
Why Your Encrypted Database Is Not Secure

Paul Grubbs Thomas Ristenpart Vitaly Shmatikov
Cornell Tech

Abstract
Encrypted databases, a popular approach to protecting
data from compromised database management systems
(DBMS’s), use abstract threat models that capture nei-
ther realistic databases, nor realistic attack scenarios. In
particular, the “snapshot attacker” model used to support
the security claims for many encrypted databases does
not reflect the information about past queries available in
any snapshot attack on an actual DBMS.

We demonstrate how this gap between theory and re-
ality causes encrypted databases to fail to achieve their
“provable security” guarantees.

1 Introduction
Continuing large-scale compromises of systems that
manage sensitive information have motivated active re-
search on the design and implementation of encrypted
databases. Encrypted databases operate on top of a com-
modity database management system (DBMS) such as
MySQL or MongoDB but store data in an encrypted
form so that even if the DBMS or underlying OS is
compromised, the attacker cannot obtain the protected
data. These systems include research prototypes such as
CryptDB [46], Arx [45], and Seabed [42], as well as de-
ployed industry solutions [14, 54].

For efficiency, encrypted databases rely on specialized
encryption schemes that allow the server, given only the
ciphertexts, to perform some computations in response to
client queries. The price is the leakage of partial informa-
tion about plaintexts. Recent work [10, 22, 23, 27, 29, 39]
demonstrated how an attacker can recover plaintext data
if he observes queries over the encrypted database. This
attacker is called a persistent attacker. In response, de-
signers of encrypted databases have focused on a weaker
snapshot attacker who can only obtain a single static ob-
servation of the compromised system. Many recent en-
crypted databases make strong claims of “provable secu-
rity” [42, 45, 49] against snapshot attacks.

The theoretical models used to support these claims
are abstractions. They are not based on analyzing the
actual information revealed by a compromised database
system and how it can be used to infer the plaintext data.

It is well-known that forensic analysis of storage systems
reveals much about their operation [17, 18, 58], but this
knowledge has not, to date, been reflected in the security
models used by the designers of encrypted databases.

In this paper, we take a system-centric view of en-
crypted databases and investigate what an attacker would
learn in a realistic scenario: stealing a disk, performing
SQL injection, or rootkitting the OS. We demonstrate
that a “snapshot” attacker, which is the main security
model of most encrypted databases, is largely a myth.
Modern DBMS’s keep logs, caches, and data structures
that, in any realistic snapshot attack, reveal information
about past queries. This leakage is inherent in today’s
production environments because a DBMS must main-
tain caches and other metadata to adapt the system to the
workload and help manage its performance.

We then concretely demonstrate how an attacker
can exploit this system-level information to break the
claimed security guarantees of encrypted databases. We
conclude with guidelines for future research.

2 Attacks on Databases

We use a simple abstraction to explain (1) academic
threat models in the encrypted database (EDB) literature
and (2) concrete attacks that DBMS’s face in reality.

Academic threat models. The strongest threat model
(e.g., mentioned in [45, 48]) is an active attacker who
fully compromises the DBMS server and performs arbi-
trary malicious operations. Such attacks are difficult to
defend against (viz. [22]), and recent designs for efficient
EDBs no longer claim security against active attacks.

Instead, the latest security models focus on passive at-
tacks that do not interfere with DBMS functionality. The
weaker version is a snapshot attacker [22, 32, 45] who
obtains “a snapshot of the database (tables and indices in-
cluded)” [45]. The stronger version is a persistent pas-
sive attacker [22] who compromises the DBMS server
and passively observes all its operations. The latter in-
cludes observing the queries issued to the database and
how they access the encrypted data.

Observations of query evaluation are particularly dam-
aging in EDBs that rely on property-revealing encryption

1



Persistent(
storage

Volatile
memoryDB

OS Logs
Diagnostic

Tables

Data Structures

Disk theft X
SQL injection X X
VM snapshot leak X X X
Full-system compromise X X X

Figure 1: We use a simple abstraction of DB-hosting systems (left) to explain the discrepancies between the academic
threat models and the information revealed in actual attacks (right).

(PRE), such as order-revealing encryption [32], deter-
ministic encryption [4], and searchable encryption [11].
All PRE schemes leak some information about plaintexts
in order to support certain computations by the DBMS.
Some PRE ciphertexts always leak [4, 7], enabling pow-
erful snapshot attacks that recover plaintexts [10,23,39].
Other PRE schemes [11, 32, 48] leak only if the at-
tacker observes accesses to the ciphertexts (e.g., search
queries). By definition, a persistent attacker can exploit
the leakage from queries and accesses to recover plain-
texts [10, 22, 27, 29].

