
H.Kg denotes the key generation algorithm, H.Ev the deterministic evaluation algorithm, and l
the output length associated with the family of hash functions H.

Algorithm 1 The UCE game

function Main UCES,D
H (λ)

b
$← {0, 1}; hk $← H.Kg(1λ)

L
$← SHash(1λ)

b′
$← D(1λ, hk, L)

return (b′ = b)

function Hash(x, 1l)
if T [x, l] = ⊥ then

if b = 1 then
T [x, l]← H.Ev(1λ, hk, x, 1l)

else
T [x, l]

$← {0, 1}l

return T [x, l]

Without any further restriction, this game is trivial to win: the source queries some point
x, obtains the result y, and then provides the tuple (x, y) as leakage to the distinguisher which
then decides whether y matches with the hash of x. Therefore, in order for this definition to
be meaningful, the leakage has to be restricted in some sense which gives rise to various UCE
classes depending on the kind of restriction. The basic restriction proposed was that the queries
of the source S must be unpredictable given the leakage L. Both statistical unpredictability as
well as computational unpredictability have been proposed; however, the latter has been shown
to be impossible [BFM14].

2.2 Resources and Converters

The indifferentiability framework by Maurer, Renner, and Holenstein [MRH04] is a widely
adopted framework to analyze and prove the security of hash function constructions. The
indifferentiability framework is a simulation-based framework that uses the so-called “real world –
ideal world” paradigm and formalizes security guarantees as resources (called functionality in the
Universal Composability framework [Can01]). A resource S captures the idea of a module which
provides some well-defined functionality to the different parties–both the honest and the dishonest
ones–which can then be used in a higher level protocol. A resource can either be something
physically available, such as an insecure communication network, or can be constructed from
another resource R using a cryptographic protocol π. In fact, the goal of the protocol π can
be seen as constructing the ideal resource S from the real one R assumed to be available. The
protocol is modeled as a converter that connects to the system R.

6

The indifferentiability framework formalizes this concept in a setting with a single honest
and a single dishonest party. In the following we give a brief description of the system algebra
used in this work. We basically follow the contemporary notation of indifferentiability presented
in [MR16], while sticking to the original reducibility notion.

Formal definitions. A resource is a system with two interfaces via which the resource interacts
with its environment. The (private) interface A and the (public) interface E can be thought as
being assigned to an honest and a dishonest party, respectively. Let Φ denote the set of resources.
All resources in Φ are outbound (as in the original version of indifferentiability) meaning that
interaction at one interface does not influence the other interface. If two resources V and W are
used in parallel, this is again a resource, denoted [V,W], where each of the interfaces allows to
access the corresponding interfaces of both subsystems. Moreover, we assume the existence of a
dummy resource � ∈ Φ such that [R,�] = R for any resource R.

Converters are systems that can be connected to an interface of a resource to translate the
inputs and outputs. A converter has two interfaces: the outer interface out that becomes the new
interface of the resource, and the inner interface in that is connected to the interface of the existing
resource. Attaching a converter π to a specific interface of a resource R yields another resource.
We understand the left and the right side of the symbol R as the interface A and E, respectively;
thus, attaching π at interface A is denoted πR and attaching it at interface E is denoted Rπ. Let Σ
denote the set of converters. Two converters φ and ψ can be composed sequentially and in parallel:
sequential composition is denoted as φ◦ψ such that (φ◦ψ)R = φ(ψR) and parallel composition as
[φ, ψ], where [φ, ψ][R,S] = [φR, ψS]. Moreover, we assume the existence of an identity converter
id such that idR = R id = R, for which in particular we have [φ, id][R,S] = [φR, S].

Conventions for Describing Systems and Algorithms. We describe our systems using
pseudocode. The following conventions are used: We write x← y for assigning the value y to
the variable x. For a finite set X , x $← X denotes assigning x uniformly at random a value in X .
Furthermore, x PX← X denotes sampling x according to the indicated probability distribution PX
over X .

Queries (also called inputs) to systems consist of a list of arguments, of which the first one is
a suggestive keyword. If the input consists only of the keyword we omit the parenthesis, i.e., we
write retrieve or (hash, x). When specifying the domain of the inputs, we ignore the keyword
and write (hash, x) ∈ X to indicate x ∈ X . If a system outputs a value x at the interface
named int, we denote this “output x at int”. We generally assume that all resources reply at
the same interfaces they have been queried before processing any additional queries. Therefore,
if a converter outputs a query at its inside interface, we write “let var denote the result” meaning
that we wait for the value returned from the connected system and then store it in the variable
var.

We depict resources using rectangular boxes and converters (which include simulators) using
rounded boxes.

2.3 Indifferentiability

In contrast to game-based security definitions, indifferentiability gives composable security
guarantees, i.e., the security guarantees obtained are not only with respect to specific attack
scenarios but with respect to all possible attacks.

7

The fundamental idea of composition is then to prove the construction of S from R in isolation
and be assured that in any higher level protocol φ making use of S, the resource S can be replaced
with R with the protocol applied, without degrading the security of φ. The system S, while
not existing in the real world, therefore serves as an abstraction boundary for the design of
cryptographic schemes.

The security definition. In our security statements, we are interested in the advantage of a
distinguisher D in distinguishing two resources. We define the advantage of a distinguisher D in
distinguishing two resources, say R and S, as

∆D(R,S) := Pr[DS = 1]− Pr[DR = 1],

where DS denotes the output of the distinguisher D when connected to the resource S. The
distinguisher thereby gets access to both the interfaces of the resource S and the randomness
is taken over both D and S. Moreover, let R ≈ S denote that ∆D(R,S) is negligible for every
efficient distinguisher D.2

This now allows us to define indifferentiability.

Definition 2.1 (Indifferentiability). Let R and S be 2-interface resources. S is reducible to R by
π ∈ Σ in the sense of indifferentiability (denoted R

π
==⇒ S), if

R
π

==⇒ S :⇐⇒ ∃σ ∈ Σ : πR ≈ Sσ

and we refer to the converters π and σ as the protocol and the simulator, respectively.

π R S σ

Figure 1: The real (left) and the ideal (right) setting considered in indifferentiability

In contrast to the original version we do not existentially quantify over the protocol instead
explicitly specify it to make statements about concrete protocols. Of course the original definition
can be obtained by simply adding the quantifier in a given statement. The two settings, called
the real setting and the ideal setting, from the security condition of Definition 2.1 are depicted
in Figure 1.

Composability. The formalism of indifferentiability composes in the natural way under some
natural closure assumptions3 on the sets Σ and D of converters and distinguishers considered.
First, if T is reducible to S and S is reducible to R, then T is reducible to R by the composed
protocol. Secondly, if S is reducible to R, then for any resource U, [S,U] is reducible to [R,U].
More formally, for any resources R, S, T, and U we have the following two conditions:

2The systems, including the distinguishers, we consider in this work are, in fact, families of systems indexed
by a security parameter. The distinguishing advantage is then a function of this parameter. To simplify the
presentation, the security parameters are omitted.

3The set of distinguishers D needs to be closed under emulation of a converter. The set of converters needs to
be closed under sequential composition.

8

R
π1

==⇒ S ∧ S
π2

==⇒ T =⇒ R
π2◦π1
==⇒ T

R
π

==⇒ S =⇒ [R,U]
[π,id]
==⇒ [S,U].

3 Context Restricted Indifferentiability

In this section we first revisit the motivation behind composable frameworks such as the indiffer-
entiability framework. To handle cases where fully composable security is unachievable, we then
introduce the notion of context-restricted indifferentiability, a single-stage security definition
inspired by the original motivation behind the UCE-framework. In fact, in the next section we
then prove that UCE can be seen as a special case of context-restricted indifferentiability.

3.1 The Limitations of General Composability

At the heart of every composable cryptographic framework, such as indifferentiability, lies the
concept of a resource (called functionality in the Universal Composability framework [Can01]).
A resource S captures the idea of a module which provides some well-defined functionality to the
different parties–both the honest and the dishonest ones–which can then be used in a higher level
protocol. The goal of a protocol π in a composable framework is phrased as constructing the
resource S from an assumed resource R. The fundamental idea of composition is then to prove
the construction of S from R in isolation and be assured that in any environment, the resource S
can be replaced with πR, without degrading the security. This not only leads to strong security
guarantees, but also allows for a modular approach, since the construction of the resource S can
be considered entirely independent of its use.

The modular approach of indifferentiability, however, fails if we use a resource S which cannot
be reduced to any R available in the physical world, such as the random oracle. Let PO denote a
public random oracle resource, and HK a public hash key resource. Then, the famous impossibility
result [CGH04] states, that there exists no deterministic and stateless protocol h, implementing

a hash function, such that HK
h

==⇒ PO, i.e., such that the hash function reduces the random
oracle to the public hash key. We now discuss two well-known approaches to dealing with such
resources and then propose a novel third one.

1. The most natural approach should be to weaken the guarantees provided by S, and instead
consider a restricted variant S′.

For the random oracle, and many other examples, no such natural weakened version exists.
In those cases, we need a different approach.

2. One can restrict the class of distinguishers allowed, e.g., split the distinguisher into multiple
stages. The UCE framework is such an approach. Unless there is an application scenario
where one can justify such a restricted attacker, this approach leads however to security
definitions without evident semantics.

The original motivation of the UCE framework, though, has not been to consider restricted
adversaries but to phrase that, in contrast to the impossibility results, real world protocols use
the random oracle in “sensible” ways. We turn this motivation into a third approach:

9

f

S

X

Figure 2: The resource S embedded in a context (f,X). We depict resources using rectangular
boxes and converters using rounded boxes. The interface of the honest party of a resource is
depicted on the left side, and the one of the dishonest party on the right side.

f

π R

X

f

S

X

σ

Figure 3: The real (left) and the ideal (right) setting considered in context-restricted indifferen-
tiability.

3. One can restrict composition in a well-defined way. If there is a resource S that cannot
be reduced to a resource R, i.e., we cannot replace S by πR, for some converter π, in all
contexts, we propose to make explicit in which contexts one can do it.

3.2 Context-Restriction

In this section we formally define the idea of restricting composition. In order to do so, we define
a context in which we allow the resource S to be used. A context consists of an auxiliary parallel
resource X and some converter f applied by the honest party, as depicted in Figure 2. We usually
call this converter f a filter to indicate that its goal is to restrict the access to the resource S.
To obtain general statements, we consider a set of contexts instead of a single one. This set
should be general enough to capture many application scenarios but avoid those for which the
impossibility is known.

Definition 3.1. A context set C is a subset of Σ× Φ, where Σ denotes the set of all converters
and Φ denotes the set of all resources.

