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Abstract. We propose a technique of individually modifying an attribute-based encryption
scheme (ABE) that is secure against chosen-plaintext attacks (CPA) into an ABE scheme that
is secure against chosen-ciphertext attacks (CCA) in the standard model. We demonstrate the
technique in the case of the Waters ciphertext-policy ABE (CP-ABE). Our technique is helpful
when a Diffie-Hellman tuple to be verified is in the terminal group of a bilinear map. We utilize
the Twin Diffie-Hellman Trapdoor Test of Cash, Kiltz and Shoup, and it results in expansion
of secret key length and decryption cost of computation by a factor of four, whereas public key
length, ciphertext length and encryption cost of computation remain almost the same. In the
case that the size of attribute sets are small, those lengths and costs are smaller than those of
the CP-ABE obtained via the generic transformation of Yamada et al. in PKC 2011.
Keywords: public-key cryptography, attribute-based encryption, direct chosen-ciphertext secu-
rity, twin Diffie-Hellman.

1 Introduction

Attribute-based encryption (ABE) was first proposed by Sahai and Waters [SW05] to realize fine-
grained access control by encryption, where attributes mean authorized credentials. In ciphertext-policy
ABE (CP-ABE) introduced by the subsequent work of Goyal, Pandey, Sahai and Waters [GPSW06],
ciphertexts are associated with access policies over attributes, while secret keys are associated with sets
of attributes. A secret key works to decrypt a ciphertext if and only if the associated set of attributes
satisfies the associated access policy. Since the proposal, it has been studied to attain certain properties
such as indistinguishability against chosen-plaintext attacks (IND-CPA) in the standard model [Wat11]
and adaptive security against adversary’s choice of a target access structure [LOS+10].

In this paper, we work through a problem of constructing a shorter ABE scheme that attains
indistinguishability against chosen-ciphertext attacks (IND-CCA) in the standard model. Here CCA
means that an adversary can collects decryption results of ciphertexts of its choise through attacking.

⋆ This work is partially supported by kakenhi Grant-in-Aid for Scientific Research (C) JP15K00029 from
Japan Society for the Promotion of Science.



Let us recall the case of identity-based encryption (IBE). The CHK transformation of Canetti, Halevi
and Katz [CHK04] is a generic tool for obtaining IND-CCA secure IBE scheme. It transforms any
hierarchical IBE (HIBE) scheme that is selective-ID IND-CPA secure into an IBE scheme that is
adaptive-ID IND-CCA secure. A point of the CHK transformation is that it introduces a dummy
identity vk that is a verification key of a one-time signature. Then a ciphertext is attached with vk

and a signature σ. which is generated each time one executes encryption. In contrast, direct chosen-
ciphertext security technique for IBE of Boyen, Mei and Waters [BMW05] is an individual technique
for obtaining an IND-CCA secure IBE scheme. It converts a HIBE scheme that is adaptive-ID IND-
CPA secure into an IBE scheme that is adaptive-ID IND-CCA secure. Though the technique needs to
treat each scheme individually, the obtained scheme attains better performance than that obtained by
the generic tool (the CHK transformation). Let us transfer into the case of ABE. The transformation
of Yamada et al. [YAHK11] is a generic tool for obtaining IND-CCA secure ABE scheme. It transforms
any ABE scheme (with delegatability or verifiability) that is IND-CPA secure into an ABE scheme that
is IND-CCA secure. A point of their transformation is, similar to the case of IBE, that it introduces
a dummy attribute vk that is a verification key of a one-time signature. Then a ciphertext is attached
with vk and a signature σ. Notice here that developing direct chosen-ciphertext security technique for
ABE (in the standard model) is a missing piece. One of the reason seems that there is an obstacle that
a Diffie Hellman tuple to be verified is in the terminal group of a bilinear map. In that situation, the
bilinear map looks of no use.

1.1 Our Contribution

A first contribution is that we fill in the missing piece of direct chosen-ciphertext security for ABE. We
develop a technique and apply it to the Waters CP-ABE scheme [Wat11] to obtain IND-CCA security.
A second technical contribution is as follows. To overcome the above obstacle, we employ and apply
the Twin Diffie-Hellman Trapdoor Test of Cash, Kiltz and Shoup [CKS08]. In addition to that, we
also utilize the algebraic trick of Boneh and Boyen [BB04] and Kiltz [Kil06] to reply for adversary’s
decryption query. In total, we develop the technique to realize direct chosen-ciphertext security.

1.2 Related Works

Waters [Wat11] pointed out that IND-CCA security would be attained by the CHK transformation.
Gorantla, Boyd and Nieto [GBN10] constructed a IND-CCA secure CP-ABKEM in the random oracle
model. Yamada et al. [YAHK11] proposed a generic transformation of a IND-CPA secure ABE scheme
into a IND-CCA secure ABE scheme. Their transformation is considered to be an ABE-version and
versatile. Especially, it can be applied to non-pairing-based scheme.

The Waters CP-ABE [Wat11] can be captured as a CP-ABKEM: the blinding factor can be consid-
ered as a random one-time key. In addition, the CP-ABKEM is IND-CPA secure because the Waters
CP-ABE is proved to be IND-CPA secure. For theoretical simplicity, we will provide a scheme of KEM
first, and then an encryption scheme. We modify the Waters CP-ABKEM, which is IND-CPA secure,
into a KEM which is IND-CCA secure.

It should be noted that, in key-policy ABE (KP-ABE) [GPSW06] where ciphertexts are associated
with sets of attributes while secret keys are associated with access policies over attributes, there is a
remarkable work of a KP-ABE scheme with constant-size ciphertexts [ALdP11]. On the other hand,
in CP-ABE schemes there are several works that attain the property of constant-size ciphertexts
[HLR10,CZF11,GZC+12], but (to the best of the authors’ knowledge) those schemes can treat only
limited classes of access structures such as the threshold type.

1.3 Efficiency Comparison

We compare efficiency of our CP-ABKEM to the original Waters CP-ABKEMcpa. We also compare effi-
ciency of the CP-ABKEM obtained by the generic transformation of Yamada et al. [YAHK11]. Here
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Table 1. Efficiency Comparison of IND-sel-CCA secure CP-ABKEMs obtained from Waters CP-ABKEMcpa.