Since PRE schemes are always vulnerable to persistent
attacks, many EDBs claim security against snapshot at-
tacks only. Examples include the latest claims [47,49] for
CryptDB [46] and Mylar [48] (revised after the original
claims were shown false by, respectively, [39] and [22]),
new systems Arx [45] and Seabed [42], and new cryp-
tographic schemes such as Lewi-Wu order-revealing en-
cryption [32]. A common implicit assumption for these
systems is that snapshot attackers will not obtain past
queries. We will show that this assumption is false in
commodity DBMS’s under realistic snapshot attacks.

A simple system abstraction. We will treat a DBMS
as if it consists of (a) the DB software running as one or
more user-level processes and (b) the rest of the system,
including the OS and other applications (OS, for brevity).
Therefore, the state of the system has four parts: volatile
DB state (data in RAM and CPU registers), persistent
DB state (data on disk), volatile OS state, and persistent
OS state—see Figure 1. For simplicity, we assume the
database is not sharded across multiple machines, i.e.,
even if the database is replicated, every machine has a
full copy of the data.

We use MySQL as our running example, but simi-
lar caches, logs, and data structures exist in all practical
DBMS’s and can be recovered via forensic analysis (e.g.,
see [8] for MongoDB).

Concrete attacks. An oft-cited threat to DB security is
disk theft, i.e., theft of persistent storage [2,16,20,32,37,
41, 46, 49]. Full-disk encryption (FDE) can mitigate this
threat, but EDBs aim to protect data even in the absence
of FDE. Without FDE, this attack yields the persistent
OS and DB state, but not any volatile state.

SQL injection is an old but still prevalent [59] attack.
It also enables arbitrary code injection and full control
of the memory space of the DB process [15, 24], thus
yielding the persistent and volatile DB state.

DBMS’s increasingly run on virtual machines (VMs),
exposing them to the threat of VM image leaks [3, 9, 19,
52]. Some VM snapshots only contain the persistent stor-
age, whereas full-state snapshots also include the VM’s
memory and CPU registers. We focus on the latter. This
attack yields the persistent and volatile OS and DB state.

Finally, a full-system compromise involves rooting
the DBMS and gaining full access to the persistent and
volatile OS and DB state. This enables persistent pas-
sive and active attacks, but “smash-and-grab” attacks that
simply grab available data and leave are prevalent [59].

The table on the right of Figure 1 summarizes DBMS-
specific data yielded by the attacks of each type. In the
rest of the paper, we explain how this data reveals in-
formation about past queries, thus breaking the security
models of EDBs and enabling recovery of plaintext data.

3 Logs on Disk

We start by investigating what information about past
queries can be gleaned from the log files on disk that are
required for high availability and transactional semantics
in a production DBMS.

Inferring writes. Industrial databases must support
transactions with ACID properties (atomicity, consis-
tency, isolation, durability). We’ll use MySQL as an ex-
ample. Other DBMS’s such as SQL Server, Postgres, and
MongoDB use similar techniques.

MySQL’s default storage engine, InnoDB, uses circu-
lar undo and redo logs to give the database layer multi-
version concurrency control. Both logs record changes to
the individual database records at the byte level. Using
standard forensic techniques for reconstructing insert,
update, and delete transactions from these logs [17, 18],
an attacker who compromised the disk can reconstruct
queries that modified the database. The number of recon-
structed queries depends on insertion size and volume.
For example, with 1 write modifying a 20-byte field per

2



second, the undo and redo logs of default size (50 Mb)
store 16 days’ worth of inserts.

Recent work [22] showed that the timing of queries re-
veals sensitive data in certain applications of encrypted
databases. In MySQL, timing can be extracted from
a separate binary log (binlog) used to support repli-
cated transactions and point-in-time recovery [5]. Bin-
log stores the text of every transaction that modifies any
row of the database, along with its UNIX timestamp. It
is not enabled upon installation but must be turned on for
high availability and therefore will be present on the disk
of production MySQL servers. This log is so important
that a utility for reading it (mysqlbinlog) comes pre-
installed with MySQL [6]. Its contents are never purged
unless the administrator executes a special command. A
similar mechanism for replicated transactions in Mon-
goDB also records transaction timestamps [36]. Even
without this log, the default primary key of each Mon-
goDB document contains its creation time [8].

MySQL’s binlog also enables the attacker to compute
the correlation between the timestamps and the rate of
change in the log sequence numbers (LSN). The attacker
can thus infer the approximate timestamps for the trans-
actions in the undo and redo logs that are no longer
present in the binlog.

This leakage is inherent in ACID databases. Transac-
tional guarantees require the ability to roll back recent
transactions (perhaps even across database crashes), thus
information about recent database modifications must
persist on the disk.

Inferring reads. The easiest way for information about
reads to end up on disk is through too-verbose logging.
In MySQL, the general query log records every query,
including SELECT, but few systems enable it because
it takes huge amounts of disk space. Instead, on many
production MySQL systems, the “slow query” log [55]
records transactions that take an unusually long time.

A more subtle way to extract information about read-
only queries is from the buffer pool file. On shut-
down and at other points during normal server operation,
MySQL creates a file in the data directory containing the
current pages in the buffer pool in LRU order. This is
done to avoid a “warm-up” period of slow responses af-
ter a restart. This file reveals information about several
previous SELECT queries, such as the paths through the
B+ tree that MySQL took when evaluating them.