Recall that our goal is to make a modular statement: reducing S to another resource R in
each of these contexts in C, i.e., finding a single resource R and protocol π such that πR can
instantiate S in each of these contexts in C. Therefore, the same context appears in both the
real and the ideal setting. See Figure 3 for an illustration of the distinction problem when fixing
a specific context. Quantifying over all contexts of a set leads to the following definition of
context-restricted indifferentiability.

Definition 3.2. Let C ⊆ Σ × Φ be a given set of contexts, and let R and S be 2-interface
resources. We define S to be C-restricted reducible to R by π ∈ Σ and σ ∈ Σ in the sense of

indifferentiability (denoted R
π,C

==⇒
cr

S), as

R
π,C

==⇒
cr

S :⇐⇒ ∀(f,X) ∈ C ∃σ ∈ Σ: f[πR,X] ≈ f[S,X]σ

10

and refer to the converters π and σ as the protocol and the simulator, respectively.

3.3 Composition

Composability generally refers to the property of a framework that from one, or multiple, given
statements, new ones can be automatically deduced in a sound way without having to reprove
them. More concretely, in CRI we are interested in deducing new reducibility statements from
given ones. Using the abstract algebraic approach of constructive cryptography [MR11], such
composition properties are usually consequences of composition-order invariance, a natural
associativity property stating that the order in which we connect systems is irrelevant. As a
consequence, composition properties can be easily illustrated by figures, and we thus omit fully
formal proofs.

In order to formally state the composition theorem, we first define the closure of a context
set as follows.

Definition 3.3. Let C ⊆ Σ×Φ be a given set of contexts. We denote by C ⊆ Σ×Φ the following
set of contexts:

C := {(f,X) ∈ Σ× Φ | ∃(g,Y) ∈ C ∃h ∈ Σ ∃Z ∈ Φ : h ◦ g = f ∧ [Y,Z] = X}.

This closure operator follows the intuition that if a resource can be reduced to another one
in a certain context, then this also holds true if we further restrict the context by requiring an
additional parallel resource and filter. Thus, context-restricted indifferentiability is irrespective
to the closure operator.

Proposition 3.4. Let R,S ∈ Φ denote resources, π ∈ Σ denote a converter, and let C denote a

set of contexts. We then have R
π,C

==⇒
cr

S ⇐⇒ R
π,C

==⇒
cr

S.

Proof. The implication ⇐= is trivial, since C ⊆ C. We now prove the other direction. Let
(f,X) ∈ C and notice that by Definition 3.3 this implies that there exists (g,Y) ∈ C, h ∈ Σ, and
Z ∈ Φ such that h ◦ [g, id] = f and [Y,Z] = X.

f X f X

h

g

π R

Y

Z

≈ h

g

S

Y

Z

σ

By our assumption, we know that g[π, id][R,Y] is indistinguishable from g[S,Y]σ, as indicated by
the dotted box. Thus, if we add the additional filter h and resource Z, they remain indistinguish-
able. This concludes the proof.

Finally, we can state the actual composition theorem. Note that the additional conditions
compared to the composition theorem of classical indifferentiability (cf. Section 2.3) are a direct
consequence of the context restrictions. For instance, if in the sequential case we reduce T to S in
one of the given contexts, we have to ensure that now we are again in a valid context for reducing

11

S to R. This highlights that in order for context-restricted indifferentiability to be useful, the
context-sets have to be defined in a form that containment can be easily verified. We discuss an
example of the composition theorem in Section 3.5.

Theorem 3.5. Let R, S, T, and U denote resources, let π1 and π2 denote protocols, and C1 and
C2 contexts sets. If ∀(f,X) ∈ C2 : (f ◦ [π2, id],X) ∈ C1, then we have

R
π1 ,C1
==⇒
cr

S ∧ S
π2 ,C2
==⇒
cr

T =⇒ R
π2◦π1,C2
==⇒
cr

T.

Moreover, if ∀(f,X) ∈ C2 : (f, [U,X]) ∈ C1, then we have

R
π1,C1
==⇒
cr

S =⇒ [R,U]
π1,C2
==⇒
cr

[S,U].

Proof. We first show the sequential case. Assume that the prerequisite regarding the two context
sets is satisfied. Moreover, consider an arbitrary context (f,X) ∈ C2 and the three system
configurations, depicted in the following figure.

f

π2 π1 R

X

≈ f

π2 S

X

σ1 ≈ f

T

X

σ2 σ1

Using the assumed property on C1 and Proposition 3.4, we know that the context indicated with
the dashed line is a valid one for reducing S to R, yielding the first equality. The second equality
follows directly from the premise.

In order to show the parallel composition property, assume again that the corresponding
condition on the context sets is satisfied. Moreover, consider an arbitrary context (f,X) ∈ C1 and
the two system configurations, depicted in the following figure.

f

π1 R

X

U

≈ f

S

X

U

σ

Using the assumed property on C1 and Proposition 3.4, we know that the context indicated with
the dashed line is a valid one for reducing S to R. In short, parallel composition in CRI is just
associativity: The resource U can be seen as both part of the context, indicated by the dashed
line, or part of the real and ideal resources, indicated by the dotted line. This concludes the
overall proof.

3.4 Relation to Indifferentiability

Let id denote the identity converter, such that idR = R and � the neutral resource, such that
[R,�] = R, for any resource R. It is then easy to see that regular indifferentiability, which
guarantees full composition, is a special case of context-restricted indifferentiability with the

12

context set Cid := {(id,�)}, since Cid = Σ× Φ, i.e., the closure equals to the set of all resources
and converters. One can, however, also take the opposite point of view and consider context-
restricted indifferentiability to be a special case of plain indifferentiability. From this perspective,
CRI reducibility is just a set of normal reducibility statements where the context is part of the
resources and protocols, respectively. This can be summarized in the following proposition.

Proposition 3.6. Let Cid := {(id,�)}. For all resources R, S, protocol π, and context sets
C ⊆ Σ× Φ, we have

R
π

==⇒ S ⇐⇒ R
π,Cid
==⇒
cr

S,

R
π,C

==⇒
cr

S ⇐⇒ ∀(f,X) ∈ C : [R,X]
f◦[π,id]
==⇒ f [S,X].

Using Cid = Σ×Φ, it is also easy to see that the composition theorem of regular indifferentia-
bility is just a special case of Theorem 3.5.

3.5 An Example of CRI: Diffie-Hellman Key Exchange

The general setting. Consider the following simple example: two honest parties, e.g., Alice
and Bob, perform a Diffie-Hellman key exchange using authenticated communication and then
extract an actual key by hashing the group element gab, while an eavesdropper is present.

Since both the honest parties hash the exactly same element, there is no necessity to treat
them as different parties and we can work in the indifferentiability setting with one honest
party and the adversary. Consider the following resources: let DH be a Diffie-Hellman resource
(modeling the authenticated key exchange) that outputs gab at interface A and (ga, gb) at interface
E, let PO denote a random oracle accessible by both parties, let HK denote a public hash key
resource that outputs the key at both interfaces, and let KEY be a resource that outputs a
uniformly random key at interface A and nothing at interface E. The Diffie-Hellman converter π
takes the group element gab at the inside interface, inputs it to the random oracle, and outputs
the obtained result at the outside interface. It is easy to see that under the CDH assumption
we have [PO,DH]

π
==⇒ KEY, using the simulator σ that chooses (ga, gb) uniformly at random

and simulates the interface E of the public random oracle. Note that the fact that the random
oracle “vanishes” and is simulated in the ideal world corresponds to the notion of a programmable
random oracle...

Limitation of Indifferentiability. The explicit appearance of the resource PO in the above
statement corresponds to a proof in the so called random oracle model. The corresponding
simulator σ chooses (ga, gb) uniformly at random and simulates the interface E of the public
random oracle4. If we want to obtain a proof in the standard model, i.e., getting rid of the
assumed random oracle resource, we would need to find a (potentially) keyed hash function that
instantiates the random oracle, which is of course impossible. Such a hash function is in our
terminology just a converter h that reduces the random oracle to the public hash key resource HK,

i.e., HK
h

==⇒ PO. If we had such a hash function, we could use parallel composition to obtain

[HK,DH]
[h,id]
==⇒ [PO,DH] and then sequential composition to obtain [HK,DH]

π◦[h,id]
==⇒ KEY.

4The fact that the random oracle “vanishes” and is simulated in the ideal world corresponds to the notion of a
programmable random oracle.

13

Applying CRI. The main obstacle in the way of the modular approach is that there exists no
hash function that reduces the random oracle to a public hash key. However, using the formalism
of context-restricted indifferentiability there might be a context set C such that the random
oracle is reducible for a given hash function h. Composing this with the second step should then
be possible as long as the protocol which we want to actually apply is in the context set, i.e.,
(π,DH) ∈ C. We now show, that this is exactly what the composition theorem of CRI yields:

Assume that HK
h,C

==⇒
cr

PO for some context set C with (π,DH) ∈ C. Let C′ := {([π, id],�)}.

According to the parallel composition rule of Theorem 3.5, we have that [HK,DH]
h,C′

==⇒
cr

[PO,DH],
since by definition of the identity converter and the neutral resource, ([π, id], [DH,�]) is equivalent

to (π,DH) and thus contained in C. Using Proposition 3.4, we moreover have [PO,DH]
π,Cid
==⇒
cr

KEY

and since by definition (id ◦ [π, id],�) = ([π, id],�) ∈ C′, we can apply sequential composition

and obtain [HK,DH]
π◦h,Cid
==⇒
cr

KEY, which is equivalent to [HK,DH]
π◦h

==⇒ KEY.
In summary, this shows that the composition theorem of context-restricted indifferentiability

yields exactly what one expects: composition works if and only if the considered application
is in the set of allowed contexts. This of course implies that the context set must be defined
in such a way that verifying this fact becomes as easy as possible. For the above example, for
instance, it is easy to see that this works if C is the context-set of split-security combined with
computational unpredictability, or statistical unpredictability if we are willing to assume DDH
instead of CDH. Split security is discussed in more detail in Section 6.1.

4 Random-oracle Context-Restricted Indifferentiability: general-
izing UCE

In the following section we present an alternative formalization of UCE security based on context-
restricted indifferentiability, namely that a random oracle is indeed reducible to a public hash
key, provided the context is adequately restricted. To this end, we show that every possible UCE
family Sx, where x ∈ {sup, cup, srs, crs, splt, . . .}, can be mapped to a set of contexts C for which

the UCE statement implies the context-restricted indifferentiability statement HKH
hashH,C
==⇒
cr

RO,
and moreover, if the context-restricted indifferentiability statement were restricted to a specific
simulator, the reverse direction would hold as well.

