
The preliminary version of this paper appeared in Proceedings of The 1st IEEE International Workshop on
Big Data and IoT Security in Smart Computing, - IEEE BITS 2017 -, which was co-held with 2017 IEEE
International Conference on Smart Computing, - SMARTCOMP 2017 - under the title “Short CCA-Secure
Ciphertext-Policy Attribute-Based Encryption”. This is the full version. A related version of this paper ap-
peared in Advances in Science, Technology and Engineering Systems Journal (ASTESJ), Volume 3, Issue 1,
pp. 261-273, 2018 under the same title.

Short CCA-Secure Attribute-Based Encryption ?

Hiroaki Anada1 and Seiko Arita2

1 Department of Information Security, University of Nagasaki
W408, 1-1-1, Manabino, Nagayo-cho, Nishisonogi-gun, Nagasaki, 851-2195 JAPAN

anada@sun.ac.jp
2 Institute of Information Security

509, 2-14-1, Tsuruya-cho, Kanagawa-ku, Yokohama, 221-0835 JAPAN
arita@iisec.ac.jp

April 19, 2018

Abstract. Chosen-ciphertext attacks are typical threat on public-key encryption schemes. We
propose a technique of individually converting an attribute-based encryption scheme (ABE)
which is secure against chosen-plaintext attacks into an ABE scheme which is secure against
chosen-ciphertext attacks. Our technique is helpful when a Diffie-Hellman tuple to be verified is
in the target group of a bilinear map. The employed technique, the Twin Diffie-Hellman Trapdoor
Test of Cash, Kiltz and Shoup, results in expansion of the secret-key length and the decryption
cost by a factor of four, while the public-key and the ciphertext lengths and the encryption cost
remain almost the same.
Keywords: public-key cryptography, attribute-based encryption, direct chosen-ciphertext secu-
rity, twin Diffie-Hellman.

1 Introduction

Access control is one of the fundamental processes and requirements in cybersecurity. Attribute-based
encryption (ABE) invented by Sahai and Waters [17], where attributes mean authorized credentials,
enables to realize access control by encryption which is conceptually close to traditional access control
methods such as role-based access control (RBAC). In key-policy ABE (KP-ABE) introduced by the
subsequent work of Goyal, Pandey, Sahai and Waters [11], a secret key is associated with an access
policy over attributes, while a ciphertext is associated with a set of attributes. In a dual manner,
in ciphertext-policy ABE (CP-ABE) [11, 3, 19], a ciphertext is associated with access policy over at-
tributes, while a secret key is associated with a set of attributes. In a KP-ABE or CP-ABE scheme,
a secret key works to decrypt a ciphertext if and only if the associated set of attributes satisfies the
associated access policy. Since the proposals, it has been studied to attain certain properties such

? This work is partially supported by kakenhi Grant-in-Aid for Scientific Research (C) JP15K00029 from
Japan Society for the Promotion of Science.

as indistinguishability against chosen-plaintext attacks (IND-CPA) in the standard model [19] and
adaptive security against adversary’s choice of a target access policy [14].

In this paper, we work through resolving a problem of constructing a shorter ABE scheme that
attains indistinguishability against chosen-ciphertext attacks (IND-CCA) in the standard model. Here
CCA means that an adversary can collects decryption results of ciphertexts of its choice through
adversaries’ attacking. Note that “provable security” which means that a cryptographic primitive is
rigorously secure in a mathematical model under a certain assumption is a must requirement when we
employ the primitive in a system. Moreover, the CCA security of an encryption scheme is preferable
to attain because the CCA security is one of theoretically highest securities and hence the scheme can
be widely used.

Let us recall the case of identity-based encryption (IBE). The CHK transformation of Canetti,
Halevi and Katz [7] is a generic tool for obtaining IND-CCA secure IBE scheme. It transforms any
hierarchical IBE (HIBE) scheme that is selective-ID IND-CPA secure [4] into an IBE scheme that is
adaptive-ID IND-CCA secure [4]. A point of the CHK transformation is that it introduces a dummy
identity vk that is a verification key of a one-time signature. Then a ciphertext is attached with vk and
a signature σ, which is generated each time one executes encryption. In contrast, the direct chosen-
ciphertext security technique for IBE of Boyen, Mei and Waters [6] is an individual modification for
obtaining an IND-CCA secure IBE scheme. It converts a HIBE scheme that is adaptive-ID IND-CPA
secure into an IBE scheme that is adaptive-ID IND-CCA secure. Though the technique needs to treat
each scheme individually, the obtained scheme attains better performance than that obtained by the
generic tool (the CHK transformation). Let us transfer into the case of ABE. The transformation of
Yamada et al. [20] is a generic tool for obtaining IND-CCA secure ABE scheme. It transforms any
ABE scheme (with the delegatability or the verifiability [20]) that is IND-CPA secure into an ABE
scheme that is IND-CCA secure. A point of their transformation is, similar to the case of IBE, that it
introduces a dummy attribute vk that is a verification key of a one-time signature. Then a ciphertext
is attached with vk and a signature σ. Notice here that developing direct chosen-ciphertext security
technique for ABE (in the standard model) is a missing piece. One of the reason seems that there is
an obstacle that a Diffie Hellman tuple to be verified is in the target group of a bilinear map. In that
situation, the bilinear map looks of no use.