4 Diagnostic Tables
SQL injection is still a common way to compromise
databases [59]. Designers of encrypted databases of-
ten assume that a SQL injection attack reveals only
the database’s view of the data itself. But modern

DBMS’s include tables—extractable via SQL injec-
tion—that store a great deal of performance statistics,
intended to help tune specific databases to their work-
loads and diagnose problems and performance bottle-
necks [33, 35, 50, 57].

The information schema database in MySQL [26]
aggregates information about the internal state of the
DBMS, including contents of caches and how many con-
nections are active. It also includes a processlist
table with the timestamped list of all currently executing
queries. By injecting a SELECT query on this table, an
attacker can obtain queries made by other users.

The performance schema database [44] aggregates
statistics about query execution, such as the number of
queries per second and the amount of contention for syn-
chronization objects. It also contains a threads table
with the current statements being executed by all threads,
enabling a SQL-injection attacker to monitor queries.

This database also keeps information about all past
queries. The events statements current ta-
ble stores the current statement being executed by
any thread. The events statements history
table stores the most recent queries made by any
thread (essentially, the most recent queries appearing in
events statements current for all threads). The
number of queries stored per thread is configurable (10
by default). In addition to the text of the query, it also
stores the number of rows examined by the query and
returned to the client.

MySQL does not store historical information about
every individual query, but performance schema
stores statistics about all query “types” made since the
database was last restarted. The “type” is determined by
a simple canonicalization algorithm which removes the
arguments but preserves the select-from-where structure
of the query and the attributes it uses. So, for example,
the queries SELECT * FROM CUSTOMERS WHERE
STATE=’IN’ and SELECT * FROM CUSTOMERS
WHERE STATE=’AZ’ have the same canonical form,
which is different from the canonical form of the
queries SELECT * FROM CUSTOMERS WHERE
AGE >=25 and SELECT * FROM CUSTOMERS
WHERE STATE=’IN’ AND AGE >=25 (the WHERE
clause has multiple constraints in the latter).

Even if the DBMS has internal access controls, SQL
injection can be leveraged into arbitrary code execu-
tion [15, 24] that bypasses all access restrictions within
the DBMS process.

5 In-memory Data Structures

The strongest snapshot attack scenario involves the at-
tacker obtaining an image of the virtual machine execut-

3



ing the DBMS or, alternatively, rootkitting the OS (but
only making a single observation of the system). This
snapshot reveals a point-in-time state of the entire per-
sistent and volatile memory. We focus on the internal
data structures of the database process because they re-
veal information about past queries, especially accesses
to the individual pages in its cache.

To adaptively improve performance and support
(amortized) constant-time retrieval for frequently ac-
cessed database pages, InnoDB keeps per-page metadata
and access counters. If a page is accessed often, InnoDB
indexes its contents in an adaptive hash index [1]. Post-
gres has a similar mechanism for tracking accesses to in-
dividual pages to handle eviction from its buffer cache.

Further, the query cache in MySQL is an internal key-
value map that can be configured to keep the results of
certain SELECT queries [51] so that answering them is
essentially free. Unlike the buffer pool, this cache is
strictly internal to MySQL and cannot be exposed via
information schema (see Section 4), but will be
visible to a whole-system snapshot attacker. Other com-
modity DBMS’s, too, implement some form of query
caching—e.g., Microsoft SQL Server caches queries and
their execution plans but not the full result set [34].

Even if the query cache is disabled, queries persist in
MySQL’s internal heap long after they’ve been executed.
We performed a simple experiment with MySQL in the
default configuration. First, we issued a SELECT query
with a random string as the column name. This random
string appears nowhere in the database, thus the query
does not match any rows. Then, we issued 100 SELECT
queries which matched some rows and 900 that did not.
Then, we inserted 500 random rows and made 1,000
more SELECT queries, waited around twenty minutes
and made 100,000 more SELECT queries. After this, we
dumped the memory of the MySQL process.

The full text of the original query appeared in three
distinct locations in memory, and the random string ap-
peared in three additional locations by itself. We veri-
fied that this is not a peculiarity of how MySQL handles
column names by repeating the experiment with a ran-
dom string parameter in a WHERE clause. This leak is
not surprising since MySQL is not designed for security-
critical operations and does not implement secure dele-
tion. In Section 6, we show that in the context of en-
crypted databases this otherwise minor oversight has dra-
matic implications for the (lack of) security.

6 How Systems Fail

We now explain how the confidentiality of data in en-
crypted databases can be broken by snapshot attackers
using techniques described above. We focus on the en-

crypted databases that have been designed to work on top
of commodity DBMS’s.

At-rest encryption. This protection works the same way
in most DBMS’s: a key, stored in memory but not on
disk, is used to encrypt the database files on disk. An
attacker who compromises only the disk will therefore
learn nothing useful (except via side channels such as
relative sizes of encrypted objects), but any higher level
of access will reveal the entire data.