Here H : H.K ×H.X → H.Y denotes a keyed hash function, HKH denotes the public hash
key resource that outputs the key at both interfaces, hashH denotes the protocol that implements
the hash oracle using the hash key, and ROH denotes the private random oracle resource with the
same input and output domains as the hash function H. See Section 2.2 for a formal description
of these resources and converters.

Remark. By private we mean that this resource only accepts queries at interface A. This is a
deliberate design choice–of course one could also look at a public random oracle–which originates
in the UCE framework just choosing the hash key uniformly at random instead of allowing an
arbitrary efficient simulator with access to the random oracle to generate this key.

14

Resource HKH

Initialization

k
$← H.K

Interface i ∈ {A, E}
Input: getkey

output k at i

Converter hashH

Initialization
output getkey at in
let k denote the result

Interface out

Input: (hash, x) ∈ H.X
output H(k, x) at out

Converter σH

Initialization

k
$← H.K

Interface out

Input: getkey
output k at out

Resource H

Initialization

k
$← H.K

Interface A

Input: (hash, x) ∈ H.X
output H(k, x) at A

Interface E

Input: getkey
output k at E

Resource ROH

Initialization

k
$← H.K

for all x ∈ H.X do
T [x]← ⊥

Interface A

Input: (hash, x) ∈ H.X
if T [x] = ⊥ then

T [x]
$← H.Y

output T [x] at A

Figure 4: Formal definitions of the resources and converters.

15

4.1 Mapping Contexts to UCE Sources

In order to map every UCE family to an equivalent set of contexts, we first introduce the set
of non-interactive contexts, i.e., the communication between the source and the distinguisher
being unidirectional. This restricted set of contexts faithfully encodes the structural restrictions
of the traditional UCE game (cf. page 6), where the communication between the source and
the distinguisher is unidirectional. Recall that we are in the same general setting as the
classical indifferentiability framework, where one only considers out-bound resources for which
communication at one interface does not affect the other interface.

Definition 4.1. A non-interactive filter is a converter that at the outer interface just accepts
a single trigger query (usually called retrieve). Let Σni denote the set of all non-interactive
filters.

Definition 4.2. A non-interactive resource X is a resource that at the interface E accepts at most
a single trigger query (usually called retrieve). Let Φni denote the set of all non-interactive
resources.

So far we have defined the general set of contexts corresponding to the UCE setting. In order
to relate specific sources, we now specify a surjective mapping from non-interactive contexts,
which consists of a non-interactive filter and a non-interactive resource, to the set S of all UCE
sources.

Lemma 4.3. Consider the following function φ : Σni×Φni → S that maps any fixed context (f,X)
to the following UCE source S, which internally emulates f and X:

1. It queries the interface E of X to obtain z (if X accepts any).

2. It queries the outside interface of the filter f to obtain y. The queries at the inside interface
of f are forwarded to the resource X or output as queries to the hash oracle, respectively.

3. It outputs L = (y, z) if X accepted the query at the interface E, and L = y otherwise.

This function φ is surjective.

Proof. First, it is easy to see that φ is indeed a function from Σni × Φni to S , i.e., φ(f,X) is a
valid UCE source for every context (f,X) ∈ Σni × Φni. To see that this function is surjective, fix
an arbitrary source S. Now, let fS denote the filter that upon receiving the query retrieve at
the outer interface internally runs S and answers this query with the leakage L. Each hash query
of S is output at the inner sub-interface in.H and the corresponding answer is forwarded to S.
Clearly φ(fS,�) = S, where � ∈ Φni denotes the dummy resource.

4.2 The Equivalence

We now show, that for the specific simulator σH that chooses the hash key uniformly at random, if
for every specific context (f,X) the distinguishing problem of context-restricted indifferentiability
is hard, then the UCE game with the fixed source φ(f,X) is hard as well, and vice versa. In order
to relate more directly to the traditional UCE definition, we introduce the RO-CRI advantage,
which is depicted in Figure 5 for a specific context (f,X) ∈ C.

16

H

f

hashH HKH

X

f

ROH

X

σH

Figure 5: The real (left) and the ideal (right) setting of context restricted indifferentiability when
applied to UCE.

Definition 4.4. We define the random-oracle context-restricted indifferentiability (RO-CRI)
advantage of a distinguisher D on a hash function H in a context (f,X) as

AdvRO−CRI
H,f,X,σ (D) := ∆D(f[H,X], f[ROH,X]σ),

for a simulator σ. If there exists a simulator σ such that for all efficient distinguishers and
all contexts (f,X) ∈ C, the RO-CRI advantage is negligible, we say that H is C random-oracle
context-restricted indifferentiable or, for short, C indifferentiable.

The following lemma implies that for non-interactive contexts this definition is equivalent to
the game-based definition of UCE security, if we fix the simulator to σH.

Lemma 4.5. Let S denote the set of all UCE-sources and φ : Σni × Φni → S the surjective
function from Lemma 4.3. For every distinguisher D, there is a distinguisher D′ (with essentially
the same efficiency) with

∀(f,X) ∈ Σni × Φni : AdvRO−CRI
H,f,X,σH

(D) = Advuce
H,φ(f,X),D′

Conversely, for every distinguisher D′ there is a distinguisher D (with essentially the same
efficiency) such that for all (f,X) ∈ Σni × Φni we have Advuce

H,φ(f,X),D′ = AdvRO−CRI
H,f,X,σH

(D).

Proof. For every distinguisher D for AdvRO−CRI
H,f,X,σH

(D) we can construct a distinguisher D′ using a
wrapper around D as follows: if D queries the interface E of the hash resource (for the key) or
X we return hk or z, respectively; if D queries the outer interface of f, then y is returned. The
bit b′ is then set to the output bit of D. The key observation is that the resources f[H,X] and
f[RO,X]σH are independent to the order in which D does those queries. It is now easy to see that
AdvRO−CRI

H,f,X,σH
(D) = Advuce

H,φ(f,X),D′ .
The reverse direction works with an analogous wrapper that first queries the system to obtain

hk, z, and y. It then invokes D′ with hk and L = (y, z) as inputs and outputs the bit b′.

The following theorem relates this particular context-restricted indifferentiability statement
to the UCE security of the hash function H. More concretely, we show that every possible
UCE family Sx, where x ∈ {sup, cup, srs, crs, splt, . . .}, there exists a set of context for which the
RO-CRI statement and the UCE statement are equivalent.

Theorem 4.6. Let D denote the set of all efficient distinguishers. For every family Sx of UCE
sources, there exists a set of contexts Cx such that AdvRO−CRI

H,f,X,σH
(D) is negligible for every D ∈ D

and every context (f,X) ∈ Cx if and only if Advuce
H,S,D(·) is negligible for all (S,D) ∈ Sx ×D.

17

Proof. Using the surjectivity of φ (Lemma 4.3), we have that for any family of UCE sources
Sx we can define Cx := φ−1(Sx) such that φ(Cx) = Sx. Hence, by Lemma 4.5 we have that
AdvRO−CRI

H,f,X,σH
(D) is negligible for all efficient distinguishers D ∈ D and all contexts (f,X) ∈ Cx iff

Advuce
H,S,D(·) is negligible for all (S,D) ∈ Sx ×D.

This theorem implies that instead of viewing the source as the first stage of an adversary, one
can view it as the set of contexts in which the hash function can safely be used. The following
corollary establishes the unidirectional implication from UCE-security to context-restricted
indifferentiability. The reverse direction does not necessarily hold, since the context-restricted
indifferentiability notion allows for different simulators than the natural one σH.

Corollary 4.7. Let D denote the set of all efficient distinguishers. For every family Sx of UCE
sources, there exists a set of contexts Cx such that Advuce

H,S,D(·) is negligible for all (S,D) ∈ Sx×D,

then HKH
hashH,Cx
==⇒
cr

ROH.

Proof. This follows directly from Definitions 3.2 and 4.4 and Theorem 4.6.

5 The relation between CRI and public-seed pseudo-random per-
mutations

In [ST17] Soni and Tessaro introduce the notion of public-seed pseudorandom permutations
(psPRP) that are inspired by UCE. In fact, they introduce a generalization of UCE, called public-
seed pseudorandomness, of which both psPRP and UCE are instantiations. In the following,
we give an analogous equivalence result to the one of Section 4 between context-restricted
indifferentiability and the general public-seed pseudorandomness notion. The equivalence for the
psPRP notion then just follows as a trivial corollary.

5.1 Public-seed pseudorandomness

We first briefly recap the main definitions of public-seed pseudorandomness as introduced in
[ST17]. The authors first introduce the notion of an ideal primitive, of which both random oracles
and ideal random permutations are instantiations of.

Definition 5.1. An ideal primitive is a pair I = (Σ, D), where Σ = {Σλ}λ∈N is a family of sets
of functions (such that all functions have the same domain and range), and D = {Dλ}λ∈Nis a
family of probability distributions, where the range of Dλ is a subset of Σλ for all λ ∈ N. The
ideal primitive I, once the security parameter λ is fixed, should be thought of as an oracle that
initially samples a function I as its initial state according to Dλ from Σλ. Then, I provides access
to I via queries i.e. on input x it returns I(x).

Moreover, the authors of [ST17] then define the following notion of Σ-compatible function
families. A function family corresponds to an algorithm that generalizes hash functions and
pseudo-random permutations.

Definition 5.2. A function family F = (Kg,Eval) consists of a key (or seed) generation algorithm
F.Kg and an evaluation algorithm F.Eval.

18

• F.Kg is a randomized algorithm that on input the unary representation of the security
parameter λ returns a key k, and we let [F.Kg(1λ)] denote the set of all possible outputs of
F.Kg(1λ).

• F.Eval is a deterministic algorithm that takes three inputs; the security parameter in
unary form 1λ, a key k ∈ [F.Kg(1λ)] and a query x such that F.Eval(1λ, k, ·) implements a
function that maps queries x to F.Eval(1λ, k, x).

We say that F is efficient if both Kg and Eval are polynomial-time algorithms.

The goal of such a function family F is then to implement an ideal primitive I with respect
to the UCE-like security game depicted in Algorithm 13, considering an adversary that is split
into a source S and a distinguisher D. In contrast to the original definition, we only consider the
game for a single session, which can easily be related to the multi-session one using a standard
hybrid argument.

Algorithm 13 The public-seed pseudorandomness game (single-session)

function Main psPRS,D
F,I (λ)

b
$← {0, 1}

k
$← F.Kg(1λ)

f
$← Iλ

L
$← SO(1λ)

b′
$← D(1λ, k, L)

return (b′ = b)

function O(x)
if b = 1 then

return F.Eval(1λ, k, x)
else

return f(x)

Finally, Soni and Tessaro define the pspr-advantage as follows:

Adv
pspr[I]
F,S,D (λ) = 2 Pr

[
psPRSS,DF,I (λ)

]
− 1.

