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Abstract. Modular design via a tweakable blockcipher (TBC) offers efficient au-
thenticated encryption (AE) schemes (with associated data) that call a blockcipher
once for each data block (of associated data or a plaintext). However, the existing
efficient blockcipher-based TBCs are secure up to the birthday bound, where the un-
derlying keyed blockcipher is a secure strong pseudorandom permutation. Existing
blockcipher-based AE schemes with beyond-birthday-bound (BBB) security are not
efficient, that is, a blockcipher is called twice or more for each data block.
In this paper, we present a TBC, XKX, that offers efficient blockcipher-based AE
schemes with BBB security, by combining with efficient TBC-based AE schemes
such as ΘCB3 and OTR. XKX is a combination of two TBCs, Minematsu’s TBC
and Liskov et al.’s TBC. In the XKX-based AE schemes, a nonce and a counter
are taken as tweak; a nonce-dependent blockcipher’s key is generated by using a
pseudo-random function F (from Minematsu); a counter is inputted to an almost
xor universal hash function, and the hash value is xor-ed with the input and output
blocks of a blockcipher with the nonce-dependent key (from Liskov et al.). For
each query to the AE scheme, after the nonce-dependent key is generated, it can
be reused, thereby a blockcipher is called once for each data block. We prove that
the security bounds of the XKX-based AE schemes become roughly ℓ2q/2n, where
q is the number of queries to the AE scheme, n is the blockcipher size, and ℓ is the
number of blockcipher calls in one AE evaluation. Regarding the function F , we
present two blockcipher-based instantiations, the concatenation of blockcipher calls,
F (1), and the xor of blockcipher calls, F (2), where F (i) calls a blockcipher i+1 times.
By the PRF/PRP switch, the security bounds of the XKX-based AE schemes with
F (1) become roughly ℓ2q/2n + q2/2n, thus if ℓ ≪ 2n/2 and q ≪ 2n/2, these achieve
BBB security. By the xor construction, the security bounds of the XKX-based AE
schemes with F (2) become roughly ℓ2q/2n + q/2n, thus if ℓ ≪ 2n/2, these achieve
BBB security.
Keywords: Blockcipher · tweakable blockcipher · efficient authenticated encryption ·
beyond-birthday-bound security

1 Introduction
Confidentiality and authenticity of data are the most important properties to securely
communicate over an insecure channel. In the symmetric-key setting, an authenticated en-
cryption (AE) scheme (with associated data) ensures jointly these properties. AE schemes
have been mainly designed from a blockcipher, and designing an efficient AE scheme is a
main theme in AE research. In efficient schemes such as OCB3 [KR11] and OTR [Min14],
a blockcipher is called once for each data block1 (for associated data or a plaintext).

1 The size of the data block is equal to the block size of the blockcipher.
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Figure 1: LRW2 (left) and Min (right).

Such AE schemes that we call efficient AE schemes2 have been designed via a tweakable
blockcipher.

Tweakable blockcipher (TBC) whose concept was introduced by Liskov et al. [LRW02]
is a generalization of classical blockcipher. An encryption by a TBC takes an input
called tweak in addition to a key and a plaintext. Tweak is a public parameter, where
retweaking (changing the tweak value) offers the same functionality as changing its secret
key but should be less costly. An efficient blockcipher-based AE scheme is obtained by
(1) designing an efficient TBC, that is, a blockcipher is called once; (2) designing an
efficient TBC-based AE scheme, that is, a TBC is called once for each data block; (3)
combining (1) and (2).

Regarding security, existing efficient blockcipher-based AE schemes are secure up to
the birthday bound. However, birthday-bound security sometimes becomes unreliable,
for example, when a lightweight blockcipher is used, when large amounts of data are
processed, or when a large number of connections need to be kept secure. In (2) efficient
TBC-based AE schemes with beyond-birthday-bound (BBB) security have been proposed
such as ΘCB3 [KR11] and OTR [Min14], whereas in (1) existing efficient TBCs are secure
up to the birthday bound. In order to obtain efficient BBB-secure AE schemes in (3),
one needs to design a BBB-secure TBC in (1). Note that in (1), a keyed blockcipher is
assumed to be a secure strong-pseudo-random permutation (SPRP),3 and in (2), a keyed
TBC is assumed to be a secure tweakable SPRP (TSPRP).4 Hereafter, EKE

denotes a
blockcipher with n-bit block having a k-bit key KE .

1.1 Existing Efficient TBCs with Birthday-Bound Security
Liskov et al. [LRW02] proposed an efficient blockcipher-based TBC called LRW2 that
has an Even-Mansour-style structure [EM97], where a tweak is taken by an almost xor
universal (AXU) hash function, and a plaintext and a ciphertext of the underlying block-
cipher are xor-ed with the hash value. The encryption of LRW2 is illustrated in Figure 1
(Left), where tw is a tweak, m is a plaintext block, c is a ciphertext block, and hKh

is
an AXU hash function with a key Kh that accepts tw and returns an n-bit value. Re-
garding AXU hash functions, several efficient instantiations have been proposed such as
powering-up scheme [Rog04], gray-code-based scheme [KR11, RBBK01] and LFSR-based

2 The efficiency of AE schemes is often measured by “rate” that takes all blockcipher calls including
a precomputation phase into consideration. For example, the most efficient AE scheme is rate-1, where
the number of blockcipher calls in one AE procedure is the number of data blocks plus 2 (the number
of blockcipher calls for a tag and for a nonce in a precomputation phase). On the other hand, the term
“efficient” considered in this paper does not take the precomputation phase into account.

3A blockcipher with a random key is indistinguishable from a random permutation (RP).
4A TBC with a random key is indistinguishable from a tweakable RP.
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scheme [CS08, GJMN16]. It was proven that LRW2 is a secure TSPRP up to the birthday
bound (2n/2 queries) [LRW02].

1.2 BBB-Secure TBCs

So far, several BBB-secure TBCs have been proposed. Minematsu [Min09] designed a
TBC denoted by Min. In Min, a tweak-dependent key is defined by using a pseudo-random
function (PRF), and a plaintext is encrypted by a blockcipher with the tweak-dependent
key. The encryption of Min is illustrated in Figure 1 (right), where FKF

is a secure PRF
with a key KF . He gave a blockcipher-based instantiation: FKE

(tw) = EKE
(tw), where

k = n. He proved that Min is a secure TSPRP up to max{2n/2, 2n/Ntw} queries, where
Ntw is the number of distinct tweaks in the queries. Thus if Ntw < 2n/2, Min achieves
BBB security. Landecker et al. [LST12] proposed a TBC called Chained LRW2 (CLRW2),
where LRW2 is iterated twice. They proved that CLRW2 is a secure TSPRP up to 22n/3

queries. Lampe and Seurin [LS13] considered a more general scheme called r-CLRW where
LRW2 is iterated r times. They proved that r-CLRW is a secure TSPRP up to 2rn/(r+2)

queries.

1.3 Open Problem

In ΘCB3 and OTR that are efficient nonce-based and TBC-based AE schemes, a plaintext
block is encrypted by a TBC that takes a nonce and a counter as tweak, where a nonce
is changed for each query, and a counter is changed for each data block. Hence, a tweak
is changed for every TBC call. Incorporating Min into these AE schemes, for each data
block, the resultant schemes call a blockcipher twice, and perform the key scheduling
once. Since the same tweak is not repeated, Ntw = 2n/2 after 2n/2 TBC calls, and thus
the security bound falls into the birthday one (security up to 2n/2 queries). Incorporating
CLRW2 into these AE schemes, the resultant schemes achieve BBB security (security up
to 22n/3 queries) but call a blockcipher twice for each data block. Similarly, incorporating
r-CLRW into these AE schemes, the resultant schemes achieve BBB security (security up
to 2rn/(r+2) queries) but call a blockcipher r times for each data block.

Several blockcipher-based AE schemes have been proposed, which are either efficient
or BBB-secure but not both. Existing efficient blockcipher-based AE schemes [RBBK01,
Rog04, KR11, Min14] are secure up to the birthday bound. Iwata [Iwa08] proposed an AE
scheme that is secure up to 22n/3 blockcipher calls. In the default setting of the AE scheme,
for each 4 data blocks, it requires 6 blockcipher calls, and for each data block, it requires
one multiplication. Iwata and Yasuda [IY09a, IY09b] pointed out that a combination
of the xor of keyed blockciphers [Luc00] and the Feistel network with six rounds [Pat04]
becomes a BBB-secure SPRP, thus offers BBB-secure AE schemes. However, the resultant
AE schemes require 6 blockcipher calls for each data block. Iwata and Minematsu [IM16]
proposed AE schemes that are secure up to 2rn/(r+1) blockcipher calls for a parameter r.
In the encryption procedure, for each data block, a blockcipher is called r times. A tag is
generated by using r AXU-hash functions.