Token-based systems. Many encrypted databases are
based on schemes that delegate a query-specific trapdoor
to the server. The server uses it to reveal information
about the plaintexts necessary to answer the query. For
example, CryptDB and Mylar [46,48] use variants of the
scheme of Song et al. [56]. More advanced examples
include the ORE scheme of Lewi and Wu [32] and the
searchable encryption scheme of Cash et al. [11].

For any such scheme, semantic security [21] cannot be
achieved if the attacker obtains even a single token value.
Intuitively, semantic security requires that even if the at-
tacker knows the original query, he cannot tell the differ-
ence between an encrypted record that matched the query
and one that didn’t. If the attacker observes the query to-
ken, he can apply it to the encrypted database and recog-
nize which records match and which don’t, thus breaking
the definition of semantic security.

As we explained in Section 5, the text of queries
(and, therefore, the search token) is stored in several
locations in MySQL. Queries also appear in two log
files, the query cache, performance schema and
information schema. They can even be found af-
ter the fact in the internal heap of the DBMS. Tokens will
thus be available to any realistic snapshot attacker.

The consequences depend on the system. For
CryptDB, Mylar, and any other system using variants of
searchable encryption [11,30,46,48], a snapshot attacker
can use the leakage-abuse attacks such as [10] to infer the
query and the plaintext of any record it matches.

These attacks exploit the observation that the number
of results that match a query is often unique across a cor-
pus, e.g., 63% of the 500 most frequent words in the En-
ron email corpus have a unique result count. With partial
knowledge of the encrypted documents, unique counts
immediately reveal the value of the corresponding en-
crypted keyword. Since the search functionality also re-
veals which documents contain the keyword, this attack
also recovers partial content of the encrypted documents.

Lewi-Wu ORE . In the Lewi-Wu scheme [32], query to-
kens reveal ordering information and, in some parame-
ter regimes, individual plaintext bits. A damaging attack
against an ORE with similar leakage was demonstrated
in [23], but it does not directly apply to the Lewi-Wu
ORE because the Lewi-Wu scheme is not deterministic.

4



Nevertheless, the Lewi-Wu scheme reveals equality of
plaintexts when a value in the database is queried. This
leaks a partial histogram to a snapshot attacker, who can
combine it with the bit leakage from the query tokens
and the “binomial attack” of [23], to which the Lewi-Wu
scheme is vulnerable even in the absence of tokens.

To show the consequences of this leakage, we simu-
lated an attack on the Lewi-Wu scheme (with block size
of 1 bit). We sampled a database of 32-bit integers and
several range queries (both an upper and lower bound),
all uniformly at random. We then computed the leakage
resulting from each set of queries if executed against a
given database, aggregating the results over 1,000 trials.

For a database of size 10,000 and only five simulated
range queries, the average fraction of bits leaked (out of
possible 320,000) is surprisingly high, around 12%, i.e.,
4 bits of each 32-bit value are leaked on average. For
twenty-five range queries, the fraction is 19%. If fifty
range queries are found in the memory snapshot (this is
not inconceivable in practice; MySQL can create dozens
of threads for query processing and network I/O), the
snapshot attacker recovers 25% of the bits (on average,
8 bits of each 32-bit value). We did not attempt to es-
timate whether the leakage would be equally severe for
non-uniform distributions of range queries.

In summary, query tokens found in system snapshots
enable a snapshot adversary to recover large amounts of
protected data in all existing encrypted databases.

Seabed. Seabed’s ORE scheme [42] is known to be in-
secure [23]. The attack of [23] uses the known plaintext
distribution (auxiliary model), which is publicly avail-
able for many types of data. It starts by computing all
possible comparisons between the ciphertexts, as permit-
ted by the ORE scheme, to learn some bits of the underly-
ing plaintexts. Then, it creates a bipartite graph in which
each ciphertext is a node on the left-hand side and each
possible plaintext is a node on the right-hand side, and
draws an edge between a left-hand node and a right-hand
node only if the bits it learned about the left-hand ci-
phertext match the bits of the right-hand plaintext. Each
edge in the graph is weighted using frequency informa-
tion. Finally, the attack recovers the most likely plaintext
for each ciphertext by finding a matching in the graph.

For data in the columns that need to support joins,
Seabed uses basic deterministic encryption (DET). This
data is therefore vulnerable to the frequency analysis at-
tack described below. For data in the columns used as fil-
ters in count or aggregation queries, Seabed attempts to
prevent frequency analysis using the SPLASHE scheme,
which creates a different column for each possible plain-
text. Analytics queries such as aggregations are rewrit-
ten and encrypted so they are evaluated on the cor-
rect column. For example, if the plaintext 10 corre-
sponds to the c3 column of table, the query SELECT

count(*) FROM table WHERE a = 10 is con-
verted into an equivalent of SELECT ashe(c3)
FROM table, where “ashe()” is a custom summation
over ciphertexts [42, Table 2].