1.1 Our Contribution

A first contribution is that we fill in the missing piece of direct chosen-ciphertext security for ABE. We
develop a technique and apply it to the Waters CP-ABE scheme [19] to obtain IND-CCA security. A
second technical contribution is as follows. To overcome the above obstacle, we employ and apply the
Twin Diffie-Hellman Trapdoor Test of Cash, Kiltz and Shoup [8]. In addition to that, we also utilize
the algebraic trick of Boneh and Boyen [5] and Kiltz [12] to reply for adversary’s decryption query. In
total, we develop the technique to realize direct chosen-ciphertext security.

1.2 Related Works

Waters [19] pointed out that IND-CCA security would be attained by the CHK transformation.
Gorantla, Boyd and Nieto [10] constructed a IND-CCA secure CP-ABKEM in the random oracle
model. Yamada et al. [20] proposed a generic transformation of a IND-CPA secure ABE scheme into a
IND-CCA secure ABE scheme. Their transformation is considered to be an ABE-version of the CHK
transformation, and it is versatile. Especially, it can be applied to non-pairing-based scheme.

The Waters CP-ABE [19] can be captured as a CP-ABKEM: the blinding factor can be considered
as a random one-time key. This Waters CP-ABKEM is IND-CPA secure because the Waters CP-ABE
is proved to be IND-CPA secure. For theoretical simplicity, we demonstrate an individual conversion
of the Waters CP-ABKEM into a CP-ABKEM which is IND-CCA secure. Then we provide a CP-ABE
scheme which is IND-CCA secure. As for KP-ABE, we demonstrate an individual conversion of KP-
ABKEM of the Goyal, Pandey, Sahai and Waters [11], which is IND-CPA secure, into a KP-ABKEM
which is IND-CCA secure. Then we provide a KP-ABE scheme which is IND-CCA secure.

2

Finally, we note that there is a remarkable work of CP-ABE schemes and KP-ABE schemes with
constant-size ciphertexts [2, 1].

1.3 Organization of the Paper

In Section 2, we survey concepts, definitions and techniques needed. In Section 3, we revisit the concept,
the algorithm and the security of the twin Diffie-Hellman technique. In Section 4, we construct a CCA-
secure CP-ABKEM from the Waters CPA-secure CP-ABKEM [19], and provide a security proof. Also,
we describe the encryption version, a CCA-secure CP-ABE. In Section 5, we construct a CCA-secure
KP-ABKEM from the Ostrovsky-Sahai-Waters CPA-secure KP-ABKEM [16], and provide a security
proof. Also, we describe the encryption version, a CCA-secure KP-ABE. In Section 6, we compare
efficiency of our CP-ABE and KP-ABE schemes with the original schemes, and also, with the schemes
obtained by applying the generic transformation [20] to the original schemes. In Section 7, we conclude
our work.

2 Preliminaries

The security parameter is denoted by λ. A prime of bit length λ is denoted by p. A multiplicative
cyclic group of order p is denoted by G. Parameters of the group G are generated by a probabilistic
polynomial time (PPT) algorithm Grp on input λ: (p,G, g) ← Grp(λ), where g is a generator of G.
The ring of exponent domain of G, which consists of integers from 0 to p− 1 with modulo p operation,
is denoted by Zp.

2.1 Bilinear Map

Let G and GT be two multiplicative cyclic groups of a prime order p. Let g be a generator of G and e
be a bilinear map, e : G×G→ GT . The bilinear map e has the following properties:
1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 6= idGT

(: the identity element of the group GT).

The groups G and GT with the bilinear map e is called bilinear groups. Parameters of the bilinear
groups are generated by a PPT algorithm BlGrp on input λ: (p,G,GT , g, e)← BlGrp(λ). Hereafter we
assume that the group operation in G and GT and the bilinear map e : G × G → GT are efficiently
computable (i.e. PPT in λ).

We note here that bilinear groups of an asymmetric pairing of Type 3 [9] are more efficient than the
above bilinear groups of a symmetric pairing. Here Type 3 means an asymmetric pairing e : G1×G2 →
GT without any efficiently computable homomorphism between G1 and G2. For simplicity, we describe
in this paper only the case of symmetric pairing, and we just note the case of asymmetric pairing in
efficiency discussion in Section 6.

2.2 Access Structure

Let U = {χ1, . . . , χu} be a set of attributes, or simply set U = {1, . . . , u} by numbering. An access
structure, which corresponds to an access policy, is defined as a collection A of non-empty subsets of
U ; that is, A ⊂ 2U\{φ}. An access structure A is called monotone if for any B ∈ A and B ⊂ C, C ∈ A
holds. The sets in A are called authorized sets, and the sets not in A are called unauthorized sets. We
will consider in this paper only monotone access structures.