Scheme L(PK) L(SKS) L(CT) C(Encap) C(Decap)

Generic transform of Yamada et al. [YAHK11] +2λ2(G) +2λ2(G) +3λ2(bit) +2λ2exp.(G) +2λ2pair.(e)
Our individual modification (CP-ABKEM) +3(GT ) ×4 +2(GT ) +4exp.(GT ) ×4

1) L(data) denotes length of data, C(algorithm) denotes computational amount of algorithm.
2) + and × mean increment and multiplier to the length or computational amount of the Waters CP-ABKEMcpa.
3) (G), (GT ) and (bit) mean elements in G, elements in GT and bits, respectively.
4) exp.(G) and pair.(e) mean a computational amount of one exponentiation in G and one pairing computation
by the map e, respectively.

the generic transformation [YAHK11] is considered in the setting of small attribute universe [GPSW06],
delegation case and the Lamport one-time signature case. Table 1 shows these comparison. Our in-
dividual technique results in expansion of secret key length and decryption cost of computation by
a factor of four, while public key length, ciphertext length and encryption cost of computation are
almost the same as those of the Waters. In the case that the size of attribute sets are up to the square
of the security parameter λ, lengths and costs of our CP-ABKEM are smaller than those of the CP-ABE
obtained via the generic transformation of Yamada et al. [YAHK11].

1.4 Organization of the Paper

In Section 2, we survey concepts, definitions and techniques needed. In Section 3, we construct a CP-
ABKEM from the Waters CP-ABKEM [Wat11] and provide a proof that it attains the IND-sel-CCA
security based on the IND-sel-CPA security of the Waters CP-ABKEM. In Section 1.3, we compare
efficiency of our CP-ABKEM and CP-ABE with the ones obtained by the generic transformation of
Yamada et al.[YAHK11] to the Waters CP-ABKEM. In Section 4, we conclude our works and list up
future works to be studied.

2 Preliminaries

The security parameter is denoted λ. A prime of bit length λ is denoted p. A multiplicative cyclic
group of order p is denoted G. The ring of exponent domain of G, which consists of integers from 0 to
p− 1 with modulo p operation, is denoted Zp.

2.1 Bilinear Map

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be a generator of G and e
be a bilinear map, e : G×G→ GT . The bilinear map e has the following properties:
1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) ̸= idGT

(: the identity element of the group GT ).
Parameters of a bilinear map are generated by a probabilistic polynomial time (PPT) algorithm

Grp on input λ: (p,G,GT , g, e)← Grp(λ).
Hereafter we assume that the group operation in G and GT and the bilinear map e : G×G→ GT

are computable in PT in λ.

2.2 Access Structure

Let U = {χ1, . . . , χu} be a set of attributes, or simply set U = {1, . . . , u} by numbering. An access
structure, which corresponds to an access policy, is defined as a collection A of non-empty subsets of
U ; that is, A ⊂ 2U\{ϕ}. An access structure A is called monotone if for any B ∈ A and B ⊂ C, C ∈ A
holds. The sets in A are called authorized sets, and the sets not in A are called unauthorized sets. We
will consider in this paper only monotone access structures.
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2.3 Linear Secret-Sharing Scheme

We only describe a linear secret-sharing scheme (LSSS) in our context of attribute-based schemes. A
secret-sharing scheme Π over the attribute universe U is called linear over Zp if:
1. The shares for each attribute form a vector over Zp,
2. There exists a matrix M of size l × n called the share-generating matrix for Π and a function ρ
which maps each row index i of M to an attribute in U = {1, . . . , u}: ρ : {1, ..., l} → U .

To make shares, we first choose a random vector v = (s, y2, . . . , yn) ∈ Zn
p : s is a secret to be shared.

For i = 1 to l, we calculate each share λi = v ·Mi, where Mi denotes the i-th row vector of M and ·
denotes the formal inner product. LSSS Π = (M,ρ) defines an access structure A through ρ.

Suppose that an attribute set S satisfies A (S ∈ A) and let IS = ρ−1(S) ⊂ {1, . . . , l}. Then, let
{ωi ∈ Zp; i ∈ IS} be a set of constants (linear reconstruction constants) such that if {λi ∈ Zp; i ∈ IS}
are valid shares of a secret s according to M , then

∑
i∈IS

ωiλi = s. It is khown that these constants
{ωi}i∈IS can be found in time polynomial in l: the row size of the share-generating matrix M . If S
does not satisfy A (S ̸∈ A), then no such constants {ωi}i∈IS exist.

2.4 Ciphertext-Policy Attribute-Based Key Encapsulation Mechanism

A ciphertext-policy attribute-based key encapsulation mechanism (CP-ABKEM) consists of four PPT
algorithms (Setup, Encap, Keygen, Decap)3.

Setup(λ,U). A setup algorithm Setup takes as input the security parameter λ and the attribute
universe U = {1, . . . , u}. It returns a public key PK and a master secret key MSK.

Encap(PK,A). An encapsulation algorithm Encap takes as input the public key PK and an access
structure A. It returns a random string κ and its encapsulation ψ.

KeyGen(PK,MSK, S). A key generation algorithm KeyGen takes as input the public key PK, the
master secret key MSK and an attribute set S. It returns a secret key SKS corresponding to S.

Decap(PK,SKS, ψ). A decapsulation algorithm Decap takes as input the public key PK, an en-
capsulation (we also call it a ciphertext according to context) ψ and a secret key SKS . It first checks
whether S ∈ A, where S and A are contained in SKS and ψ, respectively. If the check result is False,
it puts κ̂ =⊥. It returns a decapsulation result κ̂.

Chosen-Ciphertext Attack on CP-ABKEM. According to previous works (for example, see
[GBN10]), the chosen-ciphertext attack on a CP-ABKEM is formally defined as the indistinguishability
game (IND-CCA game), that is described as the following experiment of an adversary A.

Experimentind-ccaA,CP-ABKEM(λ,U)
(PK,MSK)← Setup(λ,U)
A∗ ← AKeyGen(PK,MSK,·),Decap(PK,SK·,·)(PK,U)
(κ∗, ψ∗)← Encap(PK,A∗), κ← KeySp(λ), b← {0, 1}
If b = 1 then κ̃ = κ∗ else κ̃ = κ

b′ ← AKeyGen(PK,MSK,·),Decap(PK,SK·,·)(κ̃, ψ∗)

If b′ = b then return Win else return Lose.

3 In Gorantla, Boyd and Nieto [GBN10], they say encapsulation-policy attribute-based-KEM (EP-AB-KEM)
instead of saying ciphertext-policy attribute-based KEM here.
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In the above experiment, two kinds of queries are issued by A.
One is key-extraction queries. Indicating an attribute set Si, A queries its key-extraction oracle

KeyGen(PK,MSK, ·) for the secret key SKSi . Here we do not require any input attribute sets Si1 and
Si2 to be distinct.

Another is decapsulation queries. Indicating a pair (Sj , ψj) of an attribute set and an encapsulation,
A queries its decapsulation oracle Decap(PK, SK·, ·) for the decapsulation result κ̂j . Here an access
structure Aj , which is used to generate an encapsulation ψj , is implicitely included in ψj . In the case
that S ̸∈ A, κ̂j =⊥ is replied to A.