If two queries have different values in the WHERE
clause, they will operate on different columns (after
rewriting). If SPLASHE were to run on MySQL, the
events statements summary by digest table
in the performance schema database will canoni-
calize them to different forms. This table will thus count
the number of queries made for each plaintext. This re-
veals the exact histogram of queries for each plaintext
value to any attacker with a snapshot of the DBMS mem-
ory. If SPLASHE runs on Spark, the attacker can simply
obtain queries from the event history server [57] or from
the heap of the worker nodes.

Characterizing the exact leakage of query distributions
(as opposed to plaintext distributions) is an open prob-
lem in general, but if the attacker has a sufficiently good
model of the query distribution, then basic inference at-
tacks like frequency analysis can be used.

Frequency analysis is a very simple cryptanalytic tech-
nique which would work here in two steps. In the first
step, the observed histogram of the ciphertexts and the
histogram of the query distribution model would both be
sorted in decreasing order. So, for example, the most
frequently occurring ciphertext query would be the first
element in the list of queries, and the most frequently oc-
curring query according to the model would be the first
element on its list. In the second step, the elements of the
lists are matched by rank: the first elements are matched
with each other, then the second elements, and so on.
Lacharité and Paterson [31] proved that this simple pro-
cess is a maximum-likelihood estimator for the encryp-
tion function, meaning that this attack is most likely to
correctly recover the underlying plaintexts.

While frequency analysis can recover the plaintext
corresponding to a given column in Seabed, it will not re-
cover the value of that column for a particular row. How-
ever, to save space, an enhanced version of SPLASHE
uses deterministic encryption with padding for infre-
quent plaintext values, rather than creating a dedicated
column in the schema. The performance schema
will leak a query histogram for the frequently occurring
values (as described above) in this scheme, but will not
leak a histogram of the infrequently occurring values.
Nevertheless, a partial histogram could be reconstructed
from the logs or in-memory data structures. This leakage
is even more damaging against enhanced SPLASHE be-
cause the frequency analysis attack described above can
reveal the value in the enhanced SPLASHE column for
a particular row. Combined with other leakage about
frequent values from query patterns and any DET- or
ORE-encrypted columns, this enables even more dam-

5



aging cross-column inference attacks.

Arx. Arx [45] uses a treap-based data structure to eval-
uate range queries on encrypted data in a single network
round-trip using chained garbled circuits. Because index
values are encrypted using standard encryption, the au-
thors claim semantic security against snapshot attacks.

An important property of the Arx scheme is that after
each range query, the nodes of the treap become “con-
sumed” and must be repaired; essentially the client must
supply a new encryption of the node’s value which over-
writes the old value. Reads and writes are thus perfectly
correlated because a read of any node is immediately
followed by a write to the same node. If Arx runs on
MySQL, MongoDB, or a similar DBMS, a snapshot of
the system’s persistent state will contain a transcript of
every range query made on the index because the write
corresponding to each read will be recorded in the trans-
action logs. This breaks semantic security and gives a
snapshot attacker much of the information a persistent
attacker would have. For example, this snapshot attacker
will have ordering information about the upper and lower
bounds of encrypted range queries, as well as the fre-
quency of visits to each node in the tree.

Arx uses a two-round protocol to hide the relationship
between the node values of the range query index and
the database rows holding that value, thus a snapshot at-
tack on the range query data structure does not immedi-
ately reveal the plaintext in a given row. Nevertheless,
the leakage is sufficient to recover the values in the index
using a variant of the bipartite matching attack from [23]
described above. The index does not leak the frequencies
of individual values, but transaction logs do leak the fre-
quencies of visits to each value in the index. These fre-
quencies can be used in combination with auxiliary data
about the distribution of queries to recover these values.

Moreover, transaction logs leak the rank of the
queries, i.e., the number of values in the index less than
the query. Prior work has shown how to exploit this leak-
age [23], and we conjecture that a similar approach can
be used to recover the plaintext of the encrypted queries.
We leave full development of this attack to future work.

7 Discussion
Deploying encrypted databases on commodity DBMS’s
can have unexpectedly bad consequences for security.
Logs, caches, and data structures kept by DBMS’s leak
information that is not accounted for in the threat models
used by the designers of encrypted databases. Critically,
today there is no such thing as a “snapshot” attacker who
cannot observe past queries, workloads, and access pat-
terns—because any realistic snapshot of the system con-
tains this information. We demonstrated how this leads

to confidentiality breaches.
We focused on commodity DBMS’s, but similar is-

sues arise in schemes using custom or non-standard
databases [12, 28, 40, 43]. There is a trend in database
design towards adaptively changing the structure of the
database based on the workload [13, 25, 53]. We expect
that the snapshots of such databases leak even more in-
formation about past queries.