5.2 Ideal primitives and function families in CRI

In the following section, we argue that every ideal primitive I can be understood as an ideal
resource of an CRI statement, and every function family F as an pair of real resource and protocol,
respectively. For simplicity, we ignore the security parameter λ in the following.

For every ideal primitive I and for every function family F = (Kg,Eval), denote the corre-
sponding resource and converters depicted in Figure 6. Moreover, we also define the simulator
σF, which simply chooses a key according to Kg as well.

19

Resource KGF

Initialization

k
$← F.Kg(1λ)

Interface i ∈ {A, E}
Input: getkey

output k at i

Converter evalF

Initialization
output getkey at in
let k denote the result

Interface out

Input: (eval, x)
output F.Eval(1λ, k, x) at out

Resource I

Initialization

f
$← Iλ

Interface A

Input: (eval, x)
output f(x) at A

Converter σF

Initialization

k
$← F.Kg(1λ)

Interface out

Input: getkey
output k at out

Figure 6: The corresponding resources and converters.

5.3 The equivalence

We now show, that for the specific simulator σKG, if for every specific context (f,X) the distin-
guishing problem of context-restricted indifferentiability is hard, then the UCE game with the
fixed source φ(f,X) is hard as well, and vice versa. In order to relate more directly, we introduce
the psRP-CRI advantage.

Definition 5.3. We define the public-seed pseudorandomness context-restricted indifferentiability
(psRP-CRI) advantage of a distinguisher D on a hash function H in a context (f,X) as

AdvpsPR−CRI
F,I,f,X,σ (D) := ∆D(f[evalFKGF,X], f[I,X]σ),

for a simulator σ.

The following lemma implies that for non-interactive contexts this definition is equivalent to
the game-based definition of UCE security, if we fix the simulator to σF.

Lemma 5.4. Let S denote the set of all psPR-sources and φ : Σni × Φni → S the surjective
function from Lemma 4.3. For every distinguisher D, there is a distinguisher D′ (with essentially
the same efficiency) with

∀(f,X) ∈ Σni × Φni : AdvpsPR−CRI
F,I,f,X,σF

(D) = Adv
pspr[I]
F,φ(f,X),D′

Conversely, for every distinguisher D′ there is a distinguisher D (with essentially the same
efficiency) such that for all (f,X) ∈ Σni × Φni we have Adv

pspr[I]
F,φ(f,X),D′ = ·AdvpsPR−CRI

F,I,f,X,σF
(D).

Proof. The proof is analogous to the one of Lemma 4.5.

We can now state the main result of this section, relating the public-seed pseudorandomness
game to context-restricted indifferentiability.

20

Theorem 5.5. Let D denote the set of all efficient distinguishers. For every family Sx of UCE
sources, there exists a set of contexts Cx such that AdvRO−CRI

H,f,X,σH
(D) is negligible for every D ∈ D

and every context (f,X) ∈ Cx if and only if Advuce
H,S,D(·) is negligible for all (S,D) ∈ Sx ×D.

Proof. The proof is analogous to the one of Theorem 4.6.

This demonstrates that not only UCE is a special case of CRI but also the more general
notion of psPR is still a special case of CRI, where each ideal primitive and function family
correspond to the ideal and real world, respectively. Similarly to UCE, the psPR notion is still
non-interactive and essentially hard-codes a specific simulator in the security game.

6 Generalization of split security

6.1 Split security

The split-source UCE class was initially proposed by Bellare et al. to prevent the indistinguisha-
bility obfuscation attack in the computational setting. The general idea is that the source needs to
be further restricted in the way it operates so that Obfs(H(· , x) = y) can no longer be computed
by the source. Therefore, the split source class demands that the source can be divided into two
parts (S0, S1). The first part S0 chooses a vector x of query points (without having access to the
oracle). The second part of the source S1 then just gets the evaluations yi := Hash(xi) (without
having access to the oracle). Thus, no part of the source knows both xi and its evaluation yi,
preventing the iO attack. A formal description of the split source S := Splt[S0, S1] is found in
Figure 7.

In the previous section we have seen that for every UCE class Sx, one can define a set of
contexts as5 Cx := φ−1(Sx) such that φ(Cx) = Sx. Since the function φ is not bijective, however,
there is no need to include all pre-images. Especially, if a UCE class has a structural property
that translates to a separation between the filter f and the resource X of a context, then this can
be reflected in the choice of the pre-image. Split-security is a case where this comes in handy, as
we can model the structural requirement of split-security as following: S0 can be mapped to the
resource X that outputs the queries at the interface A and the leakage at the interface E, as it
does not need access to the hash oracle. More generally, S0 can be translated to a resource of
the following type.

Definition 6.1. A randomness seed X with n outputs is a resource that initially draws random
values Y1, . . . , Yn and Z according to some joint distribution. Then, it accepts at the interface E
a single trigger query (usually called retrieve) that is answered with Z, and at the interface A
n trigger queries answered with Y1 to Yn. Let Φseed

n denote the set of all randomness seeds with
at most n outputs at the interface A.

The structural property that each of the queries is evaluated and then passed to the source
S1 can be expressed using the fixed filter fsplt that is described in Figure 7.

Remark. It is worth observing that considering a fixed filter makes verifying whether a protocol
can be implemented through this filter relatively easy. This aligns well with the general idea of
making explicit for which protocols a resource can be used. Moreover, this factorization implies
that any unpredictability requirement can be expressed as a property of the resource X only.

21

Algorithm 22 Splt SOURCE
function Splt SourceHash(1λ)

(L0, x)
$← S0(1

λ)
for i = 1, . . . , |x| do

y[i]← Hash(x[i])

L1
$← S1(1

λ, y)
L← (L0, L1)
output L

Converter fsplt

Outer Interface
Input: retrieve

output retrieve at in.X
let x denote the result
output x at in.H
let y denote the result
output y at out

Figure 7: The definition of split sources in UCE.

The following lemma formally states that this translation of split-security is faithful.6

Lemma 6.2. Let Cspltn := {f ◦ fsplt | f ∈ Σni} × Φseed
n and let Sn denote the class of all UCE

sources making at most n oracle queries. For the surjective function φ from Lemma 4.3, we have
φ(Cspltn) = Ssplt ∩ Sn.

Proof. (Sketch) First, we prove that φ(Cspltn) ⊆ Ssplt ∩ Sn, i.e., every context (f ◦ fsplt,X) ∈ Cspltn

is mapped to a UCE source in Ssplt ∩ Sn by φ. We define S0 to be the source which initially
queries z at the interface E and all values x = x1, . . . , xn at the interface A of X and set L0 = z.
The source S1 then internally repeatedly queries f to obtain L1. Whenever f outputs a query
retrieve towards fsplt, then S1 answers by using the next value yi. Observe that, by definition
of Φseed

n , obtaining all queries x1, . . . , xn from X at interface A on demand or at the beginning
and storing the results y1 = H(k, x1), . . . , yn = H(k, xn) is equivalent. Thus, it is easy to verify
that φ(f ◦ fsplt,X) = Splt[S0, S1]. Moreover, this source does at most n queries to the hash oracle.

It remains to show that φ(Cspltn) ⊇ Ssplt ∩ Sn, i.e., for every split source there exists at least
one context that maps to this source. It is easy to see that S0 can be embedded accordingly in a
resource X ∈ Φseed

n and S1 in a filter f ∈ Σni such that φ(f ◦ fsplt,X) = Splt[S0, S1], concluding
the proof.

6.2 Strong-split security

Split sources have several limitations. First, the distinguisher cannot influence the queries at
all and, thus, all queries must be solely determined by the honest parties. This prevents, for
example, queries like H(hk, x||a) where a is a value which can be chosen by the distinguisher (e.g.
a is transmitted over an insecure channel) even if x is unpredictable. In the following section, we
introduce a generalization of split-security, called strong-split security, to address this limitation.

Note that this limitation is not specific to split-security, but is inherent to the traditional
UCE-game. In their work [FM16] on Interactive Computational Extractors (ICEs), Farshim and
Mittelbach have proposed an alternative relaxation of this issue. In Section 6.5, we show that ICE
security implies strong-split context-restricted indifferentiability for statistical unpredictability.
In addition, in Section 6.4 we present a furhter generalization of strong-split security, which
allows for nested queries like H(hk,H(hk, x)).

5We use the following shorthand for surjective functions: f−1(y) = {x | f(x) = y} and f−1(Y) = {x | f(x) ∈ Y}.
6Here, we do not consider split sources with a polynomial number of queries, although those could easily be

phrased by adapting the restriction on the seed accordingly.

22

Converter fs−spltp

Outer Interface
Input: (retrieve, f1, . . . fp) ∈ IpX×A→H.X

output retrieve at in.X
let (x, a) denote the result
for i = 1, . . . , p do

y[i]← fi(x, a)

if ∀i 6= j : y[i] 6= y[j] then
for i = 1, . . . , p do

output y[i] at in.H
let z[i] denote the result

output z at out
else

output ⊥p at out

Figure 8: The filter fs−spltp .

We propose the strong-split source RO-CRI context set, which requires only the entropy seed
to be non-interactive. The filter is allowed to take input from the distinguisher. This ensures that
the queries can depend on the hash key, whereas the leakage of the entropy seed cannot. The
filter fs−spltp is described in Figure 8: the filter expects the entropy seed to output a pair (x, a),
then accepts an efficiently computable function f that is injective in the first argument, from the
distinguisher, and outputs f(x, a) to the hash oracle. Here, f being injective guarantees that
f(x, a) is at least as unpredictable as x. We denote the set of all such functions by IX×A→H.X .
The result is then simply output at the outer interface. The filter fs−spltp can then be combined
with an arbitrary randomness seed to obtain a strong-split RO-CRI context. It is easy to see that
strong-split sources are a strict generalization of split sources for any p ≥ 1, i.e. Cspltn (Cs−spltn,p .

Definition 6.3. The strong-split RO-CRI context set is the set of filters and non-interactive
randomness seed pairs of which the filter can be factorized into fs−spltp followed by an arbitrary
filter. Formally, Cs−spltn,p := {f ◦ fs−spltp | f ∈ Σ} × Φseed

n .