Both kinds of queries are at most qk and qd times in total, respectively, which are polynomial in λ.
The access structure A∗ decrared by A is called a target access structure. Two restrictions are

imposed on A concerning A∗. In key-extraction queries, each attribute set Si must satisfy Si /∈ A∗. In
decapsulation queries, each pair (Sj , ψj) must satisfy Sj ̸∈ A∗ in the phase before the declaration of
A∗ and each pair (Sj , ψj) must satisfy Sj ̸∈ A∗ ∨ ψj ̸= ψ∗ in the phase after the declaration of A∗.

The advantage of the adversary A over CP-ABKEM in the IND-CCA game is defined as the following
probability:

Advind-cca
A,CP-ABKEM(λ,U) = Pr[Experimentind-ccaA,CP-ABKEM(λ,U) returns Win].

CP-ABKEM is called secure against chosen-ciphertext attacks if, for any PPT adversary A and for
any attribute universe U 4, Advind-cca

A,CP-ABKEM(λ,U) is negligible in λ.
In the selective game on a target access structure (IND-sel-CCA game), the adversary A declares

a target access structure A∗ before A receives a public key PK, which is defined as the following
experiment.

Experimentind-sel-ccaA,CP-ABKEM(λ,U)
A∗ ← A(λ,U), (PK,MSK)← Setup(λ,U)
ϵ← AKeyGen(PK,MSK,·),Decap(PK,SK·,·)(PK)

(κ∗, ψ∗)← Encap(PK,A∗), κ← KeySp(λ), b← {0, 1}
If b = 1 then κ̃ = κ∗ else κ̃ = κ

b′ ← AKeyGen(PK,MSK,·),Decap(PK,SK·,·)(κ̃, ψ∗)

If b′ = b then return Win else return Lose.

In the indistinguishability game against chosen-plaintext attack (IND-CPA game), the adversary
A issues no decapsulation query (that is, qd = 0).

The advantage Advgame
A,scheme(λ,U) of the adversary A over a scheme in a game is defined in the

same way as above.

Ciphertext-Policy Attribute-Based Encryption Scheme. In the case of a ciphertext-policy
attribute-based encryption scheme (CP-ABE), Encap(PK,A) and Decap(PK, SKS , ψ) are replaced by
PPT algorithms Encrypt(PK,A,m) and Decrypt(PK, SKS ,CT), respectively, where m and CT mean
a message and a ciphertext, respectively.

The IND-CCA game for CP-ABE is defined in the same way as for CP-ABKEM above, except
the following difference. In Challenge phase, the adversary A submits two equal length messages
(plaintexts) m0 and m1. Then the challenger flips a coin b ∈ {0, 1} and gives an encryption result CT
of mb to A. In Guess phase, the adversary A returns b′ ∈ {0, 1}. If b′ = b, then A wins in the IND-CCA
game. Otherwise, A loses.

4 We must distinguish the two cases; the case that U is small (i.e. |U| = u is bounded by some polynomial
of λ) and the case that U is large (i.e. u is not necessarily bounded by a polynomial of λ). We assume the
small case unless we state the large case explicitely.
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2.5 The Twin Diffie-Hellman Technique

A 6-tuple (g,X1, X2, Y, Z1, Z2) ∈ G6 is called a twin Diffie-Hellman tuple if the tuple is written as
(g, gx1 , gx2 , gy, gx1y, gx2y) for some elements x1, x2, y in Zp. In other words, a 6-tuple (g,X1, X2, Y, Z1, Z2)
is a twin Diffie-Hellman tuple (twin DH tuple, for short) if Y = gy and Z1 = Xy

1 and Z2 = Xy
2 .

The following lemma of Cash, Kiltz and Shoup will be used in the security proof to decide whether
a tuple is a twin DH tuple or not.

Lemma 1 (Cash, Kiltz and Shoup [CKS08] “Trapdoor Test”)
Let X1, r, s be mutually independent random variables, where X1 takes values in G, and each of r, s
is uniformly distributed over Zp. Define the random variable X2 = X−r

1 gs. Suppose that Ŷ , Ẑ1, Ẑ2 are
random variables taking values in G, each of which is defined independently of r. Then the probability
that the truth value of Ẑ1

r
Ẑ2 = Ŷ s does not agree with the truth value of (g,X1, X2, Ŷ , Ẑ1, Ẑ2) being a

twin DH tuple is at most 1/p. Moreover, if (g,X1, X2, Ŷ , Ẑ1, Ẑ2) is a twin DH tuple, then Ẑ1
r
Ẑ2 = Ŷ s

certainly holds.

Note that Lemma 1 is a statistical property. Especially, Lemma 1 holds without any number
theoretic assumption. To be precise, we consider the following experiment of an algorithm Cheat with
unbounded computational power (not limited to PPT), where Cheat, given a triple (g,X1, X2), tries to
complete a 6-tuple (g,X1, X2, Ŷ , Ẑ1, Ẑ2) which passes the “Trapdoor Test” but which is not a twin
DH tuple.

ExperimenttwinDH-test
Cheat,G (λ)

(g,X1)← G2, (r, s)← Z2
p, X2 = X−r

1 gs

G3 ∋ (Ŷ , Ẑ1, Ẑ2)← Cheat(g,X1, X2)

If Ẑ1
r
Ẑ2 = Ŷ s ∧ (g,X1, X2, Ŷ , Ẑ1, Ẑ2) is NOT a twin DH tuple,

then return Win else return Lose

Let us define the advantage of Cheat over G as follows.

AdvtwinDH-test
Cheat,G (λ) = Pr[ExperimenttwinDH-test

Cheat,G (λ) returns Win].

Now we are ready to complement Lemma 1.

Lemma 2 (a Complement for Cash, Kiltz and Shoup [CKS08] “Trapdoor Test”)
For any algorithm Cheat with unbounded computational power, AdvtwinDH-test

Cheat,G (λ) is at most 1/p.

For a proof of Lemma 2, see Appendix A.

3 Securing the Waters CP-ABKEM against Chosen-Ciphertext Attacks

In this section, we describe our direct chosen-ciphertext security technique by applying it to the Waters
CP-ABE [Wat11].

Overview of Our Technique The Waters CP-ABE is proved to be secure in the IND-sel-CPA game
[Wat11]. We convert it into a scheme that is secure in the IND-sel-CCA game by employing the Twin
Diffie-Hellman technique of Cash, Kiltz and Shoup [CKS08] and the algebraic trick of Boneh and Boyen
[BB04] and Kiltz [Kil06].