There appears to be an inherent conflict between secu-
rity and transparency: if the internal information about
workloads is available to the developers and adminis-
trators, it is also available in some form to a snap-
shot attacker. The tension between effective caching
and security was noted in the early research on history-
independent data structures [38], but whether history
independence can be achieved for practical encrypted
databases remains an open question. Solving it requires
new research into designing and implementing databases
that efficiently hide queries and access patterns.

We conclude with guidelines and recommendations
for the different research communities working in the
area of encrypted databases.
Cryptographers: A desirable property of new schemes
is that the encrypted data by itself leaks nothing about the
plaintext. This does not imply security against “snap-
shot” or “offline” attacks when the scheme is actually
deployed in a real DBMS.
Systems researchers: Any system that uses any kind
of property-revealing encryption must be assessed using
state-of-the-art leakage-abuse attacks as part of the stan-
dard evaluation, and the results of the assessment must
be presented in the evaluation section of the paper.
PC members of systems conferences: Any paper that
proposes an encrypted database but does not assess its se-
curity under known attacks should be treated with suspi-
cion. Be very skeptical of claims of “provable confiden-
tiality,” especially if not supported by a thorough security
evaluation, and solicit external reviews from cryptogra-
phers and security researchers to validate these claims.

Acknowledgements
Grubbs and Ristenpart both have large financial stakes in
Skyhigh Networks. This work was supported in part by
NSF grants CNS-1330308, CNS-1514163, and a gener-
ous gift from Microsoft.

References
[1] InnoDB adaptive hash index. https:

//dev.mysql.com/doc/refman/5.7/
en/innodb-adaptive-hash.html.

6

https://dev.mysql.com/doc/refman/5.7/en/innodb-adaptive-hash.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-adaptive-hash.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-adaptive-hash.html


[2] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav
Kaushik, Donald Kossmann, Ravishankar Rama-
murthy, and Ramarathnam Venkatesan. Orthogonal
security with Cipherbase. In CIDR, 2013.

[3] Marco Balduzzi, Jonas Zaddach, Davide Balzarotti,
Engin Kirda, and Sergio Loureiro. A security anal-
ysis of Amazon’s elastic compute cloud service. In
SAC, 2012.

[4] Mihir Bellare, Alexandra Boldyreva, and Adam
O’Neill. Deterministic and efficiently searchable
encryption. In CRYPTO, 2007.

[5] The binary log. http://dev.mysql.com/
doc/refman/5.7/en/binary-log.html.

[6] mysqlbinlog — utility for processing binary
log files. http://dev.mysql.com/doc/
refman/5.7/en/mysqlbinlog.html.

[7] Alexandra Boldyreva, Nathan Chenette, Younho
Lee, and Adam O’Neill. Order-preserving symmet-
ric encryption. In EUROCRYPT, 2009.

[8] Matt Bromiley. MongoDB forensics. http://
tinyurl.com/zkexl86, 2015.

[9] Sven Bugiel, Stefan Nürnberger, Thomas
Pöppelmann, Ahmad-Reza Sadeghi, and Thomas
Schneider. AmazonIA: When elasticity snaps
back. In CCS, 2011.

[10] David Cash, Paul Grubbs, Jason Perry, and Thomas
Ristenpart. Leakage-abuse attacks against search-
able encryption. In CCS, 2015.

[11] David Cash, Stanislaw Jarecki, Charanjit Jutla,
Hugo Krawczyk, Marcel-Cătălin Roşu, and
Michael Steiner. Highly-scalable searchable
symmetric encryption with support for boolean
queries. In CRYPTO, 2013.

[12] Melissa Chase and Seny Kamara. Structured en-
cryption and controlled disclosure. In ASIACRYPT,
2010.

[13] Surajit Chaudhuri and Vivek Narasayya. Self-
tuning database systems: A decade of progress. In
VLDB, 2007.

[14] Ciphercloud. http://www.ciphercloud.
com.

[15] Muhaimin Dzulfakar. Advanced MySQL exploita-
tion. Black Hat Las Vegas, 2009.

[16] InnoDB tablespace encryption. https:
//dev.mysql.com/doc/refman/5.7/en/
innodb-tablespace-encryption.html.

[17] Peter Frühwirt, Marcus Huber, Martin Mulazzani,
and Edgar R Weippl. InnoDB database forensics.
In AINA, 2010.

[18] Peter Frühwirt, Peter Kieseberg, Sebastian Schrit-
twieser, Markus Huber, and Edgar Weippl. InnoDB
database forensics: Reconstructing data manipula-
tion queries from redo logs. In ARES, 2012.

[19] Tal Garfinkel and Mendel Rosenblum. When vir-
tual is harder than real: Security challenges in vir-
tual machine based computing environments. In
HotOS, 2005.

[20] Tingjian Ge and Stan Zdonik. Fast, secure encryp-
tion for indexing in a column-oriented DBMS. In
ICDE, 2007.

[21] Shafi Goldwasser and Silvio Micali. Probabilistic
encryption. Journal of Computer and System Sci-
ences, 28(2):270–299, 1984.