Analogous to split-security, strong-split security is not a sufficient restriction to avoid trivial
impossibility results. Rather, these notions are meant to be combined with a notion of unpre-
dictability or reset-security. Moreover, it was pointed out in [BM14], the queries of a split-source
must be distinct; otherwise arbitrary information can be communicated to the second stage.
However, for strong-split security, requiring the seed to output distinct unpredictable values is
still insufficient to guarantee the security: for instance, if the seed outputs x and x + 1, then
the distinguisher can easily choose f and g such that f(x, a1) = g(x+ 1, a2). As a consequence,
we introduce a suitable notion of statistical unpredictability in the next section that disallows
strongly correlated outputs. To nevertheless allow for protocols that do query the hash function
at correlated positions, such as H(x||1) and H(x||2), we introduced the explicit parameter p of
the number of correlated queries.

6.3 Strict min-entropy seeds

We now define an information-theoretic restriction on the seed, which we call strict min-entropy
seeds. This restriction is analogous to statistical unpredictability for UCE. Similar to Farshim and

23

Mittelbach [FM16] we choose to focus on statistical rather than computational unpredictability
to ensure that our notion excludes interactive version of the attack highlighted in [BFM14].7

Instead of considering the usual notion of statistical unpredictability, we focus in this work
on min-entropy.8 More concretely, we consider seeds whose outputs at interface A consist of
pairs (Yi, Ai), with Ai being an auxiliary value, such that Yi has a certain amount of average
conditional min-entropy given the leakage Z and all previous queries.

Definition 6.4. A non-interactive resource is said to be a strict min-entropy k-bit seed, denoted
X ∈ Φs−me

n,k , if X ∈ Φseed
n with Y × A as the output domain of interface A, and the following

property holds:
∀i ≤ n : H̃∞

(
Yi
∣∣ {Yj}j<i, {Aj}j≤i, Z) ≥ k.

Moreover, let Cs−me
n,k := Σ× Φs−me

n,k denote the set of all strict min-entropy k-bit contexts.

When combining stong-split security with strict min-entropy seeds, the security of strong-split
sources does not depend on the number n of sequential queries output by the seed, as stated in
the following lemma.

Lemma 6.5. If H is a Cs−splt1,p indifferentiable hash function for strict k-bit min-entropy seeds
with a single output, then H is also Cs−spltn,p indifferentiable for strict k-bit min-entropy sources
with n outputs.

Formally, let D denote the set of distinguishers. Then there exists a reduction ρ : D ×(
Cs−spltn,p ∩ Cs−me

n,k

)
→ D (translating the distinguisher) and a translation of the context ψ : Cs−spltn,p ∩

Cs−me
n,k → Cs−splt1,p ∩ Cs−me

1,k , such that for every (f,X) ∈ Cs−spltn,p ∩ Cs−me
n,k we have

AdvRO−CRI
H,f,X,σ (D) ≤

(
np

2

)
2−k + n ·AdvRO−CRI

H,f′ ,X′,σ (D′)

with D′ := ρ(D, f,X) and (f ′ ,X′) := ψ(f,X).

Sketch. The proof works very similarly to the one of Lemma 6.6 presented in Appendix A;
therefore, we only provide a brief sketch. As a first hybrid, we introduce a variant that uses
a beacon instead of a random oracle, where a beacon is a resource with the same interface
as the random oracle but always answers using fresh randomness even for repeated queries.
Distinguishing this hybrid system from the ideal system (that uses the random oracle) can be
bounded with the collision probability for the inputs. Since every of the input has k bits of
conditional min-entropy, given all previous inputs, the collision for any of them can be bounded
with 2−k (c.f. the proof below) and there are at most np queries in total. Hence, the total
distinction advantage can be bounded by

(
np
2

)
2−k.

It remains to bound the distinction advantage between the real system (using the hash
function) and our hybrid system (using the beacon) using the strong-split security for a single
message. This can be shown by a simple hybrid-argument with n additional hybrids where the
i-th randomness seeds Xi outputs the i-th message Yi at interface A and the messages Y1, . . . , Yi−1

7We would like to stress that this is an additional restriction independent of strong-split security. Assuming iO,
however, the same attack from [BFM14] would also apply if we combine strong-split security with a computational
unpredictability notion only.

8Having k bits of min-entropy corresponds to no adversary being able to guess the value with probability
greater than 2−k in a single attempt.

24

Converter fr−spltp,r

Initialization
b← ⊥p, c← 0

Outer Interface
Input: get

output b at out

b← ⊥p

Input: (query, f1, . . . , fp) ∈ IpX ,A→H.X
c← 1
output retrieve at in.X
let (x, a) denote the result
for i = 1, . . . , p do

y[i]← fi(x, a)

if ∀i 6= j : y[i] 6= y[j] then
for i = 1, . . . , n do

output y[i] at in.H
let b[i] denote the result

else
b← ⊥p

Input: (repeat, f1, . . . , fp) ∈ IpH.Y→H.X
c← c+ 1
if c ≤ r ∧ b 6= ⊥p then

for i = 1, . . . , p do
output fi(b[i]) at in.H
let b[i] denote the result

else
b← ⊥p

Figure 9: The filter fr−spltp,r .

as additional leakage at interface E. The hybrid then answers the first i− 1 queries by computing
the hash function itself, the i-th message by actually querying the attached system (that uses
either the hash function or the beacon), and the remaining queries by uniform random values,
simulating the beacon. Defining the resource X′ to be the one that chooses uniformly at random
among X1, . . . , Xn yields the desired bound: n ·AdvRO−CRI

H,f′ ,X′,σH
(D′).

6.4 The repeated-split source context set

We now further generalize our strong-split source class, to allow for repeated queries, such as
H
(
hk,H(hk, x||1)||2

)
. The key idea is to introduce a buffer which stores the results obtained

from the hash function. The distinguisher can then choose whether it wants to see those values,
or whether it wants to use them as a new query. The filter fr−spltp,r is depicted in Figure 9. The
parameter r determines the maximal allowed nesting depth. Analogously to the strong-split source,
we can then define the Cr−spltn,p,r context set based on this filter as Cr−spltn,p,r := {f◦fr−spltp,r | f ∈ Σ}×Φseed

n .
We now prove that strong-split context-restricted indifferentiability implies repeated-split

context-restricted indifferentiability when furthermore restricted to strict min-entropy sources.
This allows to analyze hash functions only for strong-split security, but use them in contexts
where repeated-split security is needed to implement a certain protocol.

Lemma 6.6. Let k′ := min(k, log|H.Y|). If H is a Cs−splt indifferentiable hash function for
strict k′-bit min-entropy sources, then H is also Cr−splt indifferentiable hash function for strict
k-bit min-entropy sources.

Formally, let D denote the set of distinguishers. Then there exists a reduction ρ : D ×(
Cr−spltn,p,r ∩ Cs−me

n,k

)
→ D and a translation of the context ψ : Cr−spltn,p,r ∩Cs−me

n,k → Cs−spltn,p ∩Cs−me
n,k′ , such

25

that for every (f,X) ∈ Cr−spltn,p,r ∩ Cs−me
n,k we have

AdvRO−CRI
H,f,X,σ (D) ≤

(
npr

2

)
2−(k

′−1) + r ·AdvRO−CRI
H,f′ ,X′,σ (D′)

with D′ := ρ(D, f,X) and (f ′ ,X′) := ψ(f,X).

Proof. The proof can be found in Appendix A.

6.5 The relation between ICE and strong-split context-restricted indifferen-
tiability

In this section we discuss the relation between RO-CRI and the ICE framework introduced
in [FM16]. More concretely, we show that ICE security implies strong-split context-restricted
indifferentiability for statistical unpredictability, as phrased in Theorem 6.7. Using this relation
between the two frameworks, we especially inherit the random oracle feasibility result from the
ICE framework.

The reverse direction, whether strong-split RO-CRI implies some natural notion of ICE,
remains an interesting open problem. In general, there seems to be no natural mapping from ICE
to RO-CRI. This can be explained by the fundamentally different motivation behind introducing
this two generalizations of UCE: ICE tried to allow interaction by making the two stages of UCE
more symmetric, whereas RO-CRI exploits the asymmetry of UCE to separate them even further
into the protocol of the honest party and the regular distinguisher from indifferentiability.

In terms of random-oracle feasibility, this places RO-CRI as an intermediate notion between
the original UCE notion and the stronger ICE notion, while it is still open whether a true
separation between those frameworks exists.

Theorem 6.7. Let H denote a keyed hash function where the key-space is exponential in the
security parameter. If H ∈ ICE[Csup], then H is Cs−spltn,p ∩ Cs−me

n,k context-restricted indifferentiable
from a random oracle for any polynomial n and p, and k such that the guessing probability is
negligible.

Proof. We sketch a proof that for the fixed simulator σH, every context (f,X) ∈ Cs−spltn,p ∩ Cs−me
n,k

and distinguisher D can be turned into a pair of equivalent ICE distinguishers D1 and D2. Let
D1 internally emulates the distinguisher D and works as follows:

• It initially chooses the hash key hk uniformly at random (as σH) and writes it into the
buffer using a Write query. This is the only Write query D1 does.

• In every round, it uses obtains the answer from L2 and passes this to the distinguisher D
to obtain the next query. According whether D queries the interface A with the function f
or obtains the leakage at interface E, it produces an appropriate output L1, either (A, f) or
(E).

• If the distinguisher D outputs the decision bit, D1 outputs the same bit.

The second distinguisher D2 internally emulates the context (fs−splt,X). It works as follows:

• In every round it inspects the value L1.

26

– If L1 is of the form (A, f), it passes f to the internal emulation of the context, to
obtain the value x that would be queried to the hash function. It then writes x to the
buffer and queries the hash function. The resulting value y is returned as L2.

– If L2 is of the form (E), then it queries the interface E of the internal resource X and
returns the result as L2.

• It always sets b2 = 0.

It is easy to see that the ICE game now behaves exactly the same as the RO-CRI system.
Moreover, the queries of D2 are exactly as unpredictable given the state and randomness of D1

as are the queries in the RO-CRI system given access to the interface E. Finally, if the hash key
hk is unpredictable, then none of the queries of D1 can be predicted given the complete state
and randomness of D2. This concludes the proof.

7 New Types of Soundness Statements for Hash Function Con-
structions

In the following subsection we propose to use RO-CRI as a new tool to analyze the soundness of
hash function constructions. As an example, we look at the Merkle–Damgård construction, which
is one of the most fundamental ones. We prove that for a single message source the constructed
hash function is statistically Csplt indifferentiable if the underlying compression function is
statistically Cs−splt indifferentiable. As a technical tool, we show a lemma on min-entropy
splitting.

7.1 CRI of the Merkle–Damgård Construction

In this section we prove that the Merkle–Damgård construction is split context-restricted indiffer-
entiable if the underlying compression function is strong-split context-restricted indifferentiable
for blocks with sufficient min-entropy. Here “sufficient” means that the compression function
must be strong-split secure for a single message with min(k, n) bits of min-entropy, where k
denotes the maximal min-entropy of any block of the message, and n the output length of the
compression function.