In encryption, a ciphertext becomes to contain additional two elements (d1, d2), which function in
decryption as a “check sum” to verify that a tuple is certainly a twin DH tuple.

In security proof, the Twin Diffie-Hellman Trapdoor Test does the function instead. It is noteworthy
that we can not use the bilinear map instead because the tuple to be verified is in the terminal group.
In addition, the algebraic trick enables to answer for adversary’s decryption queries. Note also that the
both technique become compatible by introducing random variables like in Anada and Arita [AA11].
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Key Encapsulation and Encryption. The Waters CP-ABE can be captured as a CP-ABKEM:
the blinding factor of the form e(g, g)αs in the Waters CP-ABE can be considered as a random one-
time key. So we call it the Waters CP-ABKEM hereafter and denote it as CP-ABKEMcpa. Likewise, we
distinguish parameters and algorithms of CP-ABKEMcpa by the index cpa. For theoretical simplicity, we
first develop a KEM CP-ABKEM.

3.1 Our Construction

Our CP-ABKEM consists of the following four PPT algorithms (Setup, Encap, KeyGen, Decap). Roughly
speaking, the Waters original scheme CP-ABKEMcpa (the first scheme in [Wat11]) corresponds to the
case k = 1 below excluding the “check sum” (d1, d2).

Setup(λ,U). Setup takes as input the security parameter λ and the attribute universe U = {1, . . . , u}.
It runs Grp(λ) to get (p,G,GT , g, e), where G and GT are cyclic groups of order p, e : G → GT is a
bilinear map and g is a generator of G. These become public parameters. Then Setup chooses u random
group elements h1, . . . , hu ∈ G that are associated with the u attributes. In addition, it chooses random
exponents αk ∈ Zp, k = 1, . . . , 4, a ∈ Zp and a hash key η ∈ HKey(λ). The public key is published
as PK = (g, ga, h1, . . . , hu, e(g, g)

α1 , . . . , e(g, g)α4 , η). The authority sets MSK = (gα1 , . . . , gα4) as the
master secret key.

Encap(PK,A). The encapsulation algorithm Encap takes as input the public key PK and an LSSS
access structure A = (M,ρ), whereM is an l×n matrix and ρ is the function which maps each row i of
M to an attribute in U = {1, . . . , u}. Encap first chooses a random value s ∈ Zp that is the encryption
exponent s and random values y2, . . . , yn ∈ Zp. Then Encap forms a vector v = (s, y2, . . . , yn). For
i = 1 to l, it calculates λi = v ·Mi, where Mi denotes the i-th row vector of M . In addition, Encap
chooses random values r1, . . . , rl ∈ Zp. Then, a pair of a random one-time key and its encapsulation
(κ, ψ) is computed as follows.

Put C ′ = gs; For i = 1 to l : Ci = gaλih−ri
ρ(i), Di = gri ;

ψcpa = (A, C ′, ((Ci, Di); i = 1, . . . , l)), τ ← Hη(ψcpa);

For k = 1 to 4 : κk = e(g, g)αks; d1 = κτ1κ3, d2 = κτ2κ4;

(κ, ψ) = (κ1, (ψcpa, d1, d2)).

KeyGen(MSK,PK, S). The key generation algorithm KeyGen takes as input the master secret key
MSK, the public key PK and a set S of attributes. KeyGen first chooses a random tk ∈ Zp, k = 1, . . . , 4.
It creates the secret key SKS as follows.

For k = 1 to 4 : Kk = gαkgatk , Lk = gtk ,For x ∈ S : Kk,x = htkx ;

SKS = ((Kk, Lk, (Kk,x;x ∈ S)); k = 1, . . . , 4).

Decap(PK, ψ, SKS). The decapsulation algorithm Decap takes as input the public key PK, an
encapsulation ψ for the access structure A = (M,ρ) and a private key SKS for an attribute set S. It
first checks whether S ∈ A. If the result is False, put κ̂ =⊥. else, let IS = ρ−1(S) ⊂ {1, . . . , l} and let
{ωi ∈ Zp; i ∈ IS} be a set of linear reconstruction constants. Then, the decapsulation κ̂ is computed
as follows.

Parse ψ into (ψcpa = (A, C ′, ((Ci, Di); i = 1, . . . , l)), d1, d2); τ ← Hη(ψcpa);

For k = 1 to 4 : κ̂k = e(C ′,Kk)/
∏
i∈IS

(e(Ci, Lk)e(Di,Kk,ρ(i)))
ωi = e(g, g)αks,

If κ̂1
τ κ̂3 ̸= d1 ∨ κ̂2τ κ̂4 ̸= d2, then put κ̂ =⊥, else put κ̂ = κ̂1.
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3.2 Security and its Proof

Theorem 1 If the Waters CP-ABKEMcpa [Wat11] is selectively secure against chosen-plaintext attacks
and an employed hash function family Hfam has target collision resistance, then our CP-ABKEM is
selectively secure against chosen-ciphertext attacks. More precisely, for any given PPT adversary A
that attacks CP-ABKEM in the IND-sel-CCA game where decapsulation queries are at most qd times,
and for any attribute universe U , there exist a PPT adversary B that attacks CP-ABKEMcpa in the IND-
sel-CPA game and a PPT target collision finder CF on Hfam that satisfy the following tight reduction.

Advind-sel-cca
A,CP-ABKEM(λ,U) ≤ Advind-sel-cpa

B,CP-ABKEMcpa
(λ,U) +Advtcr

CF,Hfam(λ) +
qd
p
.

A definition of the target collision resistance game and the advantage of CF are given in Appendix H.

Proof. Given any adversary A that attacks our scheme CP-ABKEM in the IND-sel-CCA game, we con-
struct an adversary B that attacks the Waters scheme CP-ABKEMcpa in the IND-sel-CPA game as
follows.

Commit to a Target Access Structure. B is given (λ,U) as inputs, where λ is the security
parameter and U = {1, . . . , u} is the attribute universe. B invokes A on input (λ,U) and gets a target
access structure A∗ = (M∗, ρ∗) from A, where M∗ is of size l∗ × n∗. B uses A∗ as the target access
structure of itself and outputs A∗.

Set up. In return to outputting A∗, B receives the public key PKcpa for CP-ABKEMcpa, which consists
of the following components.

PKcpa = (g, ga, h1, . . . , hu, e(g, g)
α).

To set up a public key PK for CP-ABKEM, B herein needs a challenge instance: B queries its challenger
and gets a challenge instance (κ̃, ψ∗

cpa). It consists of the following components.

κ̃ = e(g, g)αs
∗
OR a random one-time key κ ∈ KeySp(λ),

ψ∗
cpa = (A∗, C ′∗ = gs

∗
, ((C∗

i , D
∗
i ); i = 1, . . . , l∗)).