[22] Paul Grubbs, Richard McPherson, Muhammad
Naveed, Thomas Ristenpart, and Vitaly Shmatikov.
Breaking web applications built on top of encrypted
data. In CCS, 2016.

[23] Paul Grubbs, Kevin Sekniqi, Vincent Bind-
schaedler, Muhammad Naveed, and Thomas Ris-
tenpart. Leakage-abuse attacks against order-
revealing encryption. In S&P, 2017.

[24] Bernardo Damele Assumpção Guimarães. Ad-
vanced SQL injection to operating system full con-
trol. Black Hat Europe, 2009.

[25] Stratos Idreos, Stefan Manegold, Harumi Kuno,
and Goetz Graefe. Merging what’s cracked, crack-
ing what’s merged: Adaptive indexing in main-
memory column-stores. In VLDB, 2011.

[26] MySQL information schema. https:
//dev.mysql.com/doc/refman/5.7/
en/information-schema.html.

[27] Mohammad Saiful Islam, Mehmet Kuzu, and Mu-
rat Kantarcioglu. Access pattern disclosure on
searchable encryption: Ramification, attack and
mitigation. In NDSS, 2012.

[28] Seny Kamara and Tarik Moataz. SQL on
structurally-encrypted databases. Cryptology
ePrint Archive, Report 2016/453, 2016.

[29] Georgios Kellaris, George Kollios, Kobbi Nissim,
and Adam O’Neill. Generic attacks on secure out-
sourced databases. In CCS, 2016.

7

http://dev.mysql.com/doc/refman/5.7/en/binary-log.html
http://dev.mysql.com/doc/refman/5.7/en/binary-log.html
http://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html
http://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html
http://tinyurl.com/zkexl86
http://tinyurl.com/zkexl86
http://www.ciphercloud.com
http://www.ciphercloud.com
https://dev.mysql.com/doc/refman/5.7/en/innodb-tablespace-encryption.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-tablespace-encryption.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-tablespace-encryption.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema.html


[30] John Kubiatowicz, David Bindel, Yan Chen, Steven
Czerwinski, Patrick Eaton, Dennis Geels, Ramakr-
ishan Gummadi, Sean Rhea, Hakim Weatherspoon,
Westley Weimer, et al. Oceanstore: An architecture
for global-scale persistent storage. ACM Sigplan
Notices, 35(11):190–201, 2000.

[31] Marie-Sarah Lacharité and Kenneth G. Paterson.
A note on the optimality of frequency analysis vs.
`p-optimization. Cryptology ePrint Archive, Re-
port 2015/1158, 2015. http://eprint.iacr.
org/2015/1158.

[32] Kevin Lewi and David J Wu. Order-revealing
encryption: New constructions, applications, and
lower bounds. In CCS, 2016.

[33] Microsoft. DBCC for SQL server.
https://msdn.microsoft.com/en-us/
library/ms188796.aspx, 2016.

[34] Microsoft. Microsoft SQL Server caching mech-
anisms. https://msdn.microsoft.com/
en-us/library/cc293623.aspx, 2016.

[35] Mongo. Monitoring in MongoDB.
https://docs.mongodb.com/manual/
administration/monitoring/, 2016.

[36] Replica set oplog. https://docs.
mongodb.com/manual/core/
replica-set-oplog/.

[37] Microsoft transparent data encryption.
https://msdn.microsoft.com/en-us/
library/bb934049.aspx.

[38] Moni Naor and Vanessa Teague. Anti-persistence:
History independent data structures. In STOC,
2001.

[39] Muhammad Naveed, Seny Kamara, and Charles V
Wright. Inference attacks on property-preserving
encrypted databases. In CCS, 2015.

[40] Muhammad Naveed, Manoj Prabhakaran, and
Carl A Gunter. Dynamic searchable encryption via
blind storage. In S&P, 2014.

[41] Oracle transparent data encryp-
tion. http://www.oracle.com/
technetwork/database/options/
advanced-security/index-099011.
html.

[42] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth
Chandran, Ramachandran Ramjee, Andreas Hae-
berlen, Harmeet Singh, Abhishek Modi, and Saikr-
ishna Badrinarayanan. Big data analytics over en-
crypted datasets with Seabed. In OSDI, 2016.

[43] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir
Kolesnikov, Tal Malkin, Seung Geol Choi, Wesley
George, Angelos Keromytis, and Steve Bellovin.
Blind Seer: A scalable private DBMS. In S&P,
2014.

[44] MySQL performance schema. http:
//dev.mysql.com/doc/refman/5.7/en/
performance-schema-statement-tables.
html.

[45] Rishabh Poddar, Tobias Boelter, and Raluca Ada
Popa. Arx: A strongly encrypted database system.
Cryptology ePrint Archive, Report 2016/591, 2016.

[46] Raluca Ada Popa, Catherine Redfield, Nickolai
Zeldovich, and Hari Balakrishnan. CryptDB: Pro-
tecting confidentiality with encrypted query pro-
cessing. In SOSP, 2011.