3

2.3 Linear Secret-Sharing Scheme

We only describe a linear secret-sharing scheme (LSSS) in our context of attribute-based schemes. A
secret-sharing scheme Π over the attribute universe U is called linear over Zp if:
1. The shares for each attribute form a vector over Zp,
2. There exists a matrix M of size l × n called the share-generating matrix for Π and a function ρ
which maps each row index i of M to an attribute in U = {1, . . . , u}: ρ : {1, ..., l} → U .

To make shares, we first choose a random vector v = (s, y2, . . . , yn) ∈ Znp : s is a secret to be shared.
For i = 1 to l, we calculate each share λi = v ·Mi, where Mi denotes the i-th row vector of M and ·
denotes the formal inner product. LSSS Π = (M,ρ) defines an access structure A through ρ.

Suppose that an attribute set S satisfies A (S ∈ A) and let IS = ρ−1(S) ⊂ {1, . . . , l}. Then, let
{ωi ∈ Zp; i ∈ IS} be a set of constants (linear reconstruction constants) such that if {λi ∈ Zp; i ∈ IS}
are valid shares of a secret s according to M , then

∑
i∈IS ωiλi = s. It is known that these constants

{ωi}i∈IS can be found in time polynomial in l: the row size of the share-generating matrix M . If S
does not satisfy A (S 6∈ A), then no such constants {ωi}i∈IS exist.

2.4 Attribute-Based Key Encapsulation Mechanism

Ciphertext-policy attribute-based key encapsulation mechanism (CP-ABKEM). A CP-
ABKEM consists of four PPT algorithms (Setup, Encap, KeyGen, Decap)3.
Setup(λ,U). A setup algorithm Setup takes as input the security parameter λ and the attribute
universe U = {1, . . . , u}. It returns a public key PK and a master secret key MSK.
Encap(PK,A). An encapsulation algorithm Encap takes as input the public key PK and an access
structure A. It returns a random string κ and its encapsulation ψ. Note that A is contained in ψ.
KeyGen(PK,MSK, S). A key generation algorithm KeyGen takes as input the public key PK, the
master secret key MSK and an attribute set S. It returns a secret key SKS corresponding to S. Note
that S is contained in SKS .
Decap(PK,SKS , ψ). A decapsulation algorithm Decap takes as input the public key PK, an encap-
sulation (we also call it a ciphertext according to context) ψ and a secret key SKS . It first checks
whether S ∈ A, where S and A are contained in SKS and ψ, respectively. If the check result is False,
it puts κ̂ =⊥. It returns a decapsulation result κ̂.
Chosen-Ciphertext Attack on CP-ABKEM. According to previous works (for example, see [10]),
the chosen-ciphertext attack on a CP-ABKEM is formally defined as the indistinguishability game
(IND-CCA game). In this paper, we consider the selective game on a target access structure (IND-sel-
CCA game); that is, the adversary A declares a target access structure A∗ before A receives a public
key PK, which is defined as the following experiment.

Experimentind-sel-ccaCP-ABKEM,A(λ,U)

A∗ ← A(λ,U), (PK,MSK)← Setup(λ,U)

ε← AKeyGen(PK,MSK,·),Decap(PK,SK·,·)(PK)

(κ∗, ψ∗)← Encap(PK,A∗), κ← KeySp(λ), b← {0, 1}
If b = 1 then κ̃ = κ∗ else κ̃ = κ

b′ ← AKeyGen(PK,MSK,·),Decap(PK,SK·,·)(κ̃, ψ∗)

If b′ = b then return Win else return Lose.

In the above experiment, two kinds of queries are issued by A. One is key-extraction queries. Indicating
an attribute set Si, A queries its key-extraction oracle KeyGen(PK,MSK, ·) for the secret key SKSi

.
Here we do not require any input attribute sets Si1 and Si2 to be distinct. Another is decapsulation

3 In Gorantla, Boyd and Nieto [10], they say encapsulation-policy attribute-based-KEM (EP-AB-KEM) instead
of saying ciphertext-policy attribute-based KEM here.

4

queries. Indicating a pair (Sj , ψj) of an attribute set and an encapsulation, A queries its decapsulation
oracle Decap(PK,SK·, ·) for the decapsulation result κ̂j . Here an access structure Aj , which is used to
generate an encapsulation ψj , is implicitly included in ψj . In the case that S 6∈ A, κ̂j =⊥ is replied to
A. Both kinds of queries are at most qk and qd times in total, respectively, which are polynomial in λ.

The access structure A∗ declared by A is called a target access structure. Two restrictions are
imposed on A concerning A∗. In key-extraction queries, each attribute set Si must satisfy Si /∈ A∗. In
decapsulation queries, each pair (Sj , ψj) must satisfy Sj 6∈ A∗ ∨ ψj 6= ψ∗.

The advantage of the adversary A over CP-ABKEM in the IND-CCA game is defined as the following
probability:

Advind-sel-cca
CP-ABKEM,A(λ,U)

def
= Pr[Experimentind-sel-ccaCP-ABKEM,A(λ,U) returns Win].

CP-ABKEM is called selectively secure against chosen-ciphertext attacks if, for any PPT adversary A
and for any attribute universe U 4, Advind-sel-cca

CP-ABKEM,A(λ,U) is negligible in λ.