As mentioned above, there is no efficient blockcipher-based AE scheme with BBB
security. Therefore, the following question arises: Can we design a TBC that offers
efficient blockcipher-based AE schemes with BBB security?

1.4 Our Results

We present TBCs that offer efficient AE schemes with BBB security.



4
Tweakable Blockciphers for Efficient Authenticated Encryptions with Beyond the

Birthday-Bound Security

Ectr
0||N

�

�

hKh

m

c

v w

�
�
�
�
�

k

1||N

FKF
N

w

01||N

�
�
�
�
�

k

10||N

w
00||N

�EKE

EKE

EKE

EKE

EKE

�

Figure 2: XKX (left), F (1) (center), F (2) (right).

1.4.1 Basic Construction

Our TBCs are based on Minematsu’s TBC Min. In order to avoid the frequent key
scheduling, we separate counters from the tweak function FKF

, and instead use the tweak
function of LRW2 hKh

to take counters. The basic construction of our TBCs that we call
XKX is illustrated in Figure 2 (left), where (N, ctr) is a pair of tweaks such that the first
tweak N becomes a nonce and the second one ctr becomes a counter. We prove that XKX
is a secure TSPRP as long as the keyed blockcipher is a secure SPRP, the keyed function is
a secure PRF, and the keyed hash function is AXU. The security bound is roughly ℓ2q/2n

+ q×(the SPRP-security advantage for E) + (the PRF-security advantage for F ), where
q is the number of distinct first tweaks (nonces in AE schemes), and ℓ is the number of
queries with the same first tweak (the number of blockcipher calls in one AE evaluation).
If the SPRP-security advantage becomes roughly ℓq/2k (an adversary conducts a naive
brute-force attack, see [BKR98]), the security bound becomes ℓ2q/2n + ℓq2/2k + (the
PRF-security advantage for F ).

1.4.2 Blockcipher-Based Instantiations

We give two blockcipher-based instantiations of F , where a blockcipher with n ≤ k ≤ 2n
is used.

• The first instantiation F (1), which is based on Minematsu’s instantiation, is illus-
trated in Figure 2 (center), where trunck(x) outputs the first k bits of a 2n-bit string
x, and N is an (n-1)-bit tweak. By the PRF/PRP switch, the PRF-security advan-
tage of F (1) is upper-bounded by q2/2n. Hence, incorporating F (1) into XKX, the
security bound of the TBC becomes roughly ℓ2q/2n + ℓq2/2k + q2/2n. XKX with
F (1) is denoted by XKX(1).

• The second instantiation F (2), in order to remove the PRF/PRP-switch term q2/2n,
uses an xor function of a blockcipher shown in Figure 2 (right), where N is an (n-2)-
bit tweak, and KE is a k-bit key. The PRF-security of the xor function was analyzed
in [Pat10, IMV16], where the PRF-bound is roughly q/2n. Hence, incorporating F (2)

into XKX, the security bound of the TBC becomes roughly ℓ2q/2n + ℓq2/2k + q/2n.
XKX with F (2) is denoted by XKX(2).

1.4.3 Applications

Incorporating XKX into AE schemes ΘCB3 and OTR, the resultant schemes are efficient
ones, since for a query to the AE scheme, after a nonce-dependent key w is defined, it can
be reused. In order to generate the nonce-dependent key, for each query to the AE scheme,
the XKX(1)-based AE schemes call a blockcipher once (k = n); twice (n < k ≤ 2n), and
the XKX(2)-based AE schemes call it twice (k = n); three times (n < k ≤ 2n). In
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Table 1: Comparison of security and efficiency of BBB-secure TBCs. This table considers
ΘCB3-based and OTR-based schemes whose underlying TBCs are given in the left most
column. In these bounds, it is assumed that the influences of the decryption queries
and associated data are sufficiently small. “BC” shows the number of blockcipher calls
per one data block. In “Rekey,” “1/TBC” means that a key scheduling is performed for
each TBC call, and “1/AE” meas that a key scheduling is performed for each AE query.
“Hash” shows the number of keyed hash function evaluations in one TBC call, and in the
parentheses, the inputs are given. In “Precomp.,” i-E means that a blockcipher is called
i times in a precomputation phase.

TBC [Ref.] Security Bound BC Rekey Hash (Input) Precomp.

Min [Min09] (ℓq)2/2n 2 1/TBC — —
CLRW2 [LST12] (ℓq)3/22n 2 — 2 (N, ctr) —
r-CLRW [LS13] (ℓq)r+2/2rn r — r (N, ctr) —
XKX(1) [Ours] (ℓ2q + q2)/2n + ℓq2/2k 1 1/AE 1 (ctr) 1-E or 2-E
XKX(2) [Ours] ℓ2q/2n + ℓq2/2k 1 1/AE 1 (ctr) 2-E or 3-E

addition to the blockcipher calls, these schemes perform a key scheduling once. For an
input to the AXU hash function, the XKX-based schemes take a counter, whereas AE
schemes with other BBB-secure TBCs take a counter and a nonce. In efficient AXU hash
functions [Rog04, KR11, RBBK01, CS08, GJMN16], if a counter and a nonce are inputted,
a nonce is inputted to a blockcipher, then the output L is updated by counters, e.g., the
powering-up scheme [Rog04] updates L as 2 · L, 22 · L, 23 · L etc., where the counters are
1, 2, 3 etc., and the multiplication is done in GF (2n). In the XKX-based schemes, a nonce
is not inputted to the AXU hash function, thus the blockcipher call with the nonce can
be removed.5

From the security bounds of XKX, those of the XKX-based AE schemes are ℓ2q/2n +
ℓq2/2k + q2/2n (XKX(1)) and ℓ2q/2n + ℓq2/2k (XKX(2)), where ℓ is the number of block-
cipher calls in one AE evaluation and q is the number of queries to the AE scheme. Thus,
if q ≪ 2n/2 and ℓ ≪ 2n/2, the XKX(1)-based AE schemes achieve BBB security, and if
ℓ≪ 2n/2, the XKX(2)-based AE schemes achieve BBB security. The security and the effi-
ciency of the XKX-based AE schemes and other TBC-based AE schemes are summarized
in Table 1, which are based on TBC-based AE schemes ΘCB3 and OTR. Note that since
ΘCB3 and OTR are one-pass, online and parallelizable, so are the XKX-based schemes.

1.4.4 Impact in the Practical Setting

Finally, we study the security bounds of the XKX-based AE schemes. We consider the
example given in [BL16] which is the HTTP connection where an adversary can make
2900 queries of length 4 Kbyte per second. We use a blockcipher with n = 64 (e.g.,
PRESENT [BKL+07] and many other lightweight blockciphers). In this setting, the
birthday bound is roughly 232 blockcipher calls, and after one hour, the number of block-
cipher calls reaches the bound. Next, XKX-based schemes are considered. For the sake
of simplicity, we assume that the term ℓq2/2k is negligible compared with other terms
which can be achieved by using a blockcipher with long-size keys (e.g., k = 128). In this
setting, the number of blockcipher calls ℓ is roughly 29. Then the term ℓ2q/2n becomes
q/246 (= (29)2q/264), thus the term reaches 1/2 if q = 245. The 245 AE queries spend
245/2900 seconds ≈ 3847 years. The term q2/2n becomes q2/264, thus the term reaches

5 In the XKX-based schemes, L can be randomly generated or can be generated by using a blockcipher
with a constant input, e.g., L = EKE

(0n). (In this case, L can be precomputed.)
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Figure 3: F̃ [1] (left), F̃ [2] (center), Wang et al.’s TBC Ẽ4 (right). m is a plaintext block,
c is a ciphertext block, tw is a tweak, and KE is a key. ⊗ is the multiplication in GF (2n).

1/2 if q = 231.5. The 231.5 AE queries spend 231.5/2900 seconds ≈ 121 days. Hence, the
security bounds of the AE schemes with XKX(1) (resp., XKX(2)) reach 1/2 after 121 days
(resp., 3847 years), and in this setting, it seems hard to break the security of the XKX(2)-
based schemes. Note that the birthday term q2/2n comes from the PRF/PRP switch for
the tweak function F . If the underlying blockcipher is not influenced by the PRF/PRP
difference, that is, the birthday term can be ignored, then XKX(1)-based schemes have
the same level of security as XKX(2)-based ones.