Then B makes the rest of parameters of PK as follows.

Pick up η ← HKey(λ) and take τ∗ ← Hη(ψ
∗
cpa);

Put e(g, g)α1 = e(g, g)α;

Pick up γ1, γ2 ← Zp and put e(g, g)α2 = e(g, g)γ2/e(g, g)α1γ1 ;

Pick up µ1, µ2 ← Zp and put e(g, g)α3 = e(g, g)µ1/e(g, g)α1τ
∗
,

e(g, g)α4 = e(g, g)µ2/e(g, g)α2τ
∗
.

Note we have implicitly set relations in the exponent domain:

α2 = γ2 − α1γ1, α3 = µ1 − α1τ
∗, α4 = µ2 − α2τ

∗ = µ2 − (γ2 − α1γ1)τ
∗. (1)

A public key PK for CP-ABKEM become:

PK = (PKcpa, e(g, g)
α2 , e(g, g)α3 , e(g, g)α4 , η).

Then B inputs PK into A. Note that PK determines the corresponding MSK uniquely.
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Phase 1. B answers for two types of A’s queries as follows.
(1) Key-Extraction Queries. In the case that A issues a key-extraction query for an attribute set
S ⊂ U , B has to simulate A’s challenger. To do so, B issues key-extraction queries to B’s challenger
for S repeatedly up to four times. As replies, B gets four secret keys of the Waters CP-ABKEMcpa for a
single attribute set S:

SKcpa,S,k = (Kcpa,k, Lcpa,k, (Kcpa,k,x;x ∈ S)), k = 1, . . . , 4.

We remark that, according to the randomness in the key-generation algorithm of theWaters CP-ABKEMcpa,
all four secret keys SKcpa,S,1, . . . , SKcpa,S,4 are random and mutually independent. To reply a secret
key SKS of our CP-ABKEM to A, B converts the four secret keys as follows.

Put K1 = Kcpa,1, L1 = Lcpa,1, K1,x = Kcpa,1,x, x ∈ S;
Put K2 = gγ2K−γ1

cpa,2, L2 = L−γ1

cpa,2, K2,x = K−γ1

cpa,2,x, x ∈ S;

Put K3 = gµ1K−τ∗

cpa,3, L3 = L−τ∗

cpa,3, K3,x = Kτ∗

cpa,3,x, x ∈ S;

Put K4 = gµ2−γ2τ
∗
Kγ1τ

∗

cpa,4, L4 = Lγ1τ
∗

cpa,4, K4,x = Kγ1τ
∗

cpa,4,x, x ∈ S.

Then B replies SKS = ((Kk, Lk, (Kk,x;x ∈ S)); k = 1, . . . , 4) to A.

(2) Decapsulation Queries. In the case that A issues a decapsulation query for (S, ψ), where S ⊂ U
is an attribute set and ψ = (ψcpa, d1, d2) is an encapsulation concerning A, B has to simulate A’s
challenger. To do so, B computes the decapsulation result κ̂ as follows.

If S ̸∈ A then put κ̂ =⊥,
else

Take τ ← Hη(ψcpa);

Put Ŷ = e(C ′, g)τ−τ∗
, Ẑ1 = d1/e(C

′, g)µ1 , Ẑ2 = d2/e(C
′, g)µ2 ;

If Ẑ1
γ1
Ẑ2 ̸= Ŷ γ2 (: call this checking TwinDH-Test)

then put κ̂ = κ̂1 =⊥
else

If τ = τ∗ then abort (: call this case Abort)

else κ̂ = κ̂1 = Ẑ1
1/(τ−τ∗)

.

Challenge. In the case that A queries its challenger for a challenge instance, B makes a challenge
instance as follows.

Put d∗1 = e(C ′∗, g)µ1 , d∗2 = e(C ′∗, g)µ2 ;

Put ψ∗ = (ψ∗
cpa, d

∗
1, d

∗
2).

Then B feeds (κ̃, ψ∗) to A as a challenge instance.

Phase 2. The same as in Phase 1.

Guess. In the case that A returns A’s guess b̃, B returns b̃ itself as B’s guess.
In the above construction of B, B can perfectly simulate the real view of A until the case Abort

happens, except for a negligible case, and hence the algorithm A works as designed. To see the perfect
simulation with a negligible exceptional case, we are enough to prove the following seven claims.
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Claim 1 The reply SKS = ((Kk, Lk, (Kk,x;x ∈ S)); k = 1, . . . , 4) for a key-extraction query of A is a
perfect simulation.

Proof. We must consider the implicit relations (1). For the index 2, we have implicitly set the random-
ness t2 = tcpa,2(−γ1) and we get:

K2 = gγ2K−γ1

cpa,2 = gγ2(gα1gatcpa,2)−γ1 = gγ2(gα1gat2/(−γ1))−γ1 = gγ2−α1γ1gat2 = gα2gat2 ,

L2 = L−γ1

cpa,2 = (gtcpa,2)−γ1 = gt2 ,

K2,x = K−γ1

cpa,2,x = (htcpa,2x )−γ1 = ht2x , x ∈ S.

For the index 3 and 4, see Appendix B.

Claim 2 (e(g, g), e(g, g)α1 , e(g, g)α2 , Ŷ , Ẑ1, Ẑ2) is a twin Diffie-Hellman tuple if and only if (e(g, g),
e(g, g)α1τe(g, g)α3 , e(g, g)α2τe(g, g)α4 , e(C ′, g), d1, d2) is a twin Diffie-Hellman tuple.

Proof. This claim can be proved by a short calculation. See Appendix C.

Claim 3 If (e(g, g), e(g, g)α1 , e(g, g)α2 , Ŷ , Ẑ1, Ẑ2) is a twin Diffie-Hellman tuple, then (Ŷ , Ẑ1, Ẑ2) cer-

tainly passes the TwinDH-Test: Ẑ1
γ1
Ẑ2 = Ŷ γ2 .

Proof. This claim is a direct consequence of Lemma 1. ⊓⊔

Claim 4 Consider the following event which we name as Overlooki:

In the i-th TwinDH-Test, the following condition holds:{
Ẑ1

γ1
Ẑ2 = Ŷ γ2 holds and

(e(g, g), e(g, g)α1 , e(g, g)α2 , Ŷ , Ẑ1, Ẑ2) is NOT a twin DH tuple.