In the indistinguishability game against chosen-plaintext attack (IND-CPA game), the adversary
A issues no decapsulation query (that is, qd = 0).

Ciphertext-Policy Attribute-Based Encryption Scheme (CP-ABE). In the case of the encryp-
tion version (i.e. CP-ABE), Encap(PK,A) and Decap(PK,SKS , ψ) are replaced by PPT algorithms
Encrypt(PK,A,m) and Decrypt(PK,SKS ,CT), respectively, where m and CT mean a message and a
ciphertext, respectively.

The IND-CCA game for CP-ABE is defined in the same way as for CP-ABKEM above, except
the following difference. In Challenge phase, the adversary A submits two equal length messages
(plaintexts) m0 and m1. Then the challenger flips a coin b ∈ {0, 1} and gives an encryption result CT
of mb to A. In Guess phase, the adversary A returns b′ ∈ {0, 1}. If b′ = b, then A wins in the IND-CCA
game. Otherwise, A loses.

Key-Policy Attribute-Based Key Encapsulation Mechanism (KP-ABKEM) and Encryp-
tion Scheme (KP-ABE). The key-policy case is analogously defined as the case of the ciphertext-
policy case. We state only the syntax and the security experiment of the key-policy ABKEM.

Setup(λ,U). A setup algorithm Setup takes as input the security parameter λ and the attribute
universe U = {1, . . . , u}. It returns a public key PK and a master secret key MSK.

Encap(PK, S). An encapsulation algorithm Encap takes as input the public key PK and an attribute
set S. It returns a random string κ and its encapsulation ψ. Note that S is contained in ψ.

KeyGen(PK,MSK,A). A key generation algorithm KeyGen takes as input the public key PK, the
master secret key MSK and an access structure A. It returns a secret key SKA corresponding to S.
Note that A is contained in SKA.

Decap(PK,SKA, ψ). A decapsulation algorithm Decap takes as input the public key PK, an encap-
sulation (we also call it a ciphertext according to context) ψ and a secret key SKA. It first checks
whether S ∈ A. If the check result is False, it puts κ̂ =⊥. It returns a decapsulation result κ̂.

4 We must distinguish the two cases; the case that U is small (i.e. |U| = u is bounded by some polynomial
of λ) and the case that U is large (i.e. u is not necessarily bounded by a polynomial of λ). We assume the
small case unless we state the large case explicitly.

5

Chosen-Ciphertext Attack on KP-ABKEM. The selective game on a target attribute set (IND-
sel-CCA game) is defined by the following experiment.

Experimentind-sel-ccaKP-ABKEM,A(λ,U)

S∗ ← A(λ,U), (PK,MSK)← Setup(λ,U)

ε← AKeyGen(PK,MSK,·),Decap(PK,SK·,·)(PK)

(κ∗, ψ∗)← Encap(PK, S∗), κ← KeySp(λ), b← {0, 1}
If b = 1 then κ̃ = κ∗ else κ̃ = κ

b′ ← AKeyGen(PK,MSK,·),Decap(PK,SK·,·)(κ̃, ψ∗)

If b′ = b then return Win else return Lose.

2.5 Target Collision Resistant Hash Functions

Target collision resistant (TCR) hash functions [15] are treated as a family. Let us denote a function
family as Hfam(λ) = {Hµ}µ∈HKey(λ). Here HKey(λ) is a hash key space, µ ∈ HKey(λ) is a hash key

and Hµ is a function from {0, 1}∗ to {0, 1}λ. We may assume that Hµ is from {0, 1}∗ to Zp, where p
is a prime of length λ.

Given a PPT algorithm CF , a collision finder, we consider the following experiment (the target
collision resistance game).

ExperimenttcrHfam,CF (λ)

m∗ ← CF(λ), µ← HKey(λ),m← CF(µ)

If m∗ 6= m ∧Hµ(m∗) = Hµ(m)

then return Win else return Lose.

Then we define CF ’s advantage over Hfam in the game of target collision resistance as follows.

Advtcr
Hfam,CF (λ)

def
= Pr[ExperimenttcrHfam,CF (λ) returns Win].

We say that Hfam is a TCR function family if, for any PPT algorithm CF , Advtcr
Hfam,CF (λ) is negligible

in λ.
TCR hash function families can be constructed based on the existence of a one-way function [15].

3 The Twin Diffie-Hellman Technique Revisited

A 6-tuple (g,X1, X2, Y, Z1, Z2) ∈ G6 is called a twin Diffie-Hellman tuple if the tuple is written as
(g, gx1 , gx2 , gy, gx1y, gx2y) for some elements x1, x2, y in Zp. In other words, a 6-tuple (g,X1, X2, Y, Z1, Z2)
is a twin Diffie-Hellman tuple (twin DH tuple, for short) if Y = gy and Z1 = Xy

1 and Z2 = Xy
2 .

The following lemma of Cash, Kiltz and Shoup [8] will be used in the security proof to decide
whether a tuple is a twin DH tuple or not.