1.5 Related Works
Mennink [Men15] proposed two blockcipher-based TBCs called F̃ [1] and F̃ [2]. F̃ [1] calls
a blockcipher once and a multiplication once, and is a secure TSPRP up to 22n/3 queries.
F̃ [2] calls a blockcipher twice, and is fully secure (secure up to 2n queries).6 Note that
the security proofs were given in the ideal cipher model. Wang et al. [WGZ+16] extended
the result of Mennink, and proposed 32 fully secure TBCs in the ideal-cipher model.
Mennink’s TBCs and one of Wang et al.’s TBCs Ẽ4 are illustrated in Figure 3. These
TBCs offer AE schemes with BBB security in the ideal-cipher model. Note that the
security of our TBCs is given in the standard model (the SPRP assumption).

So far, several TBC-based AE schemes have been proposed. Minematsu [Min09] and
Coron et al. [CDMS10] proposed 2n-bit blockcipher constructions from a TBC with n-bit
block that is a fully secure SPRP. Combining these with birthday-bound AE schemes, the
resultant schemes become fully secure AE schemes. Peyrin and Seurin [PS16] proposed an
AE scheme that is fully secure against nonce-respecting adversaries and is birthday-bound
secure against nonce-misuse adversaries. The AE scheme calls a blockcipher twice, and
is not online. List and Nandi [LN17] proposed a fully secure deterministic AE scheme.
The AE scheme calls a blockcipher twice and is not online. Again, these AE schemes are
TBC-based.

Forler et al. [FLLW16] proposed a BBB-secure deterministic AE scheme that requires
a 2n-bit blockcipher, an AXU-hash function, and an encryption scheme accepting variable
length plaintexts.

Cogliati and Seurin [CLS15, CS15] proposed tweakable-Even-Mansour-type TBCs
with BBB security. These schemes are permutation-based, and the security proofs were
given in the random-permutation model. Many permutation-based AE schemes includ-
ing CAESAR candidates [DEMS, BDP+a, BDP+b, AJN] have the sponge-style struc-
tures [BDPA08, BDPA11, JLM14, ADMA15, MRV15], where a permutation is iterated,

6 Wang et al. [WGZ+16] showed that the primary version of F̃ [2] is not a fully secure TBC. After
that, Mennink repaired the TBC to become a fully secure one.
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and data blocks are handled by using several bits of the internal state. The security proofs
were given in the random-permutation model, and the security bound is the birthday one.

1.6 Organization
We start by giving notations and security definitions in Section 2. In Section 3, we give
the specification of XKX, the security bound, and the security proof. In Section 4, we give
blockcipher-based instantiations of F . In Section 5, we apply XKX to efficient TBC-based
AE schemes ΘCB3 and OTR, and give the security bounds of the resultant AE schemes.
Finally, in Section 6, we study the security bounds of the AE schemes.

2 Preliminaries
2.1 Notations
Let {0, 1}∗ be the set of all bit strings, {0, 1}n the set of n-bit strings, and 0n the bit string
of n-bit zeroes for an integer n ≥ 0. Let [i] := {1, 2, . . . , i} for a positive integer i. For a
finite set X , x

$←− X means that an element is randomly drawn from X and is assigned to
x. For a bit string x and a set X , we denote by |x| and |X | the bit length of x and the
number of elements in X , respectively. Let trunci(x) be the first i-bit string of a bit string
x, where i ≤ |x|. Let Perm(B) be the set of all permutations over a non-empty set B. A
random permutation over B is defined as P

$←− Perm(B). The inverse is denoted by P −1.
An adversary A with oracle access to O is denoted by AO. An event that AO outputs a
result y is denoted by AO ⇒ y. In this paper, an adversary is a computationally bounded
algorithm and the resource is measured in terms of time and query complexities.

2.2 Definitions of (Tweakable) Blockciphers
2.2.1 Definition of Classical Blockcipher

Let BC(K,B) be the set of all encryptions of blockciphers with the set of keys K and the set
of (plain/ciphertext) blocks B. Fixing a blockcipher E ∈ BC(K,B), E having a key K ∈ K,
denoted by E(K, ·) or EK(·), becomes a permutation over B. The decryption function is
denoted by E−1, and E−1

K becomes the inverse permutation of EK . An ideal cipher is
defined as E

$←− BC(K,B), and for each K ∈ K, EK becomes a random permutation.
We consider Strong-Pseudo-Random Permutation (SPRP) security that is indistin-

guishability between a (keyed) blockcipher and a random permutation. Let E ∈ BC(K,B)
be a blockcipher with the sets of keys K and blocks B. The advantage function of an
sprp-adversary A that outputs a bit are defined as

Advsprp
E (A) =Pr[K $←− K; AEK ,E−1

K ⇒ 1]− Pr[P $←− Perm(B); AP,P −1
⇒ 1] ,

where the probabilities are taken over A, K and P . We say A is a (q, t)-sprp-adversary if
A makes q queries and runs in time t. Pseudo-Random Permutation (PRP) security is a
weaker security notion than SPRP security, where an adversary has access to only EK/P .
The advantage function of a prp-adversary A is denoted by Advprp

E (A). We say A is a
(q, t)-prp-adversary if A makes q queries and runs in time t.

2.2.2 Definition of Tweakable Blockcipher

Let B̃C(K, T W,B) be the set of all encryptions of tweakable blockciphers (TBCs) with
the set of keys K, the set of tweaks T W and the set of (plain/ciphertext) blocks B.
Fixing a TBC Ẽ ∈ BC(K, T W,B), Ẽ having a key K ∈ K and tweak tw ∈ T W, denoted
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by Ẽ(K, tw, ·) or ẼK(tw, ·), becomes a permutation over B. The decryption function is
denoted by Ẽ−1, and Ẽ−1

K (tw, ·) is the inverse permutation of ẼK(tw, ·).
We consider Tweakable-Strong-Pseudo-Random Permutation (TSPRP) security that

is indistinguishability between a TBC and a (keyed) tweakable random permutation. Let
P̃erm(T W,B) be the set of all tweakable permutations with the sets of tweaks T W and
of blocks B, where fixing P̃ ∈ P̃erm(T W,B), P̃ having a tweak tw ∈ T W denoted by
P̃ (tw, ·) becomes a permutation over B. The inverse is denoted by P̃ −1. The advantage
function of a tsprp-adversary A that outputs a bit is defined as

Advs̃prp
Ẽ

(A) =Pr
[
K

$←− K; AẼK ,Ẽ−1
K ⇒ 1

]
− Pr

[
P̃

$←− P̃erm(T W,B); AP̃ ,P̃ −1
⇒ 1

]
,

where the probabilities are taken over A, K and P̃ . We say A is a (q, t)-tsprp-adversary if
A makes at most q queries and runs in time t. Tweakable-Pseudo-Random-Permutation
(TPRP) security is a weaker security notion than TSPRP security, where an adversary
has access to only ẼK/P̃ . The advantage function of a tprp-adversary A is denoted by
Advp̃rp

F̃
(A). We say A is a (q, t)-tprp-adversary if A makes at most q queries and runs in

time t.

2.3 Definition of Pseudo-Random Function
Let Func(X ,Y) be the set of all functions from a set X to a set Y. Let {FK}K∈K be a family
of keyed functions indexed by the set of keys K that maps X to Y. We consider Pseudo-
Random-Function (PRF) security that is indistinguishability from a random function
(RF), where an RF is defined as f

$←− Func(X ,Y). The advantage function of a prf-
adversary A that outputs a bit is defined as

Advprf
F (A) = Pr[K $←− K; AFK ⇒ 1]− Pr[f $←− Func(X ,Y); Af ⇒ 1] ,

where the probabilities are taken over A, K and f . We say A is a (q, t)-prf-adversary if
A makes at most q queries and runs in time t.

2.4 Definition of Nonce-Based Authenticated Encryption
In this paper, we apply our TBC to nonce-based Authenticated Encryption (nAE) schemes
(with associated data). The syntax and the definition of nAE schemes are given in the
following.

An nAE scheme is a pair of encryption and decryption algorithms Π = (Enc, Dec).
K,N ,M, C,A and T are the sets of keys, nonces, messages, ciphertexts, associated data
and tags of the nAE scheme. The encryption algorithm with a key K ∈ K, EncK , takes
a nonce N ∈ N , associated data A ∈ A, and a plaintext M ∈ M. EncK(N, A, M) re-
turns, deterministically, a pair of a ciphertext C ∈ C and a tag tag ∈ T . The decryption
algorithm with a key K ∈ K, DecK , takes a tuple (N, A, C, tag) ∈ N × A × C × T .
DecK(N, A, C, tag) returns, deterministically, either the distinguished invalid symbol ⊥
or a plaintext M ∈ M. We require |EncK(N, A, M)| = |EncK(N, A, M ′)| when the en-
cryption are strings and |M | = |M ′|.