Then, for at most qd times decapsulation queries of A, the probability that at least one Overlooki

occurs is negligible in λ. More precisely, the following inequality holds:

Pr[

qd∨
i=1

Overlooki] ≤ qd/p. (2)

Proof. To apply Lemma 2, we construct an algorithm Cheatλ,U with unbounded computational power,

which takes as input (e(g, g), e(g, g)α1 , e(g, g)α2) and returns (Ŷ , Ẑ1, Ẑ2) employing the adversary A
as a subroutine. Fig. 1 shows the construction.

First, note that the view of A in Cheatλ,U is the same as the real view of A and hence the algorithm
A works as designed.

Second, note that the return (Ŷ , Ẑ1, Ẑ2) of Cheatλ,U is randomized in TABLE. Hence:

qd∑
i=1

1

qd
Pr[Overlooki] =

1

qd

qd∑
i=1

Pr[Overlooki] = AdvtwinDH-test
Cheatλ,U ,G (λ). (3)

Third, applying Lemma 2 to Cheatλ,U , we get:

AdvtwinDH-test
Cheatλ,U ,G (λ) ≤ 1/p. (4)

Combining (3) and (4), we have:

Pr[

qd∨
i=1

Overlooki] ≤
qd∑
i=1

Pr[Overlooki] ≤ qdAdvtwinDH-test
Cheatλ,U ,G (λ) ≤ qd

p
. ⊓⊔
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Given (e(g, g), e(g, g)α1 , e(g, g)α2) as input :
Set up

Initialize the inner state and put TABLE = ϕ;
Get a target access structure A∗ ← A(λ,U);
Compute the base g ∈ G from (e(g, g), e);
Pick up a ∈ Zp and h1, . . . , hu ∈ G;
Put PKcpa = (g, ga, h1, . . . , hu, e(g, g)

α1);
Get (κ∗, ψ∗

cpa)← Encapcpa(PKcpa,A∗);
Pick up η ← HKey(λ) and compute τ∗ ← Hη(ψ

∗
cpa);

Compute discrete logarithms α1, α2 ∈ Zp of e(g, g)α1 , e(g, g)α2 to the base e(g, g);
Pick up µ1, µ2 ← Zp and put α3 = µ1 − α1τ

∗, α4 = µ2 − α2τ
∗;

Put PK = (PKcpa, e(g, g)
α2 , e(g, g)α3 , e(g, g)α4 , η),MSK = (gα1 , gα2 , gα3 , gα4);

Give PK to A;
Phase 1

In the case that A makes a key-extraction query for S ⊂ U ;
Reply SKS to A in the same way as KeyGen does using MSK;

In the case that A makes a decapsulation query for (A, ψ = (ψcpa, d1, d2), S);
Reply κ̂ to A in the same way as Decap does using MSK;
Compute Ŷ = e(C′, g)τ−τ∗

, Ẑ1 = d1/e(C
′, g)µ1 , Ẑ2 = d2/e(C

′, g)µ2 ;
Update TABLE = TABLE ∪ (Ŷ , Ẑ1, Ẑ2);

Challenge
In the case that A makes a challenge instance query;

Put d∗1 = e(C′∗, g)µ1 , d∗2 = e(C′∗, g)µ2 , ψ∗ = (ψ∗
cpa, d

∗
1, d

∗
2);

Pick up κ← KeySp(λ), b← {0, 1};
If b = 1 then put κ̃ = κ∗ else put κ̃ = κ;
Reply (κ̃, ψ∗) to A;

Phase 2
The same as in Phase 1;

Return
In the case that A returns its guess b∗;

Choose one triple (Ŷ , Ẑ1, Ẑ2) from TABLE at random;
Return (Ŷ , Ẑ1, Ẑ2).

Fig. 1. An Algorithm Cheatλ,U with Unbounded Computational Power for a Proof of Claim 4.

Claim 5 The probability that Overlooki never occurs in TwinDH-Testfor each i and Abort oc-
curs is negligible in λ. More precisely, the following inequality holds:

Pr[
( qd∧
i=1

¬Overlooki

)
∧Abort] ≤ Advtcr

CF,Hfam(λ). (5)

Proof. This claim is proved by constructing a collision finder CF on Hfam. See Appendix D.

Claim 6 The reply κ̂ to A as an answer for a decapsulation query is correct.

Claim 7 The challenge instance ψ∗ = (ψ∗
cpa, d

∗
1, d

∗
2) is correctly distributed.

Proof. These claims are proved by a direct calculation. See Appendices E and F, respectively.

Now we are ready to evaluate the advantage of B in the IND-sel-CPA game. That A wins in the
IND-sel-CCA game means that (κ̃, ψ∗ = (ψ∗

cpa, d
∗
1, d

∗
2)) is correctly guessed. This is equivalent to that

(κ̃, ψ∗
cpa) is correctly guessed because ψ∗

cpa determines the consistent blinding factor κ∗ = e(g, g)αs
∗

uniquely. This means that B wins in the IND-sel-CPA game.
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Therefore, the probability that B wins is equal to the probability that A wins, Overlooki never
holds in TwinDH-Testfor each i and Abort never occurs. So we have:

Pr[B wins] =Pr[(A wins) ∧
( qd∧
i=1

¬Overlooki

)
∧ (¬Abort)]

=Pr[A wins]− Pr[(A wins) ∧ ¬
(( qd∧

i=1

¬Overlooki

)
∧ (¬Abort)

)
]

≥Pr[A wins]− Pr[¬
(( qd∧

i=1

¬Overlooki

)
∧ (¬Abort)

)
]

=Pr[A wins]− (Pr[

qd∨
i=1

Overlooki] + Pr[
( qd∧
i=1

¬Overlooki

)
∧Abort]).

Substituting (2), (5) and advantages into the above, we have:

Advind-sel-cpa
B,CP-ABKEMcpa

(λ,U) ≥ Advind-sel-cca
A,CP-ABKEM(λ,U)−

qd
p
−Advtcr

CF,Hfam(λ). ⊓⊔

3.3 Discussion

Encryption Version. It is straightforward to construct our encryption scheme CP-ABE from CP-ABKEM.
The IND-sel-CCA security of CP-ABE is proved based on IND-sel-CPA security of the Waters KEM
CP-ABKEMcpa. See Appendix G.

The Case of Adaptive Game on a Target Access Structure. Lewko, Okamoto, Sahai, Takashima
andWaters [LOS+10] converted the Waters scheme [Wat11] into the one that attain the security against
adversary’s adaptive choice of a target access structure.

We can apply the same conversion as in Section 3.1 to their scheme [LOS+10]. In addition, the
IND-CCA security of their scheme can be proved along the way as in Section 3.2, but in the random
oracle model for the hash function H used in encapsulation and decapsulation.