Lemma 1 (“Trapdoor Test” [8]) Let X1, r, s be mutually independent random variables, where X1

takes values in G, and each of r, s is uniformly distributed over Zp. Define the random variable X2 =

X−r1 gs. Suppose that Ŷ , Ẑ1, Ẑ2 are random variables taking values in G, each of which is defined

independently of r. Then the probability that the truth value of Ẑ1
r
Ẑ2 = Ŷ s does not agree with the truth

value of (g,X1, X2, Ŷ , Ẑ1, Ẑ2) being a twin DH tuple is at most 1/p. Moreover, if (g,X1, X2, Ŷ , Ẑ1, Ẑ2)

is a twin DH tuple, then Ẑ1
r
Ẑ2 = Ŷ s certainly holds.

6

Note that Lemma 1 is a statistical property. Especially, Lemma 1 holds without any number
theoretic assumption. To be precise, we consider the following experiment of an algorithm Cheat with
unbounded computational power (not limited to PPT), where Cheat, given a triple (g,X1, X2), tries to
complete a 6-tuple (g,X1, X2, Ŷ , Ẑ1, Ẑ2) which passes the “Trapdoor Test” but which is not a twin
DH tuple.

ExperimenttwinDH-test
Grp,Cheat (λ)

(p,G, g0)← Grp(λ)

(g,X1)← G2, (r, s)← Z2
p, X2 = X−r1 gs

G3 3 (Ŷ , Ẑ1, Ẑ2)← Cheat(g,X1, X2)

If Ẑ1
r
Ẑ2 = Ŷ s ∧ (g,X1, X2, Ŷ , Ẑ1, Ẑ2) is NOT a twin DH tuple,

then return Win else return Lose

Let us define the advantage of Cheat over G as follows.

AdvtwinDH-test
Grp,Cheat (λ)

def
= Pr[ExperimenttwinDH-test

Grp,Cheat (λ) returns Win].

Now we are ready to complement Lemma 1.

Lemma 2 (Complement for “Trapdoor Test” [8])
For any algorithm Cheat with unbounded computational power, AdvtwinDH-test

Grp,Cheat (λ) is at most 1/p.

For a proof of Lemma 2, see Appendix A.
We remark here that in the succeeding sections we use “Trapdoor Test” for the target group GT

of bilinear groups generated as (p,G,GT , g0, e)← BlGrp(λ).

4 Securing the Waters CP-ABKEM against Chosen-Ciphertext Attacks

In this section, we describe our direct chosen-ciphertext security technique by applying it to the Waters
CP-ABE [19].
Overview of Our Technique The Waters CP-ABE is proved to be secure in the IND-sel-CPA game
[19]. We convert it into a scheme that is secure in the IND-sel-CCA game by employing the Twin
Diffie-Hellman technique of Cash, Kiltz and Shoup [8] and the algebraic trick of Boneh and Boyen [5]
and Kiltz [12].

In encryption, a ciphertext becomes to contain additional two elements (d1, d2), which function in
decryption as a “check sum” to verify that a tuple is certainly a twin DH tuple.

In security proof, the Twin Diffie-Hellman Trapdoor Test does the function instead. It is noteworthy
that we are unable to use the bilinear map instead because the tuple to be verified is in the target
group. In addition, the algebraic trick enables to answer for adversary’s decryption queries. Note also
that the both technique become compatible by introducing random variables.
Key Encapsulation and Encryption. The Waters CP-ABE can be captured as a CP-ABKEM:
the blinding factor of the form e(g, g)αs in the Waters CP-ABE can be considered as a random one-
time key. So we call it the Waters CP-ABKEM hereafter and denote it as CP-ABKEMcpa. Likewise, we
distinguish parameters and algorithms of CP-ABKEMcpa by the index cpa. For theoretical simplicity, we
first develop a KEM CP-ABKEM.

4.1 Our Construction

Our CP-ABKEM consists of the following four PPT algorithms (Setup, Encap, KeyGen, Decap). Roughly
speaking, the Waters original scheme CP-ABKEMcpa (the first scheme in [19]) corresponds to the case
k = 1 below excluding the “check sum” (d1, d2).

7

Setup(λ,U). Setup takes as input the security parameter λ and the attribute universe U = {1, . . . , u}.
It runs BlGrp(λ) to get bilinear groups (p,G,GT , g, e). These parameters become public. Then Setup
chooses u random group elements h1, . . . , hu ∈ G that are associated with the u attributes. In addition,
it chooses random exponents αk ∈ Zp, k = 1, . . . , 4, a ∈ Zp and a hash key η ∈ HKey(λ). The
public key is published as PK = (g, ga, h1, . . . , hu, e(g, g)α1 , . . . , e(g, g)α4 , η). The authority sets MSK =
(gα1 , . . . , gα4) as the master secret key.
Encap(PK,A). The encapsulation algorithm Encap takes as input the public key PK and an LSSS
access structure A = (M,ρ), where M is an l × n matrix and ρ is the function which maps each row
index i of M to an attribute in U = {1, . . . , u}. Encap first chooses a random value s ∈ Zp that is
the encryption randomness, and chooses random values y2, . . . , yn ∈ Zp. Then Encap forms a vector
v = (s, y2, . . . , yn). For i = 1 to l, it calculates λi = v ·Mi, where Mi denotes the i-th row vector of
M . In addition, Encap chooses random values r1, . . . , rl ∈ Zp. Then, a pair of a random one-time key
and its encapsulation (κ, ψ) is computed as follows.