We follow the security definition in [BN08, Rog02] that considers privacy and authen-
ticity of an nAE scheme Π. The privacy advantage of an adversary A is defined as

Advpriv
Π (A) = Pr[K $←− K; AEncK ⇒ 1]− Pr[A$ ⇒ 1] ,

where a random-bits oracle $ has the same interface as EncK , and for query (N, A, M)
returns a random bit string of length |EncK(N, A, M)|. The authenticity advantage of an



Yusuke Naito 9

adversary A is defined as

Advauth
Π (A) = Pr[K $←− K; AEncK ,DecK forges] ,

where “AEncK ,DecK forges” means that A makes a query to DecK whose response is not
⊥. We demand that A is nonce-respecting, namely, never asks two encryption queries
with the same nonce, that A never asks a decryption query (N, A, C, tag) such that there
is no prior encryption query with (C, tag) = EncK(N, A, M), and that A never repeats a
query.

2.5 Definition of Almost XOR Universal Hash Function

We will need a class of non-cryptographic functions called universal hash functions [CW79]
defined as follows.

Definition 1. Let H = {hK}K∈K be a family of functions from (some set) T Wctr to
{0, 1}n indexed by the set of keys K. H is said to be (ϵ, δ)-almost XOR universal ((ϵ, δ)-
AXU) if

1. for any distinct ctr, ctr′ ∈ T WN and any c ∈ {0, 1}n,

Pr[K $←− K : hK(ctr)⊕ hK(ctr′) = c] ≤ ϵ ,

2. for any ctr ∈ T WN and any c ∈ {0, 1}n,

Pr[K $←− K : hK(ctr) = c] ≤ δ .

3 XKX

3.1 Specification

XKX is constructed from a blockcipher and two tweak functions. Using XKX in nAE
schemes, one of the tweak function is used to take nonces, and the other is used to take
counters. These definitions are given in the following.

• The blockcipher is defined as E ∈ BC({0, 1}k, {0, 1}n), where positive integers n and
k are the block size and the key size, respectively.

• The first tweak function is a keyed function from a set of (first) tweaks T WN to
{0, 1}k whose family is defined as F := {FKF

}KF ∈KF
indexed by a set of keys KF .

• The second tweak function is a keyed hash function from a set of (second) tweaks
T Wctr to {0, 1}n whose family is defined as H := {hKh

}Kh∈Kh
indexed by a set of

keys Kh.

XKX[F, E]KF ,Kh
denotes XKX using underlying primitives F, E, h and keys KF , Kh.

XKX ∈ B̃C(KF × Kh, T WN × T Wctr, {0, 1}n) is defined in Algorithm 1 and is illus-
trated in Figure 2. A tweak taken by the first (resp., second) tweak function is called a
first (resp., second) tweak.
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Algorithm 1 XKX
Procedure XKX[F, E]KF ,Kh

((N, ctr), m)
1: v ← hKh

(ctr); x← v ⊕m
2: w ← FKF

(N); y ← Ew(x) ▷ Minematsu’s TBC
3: c← y ⊕ v
4: return c

3.2 Security of XKX
The upper-bound of the tsprp-advantage for XKX given in the following theorem, assum-
ing the keyed blockcipher is a secure SPRP, the first tweak function is a secure PRF and
the family of second tweak functions is AXU.

Theorem 1. Assume that H is (ϵ, δ)-AXU. Let A be a (σ, t)-tsprp-adversary. Here, q
is the number of distinct first tweaks, and ℓN is the number of queries with first tweak
N ∈ T WN . Then, there exist a (σ, t + O(σ))-sprp-adversary AE and (q, t + O(σ))-prf-
adversary AF such that

Advs̃prp
XKX(A) ≤ q ·Advsprp

E (AE) + Advprf
F (AF ) +

∑
N∈N

ℓ2
N · ϵ .

3.3 Proof of Theorem 1
Without loss of generality, assume that an adversary A never repeats a query.

3.3.1 Replacing Minematsu’s TBC with TPRP

XKX is based on Minematsu’s TBC [Min09] whose encryption denoted by Min ∈ B̃C(KF ,
T WN , {0, 1}n) is defined as follows:

Min[F, E]KF
(N, m) = Ew(m) where w = FKF

(N).

In Algorithm 1, Step 2 uses the TBC. Minematsu [Min09] gave the following upper-bound
of the tsprp-advantage.

Lemma 1. Let A be a (σ, t)-tsprp-adversary whose queries include q distinct tweaks.
Then there exist a (σ, t + O(σ))-prp-adversary AE and a (q, t + O(σ))-prf-adversary AF

such that
Advs̃prp

Min(A) ≤ q ·Advsprp
E (AE) + Advprf

F (AF ) .

The term q · Advsprp
E (AE) comes from the SPRP security of E with q-blockcipher’s

keys, and the term Advprf
F (AF ) comes from the PRF security of F .

By the above lemma, Min can be replaced with a tweakable random permutation
P̃R

$←− P̃erm(T WN , {0, 1}n) with the above security loss. Hereafter, XKX using P̃R is
denoted by F̃ [P̃R].

3.3.2 TSPRP Security of F̃ [P̃R]

The remaining work is to upper-bound the tsprp-advantage which is defined as

Advs̃prp
F̃

(A) =Pr[P̃R
$←− P̃erm(T WN , {0, 1}n); Kh

$←− Kh; AF̃ [P̃R]Kh
,F̃ [P̃R]−1

Kh ⇒ 1]−

Pr[P̃I
$←− P̃erm(T WN × T Wctr, {0, 1}n); AP̃I ,P̃ −1

I ⇒ 1] .
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This case can be seen as the multi-key setting of LRW2, where an adversary has oracle
access to either q LRW2 oracles with distinct random permutations or q tweakable random
permutation. Roughly speaking, since the random permutations of q LRW2 oracles are
independently defined, the above difference is upper-bounded by q×(the tsprp-advantage
of LRW2 in the single-key setting). The upper-bound of the tsprp-advantage of LRW2 is
given in [LRW02] (or [CLS15] for the more general case), which is ℓ2 · ϵ for an adversary
making at most ℓ queries. Hence, the above difference is upper-bounded by ℓ2q · ϵ.

In the following, the full analysis is given. In this analysis, the values defined at the
α-th query are denoted by using the superscript character of α. The world with F̃ [P̃R]Kh

is called the real world, and the world with P̃I is called the ideal world.

Transcript. This proof permits for A to obtain the key Kh after its interaction but before
outputting a decision bit. In the ideal world, a dummy key is defined as Kh

$←− KKh
. After

A’s interaction, it obtains the following transcript.

τ =

(
Kh,

σ∪
α=1
{((Nα, ctrα), mα, cα)}

)

Let TR be the transcript in the real world obtained by sampling P̃R
$←− P̃erm(T WN , {0, 1}n)

and Kh
$←− Kh. Let TI be the transcript in the ideal world obtained by sampling

P̃I
$←− P̃erm(T WN × T Wctr, {0, 1}n) and Kh

$←− Kh. We call a transcript τ valid if
an interaction with their oracles could render this transcript, namely, Pr[Ti = τ ] > 0
for i ∈ {R, I}. Then the tsprp-advantage is upper-bounded by the statistical distance of
transcripts, i.e.,

Advs̃prp
F̃

(A) ≤ SD(TR, TI) = 1
2
∑

τ

|Pr[TR = τ ]− Pr[TI = τ ]| ,

where the sum is over all valid transcripts.

Coefficient H Technique. The statistical distance SD(TR, TI) can be upper-bounded by
the coefficient H technique [CS14, Pat08]. Let T be valid transcripts. In this technique, T
is partitioned into two transcripts: good transcripts Tgood and bad transcripts Tbad. Then
SD(TR, TI) is upper-bound by the following lemma.

Lemma 2. Let 0 ≤ ε ≤ 1 be such that for all τ ∈ Tgood, Pr[TR=τ ]
Pr[TI =τ ] ≥ 1 − ε. Then,

SD(TR, TI) ≤ Pr[TI ∈ Tbad] + ε.

Hereafter, first good and bad transcripts are defined. Then ε and Pr[TI ∈ Tbad] are
upper-bounded. Finally, by the above lemma, the upper-bound of the tsprp-advantage is
obtained.

Good and Bad Transcripts. Bad transcripts Tbad are defined such that the following
condition is satisfied, and good transcripts Tgood are defined such that this condition is
not satisfied.