We first formalize the class of sources, which outputs a single binary message X that can be
split into block of size n, i.e., X = X1||X2||Xb for some b and |Xi| = n, out of which at least
one has k-bits of min-entropy given all preceding blocks. Recall that the average conditional
min-entropy is defined as H̃∞(X |Z) := − logEz

[
maxx PX|Z(x|z)

]
.

Definition 7.1. A non-interactive resource is said to be a k out of n-bit min-entropy block seed,
denoted X ∈ Φme−blk

k,n , if X ∈ Φseed
1 with {0, 1}∗ × A as the output domain of interface A, and

there exists a random variable C ∈ {1, . . . , B} such that

H̃∞
(
YC
∣∣YC+1, . . . , YB, C,A, Z

)
≥ k,

where B =
⌈
Y
n

⌉
denotes the total number of blocks and Yi denotes the i-th block of the message

Y padded with zeros the a multiple of the block-length n. Moreover, let Cme−blk
k,n := Σ× Φme−blk

k,n

denote the set of all k-bit min-entropy block contexts.

27

We now present a sufficient condition for a seed to satisfy Definition 7.1 based on the length
of the message and its overall min-entropy. More concretely, we prove that if a message is split
into b blocks of size n, and has overall min-entropy of k bits, then there exists a block with
k
b − log2(b) bits of min-entropy, given all succeeding blocks.9

Lemma 7.2. Let X1, . . . , Xb and Z be random variables (over possibly different alphabets) with
H̃∞(X1 . . . Xb |Z) ≥ k. Then, there exists a random variable C over the set {1, . . . , b} such that
H̃∞(XC |X1 . . . XC−1CZ) ≥ k/b− log2(b).

Proof. Let YC := (X1, . . . , XC−1), with Y0 denoting the empty string λ. Second, let for every z
in the support of Z,

pz := max
x1,...,xb

PX1...Xb|Z(x1, . . . , xb, z),

that is, H̃∞(X1 . . . Xb |Z) = − logEz[pz]. Moreover, once C is defined (see below), let

qz := E
c,y

[
max
x

PXC |CYCZ(x, c, y, z)
∣∣∣Z = z

]
and note that H̃∞(XC |CYCZ) = − logEz[qz]. We now proceed by showing that for all z,
qz ≤ b ·p1/bz . To this end, we extend the probability distribution PX1...XbZ by defining the random
variable C as follows:

C =

1 if PX1|Z(x1, z) < p
1/b
z

2 else if PX1X2|Z(x1, x2, z) < p
2/b
z

...
b− 1 else if PX1...Xk−1|Z(x1, . . . , xb−1, z) < p

(b−1)/k
z

b else.

Observe that with

Yc,z := {y | PCYC |Z(c, y, z) > 0}
Xc,z,y := {x | PXCCYC |Z(x, c, y, z) > 0}

9Note that in order to obtain a result that is more closely resembles the chain rule of Shannon entropy, the
proposition is stated with conditioning on all preceding message X1 . . . XC−1 instead of all succeeding ones as
required for Definition 7.1. The converse result can easily be obtained by simply relabeling the blocks.

28

we can bound qz as follows:

qz = E
c,y

[
max
x

PXC |CYCZ(x, c, y, z)
∣∣∣Z = z

]
=

b∑
c=1

∑
y∈Yc,z

PCYC |Z(c, y, z) · max
x∈Xc,z,y

PXC |CYCZ(x, c, y, z)

=

b∑
c=1

∑
y∈Yc,z

PCYC |Z(c, y, z) · max
x∈Xc,z,y

PXCCYC |Z(x, c, y, z)

PCYC |Z(c, y, z)

=

b∑
c=1

∑
y∈Yc,z

max
x∈Xc,z,y

PXCCYC |Z(x, c, y, z)

≤
b∑
c=1

∑
y∈Yc,z

max
x∈Xc,z,y

PXCYC |Z(x, y, z).

We now further bound this term using a case distinction on c. First, consider the case c = 1. Since
Y1 = λ is constant, we have Y1,z ⊆ {λ} and PX1Y1|Z(x, λ, z) = PX1|Z(x, z). Moreover, x ∈ X1,z,λ

implies PX1C|Z(x, 1, z) > 0, which by the definition of C in turn implies PX1|Z(x, z) < p
1/b
z .

Hence ∑
y∈Y1,z

max
x∈X1,z,y

PX1Y1|Z(x, y, z) ≤ max
x∈X1,z,λ

PX1|Z(x, z) ≤ p1/bz .

For all i ∈ {2, . . . , b − 1} observe that by the definition of C we have that Xi,z,y ⊆
{
x |

PXiYi|Z(x, y, z) < p
i/b
z

}
and Yi,z ⊆

{
y | PYi|Z(y, z) ≥ p(i−1)/bz

}
. From the latter we can conclude

that |Yi,z| ≤ 1

p
(i−1)/b
z

and, hence, we obtain

∑
y∈Yi,z

max
x∈Xi,z,y

PXiYi|Z(x, y, z) ≤
∑
y∈Yi,z

pi/bz ≤
p
i/b
z

p
(i−1)/b
z

= p1/bz .

Finally, for c = b, we have that Yb,z ⊆ {y | PYb|Z(y, z) ≥ p
(b−1)/b
z } and, thus, |Yb,z| ≤ 1

p
(b−1)/b
z

.

Using the definition of Yb = (X1, . . . , Xb−1) and pz, we get maxx∈Xb,z,y PXbYb|Z(x, y, z) ≤ pz for
every y = (x1, . . . , xb−1). Therefore,∑

y∈Yb,z

max
x∈Xb,z,y

PXbYb|Z(x, y, z) ≤
∑
y∈Yb,z

pz ≤
pz

p
(b−1)/b
z

= p1/bz

as well. In summary,

qz = E
c,y

[
max
x

PXC |CYCZ(x, c, y, z)
∣∣∣Z = z

]
≤

b∑
c=1

∑
y∈Yc,z

max
x∈Xc,z,y

PXCYC |Z(x, y, z)

≤
b∑
c=1

p1/bz

≤ b · p1/bz

29

real
0

h

y1

h

yc−1

h

yc

h

yc+1

h

yb

hybrid
0

h

y1

h

yc−1

ro

yc

q
h

yc+1

h

yb

ideal
0

ro

y1

ro

yc−1

ro

yc

ro

yc+1

ro

yb

Figure 10: The real and the ideal setting for the Merkle–Damgård construction if block c has
high min-entropy.

Using the monotonicity of the expected value, Jensen’s inequality, and the assumption on the
average conditional min-entropy, H̃∞(X1 . . . Xb |Z) ≥ k, yields

2−H̃∞(XC |CYCZ) = E
z
[qz] ≤ E

z

[
b · p1/bz

]
≤ b · E

z
[pz]

1/b

= b ·
(

2−H̃∞(X1...Xb |Z)
)1/b

≤ 2log b · 2−k/b = 2−(k/b−log b)

concluding the proof.

This lemma is a generalization of the randomized chain rule proven by the authors of [DFR+07]
(similar variants exists also in [BK12; Wul07; DKZZ15]) stating that there exists a binary random
variable C such that H∞(X1−CC) ≥ H∞(X0X1)/2. Note that the main difference of our result
is, that it conditions on all previous blocks, i.e., it is basically the min-entropy equivalence of the
strong chain rule H(X0) +H(X1|X0) = H(X0X1) instead of H(X0) +H(X1) ≥ H(X0X1).

We can now state the following theorem, stating that the Merkle–Damgård construction
is split context-restricted indifferentiable if the underlying compression function is strong-split
context-restricted indifferentiable for blocks with sufficient min-entropy. Let us first present
an informal argument: Assume the message y is split into b blocks, out of which at least one
has k bits of min-entropy. Let yc denote this block. Hence, according to our assumption on
the compression function, the output q of this block cannot be distinguished from a uniformly
random value of length n and, by induction, neither can be the output of any subsequent block.
Therefore, the final output cannot be distinguished from the uniform random value RO(X). See
Figure 10 for a graphical illustration.

Theorem 7.3. Let h : {0, 1}m → {0, 1}n denote a fixed input-length compression function and for
any b ∈ N, let Hb :

⋃
`≤b(m−n){0, 1}

` → {0, 1}n denote the hash function obtained by first padding
the message with zeros to a multiple of the block-length and then applying the Merkle–Damgård
scheme using h. Then there exists a pair of reductions (translating the distinguisher) ρ1, ρ2 : D ×(
Csplt1 ∩ Cme−blk

k,m−n
)
→ D and a pair of context translations ψ1, ψ2 : Csplt1 ∩ Cme−blk

k,m−n → C
s−splt
1,1 ∩ Cs−me

1,k′

such that for all distinguishers D and all contexts (f,X) ∈ Csplt1 ∩ Cme−blk
k,m−n we have

30

AdvRO−CRI
Hb,f,X,σ

(D) ≤
(
b

2

)
· 2−(k′−1) + b ·AdvRO−CRI

h,f′ ,X′,σ′ (D
′) + AdvRO−CRI

h,f′′ ,X′′,σ′′(D
′′)

with k′ := min(k, n), D′ := ρ1(D, f,X), D′′ := ρ2(D, f,X), (f ′ ,X′) := ψ1(f,X), (f ′′ ,X′′) :=
ψ2(f,X), and σ′ and σ′′ denoting slightly modified variants of σ.

Proof. Given any k out of n-bit min-entropy block seed X, we first introduce two k′-bit min-
entropy seeds X′ and X′′. Note that the function ψ1 and ψ2 are just mappings from one context
to another one relating the two problems and, in contrast to the reduction translating the
distinguisher, do not need to be efficiently computable. Therefore, it is sufficient to know that
such a random variable C from Definition 7.1 exists for the seed X.

Definition of X′:
Let X′ denote the randomness seed which samples (y, z) using the same distribution
as X, applies the padding, and splits it into the blocks y1, . . . , yb. Then, it sample the
random variable C to obtain the index c. Finally, it outputs the pair (a′, y′) with a′ =
(y0, y1, . . . , yc−1) and y′ = yc at interface A and z′ = (z, c, yc+1, . . . , yb) at interface E.

Definition of X′′:
Let X′′ denote the randomness seed which samples (y, z) using the same distribution as X,
applies the padding, and splits it into the blocks y1, . . . , yb. Then, it sample the random
variable C to obtain the index c and chooses q ∈ {0, 1}n uniformly at random, outputs the
pair (a′, y′) := (⊥, q) at interface A, and the value z′ := (z, c, yc+1, . . . , yb) at interface E.