Put C ′ = gs; For i = 1 to l : Ci = gaλih−riρ(i), Di = gri ;

ψcpa = (A, C ′, ((Ci, Di); i = 1, . . . , l)), τ ← Hη(ψcpa);

For k = 1 to 4 : κk = e(g, g)αks; d1 = κτ1κ3, d2 = κτ2κ4;

(κ, ψ) = (κ1, (ψcpa, d1, d2)).

KeyGen(MSK,PK, S). The key generation algorithm KeyGen takes as input the master secret key
MSK, the public key PK and a set S of attributes. KeyGen first chooses a random tk ∈ Zp, k = 1, . . . , 4.
It generates the secret key SKS as follows.

For k = 1 to 4 : Kk = gαkgatk , Lk = gtk

For x ∈ S : Kk,x = htkx ;

SKS = ((Kk, Lk, (Kk,x;x ∈ S)); k = 1, . . . , 4).

Decap(PK, ψ,SKS). The decapsulation algorithm Decap takes as input the public key PK, an en-
capsulation ψ for an access structure A = (M,ρ) and a private key SKS for an attribute set S. It first
checks whether S ∈ A. If the result is False, put κ̂ =⊥. Otherwise, let IS = ρ−1(S) ⊂ {1, . . . , l} and
let {ωi ∈ Zp; i ∈ IS} be a set of linear reconstruction constants. Then, the decapsulation κ̂ is computed
as follows.

Parse ψ into (ψcpa = (A, C ′, ((Ci, Di); i = 1, . . . , l)), d1, d2);

τ ← Hη(ψcpa);

For k = 1 to 4 :

κ̂k = e(C ′,Kk)/
∏
i∈IS

(e(Lk, Ci)e(Di,Kk,ρ(i)))
ωi = e(g, g)αks

If κ̂1
τ κ̂3 6= d1 ∨ κ̂2τ κ̂4 6= d2,

then put κ̂ =⊥, else put κ̂ = κ̂1.

4.2 Security and Proof

Theorem 1 If the Waters CP-ABKEMcpa [19] is selectively secure against chosen-plaintext attacks and
an employed hash function family Hfam has target collision resistance, then our CP-ABKEM is selectively
secure against chosen-ciphertext attacks. More precisely, for any given PPT adversary A that attacks
CP-ABKEM in the IND-sel-CCA game where decapsulation queries are at most qd times, and for any
attribute universe U , there exist a PPT adversary B that attacks CP-ABKEMcpa in the IND-sel-CPA
game and a PPT target collision finder CF on Hfam that satisfy the following tight reduction.

Advind-sel-cca
CP-ABKEM,A(λ,U) ≤ Advind-sel-cpa

CP-ABKEMcpa,B(λ,U) + Advtcr
Hfam,CF (λ) +

qd
p
.

8

Proof. Given any adversary A that attacks our scheme CP-ABKEM in the IND-sel-CCA game, we con-
struct an adversary B that attacks the Waters scheme CP-ABKEMcpa in the IND-sel-CPA game as
follows.
Commit to a Target Access Structure. B is given (λ,U) as inputs, where λ is the security
parameter and U = {1, . . . , u} is the attribute universe. B invokes A on input (λ,U) and gets a target
access structure A∗ = (M∗, ρ∗) from A, where M∗ is of size l∗ × n∗. B uses A∗ as the target access
structure of itself and outputs A∗.
Set up. In return to outputting A∗, B receives the public key PKcpa for CP-ABKEMcpa, which consists
of the following components.

PKcpa = (g, ga, h1, . . . , hu, e(g, g)α).

To set up a public key PK for CP-ABKEM, B herein needs a challenge instance: B queries its challenger
and gets a challenge instance (κ̃, ψ∗cpa). It consists of the following components.

κ̃ = e(g, g)αs
∗

OR a random one-time key κ ∈ KeySp(λ),

ψ∗cpa = (A∗, C ′∗ = gs
∗
, ((C∗i , D

∗
i); i = 1, . . . , l∗)).

Then B makes the rest of parameters of PK as follows.

Choose η ← HKey(λ) and take τ∗ ← Hη(ψ∗cpa);

Put e(g, g)α1 = e(g, g)α;

Choose γ1, γ2 ← Zp, put e(g, g)α2 = e(g, g)γ2/e(g, g)α1γ1 ;

Choose µ1, µ2 ← Zp, put e(g, g)α3 = e(g, g)µ1/e(g, g)α1τ
∗
,

e(g, g)α4 = e(g, g)µ2/e(g, g)α2τ
∗
.