• coll⇔ ∃α, β ∈ [σ] with α ̸= β s.t. (Nα = Nβ) and (xα = xβ or yα = yβ).

Note that in the ideal world, xα is defined as xα = hKh
(ctrα)⊕mα, and yα is defined as

yα = hKh
(ctrα)⊕ cα.

Upper-Bound of Pr[TI ∈ Tbad]. Since Pr[TI ∈ Tbad] = Pr[coll], in the following Pr[coll]
is upper-bounded.
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Consider the condition in coll: Nα = Nβ and xα = xβ . The equation xα = xβ implies

hKh
(ctrα)⊕ hKh

(ctrβ) = mα ⊕mβ .

Hence, fixing α, β with Nα = Nβ , since H is (ϵ, δ)-AXU, the probability that xα = xβ is
at most ϵ. Similarly, fixing α, β with Nα = Nβ , the probability that yα = yβ is at most ϵ.

Since the number of queries with the first tweak N is ℓN , we have

Pr[TI ∈ Tbad] = Pr[coll] ≤
∑

N∈T WN

(
ℓN

2

)
· 2ϵ ≤

∑
N∈T WN

ℓ2
N · ϵ .

Upper-Bound of ε. Let τ be a good transcript. Let allR (resp. allI) be the set of
all oracles in the real (resp. ideal) world. Let compR(τ) (resp. compI(τ)) be the set of
oracles compatible with τ in the real (resp. ideal) world. Then

Pr[TR = τ ] = |compR(τ)|
|allR|

and Pr[TI = τ ] = |compI(τ)|
|allI |

.

Firstly, |allR| is counted. Since Kh ∈ Kh and P̃R ∈ P̃erm(T WN , {0, 1}n), we have

|allR| = |Kh| · (2n!)|T WN | .

Secondly, |allI | is counted. Since Kh ∈ Kh and P̃I ∈ P̃erm(T WN × T Wctr, {0, 1}n),
we have

|allI | = |Kh| · (2n!)|T WN |×|T Wctr| .

Thirdly, |compR(τ)| is counted. By ¬coll, all P̃R-evaluations with the same first tweak
don’t overlap with each other. K is uniquely determined. Hence, we have

|compR(τ)| =
∏

N∈T WN

(2n − ℓN )! .

Fourthly, |compI(τ)| is counted. Let ℓN,ctr be the number of queries with the first
tweak N and the second tweak ctr. Note that ℓN =

∑
ctr∈T Wctr

ℓN,ctr. Then,

|compI(τ)| =
∏

N∈T WN ,ctr∈T Wctr

(2n − ℓN,ctr)!

≤ (2n!)|T Wctr| ·
∏

N∈T WN

(2n − ℓN )! ,

using (2n − a)! · (2n − b)! ≤ 2n! · (2n − a− b)! for any 0 ≤ a, b ≤ 2n.
Finally,

Pr[TR = τ ]
Pr[TM = τ ]

≥
∏

N∈T WN
(2n − ℓN )!

|Kh| · (2n!)|T WN | × |Kh| · (2n!)|T WN |×|T Wctr|

(2n!)|T Wctr| ·
∏

N∈T WN
(2n − ℓN )!

= 1 .

Thus we have ε = 0.

Upper-Bound of Advs̃prp
F̃

(A). Putting the above upper-bounds in Lemma 2 gives

Advs̃prp
F̃

(A) ≤
∑

N∈T WN

ℓ2
N · ϵ .
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3.3.3 Conclusion of the Proof

Finally, combining Lemma 1 and the upper-bound of Advs̃prp
F̃

(A) gives

Advs̃prp
XKX(A) ≤ q ·Advsprp

E (AE) + Advprf
F (AF ) +

∑
N∈T WN

ℓ2
N · ϵ ,

where AE is a (σ, t + O(σ))-sprp-adversary and AF is a (q, t + O(σ))-prf-adversary.

3.4 Removing the Output Masking of XKX
In Theorem 1, the upper-bound of the tsprp-advantage of XKX is given, where an adver-
sary has oracle access to both of the encryption function and the decryption function. In
XKX, in order to avoid a collision attack in inputs to the underlying blockcipher from the
encryption oracle, the input masking is introduced, and in order to avoid a collision in
outputs to the underlying blockcipher from the decryption oracle, the output masking is
introduced. Since the decryption oracle is absent in the TPRP-setting, the output masking
of XKX can be removed, i.e., the resultant TBC that we call XK is a secure TPRP. The
tprp-advantage of XK can be upper-bounded by the proof similar to Theorem 1, where
the condition yα = yβ in the event coll (in Subsubsection 3.3.2) is not required, and other
analyses are the same. Concretely, the upper-bound of the tprp-advantage is given below.
Assume that H is (ϵ, δ)-AXU. Let A be a (σ, t)-tprp-adversary. Here, q is the number of
distinct first tweaks, and ℓN is the number of queries with first tweak N ∈ T WN . Then,
there exist a (σ, t+O(σ))-prp-adversary AE and (q, t+O(σ))-prf-adversary AF such that

Advp̃rp
XK(A) ≤ q ·Advprp

E (AE) + Advprf
F (AF ) +

∑
N∈N

0.5ℓ2
N · ϵ .

Note that using both XK and XKX in an AE scheme, the tweaks of XK and of XKX
should not be overlapped with each other. The combined scheme is denoted by XKX∗.
By the proof similar to Theorem 1, the upper-bound of the tsprp-advantage is obtained.
Assume that H is (ϵ, δ)-AXU. In this case, we need to consider the condition yα = yβ in
the event coll such that yα is defined by the decryption function of XKX and yβ is defined
by XK. Since XK does not have the output masking, the upper-bound of the collision
probability is δ. Let A be a (σ, t)-tsprp-adversary. Here, q is the number of distinct first
tweaks, and ℓN is the number of queries with first tweak N ∈ T WN . Then, there exist a
(σ, t + O(σ))-sprp-adversary AE and (q, t + O(σ))-prf-adversary AF such that

Advs̃prp
XKX∗(A) ≤ q ·Advsprp

E (AE) + Advprf
F (AF ) +

∑
N∈N

ℓ2
N ·max{ϵ, δ} .

Note that in the SPRP security of XKX∗, the inverse of XK is absent.

4 Instantiations of F

We show how to construct the first tweak function FKF
from a blockcipher. The blockci-

pher is defined as E ∈ BC({0, 1}k, {0, 1}n). We deal with blockciphers with n ≤ k ≤ 2n,
since almost all of blockciphers satisfy the condition.

We define a first tweak function that uses blockcipher outputs.

• F
(1)
KF

(N) = trunck(EKE
(0∥N)∥EKE

(1∥N)) where KF = KE , KF := {0, 1}k, and
T WN := {0, 1}n−1.
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By the PRF/PRP switch, the prf-advantage is upper-bounded the prp-advantage of the
blockcipher plus the birthday bound O(q2/2n).

Next, we define a first tweak functions so that the birthday bound is removed. In
order to remove the birthday bound, the xor function is used.

• F
(2)
KF

(N) = trunck

((
EKE

(00∥N)⊕EKE
(01∥N)

)
∥
(
EKE

(00∥N)⊕EKE
(10∥N)

))
where

KF = KE , KF := {0, 1}k, and T WN := {0, 1}n−2.

In [Pat10], it was proven that the xor function achieves optimal PRF security, thus the
prf-advantage is upper-bounded by the prp-advantage of the blockcipher plus the optimal
PRF-security bound O(q/2n).

These concrete bounds are given in the following, where the upper-bound of F (1) is
obtained by the PRF/PRP switch, and the upper-bound of F (2) is obtained by using
Theorem 2 in [IMV16] (the original analysis is given in Theorem 6 of [Pat10]).

Lemma 3 (PRF Security of F (1)). For any (q, t)-prf-adversary A, there exists a (2q, t +
O(q))-prp-adversary AE such that

Advprf
F (1)(A) ≤ Advprp

E (AE) + q2

2n
.

Lemma 4 (PRF Security of F (2)). For any (q, t)-prf-adversary A such that q ≤ 2n/134,
there exists a (3q, t + O(q))-prp-adversary AE such that

Advprf
F (2)(A) ≤ Advprp

E (AE) + 4q

2n
.

Remark 1. When n = k, F (1) (resp., F (2)) calls a blockcipher once (resp., twice), and
the domain separation bit(s) perpended to N can be removed (resp., shortened). When
2n < k, the first tweak functions can be defined by making the bit length longer.

5 Applications
We apply XKX to nAE schemes ΘCB [KR11] and OTR [Min14]. As shown below, the
XKX-based schemes achieve BBB security, and become efficient, one-pass, online and
parallelizable.