[47] Raluca Ada Popa, Emily Stark, Jonas Helfer,
Steven Valdez, Nickolai Zeldovich, M. Frans
Kaashoek, and Hari Balakrishnan. Building web
applications on top of encrypted data using Mylar.
Cryptology ePrint Archive, Report 2016/893, 2016.

[48] Raluca Ada Popa, Emily Stark, Steven Valdez,
Jonas Helfer, Nickolai Zeldovich, and Hari Balakr-
ishnan. Building web applications on top of en-
crypted data using Mylar. In NSDI, 2014.

[49] Raluca Ada Popa, Nickolai Zeldovich, and Hari
Balakrishnan. Guidelines for using the CryptDB
system securely. Cryptology ePrint Archive, Re-
port 2015/979, 2015.

[50] Postgres. The statistics collector. https:
//www.postgresql.org/docs/current/
static/monitoring-stats.html, 2016.

[51] MySQL query cache. https://dev.
mysql.com/doc/refman/5.7/en/
query-cache.html.

[52] Thomas Ristenpart and Scott Yilek. When good
randomness goes bad: Virtual machine reset vul-
nerabilities and hedging deployed cryptography. In
NDSS, 2010.

[53] Alon Shalita, Brian Karrer, Igor Kabiljo, Arun
Sharma, Alessandro Presta, Aaron Adcock, Herald
Kllapi, and Michael Stumm. Social Hash: An as-
signment framework for optimizing distributed sys-
tems operations on social networks. In NSDI, 2016.

[54] Skyhigh Networks. https://www.
skyhighnetworks.com.

8

http://eprint.iacr.org/2015/1158
http://eprint.iacr.org/2015/1158
https://msdn.microsoft.com/en-us/library/ms188796.aspx
https://msdn.microsoft.com/en-us/library/ms188796.aspx
https://msdn.microsoft.com/en-us/library/cc293623.aspx
https://msdn.microsoft.com/en-us/library/cc293623.aspx
https://docs.mongodb.com/manual/administration/monitoring/
https://docs.mongodb.com/manual/administration/monitoring/
https://docs.mongodb.com/manual/core/replica-set-oplog/
https://docs.mongodb.com/manual/core/replica-set-oplog/
https://docs.mongodb.com/manual/core/replica-set-oplog/
https://msdn.microsoft.com/en-us/library/bb934049.aspx
https://msdn.microsoft.com/en-us/library/bb934049.aspx
http://www.oracle.com/technetwork/database/options/advanced-security/index-099011.html
http://www.oracle.com/technetwork/database/options/advanced-security/index-099011.html
http://www.oracle.com/technetwork/database/options/advanced-security/index-099011.html
http://www.oracle.com/technetwork/database/options/advanced-security/index-099011.html
http://dev.mysql.com/doc/refman/5.7/en/performance-schema-statement-tables.html
http://dev.mysql.com/doc/refman/5.7/en/performance-schema-statement-tables.html
http://dev.mysql.com/doc/refman/5.7/en/performance-schema-statement-tables.html
http://dev.mysql.com/doc/refman/5.7/en/performance-schema-statement-tables.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://dev.mysql.com/doc/refman/5.7/en/query-cache.html
https://dev.mysql.com/doc/refman/5.7/en/query-cache.html
https://dev.mysql.com/doc/refman/5.7/en/query-cache.html
https://www.skyhighnetworks.com
https://www.skyhighnetworks.com


[55] The slow query log. http://dev.
mysql.com/doc/refman/5.7/en/
slow-query-log.html.

[56] Dawn Xiaodong Song, David Wagner, and Adrian
Perrig. Practical techniques for searches on en-
crypted data. In S&P, 2000.

[57] Apache Spark. Monitoring and instrumenta-
tion. http://spark.apache.org/docs/
latest/monitoring.html, 2016.

[58] Patrick Stahlberg, Gerome Miklau, and Brian Neil
Levine. Threats to privacy in the forensic analysis
of database systems. In SIGMOD, 2007.

[59] Verizon data breach incident report. https:
//regmedia.co.uk/2016/05/12/dbir_
2016.pdf, 2016.

9

http://dev.mysql.com/doc/refman/5.7/en/slow-query-log.html
http://dev.mysql.com/doc/refman/5.7/en/slow-query-log.html
http://dev.mysql.com/doc/refman/5.7/en/slow-query-log.html
http://spark.apache.org/docs/latest/monitoring.html
http://spark.apache.org/docs/latest/monitoring.html
https://regmedia.co.uk/2016/05/12/dbir_2016.pdf
https://regmedia.co.uk/2016/05/12/dbir_2016.pdf
https://regmedia.co.uk/2016/05/12/dbir_2016.pdf

	Introduction
	Attacks on Databases
	Logs on Disk
	Diagnostic Tables
	In-memory Data Structures
	How Systems Fail
	Discussion