4 Conclusions

We developed a technique of direct chosen-ciphertext security for ABE in the standard model in the
case of the Waters scheme (CP-ABKEMcpa, CP-ABEcpa). We utilized the Twin Diffie-Hellman Trapdoor
Test of Cash, Kiltz and Shoup and the algebraic trick of Boneh and Boyen [BB04] and Kiltz [Kil06].
Our technique is helpful when a Diffie-Hellman tuple to be verified is in a terminal group of a bilinear
map. It results in expansion of secret key length and decryption cost of computation by a factor of
four, while public key length, ciphertext length and encryption cost of computation are almost the
same as those of the Waters.

References

[AA11] Hiroaki Anada and Seiko Arita. Identification schemes from key encapsulation mechanisms. In
Progress in Cryptology - AFRICACRYPT 2011 - 4th International Conference on Cryptology in
Africa, Dakar, Senegal, July 5-7, 2011. Proceedings, pages 59–76, 2011.
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Appendix

A Proof of Lemma 2

Only one point to be complemented to the original proof (in [CKS08]) is that even for any algorithm
A with unbounded computational power, the statement holds. This is because, conditioning on input
fixed values (g,X1, X2), A at most reduces two-dimensional freedom (r, s) ∈ Z2

p into one-dimensional
freedom r ∈ Zp even if A correctly guesses the relation s = rx1 + x2. ⊓⊔

B Proof of Claim 1

For the index 3, we have implicitly set t3 = tcpa,3(−τ∗) and we get:

K3 = gµ1K−τ∗

cpa,3 = gµ1(gα1gatcpa,3)−τ∗
= gµ1−α1τ

∗
gat3 = gα3gat3 ,

L3 = L−τ∗

cpa,3 = (gtcpa,3)−τ∗
= gt3 ,

K3,x = K−τ∗

cpa,3,x = (htcpa,3x )−τ∗
= ht3x , x ∈ S.

For the index 4, we have implicitly set t4 = tcpa,4(γ1τ
∗) and we get:

K4 = gµ2−γ2τ
∗
Kγ1τ

∗

cpa,4 = gµ2−γ2τ
∗
(gα1gatcpa,4)γ1τ

∗
= gµ2−γ2τ

∗
gα1γ1τ

∗
gat4

= gµ2−(γ2−α1γ1)τ
∗
gat4 = gµ2−α2τ

∗
gat4 = gα4gat4 ,

L4 = Lγ1τ
∗

cpa,4 = (gtcpa,4)γ1τ
∗
= gt4 ,

K4,x = Kγ1τ
∗

cpa,4,x = (htcpa,4x )γ1τ
∗
= ht4x , x ∈ S. ⊓⊔

C Proof of Claim 2

Suppose that we are given a twin DH tuple (e(g, g), e(g, g)α1 , e(g, g)α2 , Ŷ , Ẑ1, Ẑ2). Then, di/e(C
′, g)µi =

(e(g, g)αi)s(τ−τ∗), i = 1, 2. So, using the implicit relations (1), we have:

di = e(g, g)αis(τ−τ∗)e(gs, g)µi

= (e(g, g)αi(τ−τ∗)e(g, g)µi)s

= (e(g, g)αi(τ−τ∗)e(g, g)αiτ
∗+α(i+2))s

= (e(g, g)αiτe(g, g)α(i+2))s, i = 1, 2.

This means that (e(g, g), e(g, g)α1τe(g, g)α3 , e(g, g)α2τe(g, g)α4 , e(C ′, g), d1, d2) is a twin Diffie-Hellman
tuple.

The converse is also verified by the reverse calculation. ⊓⊔

D Proof of Claim 5

To reduce to the target collision resistance of an employed hash function family Hfam, we construct a
PPT target collision finder CF that attacks Hfam using A as a subroutine. The construction is shown
in Fig.2. (Remark that the case Collision is defined in Fig.2.)

Note that the view of A in CF is the same as the real view of A until the case Collision occurs
and hence the algorithm A works as designed.
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Given λ as input :
Set up

Initialize inner state;
Choose a polynomial size attribute universe U at random;
Get a target access structure A∗ ← A(λ,U);
Run Setupcpa(λ,U) to get (p,G,GT , g, e),PKcpa,MSKcpa;
Get (κ∗, ψ∗

cpa)← Encapcpa(PKcpa,A∗);
Output ψ∗

cpa;
Receive, in return,η ← HKey(λ) and compute τ∗ ← Hη(ψ

∗
cpa);

Pick up α2, α3, α4 ← Zp;
Put PK = (PKcpa, e(g, g)

α2 , e(g, g)α3 , e(g, g)α4 , η),MSK = (gα1 , gα2 , gα3 , gα4);
Give PK to A;

Phase 1
In the case that A makes a key-extraction query for S ⊂ U ;

Reply SKS to A in the same way as KeyGen does using MSK;
In the case that A makes a decapsulation query for (S, ψ = (ψcpa, d1, d2));

Reply κ̂ to A in the same way as Decap does using MSK;
If κ̂ ̸=⊥ and τ = τ∗ (: call this case Collision)

then return ψcpa and stop;
Challenge

In the case that A makes a challenge instance query;
Using MSK, put d∗1 = e(gα1 , C′∗)τ

∗
e(gα3 , C′∗), d∗2 = e(gα2 , C′∗)τ

∗
e(gα4 , C′∗),

ψ∗ = (ψ∗
cpa, d

∗
1, d

∗
2);

Pick up κ← KeySp(λ), b← {0, 1};
If b = 1 then put κ̃ = κ∗ else put κ̃ = κ;
Reply (κ̃, ψ∗) to A;

Phase 2
The same as in Phase 1;

Return
In the case that A returns its guess b∗;

Stop.

Fig. 2. A PPT Collision Finder CF that attacks Hfam for the proof of Claim 5.

To evaluate the probability in Claim 5, we consider the following two cases.
Case 1 : the case that Abort (τ = τ∗) occurs in B in Phase 1. In this case, the target τ∗ has not been
given to A. So A needs to guess τ∗ to cause a collision τ = τ∗. Hence:

Pr[Phase 1 ∧
( qd∧
i=1

¬Overlooki

)
∧Abort] ≤ Pr[Phase 1 ∧Collision]. (6)

Case 2 : the case that Abort (τ = τ∗) occurs in B in Phase 2. In this case, if, in addition to τ = τ∗,
it occurred that ψcpa = ψ∗

cpa (and hence C ′ = C ′∗), then it would occur that ψ = ψ∗. This is because
the following two tuples are equal twin DH tuples by the fact that Overlooki never occurs:

(e(g, g), e(g, g)α1τe(g, g)α3 , e(g, g)α2τe(g, g)α4 , e(C ′, g), d1, d2),

(e(g, g), e(g, g)α1τ
∗
e(g, g)α3 , e(g, g)α2τ

∗
e(g, g)α4 , e(C ′∗, g), d∗1, d

∗
2).