5.1 ΘCB3 with XKX
5.1.1 ΘCB3 [KR11]

ΘCB3 is a TBC generalization of OCB3 [KR11], and is efficient, one-pass, online and
parallelizable. In ΘCB3, a plaintext is encrypted by the ECB-like construction (but
a tweak is varied for each block), and a tag is generated by encrypting the checksum
of plaintext blocks. In the decryption, a ciphertext is decrypted by the decryption of
the ECB-like construction, then a tag is generated by encrypting the checksum of the
decrypted plaintext blocks (thus a tag is generated by the PMAC-like structure [Rog04]).

We briefly give the construction of ΘCB3, following the notations in [KR11]. Here, a
TBC is defined as Ẽ ∈ B̃C({0, 1}k, T W, {0, 1}n), where k is the key size in bits, T W is
the set of tweaks, and n is the block size. The set of tweaks is defined as follows.

T W := (N × N1) ∪ (N × N0 × {∗}) ∪ (N × N0 × {$}) ∪ (N × N0 × {∗$})
∪ N1 ∪ (N0 × {∗})
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Figure 4: Encryption of ΘCB3. The procedure (1) encrypts four n-bit plaintext blocks
M1, M2, M3, M4, and returns a tag. The procedure (2) encrypts three n-bit plaintext
blocks M1, M2, M3 and a plaintext block of length less than n bits M∗, and returns
a tag. The procedure (3) handles three n-bit associated data blocks A1, A2, A3. The
procedure (4) handles two n-bit associated data blocks A1, A2 and an associated data
block A∗ of length less than n bits (A∗∥10∗ is an n-bit string, where 1 is appended to A∗
and an appropriate number of bits 0 is appended so that the bit length becomes n).

where N is the set of nonces, N1 and N0 are positive and nonnegative integers, re-
spectively. Hence, ΘCB3 uses six types of permutations: ẼK((N, i), ·), ẼK((N, i, ∗), ·),
ẼK((N, i, $), ·), ẼK((N, i, ∗$), ·), ẼK(i, ·), and ẼK((i, ∗), ·). The first two permutations
are used to encrypt plaintext blocks. The next two permutations are used to generate a
tag. The last two permutations are used to handle associated data. In each procedure,
the latter permutation is used to avoid an additional permutation call by the padding. In
the encryption of ΘCB3, for a nonce N and n-bit plaintext blocks M1, . . . , Ml, the i-th ci-
phertext block is defined as Ci ← ẼK((N, i), Mi). Regarding associated data A1, . . . , Aa,
the i-th block Ai is inputted to the TBC as Bi ← ẼK(i, Ai). Then the tag is defined as
tag ← truncτ (ẼK((N, i, $), Checksum)⊕B1⊕· · ·⊕Ba), where Checksum is the checksum
of the plaintext blocks. Note that if the length of the message is not multiple of n, then
permutations with tweaks including “∗” are used to encrypt the last block and generate
a tag. Similarly, if the length of associated data is not multiple of n, then ẼK((i, ∗), ·)
is used to process the last block of associated data. The encryption of ΘCB3 is illus-
trated in Figure 4. In the decryption of ΘCB3, the inverse procedure of the encryption is
performed. Please see Subsection 4.2 in [KR11] for the concrete construction of ΘCB3.
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In [KR11], the security of ΘCB3 was analyzed in the information-theoretic model,
that is, the keyed TBC is replaced with a tweakable random permutation. Regarding the
privacy, for each TBC call, a distinct tweak is used, thus each ciphertext block is randomly
drawn from {0, 1}n. Hence, for any adversary A,

Advpriv
ΘCB3(A) = 0 .

Regarding the authenticity, two cases are considered: an adversary A makes a decryption
query such that (1) the nonce appeared in the previous encryption queries; (2) the nonce
has not appeared in the previous encryption queries. In order to forge a tag, in (1),
A should occur a collision of the checksum values with the same nonces (yielding the
same tags), and then makes a query with the same tag; in (2), A should hit a tag
that is randomly drawn. In [KR11], it was proven that these probabilities are at most
2n−τ /(2n − 1). Hence, for any adversary A making at most qD decryption queries,

Advpriv
ΘCB3(A) ≤ qD2n−τ

2n − 1
.

5.1.2 ΘCB3 with XKX

We apply XKX to ΘCB3. The resultant scheme is denoted by ΘCB3[XKX]. The set
of first tweaks is defined as T WN := N ∪ {0} such that 0 ̸∈ N . “0” is used to define
a blockcipher’s key to handle associated data. The set of second tweaks is defined as
T Wctr := N1∪ (N0 × {∗})∪ (N0 × {$})∪ (N0 × {∗$})∪N1∪ (N0 × {∗}). In XKX, for each
encryption or decryption query, a blockcipher’s key is defined by the first tweak function
FKF

whose input is a nonce N and is fixed, thus FKF
is called once for each encryption

or decryption query. Namely, for each data block, ΘCB3[XKX] calls a blockcipher once
(and calls an AXU hash function once). Hence, ΘCB3[XKX] is efficient, one-pass, online
and parallelizable. Since inputs of the AXU hash function do not include nonces, the hash
values can be precomputed. If there is a storage that keeps the hash values, then the hash
computations can be removed.

Regarding the security of ΘCB3[XKX], since XKX can be used as a tweakable ran-
dom permutation up to the security bound given in Theorem 1, the security bounds of
ΘCB3[XKX] are obtained by summing the security bound given in Theorem 1 and the
security bounds of ΘCB3. The details are given in following. Here, H is assumed to be
(ϵ, δ)-AXU.

First, the privacy of ΘCB3[XKX] is considered. Let A be an adversary that makes
qE encryption queries and runs in time t such that σA is the number of blockcipher calls
by associated data and ℓN is the total number of blockcipher calls by queries with the
nonce N ∈ N . Let σE = σA +

∑
N∈N ℓN . In this setting, at most qE “nonce-dependent”

blockcipher’s keys are defined, which are used to encrypt plaintexts and generate tags, and
another key is used to handle associated data. Hence, at most qE + 1 blockcipher’s keys
are defined. Combining Theorem 1 and the privacy bound of ΘCB3, the following result
is obtained: There exist a (σE , t + O(σE))-sprp-adversary AE and a (qE + 1, t + O(σE))-
prf-adversary AF such that

Advpriv
ΘCB3[XKX](A) ≤ (qE + 1) ·Advsprp

E (AE) + Advprf
F (AF ) +

(
σ2

A +
∑

N∈N
ℓ2

N

)
· ϵ .

Next, the authenticity of ΘCB3[XKX] is considered. Let A be an adversary that
makes qE encryption/qD decryption queries and runs in time t such that the number of
blockcipher calls by associated data is σA and the number of blockcipher calls by queries
with the nonce N ∈ N is ℓN . Let q = qE + qD and σ = σE +

∑
N∈N ℓN . In this

setting, at most q nonce-dependent blockcipher’s keys are defined to encrypt plaintexts,
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decrypt ciphertexts and generate tags, and another key is defined to handle associated
data. Hence, at most q + 1 blockcipher’s keys are defined. Combining Theorem 1 and the
authenticity bound of ΘCB3, the following result is obtained: There exist a (σ, t + O(σ))-
sprp-adversary AE and a (q + 1, t + O(σ))-prf-adversary AF such that

Advauth
ΘCB3[XKX](A)

≤ (q + 1) ·Advsprp
E (AE) + Advprf

F (AF ) +

(
σ2

A +
∑

N∈N
ℓ2

N

)
· ϵ + qD2n−τ

2n − 1
.

5.2 OTR with XKX
OTR [Min14] is a variant of ΘCB3, which is also efficient, one-pass, online and paralleliz-
able (under two-block partition). OTR encrypts two plaintext blocks by two-round Feistel
permutation, where in each round a TBC (or a function) is called once. By the Feistel per-
mutation, OTR does not require the decryption function of the underlying TBC. Hence,
adopting XKX to OTR, the resultant scheme is efficient, one-pass, and parallelizable
without a decryption function of a blockcipher.

OTR has the same level of security as ΘCB (the constant factors in the authenticity
bounds are distinct). Hence, OTR with XKX also achieves the same level of security
as ΘCB[XKX]. Since OTR does not require a decryption function of a blockcipher, the
security proofs of the OTR-based AE scheme do not require the SPRP assumption but
require the PRP one.

5.3 Remark
Since OTR does not require the decryption function of a TBC, XKX can be replaced with
XK. In ΘCB3, the decryption function is not required for handling associated data and
generating a tag. Hence, for the TBC calls, XKX can be replaced with XK.