Note we have implicitly set relations in the exponent domain:

α2 = γ2 − α1γ1, α3 = µ1 − α1τ
∗,

α4 = µ2 − α2τ
∗ = µ2 − (γ2 − α1γ1)τ∗. (1)

A public key PK for CP-ABKEM become:

PK = (PKcpa, e(g, g)α2 , e(g, g)α3 , e(g, g)α4 , η).

Then B inputs PK into A. Note that PK determines the corresponding MSK uniquely.
Phase 1. B answers for two types of A’s queries as follows.
(1) Key-Extraction Queries. In the case that A issues a key-extraction query for an attribute set
S ⊂ U , B has to simulate A’s challenger. To do so, B issues key-extraction queries to B’s challenger
for S repeatedly up to four times. As replies, B gets four secret keys of the Waters CP-ABKEMcpa for a
single attribute set S:

SKcpa,S,k = (Kcpa,k, Lcpa,k, (Kcpa,k,x;x ∈ S)), k = 1, . . . , 4.

We remark that, according to the randomness in the key-generation algorithm of the Waters CP-ABKEMcpa,
all four secret keys SKcpa,S,1, . . . ,SKcpa,S,4 are random and mutually independent. To reply a secret
key SKS of our CP-ABKEM to A, B converts the four secret keys as follows.

K1 = Kcpa,1, L1 = Lcpa,1, K1,x = Kcpa,1,x, x ∈ S;

K2 = gγ2K−γ1cpa,2, L2 = L−γ1cpa,2, K2,x = K−γ1cpa,2,x, x ∈ S;

K3 = gµ1K−τ
∗

cpa,3, L3 = L−τ
∗

cpa,3, K3,x = Kτ∗

cpa,3,x, x ∈ S;

K4 = gµ2−γ2τ∗Kγ1τ
∗

cpa,4, L4 = Lγ1τ
∗

cpa,4, K4,x = Kγ1τ
∗

cpa,4,x, x ∈ S.

9

Then B replies SKS = ((Kk, Lk, (Kk,x;x ∈ S)); k = 1, . . . , 4) to A.

(2) Decapsulation Queries. In the case that A issues a decapsulation query for (S, ψ), where S ⊂ U
is an attribute set and ψ = (ψcpa, d1, d2) is an encapsulation concerning A, B has to simulate A’s
challenger. To do so, B computes the decapsulation result κ̂ as follows.

If S 6∈ A then put κ̂ =⊥,
else

τ ← Hη(ψcpa);

Ŷ = e(C ′, g)τ−τ
∗
, Ẑ1 = d1/e(C

′, g)µ1 , Ẑ2 = d2/e(C
′, g)µ2 ;

If Ẑ1
γ1
Ẑ2 6= Ŷ γ2 (: call this checking TwinDH-Test)

then put κ̂ = κ̂1 =⊥
else

If τ = τ∗ then abort (: call this case Abort)

else κ̂ = κ̂1 = Ẑ1
1/(τ−τ∗)

.

Challenge. In the case that A queries its challenger for a challenge instance, B makes a challenge
instance as follows.

Put d∗1 = e(C ′∗, g)µ1 , d∗2 = e(C ′∗, g)µ2 ;

Put ψ∗ = (ψ∗cpa, d
∗
1, d
∗
2).

Then B feeds (κ̃, ψ∗) to A as a challenge instance.
Phase 2. The same as in Phase 1.
Guess. In the case that A returns A’s guess b̃, B returns b̃ itself as B’s guess.

In the above construction of B, B can perfectly simulate the real view of A until the case Abort
happens, except for a negligible case, and hence the algorithm A works as designed. To see the perfect
simulation with a negligible exceptional case, we are enough to prove the following seven claims.

Claim 1 The reply SKS = ((Kk, Lk, (Kk,x;x ∈ S)); k = 1, . . . , 4) for a key-extraction query of A is a
perfect simulation.

Proof. We must consider the implicit relations (1). For the index 2, we have implicitly set the random-
ness t2 = tcpa,2(−γ1) and we get:

K2 = gγ2K−γ1cpa,2 = gγ2(gα1gatcpa,2)−γ1 = gγ2(gα1gat2/(−γ1))−γ1 = gγ2−α1γ1gat2 = gα2gat2 ,

L2 = L−γ1cpa,2 = (gtcpa,2)−γ1 = gt2 ,

K2,x = K−γ1cpa,2,x = (htcpa,2
x)−γ1 = ht2x , x ∈ S.

For the index 3 and 4, see Appendix B.

Claim 2 (e(g, g), e(g, g)α1 , e(g, g)α2 , Ŷ , Ẑ1, Ẑ2) is a twin Diffie-Hellman tuple if and only if (e(g, g),
e(g, g)α1τe(g, g)α3 , e(g, g)α2τe(g, g)α4 , e(C ′, g), d1, d2) is a twin Diffie-Hellman tuple.

Proof. This claim can be proved by a short calculation. See Appendix C. �

Claim 3 If (e(g, g), e(g, g)α1 , e(g, g)α2 , Ŷ , Ẑ1, Ẑ2) is a twin Diffie-Hellman tuple, then (Ŷ , Ẑ1, Ẑ2) cer-

tainly passes the TwinDH-Test: Ẑ1
γ1
Ẑ2 = Ŷ γ2 .