Observe that X′ is a k ≥ k′ bit (strict) min-entropy seed, since X is k out of n-bit min-entropy
block seed. Similarly, since q is chosen independently of all other random variables, the seed X′′

is a n ≥ k′ bit strict min-entropy seed. Moreover, both of them output only a single value, i.e.,
X′,X′′ ∈ Φseed

1 .
Next, we briefly sketch the two simulators σ′ and σ′′: they both internally run σ. Whenever

σ request for the leakage z of the seed, they query the leakage z′ at the corresponding inner
interface and return the first component z to σ.

Now, we introduce two converter systems C′ and C′′ that at the inside interface connect to
both the interface A and the interface E of the connected system, and at the outside interface
emulates both the interfaces as well.

The system C′ works as follows:
First it obtains hk and z′ = (z, c, yc+1, . . . , yb) at the interfaces E.H and E.X of the con-
nected system. When receiving the input retrieve at the outside interface A, it outputs
(retrieve, f) at the inside interface A, where f is the function that on input (yc, a

′) first
splits a′ = (y0, . . . , yc−1), then computes the prefix p = hhk(. . . hhk(hhk(0||y0)||y1) . . . ||yc−1),
and finally returns p||yc. Since both p and yc are of fixed length, this function is injec-
tive in the first argument. When obtaining the returned value y′, it then computes the
suffix s = hhk(. . . hhk(hhk(y

′||yc+1)||yc+2) . . . ||yb) and returns s at the outside interface A.
When receiving the input retrieve at either the interface E.H or E.X it returns hk or z,
respectively.

The system C′′ works as follows:
First it obtains hk and z′ = (z, c, xc+1, . . . , xb) at the interfaces E.H and E.X of the connected

31

system. When receiving the input retrieve at the outside interface A, it first outputs
(query, f) at the inside interface A, where f is the function that on input (q,⊥) returns
q||yc+1. This function is injective in the first argument. Then, for i = c+ 2, . . . , b it outputs
(repeat, f) at the inside interface A, where f is the function that on input (x) returns
x||yi. Finally, it outputs get at the inside interface A and returns the obtained value at the
outside interface A. When receiving the input retrieve at either the interface E.H or E.R it
returns hk or z, respectively.

It is easy to verify, that the composed system C′fs−splt1 [h,X′] at the interface A outputs H(y)

and, thus, we have the equivalence fsplt[H,X] ≡ C′fs−splt1 [h,X′]. Moreover, it is easy to verify
that the final output of the composed system C′′fr−splt1,p [ro,X′′]σ′′ at the interface A is just a
uniform random value independent of hk and z. Hence, this system behaves equivalently to
fsplt[RO,X]σ that outputs a single uniform random value as well. In short, we have fsplt[RO,X]σ ≡
C′′fr−splt1,p [ro,X′′]σ′′.

Using those two equivalences and by introducing the two hybrid systems C′fs−splt1 [ro,X′]σ′

and C′′fr−splt1,b [h,X′′]σ′′, we can rewrite the distinction advantage as:

∆D
(
fsplt[H,X], fsplt[RO,X]σ

)
= ∆D

(
C′fs−splt1

[
h,X′

]
,C′fs−splt1

[
ro,X′

]
σ′
)

+ ∆D
(
C′fs−splt1

[
ro,X′

]
σ′,C′′fr−splt1,b

[
h,X′′

])
+ ∆D

(
C′′fr−splt1,b

[
h,X′′

]
,C′′fr−splt1,b

[
ro,X′′

]
σ′′
)
.

Finally, observe that the systems C′fs−splt1 [ro,X′]σ′ and C′′fr−splt1,b [h,X′′]σ′′ both implement
exactly the same hybrid system depicted in Figure 10: The system C′fs−splt1 [ro,X′]σ′ actually
computes this value by first using the compression function h on the blocks 1 to c − 1, then
uses the fixed input size random oracle on the block c, and finishes by using h on the remaining
blocks. However, note that the value output by ro is just a uniform random value, as ro is private
and not used beside this one query. The system C′′fr−splt1,b [h,X′′] skips the initial computes and
chooses q uniformly at random (in X′′).

As a result, we can simplify the distinction advantage to

∆D
(
fsplt[Hb,X], fsplt[RO,X]σ

)
= ∆DC′

(
fs−splt1

[
h,X′

]
, fs−splt1

[
ro,X′

]
σ′
)

+ ∆DC′′
(
fr−splt1,b

[
h,X′′

]
, fr−splt1,b

[
ro,X′′

]
σ′′
)
.

Applying the definition of AdvRO−CRI
Hb,f,X,σ

(D) and applying Lemma 6.6 (with p = 1) concludes
the proof.

Remark. In the proof we used that we only compute the hash value of a single message. Using
Lemma 6.5, this statement can easily be generalized to multiple messages with appropriate
conditional min-entropy; however, we do not allow for any strongly correlated queries since they
exhibit the well-known length-extension attacks on the Merkle–Damgård scheme. Whether a
more advanced construction with a finalization function, e.g. HMAC, could be proven secure for
the general statistically unpredictable split-security remains an interesting open problem.

32

7.2 Using RO-CRI to Analyze the Soundness

The indifferentiability framework is widely accepted as a tool to analyze the soundness of hash
function constructions. In fact all candidates for the recent SHA-3 competition were strongly
encouraged to include an indifferentiability proof. In such a proof the underlying primitive—
typically a compression function—is replaced by an idealized version of it—a fixed input-length
random oracle. Then, it is shown that the constructed hash function is indifferentiable from a
random oracle. However, the impossibility results for the random oracle model directly apply
to compression functions: no concrete one behaves like a fixed input-length random oracle.
Therefore, such an analysis of the hash function construction closely resembles a proof in the
random oracle model; while giving some indication of the security, it does not give any concrete
security guarantees.

The UCE framework, and especially RO-CRI, provides a viable alternative to assess the
soundness of hash function constructions by aiming at proving the C indifferentiability of
the constructed hash function by assuming that the underlying compression function is C′
indifferentiable, where C and C′ are potentially different context sets. This gives rise to a family
of such statements: the more general C is, or the more restricted C′ is, the stronger the statement
is. The classical indifferentiability statement is just one special case with the strongest possible
assumption and conclusion. Nevertheless, most hash function constructions have never been
analyzed in a more fine-grained way, expect for the one in the initial work of [BHK14].

A Proof of Lemma 6.6

Lemma 6.6. Let k′ := min(k, log|H.Y|). If H is a Cs−splt indifferentiable hash function for
strict k′-bit min-entropy sources, then H is also Cr−splt indifferentiable hash function for strict
k-bit min-entropy sources.

Formally, let D denote the set of distinguishers. Then there exists a reduction ρ : D ×(
Cr−spltn,p,r ∩ Cs−me

n,k

)
→ D and a translation of the context ψ : Cr−spltn,p,r ∩Cs−me

n,k → Cs−spltn,p ∩Cs−me
n,k′ , such

that for every (f,X) ∈ Cr−spltn,p,r ∩ Cs−me
n,k we have

AdvRO−CRI
H,f,X,σ (D) ≤

(
npr

2

)
2−(k

′−1) + r ·AdvRO−CRI
H,f′ ,X′,σ (D′)

with D′ := ρ(D, f,X) and (f ′ ,X′) := ψ(f,X).

Proof. Let (f,X) ∈ Cr−spltn,p,r ∩ Cs−me
n,k . By definition, we then have f := g ◦ fr−spltp,r for some filter g.

This filter can also be thought of as an reduction of the distinguisher (which follows from the
composition-order independence [MR11]), and thus we can rewrite

AdvRO−CRI
H,f,X,σ (D) := ∆D(f[H,X], f[RO,X]σ)

= ∆D′′
(
fr−spltp,r [H,X], fr−spltp,r [RO,X]σ

)
with D′′ = ρ1(D) := Dg.

Consider the beacon resource B that has the same interface as the random oracle interface, but
response with a fresh random value for each query (i.e., it ignores the consistency condition for
repeated queries). Moreover, we introduce the following shorthand notation: SH := fr−spltp,r [H,X],

33

SRO := fr−spltp,r [RO,X]σ, and SB := fr−spltp,r [B,X]σ, which allows the advantage of the distinguisher
D′′ to be expressed as

∆D′′(f[H,X], f[RO,X]σ) = ∆D′′
(
SH, SB

)
+ ∆D′′

(
SB,SRO

)
.

We now describe the reduction ρ2 that bounds the first term of the sum with
(
npr
2

)
2−k

′
+ r ·

AdvRO−CRI
H,f′ ,X′,σ (D′) using a simple hybrid argument.

Let {Xi}i∈[q] denote the sequence of hybrid resources that behave as follows: at the interface E,
the resource first outputs the index i and subsequently behaves exactly as X. At the interface A, if
i = 1 then it behaves exactly as X, and if i > 1 then it outputs n independent uniformly at random
chosen values from the set H.Y . It is easy to see, that if X ∈ Φseed

n ∩Φs−me
k′ , then Xi ∈ Φseed

n ∩Φs−me
k′

for all i. In addition, let X′ denote the resource which chooses i ∈ [q] uniformly at random and then
behaves like Xi. Furthermore, let f ′ := fs−spltp and, hence (f ′ ,X′) ∈ Cs−spltn,p ∩ Cs−me

k′ . Analogously
to above, let us define the following shorthand notation: TH := fs−spltp [R,X′], TH

i := fs−spltp [R,Xi],
and TR := fs−spltp [R,X′]σ and TR

i := fs−spltp [R,Xi]σ for R ∈ {RO,B}.
Now, consider the reduction D′ := ρ2(D

′′) = ρ2(ρ1(D)) where ρ2 is implemented using a
special type of system C that translates one setting into the other. Formally C is a converter that
has an inside and an outside interface, where the inside interface connects to all the (merged)
interfaces of the attached resource (here interface A and E) and the outside interface becomes the
interfaces of the composed resource. Now consider the following reduction system C, which on
the inside expects to be connected either to the resource TH

i or TB
i . At the outside interfaces,

it simulates the according interfaces of fr−spltp,r [H,X] and fr−spltp,r [B,X]σ. The system C first gets
the index i and the hash key hk at the inside interface. In every sequence of queries of the
form (query, f1), (repeat, f2), (repeat, f3), . . ., the queries 1 to i− 1 are simulated internally as
queries to the beacon by sampling a value uniformly at random and storing it in a buffer b. The
i-th query in each such sequence is then answered using the actual resource connected at the
inside interface. For the remaining queries, the system C computes the hash function H itself. A
formal description of the reduction system is provided in Figure 11.