6 Discussions
6.1 Study of Security Bounds of XKX-based Schemes
We study the security bounds of ΘCB3[XKX] given in Subsection 5.1. Note that this
study is applicable to OTR with XKX. For the sake of simplicity, we assume that for each
encryption query, the number of blockcipher calls except for those handling associated
data is ℓ. We use an optimal parameter ϵ = 1/2n.

6.1.1 Security Bounds of ΘCB3[XKX]

The privacy bound becomes roughly

qE ·Advsprp
E (AE) + Advprf

F (AF ) + σ2
A + ℓ2qE

2n
(privacy) .

Regarding the authenticity bound,
∑

N∈N ℓ2
N ·ϵ becomes maximum if an adversary makes

decryption queries whose nonces are the same and appear in some encryption query, thus
this term is at most (ℓ2(q − 1) + (ℓ + σD)2)/2n. Hence, the authenticity bound becomes
roughly

q ·Advsprp
E (AE) + Advprf

F (AF ) + σ2
A + ℓ2q + σ2

D
2n

(authenticity) .
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Next, we assume that Advsprp
E (AE) ≈ ℓqE/2k or Advsprp

E (AE) ≈ ℓq/2k (achieved by the
exhaustive key search, see [BKR98]), and terms with σA and σD are sufficiently small
(e.g., associated data is fixed and the number of fails in decryption queries is limited).
Then the privacy and authenticity bounds become roughly

ℓq2
E

2k
+ Advprf

F (AF ) + ℓ2qE

2n
(privacy) ℓq2

2k
+ Advprf

F (AF ) + ℓ2q

2n
(authenticity) .

These bounds ensure that if the key terms ℓq2/2k and Advprf
F (AF ) can be negligible, then

the security bounds of the XKX-based schemes become O(ℓ2q/2n).

6.1.2 Blockcipher-based Instantiations

We adopt instantiations given in Section 4 to XKX. Here, XKX using function F (i) is
denoted by XKX(i). By Lemma 3 and 4, the privacy and authenticity bounds become
roughly

• ΘCB3[XKX(1)]:

ℓq2
E

2k
+ q2

E
2n

+ ℓ2qE

2n
(privacy) ℓq2

2k
+ q2

2n
+ ℓ2q

2n
(authenticity) (1)

• ΘCB3[XKX(2)]:

ℓq2
E

2k
+ ℓ2qE

2n
(privacy) ℓq2

2k
+ ℓ2q

2n
(authenticity) (2)

Hence, these bounds are beyond the birthday ones (The birthday bound is (ℓq)2/2n). The
term ℓq2/2k depends on the key size k, thus using a blockcipher with long-size keys, these
terms can be negligible, e.g., k = 2n. AES and many lightweight blockciphers support
this parameter (AES: n = 128 and k = 256, PRESENT: n = 64 and k = 128, etc.). If this
term can be negligible, then the above bounds become O(q2/2n+ℓ2q/2n) (ΘCB3[XKX(1)])
and O(ℓ2q/2n) (ΘCB3[XKX(2)]).

6.2 Study of the Key Terms q · Advsprp
E (AE) and Advprf

F (AF )
The security bounds of XKX-based schemes have the term q ·Advsprp

E (AE). This term
comes from the construction of XKX, where q-blockcipher’s keys are defined via the first
tweak function. As mentioned in [ST16], the hybrid factor is not real, but rather an
artifact of the proof technique, and this term might be improved by analyzing the term
in the ideal cipher model (ICM). On the other hand, the ICM analysis provides only a
security heuristic, and seems particularly inappropriate when the underlying blockcipher
is know to have obvious non-ideal behavior for certain weak-key class matters, or to suffer
from related-key attack. However, in the XKX-based schemes the blockcipher’s keys are
randomly drawn, thereby the presence of weak keys is unlikely to be a real issue in the
XKX-based schemes. In this paper, we study the security of XKX-based schemes in the
ICM, and show that this term can be improved.

Recall the proof of Theorem 1. The terms q ·Advsprp
E (AE) and Advprf

F (AF ) are intro-
duced in Subsubsection 3.3.1, where Min is replaced with a tweakable random permuta-
tion. The following lemma analyzes this replacement in the ICM, where the underlying
blockcipher is replaced with an ideal cipher, and the first tweak function is replaced with
a random function. Here, direct queries to the ideal cipher are called offline queries,
and queries to XKX are called online queries. XKX using an ideal cipher E, a random
function f and a key of the second tweak function Kh is denoted by XKX[f, E]Kh

. Let
XKX[f, E]±Kh

= (XKX[f, E]Kh
, XKX[f, E]−1

Kh
) and E± = (E, E−1).
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Lemma 5. Assume that H is (ϵ, δ)-AXU. Let A be a computationally unbounded adver-
sary trying to distinguish World1 from World2. Here, A makes σ online queries with q
first tweaks and Q offline queries. Then we have

Pr[World1]− Pr[World2] ≤ 2σQδ

2k
+ q2

2k+1 ,

where

World1 :=(
E

$←− BC({0, 1}k, {0, 1}n); f
$←− Func(T WN , {0, 1}k); Kh

$←− Kh; AXKX[f,E]±
Kh

,E±
⇒ 1

)
World2 :=(

E
$←− BC({0, 1}k, {0, 1}n); P̃R

$←− P̃erm(T WN , {0, 1}n); Kh
$←− Kh; AF̃ [P̃R]±

Kh
,E±
⇒ 1

)
.

proof sketch. In this part, a sketch of the security proof is given, and the full proof is given
in Subsection 6.3.

From World1 to World2, Min is replaced with a tweakable random permutation. Hence,
we need to evaluate the distinguishing probability coming from the structural differences.
There are two differences given in the following.

• Difference 1: The difference comes from the (in)dependence between online and
offline queries. In World1, responses of online and offline queries are defined by using
an ideal cipher. On the other hand, in World2, responses of online queries are defined
independently of an ideal cipher.

• Difference 2: The difference comes from the (in)dependence between online queries
with distinct first tweaks. In World1, for two online queries with distinct first tweaks,
if the blockcipher’s keys are the same (that is, a collision occurs in outputs of f),
the responses are defined by the same permutation (or a blockcipher with the same
key). On the other hand, in World2, for two online queries with distinct first tweaks,
the responses are defined by the distinct permutations.

Regarding Difference 1, in World1, the independence between online and offline queries
might not be ensured, if blockcipher’s inputs (or outputs) by online queries and by offline
ones overlap with each other. This means that one of pairs for (w, x) (or (w, y)) appears
in offline queries, where x is the input block of the blockcipher, w is the blockcipher’s key,
and y is the output of the blockcipher, defined in XKX. Since w is randomly drawn from
{0, 1}n by a random function f , and x and y are defined by the AXU hash function, the
collision (or overlapping) probability is at most 2σQ · δ/2k. The factor “2” comes from
collisions for input blocks and for output blocks.

Regarding Difference 2, in World1, the independence between online queries with dis-
tinct first tweaks might not be ensured if a collision occurs in outputs of f . Since there
are at most q inputs to f , the collision probability is, by the birthday analysis, at most
q2/2k+1.

By summing these probabilities, the upper-bound of the lemma is obtained.

Using the optimal parameters ϵ = δ = 1/2n and assuming Q ≈ ℓq, the above bound
becomes roughly (ℓq)2/2n+k + q2/2k. This bound offers the upper-bounds of the ICM-
security of ΘCB3[XKX(1)] and ΘCB3[XKX(2)] given in the following.

• ΘCB3[XKX(1)]:

q2
E

2n
+ ℓ2qE

2n
(privacy) q2

2n
+ ℓ2q

2n
(authenticity) (3)
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• ΘCB3[XKX(2)]:

q2
E

2k
+ ℓ2qE

2n
(privacy) q2

2k
+ ℓ2q

2n
(authenticity) (4)

In the security bounds of XKX-based schemes, the term in the standard model, ℓq2/2k,
is improved to q2/2k in the ICM. Note that (ℓq)2/2n+k can be negligible compared with
ℓ2q/2n. Hence, query length ℓ becomes independent from the key size in the ICM. Finally,
the term q2/2n comes from the PRF/PRP switch for the first tweak function F . If the
underlying blockcipher is not influenced by the switch, that is, the term q2/2n can be
eliminated, then the XKX(1)-based schemes achieve the same level of security as the
XKX(2)-based ones. Indeed, from World1 to World2, the term q2/2n is introduced by
Difference 2 that considers a collision in outputs of f . Using F (1) instead of f , since such
collision does not occur due to the use of blockcipher’s outputs, one does not have to
consider Difference 2 and the term q2/2n is eliminated.