Hence both S ∈ A and ψ = ψ∗ would occur. This is ruled out in decapsulation query; a contradiction.
So we have ψcpa ̸= ψ∗

cpa; that is, a collision:

ψcpa ̸= ψ∗
cpa ∧Hη(ψcpa) = τ = τ∗ = Hη(ψ

∗
cpa).

Therefore, if Overlooki never occurs for each i, then only decapsulation queries for which (e(g, g),
e(g, g)α1 , e(g, g)α2 , Ŷ , Ẑ1, Ẑ2) are certainly twin DH tuples have the chance to cause a collision τ = τ∗,
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as is the case in CF . Hence we have:

Pr[Phase 2 ∧
( qd∧
i=1

¬Overlooki

)
∧Abort] ≤ Pr[Phase 2 ∧Collision]. (7)

Taking a sum of both sides of (6) and (7), we get:

Pr[
( qd∧
i=1

¬Overlooki

)
∧Abort] ≤ Pr[Collision] = Advtcr

CF,Hfam(λ). ⊓⊔ (8)

E Proof of Claim 6

It is enough to prove that

When (e(g, g), e(g, g)α1 , e(g, g)α2 , Ŷ , Ẑ1, Ẑ2) is a twin DH tuple,

κ̂ = Ẑ1
1/(τ−τ∗)

= e(g, g)α1s holds.

This is deduced as follows:

κ̂ = (d1/e(C
′, g)µ1)1/(τ−τ∗) = ((e(g, g)α1)s(τ−τ∗))1/(τ−τ∗) = e(g, g)α1s. ⊓⊔

F Proof of Claim 7

A direct calculation with equalities (1) shows:

d∗i = e(C ′∗, g)µi = e(g, g)s
∗(αiτ

∗+α(i+2)) = e(g, g)αis
∗τ∗

e(g, g)α(i+2)s
∗
, i = 1, 2.

Hence ψ∗ = (ψ∗
cpa, d

∗
1, d

∗
2) is legitimate and correctly distributed. ⊓⊔

G Our Ciphertext-Policy Attribute-Based Encryption Scheme

In this section, we describe our CP-ABE. Only differences between CP-ABKEM and CP-ABE are stated
below.

G.1 Our Construction

Setup(λ,U). The same as Setup of CP-ABKEM.

Encrypt(PK,A,m). The same as Encap of CP-ABKEM except that Encrypt multipliesm by the blind-
ing factor κ in the group GT . Encrypt returns CT = (C = mκ,ψ = (C ′, ((Ci, Di); i = 1, . . . , l), d1, d2)).

KeyGen(MSK,PK, S). The same as KeyGen of CP-ABKEM.

Decrypt(PK,CT,SKS). The same as Decap of CP-ABKEM except that Decrypt divides out C by the
decapsulated blinding factor κ̂. Decrypt returns the result m̂.
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G.2 Security and its Proof

Theorem 2 If the Waters CP-ABKEMcpa [Wat11] is selectively secure against chosen-plaintext attacks
and an employed hash function family Hfam has target collision resistance, then our CP-ABE is selec-
tively secure against chosen-ciphertext attacks. More precisely, for any given PPT adversary A that
attacks CP-ABE in the IND-sel-CCA game where decryption queries are at most qd times, and for any
attribute universe U , there exist a PPT adversary B that attacks CP-ABKEMcpa in the IND-sel-CPA
game and a PPT target collision finder CF on Hfam that satisfy the following inequality.

Advind-sel-cca
A,CP-ABE (λ,U) ≤ 2

(
Advind-sel-cpa

B,CP-ABKEMcpa
(λ,U) +Advtcr

CF,Hfam(λ) +
qd
p

)
.

Proof. Given any adversary A that attacks our scheme CP-ABE in the IND-sel-CCA game, we construct
an adversary B that attacks the Waters KEM CP-ABKEMcpa in the IND-sel-CPA game as follows.

Commit a Target Access Structure. The same as that of CP-ABKEM.

Set up. In return to outputting A∗, B receives the public key PKcpa for CP-ABKEMcpa. To set up a
public key PK for CP-ABE, B herein needs a challenge instance: B queries its challenger and gets a
challenge instance (κ̃, ψ∗

cpa). The rest of procedure is the same as that of CP-ABKEM, and B inputs PK
into A.

Phase 1. The same as that of CP-ABKEM except that B replies a decrypted message m̂ to A for a
decryption query.

Challenge. In the case that A submits two plaintexts (m∗
0,m

∗
1) of equal length, B makes a challenge

ciphertext CT∗ as follows and feeds CT∗ to A.

Pick up b′ ← {0, 1} and put C̃∗ = m∗
b′ κ̃;

Put d∗1 = e(C ′∗, g)µ1 , d∗2 = e(C ′∗, g)µ2 ;

Put CT∗ = (C̃∗, ψ∗ = (ψ∗
cpa, d

∗
1, d

∗
2)).

Phase 2. The same as in Phase 1.

Guess. In the case that A returns A’s guess b̃, B returns b̃ as B’s guess.

Evaluation of the Advantage of B. A standard argument deduces a loss of tightness by a factor
of 1/2. That is;

Advind-sel-cpa
B,CP-ABKEMcpa

(λ,U) ≥ 1

2
Advind-sel-cca

A,CP-ABE (λ,U)− qd
p
−Advtcr

CF,Hfam(λ). ⊓⊔

H Target Collision Resistant Hash Functions

Target collision resistant (TCR) hash functions [NY89] are treated as a family. Let us denote a function
family as Hfam(λ) = {Hµ}µ∈HKey(λ). Here HKey(λ) is a hash key space, µ ∈ HKey(λ) is a hash key

and Hµ is a function from {0, 1}∗ to {0, 1}λ. We may assume that Hµ is from {0, 1}∗ to Zp, where p
is a prime of length λ.
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Given a PPT algorithm CF , a collision finder, we consider the following experiment (the target
collision resistance game).

ExperimenttcrCF,Hfam(λ)

m∗ ← CF(λ), µ← HKey(λ),m← CF(µ)
If m∗ ̸= m ∧Hµ(m

∗) = Hµ(m) then return Win else return Lose.

Then we define CF ’s advantage over Hfam in the game of target collision resistance as follows.

Advtcr
CF,Hfam(λ)

def
= Pr[ExperimenttcrCF,Hfam(λ) returns Win].

We say that Hfam is a TCR function family if, for any PPT algorithm CF , Advtcr
CF,Hfam(λ) is negligible

in λ.
TCR hash function families can be constructed based on the existence of a one-way function [NY89].
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