The following system equivalences are easy to verify:

CTH
1 ≡ SH (1)

CWB
r ≡ SB (2)

CWB
i−1 ≡ CWH

i ∀i ∈ {2, . . . , q}. (3)

34

Resource C

Initialization
b← ⊥p
j ← 0
output retrieve at in.E.H
let hk denote the result
output retrieve at in.E.X
let i denote the result

Outer Interface A

Input: get
output b at out.A
b← ⊥p

Input: (query, f1, . . . , fp)
j ← 1
if i = 1 then

output (retrieve, f1, . . . , fp) at in.A
let b denote the result

else
b

$← H.Yp

Input: (repeat, f1, . . . , fp)
j ← j + 1
if b 6= ⊥p then

for ` = 1, . . . , p do
if j < i then

b[`]
$← H.Y

else if j = i then
output (retrieve, (x, a) 7→ f`(x)) at in.A
let b[`] denote the result

else
b[`]← H(hk, fl(b[`]))

Outer Interface E.i i ∈ {H,X}
Input: retrieve

output retrieve at in.E.i
let y denote the result
output y at out.E.i

Figure 11: The reduction system C.

35

As a consequence, we can rewrite the second term as

∆D′′
(
SH,SB

)
= ∆D′′

(
CTH

1 ,CT
B
r

)
= ∆D′′

(
CTH

1 ,CT
B
1

)
+ ∆D′′

(
CTB

1 ,CT
H
2

)
+ ∆D′′

(
CTH

2 ,CT
B
2

)
+ ∆D

(
CTB

2 ,CT
H
3

)
+ . . .

+ ∆D
(
CTH

r ,CT
B
r

)
=

r∑
i=1

∆D′′
(
CTH

i ,CT
B
i

)
= r ·∆D′′

(
CTH,CTB

)
= r ·∆D′

(
TH,TB

)
= r ·AdvRO−CRI

H,f′ ,R′,σ (D′) + r ·∆D′
(
TRO,TB

)
where in the third step we used equation (3). In the forth step we used that the distinguishing
advantage of D′′ on the problem with R′ is the average of the distinguising advantage of D on
resources with the the fixed i. Hence, the sum of these r terms is equal to r times the average.

The overall claim is then directly implied by the following two bounds, which remain to be
shown:

∆D′
(
TRO,TB

)
≤
(
np

2

)
2−k

′
(4)

∆D′′
(
SB, SRO

)
≤
(
npr

2

)
2−k

′
(5)

In both cases the two resources behave exactly identically until a repeated query to the
oracle occurs. Hence, we can bound the distinction advantage by the probability of managing
non-adaptively to query twice the same input [Mau13]. In the following, we only prove 5, as 4
follows by an analogous argument.

Let Z1, Z2, . . . , Znpr denote the queries, which are submitted to the beacon. The collision
probability can then be bounded using the union bound

Pr(∃i 6= j Zi = Zj) ≤
∑
i 6=j

Pr(Zi = Zj).

Observe that all queries are either of the form f(Ys, As), where (Ys, As) is the s-th pair output
by the entropy source, or f(Y), where Y is an output of the beacon. If either Zi or Zj is of the
latter type, then the collision probability is trivially upper bounded by 1

|H.Y| ≤ 2−k
′ , using that

f is injective. If both of them are of the former type, then that by definition of the filter fr−spltp,r

the two inputs Zi, Zj cannot collide if they depend on the same underlying value Xs from the
entropy source. Hence, assume w.l.o.g. that Yi = f(Ys, As) and Yj = f(Yt, At) with s > t. For

36

every pair of fixed auxiliary information (as, at), we obtain the following bound:

Pr(fi(Ys, as) = fj(Yt, at))

=
∑
z

Pr(fi(Ys, as) = z ∧ fj(Yt, at) = z)

=
∑
z

Pr(Yt = f−1j (z, at)) · Pr(Ys = f−1i (z, as) | Yt = f−1j (z, at))

≤
∑
z

Pr(Yt = f−1j (z, at)) ·max
ts

Pr(Ys = ts | Yt = f−1j (z, at))

=
∑
yt

Pr(Yt = yt) ·max
ys

Pr(Ys = ys | Yt = yt)

= 2−H̃∞(Ys |Yt) = 2−k ≤ 2−k
′
.

Averaging over the choice of (as, at) yields the desired result Pr(fi(Ys, As) = fj(Yt, At)) ≤ 2−k
′ .

In summary, the distinction advantage ∆D
(
SB,SRO

)
can be bounded as

Pr(∃i 6= j Zi = Zj) ≤
∑
i 6=j

Pr(Zi = Zj) ≤
(
npr

2

)
2−k

′
,

concluding our proof.

References

[BHK13] M. Bellare, V. T. Hoang, and S. Keelveedhi, “Instantiating Random Oracles via
UCEs”, in Advances in Cryptology - CRYPTO 2013: 33rd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, Springer
Berlin Heidelberg, 2013, pp. 398–415.

[BHK14] ——, “Cryptography from compression functions: The UCE bridge to the ROM”, in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), J. A. Garay and R. Gennaro,
Eds., vol. 8616 LNCS, Springer Berlin Heidelberg, 2014, pp. 169–187.

[BR93] M. Bellare and P. Rogaway, “Random oracles are practical”, in Proceedings of the
1st ACM conference on Computer and communications security - CCS ’93, New
York, New York, USA: ACM Press, Dec. 1993, pp. 62–73.

[BST16] M. Bellare, I. Stepanovs, and S. Tessaro, “Contention in Cryptoland: Obfuscation,
Leakage and UCE”, in Theory of Cryptography: 13th International Conference, TCC
2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, E. Kushilevitz
and T. Malkin, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 542–
564.

[BK12] Z. Brakerski and Y. Kalai, “A parallel repetition theorem for leakage resilience”,
Theory of Cryptography, 2012.

[BFM14] C. Brzuska, P. Farshim, and A. Mittelbach, “Indistinguishability Obfuscation and
UCEs: The Case of Computationally Unpredictable Sources”, in Advances in Cryp-
tology - CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part I, Springer Berlin Heidelberg, 2014,
pp. 188–205.

37

[BM14] C. Brzuska and A. Mittelbach, “Using Indistinguishability Obfuscation via UCEs”, in
Advances in Cryptology - ASIACRYPT 2014: 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, Springer Berlin Heidelberg,
2014, pp. 122–141.

[BM15] ——, Universal Computational Extractors and the Superfluous Padding Assumption
for Indistinguishability Obfuscation, Cryptology ePrint Archive, Report 2015/581,
2015.

[Can01] R. Canetti, “Universally Composable Security: A New Paradigm for Cryptographic
Protocols”, in Proceedings of the 42Nd IEEE Symposium on Foundations of Computer
Science, ser. FOCS ’01, Washington, DC, USA: IEEE Computer Society, 2001,
pp. 136–145.

[CGH04] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodology, revisited”,
Journal of the ACM, vol. 51, no. 4, pp. 557–594, Jul. 2004.

[DFR+07] I. B. Damgård, S. Fehr, R. Renner, L. Salvail, and C. Schaffner, “A Tight High-
Order Entropic Quantum Uncertainty Relation with Applications”, in Advances in
Cryptology - CRYPTO 2007, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 360–378.

[DGHM13] G. Demay, P. Gaži, M. Hirt, and U. Maurer, “Resource-Restricted Indifferentiabil-
ity”, in Advances in Cryptology – EUROCRYPT 2013: 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, Springer Berlin Heidelberg, 2013, pp. 664–
683.

[DKZZ15] K. Durnoga, T. Kazana, M. Zając, and M. Zdanowicz, “Leakage-resilient Cryptog-
raphy with key derived from sensitive data”, CoRR, Jan. 2015. arXiv: 1502.00172.

[FM16] P. Farshim and A. Mittelbach, “Modeling Random Oracles Under Unpredictable
Queries”, in Fast Software Encryption: 23rd International Conference, FSE 2016,
Bochum, Germany, March 20-23, 2016, Revised Selected Papers, T. Peyrin, Ed.,
Springer Berlin Heidelberg, 2016, pp. 453–473.

[MRH04] U. Maurer, R. Renner, and C. Holenstein, “Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology”, Theory of
cryptography, 2004.

[Mau13] U. Maurer, “Conditional equivalence of random systems and indistinguishability
proofs”, in 2013 IEEE International Symposium on Information Theory, IEEE, Jul.
2013, pp. 3150–3154.

[MR11] U. Maurer and R. Renner, “Abstract cryptography”, In Innovations in Computer
Science, 2011.

[MR16] ——, From Indifferentiability to Constructive Cryptography (and Back), Cryptology
ePrint Archive, Report 2016/903, 2016.

[Mit14] A. Mittelbach, “Salvaging Indifferentiability in a Multi-stage Setting”, in Advances
in Cryptology – EUROCRYPT 2014, Springer Berlin Heidelberg, 2014, pp. 603–621.

38

http://arxiv.org/abs/1502.00172

[RSS11] T. Ristenpart, H. Shacham, and T. Shrimpton, Careful with Composition: Limita-
tions of Indifferentiability and Universal Composability, Cryptology ePrint Archive,
Report 2011/339, 2011.

[ST17] P. Soni and S. Tessaro, “Public-Seed Pseudorandom Permutations”, in Advances
in Cryptology – EUROCRYPT 2017: 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France, April 30 – May
4, 2017, Proceedings, Part II, Springer International Publishing, 2017, pp. 412–441.

[Wul07] J. Wullschleger, “Oblivious-Transfer Amplification”, in Advances in Cryptology -
EUROCRYPT 2007: 26th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007.
Proceedings, Springer Berlin Heidelberg, 2007, pp. 555–572.

39

	Introduction
	Related work

	Preliminaries
	The (traditional) UCE framework
	Resources and Converters
	Indifferentiability

	Context Restricted Indifferentiability
	The Limitations of General Composability
	Context-Restriction
	Composition
	Relation to Indifferentiability
	An Example of CRI: Diffie-Hellman Key Exchange

	Random-oracle Context-Restricted Indifferentiability: generalizing UCE
	Mapping Contexts to UCE Sources
	The Equivalence

	The relation between CRI and public-seed pseudo-random permutations
	Public-seed pseudorandomness
	Ideal primitives and function families in CRI
	The equivalence

	Generalization of split security
	Split security
	Strong-split security
	Strict min-entropy seeds
	The repeated-split source context set
	The relation between ICE and strong-split context-restricted indifferentiability

	New Types of Soundness Statements for Hash Function Constructions
	CRI of the Merkle–Damgård Construction
	Using RO-CRI to Analyze the Soundness

	Proof of Lemma 6.6
	References