6.3 Proof of Lemma 5
In this proof, the upper-bound of the difference Pr[World1]− Pr[World2] is given, where

World1 :=
(

E
$←− BC({0, 1}k, {0, 1}n); f

$←− Func(T WN , {0, 1}k);

Kh
$←− Kh; AXKX[f,E]±

Kh
,E±
⇒ 1

)
World2 :=

(
E

$←− BC({0, 1}k, {0, 1}n); P̃R
$←− P̃erm(T WN , {0, 1}n);

f
$←− Func(T WN , {0, 1}k);Kh

$←− Kh; AF̃ [P̃R]±
Kh

,E±
⇒ 1

)
.

Note that in World2, a random function f (on the underlined statement) is introduced.
It is used in this proof but is not used to define responses of A’s queries. Thus this
modification does not change A’s behavior. In this proof, the query-response triple at
the α-th online query are denoted by (twα, mα, cα), and the corresponding values such as
v, w, x, y are denoted by using the superscript character of α. The query-response triple
at the β-th offline query are denoted by (W β , Xβ , Y β), where Y β = E(W β , Xβ) if the
β-th offline query is a query to E and Xβ = E−1(W β , Y β) if the β-th offline query is a
query to E−1.

Transcript. After A’s interaction, it obtains the following list: q∪
α=1
{(twα, mα, cα)},

Q∪
β=1

{(W β , Xβ , Y β)}

 .

The list is referred as transcript. Let T1 be the transcript in World1 obtained by sam-
pling E

$←− BC({0, 1}k, {0, 1}n), f
$←− Func(T WN , {0, 1}k) and Kh

$←− Kh. Let T2

be the transcript in World2 obtained by sampling E
$←− BC({0, 1}k, {0, 1}n), P̃R

$←−
P̃erm(T WN , {0, 1}n), f

$←− Func(T WN , {0, 1}k) and Kh
$←− Kh. We call a transcript

τ valid if an interaction with their oracles could render this transcript, namely, Pr[Ti =
τ ] > 0 for i ∈ {1, 2}. Then Pr[World1] − Pr[World2] is upper-bounded by the statistical
distance of transcripts, i.e.,

Pr[World1]− Pr[World2] ≤ SD(T1, T2) = 1
2
∑

τ

|Pr[T1 = τ ]− Pr[T2 = τ ]| ,
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where the sum is over all valid transcripts.

Coefficient H Technique. In this proof, the coefficient H technique [CS14, Pat08]
is used, where valid transcripts T are partitioned into good transcripts Tgood and bad
transcripts Tbad. Then SD(T1, T2) can be upper-bounded by the following lemma.

Lemma 6. Let 0 ≤ ε ≤ 1 be such that for all τ ∈ Tgood, Pr[T1=τ ]
Pr[T2=τ ] ≥ 1 − ε. Then,

SD(T1, T2) ≤ Pr[T2 ∈ Tbad] + ε.

Hereafter, good and bad transcripts are defined. Then ε and Pr[T2 ∈ Tbad] are upper-
bounded. Finally, the upper-bound of the difference Pr[World1]− Pr[World2] is obtained
by putting these upper-bounds into the above lemma.

Good and Bad Transcripts. Bad transcripts Tbad are defined so that one of the follow-
ing conditions is satisfied, and good transcripts Tgood are defined so that these conditions
are not satisfied.

• hit⇔ ∃α ∈ [q], β ∈ [Q] s.t. (wα, xα) = (W β , Xβ) or (wα, yα) = (W β , Y β).

• coll⇔ ∃α, β ∈ [q] with Nα ̸= Nβ s.t. wα = wβ .

In World2, wα is defined as wα ← f(Nα). The first condition considers a collision in
query-response triples among online and offline queries. The second condition consid-
ers a collision in query-response triples by online queries (more precisely, a collision in
blockcipher’s keys).

Upper-Bound of Pr[T2 ∈ Tbad]. By the definition of bad transcripts,

Pr[T2 ∈ Tbad] = Pr[hit ∨ coll] ≤ Pr[hit] + Pr[coll] .

Note that these probabilities are considered in World2. Hereafter, Pr[hit] and Pr[coll] are
upper-bounded.

First, Pr[hit] is upper-bounded. Fix α ∈ [q] and β ∈ [Q]. Then (wα, xα) = (W β , Xβ)
implies (

wα = f(Nα) = W β
)
∧
(
mα ⊕ hKh

(ctrα) = Xβ
)

.

Since wα is randomly drawn from {0, 1}k, the probability that wα = W β is at most 1/2k.
By the AXU hash function, the probability that mα ⊕ hKh

(ctrα) = Xβ is at most δ.
Similarly, the probability that (wα, yα) = (W β , Y β) is at most δ/2k. By α ∈ [q] and
β ∈ [Q], we have Pr[hit] ≤ 2qQδ/2k.

Next, Pr[coll] is upper-bounded. Since there are q distinct first tweaks, we have
Pr[coll] ≤

(
q
2
)
/2k ≤ q2/2k+1.

Combining these upper-bounds gives

Pr[T2 ∈ Tbad] ≤ 2qQδ

2k
+ q2

2k+1 .

Upper-Bound of ε. Let τ ∈ Tgood be a good transcript that does not satisfy hit and coll.
Let Non(w) be the number of online queries such that the corresponding f ’s outputs equal
w (in World1 w is a blockcipher’s key defined by an online query), Noff(W ) the number
of offline queries whose keys equal W .

Let all1 (resp. all2) be the set of all oracles in World1 (resp. World2). Let comp1(τ)
(resp. comp2(τ)) be the set of oracles compatible with τ in World1 (resp., World2). Then

Pr[T1 = τ ] = |comp1(τ)|
|all1|

and Pr[T2 = τ ] = |comp2(τ)|
|all2|

.
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By E ∈ BC({0, 1}k, {0, 1}n) and f ∈ Func(T WN , {0, 1}k), we have

|all1| = (2n!)2k

· |Func(T WN , {0, 1}k)| .

By P̃R ∈ P̃erm(T WN , {0, 1}n), E ∈ BC({0, 1}k, {0, 1}n) and f ∈ Func(T WN , {0, 1}k),
we have

|all2| = (2n!)|T WN | · (2n!)2k

· |Func(T WN , {0, 1}k)| .

|comp1(τ)| is counted. Let Nf,τ be the number of functions in Func(T WN , {0, 1}k)
compatible with τ . By ¬hit, blockcipher evaluations by online and offline queries don’t
overlap with each other, thereby for each w ∈ {0, 1}k, the number of elements whose keys
equal w is Non(w) + Noff(w). Kh is uniquely determined. Hence, we have

|comp1(τ)| = Nf,τ ·
∏

w∈{0,1}k

(2n −Non(w)−Noff(w))! .

Next, |comp2(τ)| is counted. Let N
Ẽ,on(tw) be the number of online queries whose

first tweaks equal tw.

|comp2(τ)|

= Nf,τ ·
∏

tw∈T WN

(2n −N
Ẽ,on(tw))! ·

∏
w∈{0,1}k

(2n −Noff(w)) (5)

= Nf,τ · (2n!)|T WN |−2k

·
∏

w∈{0,1}k

(2n −Non(w))! ·
∏

w∈{0,1}k

(2n −Noff(w))! (6)

≤ Nf,τ · (2n!)|T WN | ·
∏

w∈{0,1}k

(2n −Non(w)−Noff(w))! . (7)

Regarding (5) = (6), since twα = twβ ⇒ wα = wβ and twα ̸= twβ ⇒ wα ̸= wβ (by ¬coll),
the equality is satisfied. Regarding (6) ≤ (7), using (2n−a)! · (2n− b)! ≤ 2n! · (2n−a− b)!
for any 0 ≤ a, b ≤ 2n, the inequality is satisfied.

Finally,

Pr[TR = τ ]
Pr[TI = τ ]

≥
Nf,τ ·

∏
w∈{0,1}k (2n −Non(w)−Noff(w))!

(2n!)2k × |Func(T WN , {0, 1}k)|
×

(2n!)|T WN | · (2n!)2k · |Func(T WN , {0, 1}k)|
Nf,τ · (2n!)|T WN | ·

∏
w∈{0,1}k (2n −Non(w)−Noff(w))!

= 1 .

Thus we have ε = 0.

Conclusion of the Proof. Putting the above bounds to Lemma 6 gives

Pr[World1]− Pr[World2] ≤ 2qQδ

2k
+ q2

2k+1 .
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