Proof. This claim is a direct consequence of Lemma 1. �

10

Claim 4 Consider the following event which we name as Overlooki:

In the i-th TwinDH-Test, the following condition holds:
Ẑ1

γ1
Ẑ2 = Ŷ γ2 holds

and

(e(g, g), e(g, g)α1 , e(g, g)α2 , Ŷ , Ẑ1, Ẑ2) is NOT a twin DH tuple.

Then, for at most qd times decapsulation queries of A, the probability that at least one Overlooki
occurs is negligible in λ. More precisely, the following inequality holds:

Pr[

qd∨
i=1

Overlooki] ≤ qd/p. (2)

Proof. To apply Lemma 2, we construct an algorithm Cheat with unbounded computational power,
which takes as input (e(g, g), e(g, g)α1 , e(g, g)α2) and returns (Ŷ , Ẑ1, Ẑ2) employing the adversary A
as a subroutine. Fig. 1 shows the construction.

Given (e(g, g), e(g, g)α1 , e(g, g)α2) as input :
Set up
Initialize the inner state, put TABLE = φ;
Get a target access structure A∗ ← A(λ,U);
Compute the base g ∈ G from (e(g, g), e);
Choose a ∈ Zp and h1, . . . , hu ∈ G;
Put PKcpa = (g, ga, h1, . . . , hu, e(g, g)α1);
Get (κ∗, ψ∗cpa)← Encapcpa(PKcpa,A∗);
Choose η ← HKey(λ) and compute τ∗ ← Hη(ψ∗cpa);
Compute discrete logarithms α1, α2 ∈ Zp of e(g, g)α1 , e(g, g)α2 to the base e(g, g);
Choose µ1, µ2 ← Zp, put α3 = µ1 − α1τ

∗, α4 = µ2 − α2τ
∗;

Put PK = (PKcpa, e(g, g)α2 , e(g, g)α3 , e(g, g)α4 , η),MSK = (gα1 , gα2 , gα3 , gα4);
Give PK to A;
Phase 1
In the case that A issues a key-extraction query for S ⊂ U ;
Reply SKS to A in the same way as KeyGen does using MSK;
In the case that A issues a decapsulation query for (A, ψ = (ψcpa, d1, d2), S);
Reply κ̂ to A in the same way as Decap does using MSK;
Compute Ŷ = e(C′, g)τ−τ

∗
, Ẑ1 = d1/e(C

′, g)µ1 , Ẑ2 = d2/e(C
′, g)µ2 ;

Update TABLE = TABLE ∪ (Ŷ , Ẑ1, Ẑ2);
Challenge
In the case that A issues a challenge instance query;
Put d∗1 = e(C′∗, g)µ1 , d∗2 = e(C′∗, g)µ2 , ψ∗ = (ψ∗cpa, d

∗
1, d
∗
2);

Choose κ← KeySp(λ), b← {0, 1};
If b = 1 then put κ̃ = κ∗ else put κ̃ = κ;
Reply (κ̃, ψ∗) to A;
Phase 2
The same as in Phase 1;
Return
In the case that A returns its guess b∗;
Choose one triple (Ŷ , Ẑ1, Ẑ2) from TABLE at random;
Return (Ŷ , Ẑ1, Ẑ2).

Fig. 1. An algorithm Cheat with unbounded computational power for a proof of Claim 4.

First, note that the view of A in Cheat is the same as the real view of A and hence the algorithm
A works as designed.

11

Second, note that the return (Ŷ , Ẑ1, Ẑ2) of Cheat is randomized in TABLE. Hence:

qd∑
i=1

1

qd
Pr[Overlooki] =

1

qd

qd∑
i=1

Pr[Overlooki] = AdvtwinDH-test
Grp,Cheat (λ). (3)

We note here that the advantage AdvtwinDH-test
Grp,Cheat (λ) of Cheat is evaluated according to “Trapdoor Test”

in Section 3 for the target group GT of bilinear groups (p,G,GT , g, e) generated by BlGrp(λ). In this
case the group generation algorithm Grp is the following one.

Grp(λ) : (p,G,GT , g, e)← BlGrp(λ), gT := e(g, g),Return (p,GT , gT).

Third, applying Lemma 2 to Cheat, we get:

AdvtwinDH-test
Grp,Cheat (λ) ≤ 1/p. (4)

Combining (3) and (4), we have:

Pr[

qd∨
i=1

Overlooki] ≤
qd∑
i=1

Pr[Overlooki] ≤ qd AdvtwinDH-test
Grp,Cheat (λ) ≤ qd

p
.

�

Claim 5 The probability that Overlooki never occurs in TwinDH-Test for every i and Abort
occurs is negligible in λ. More precisely, the following inequality holds:

Pr[
(qd∧
i=1

¬Overlooki

)
∧Abort] ≤ Advtcr

Hfam,CF (λ). (5)

Proof. This claim is proved by constructing a collision finder CF on Hfam. See Appendix D. �

Claim 6 The reply κ̂ to A as an answer for a decapsulation query is correct.

Claim 7 The challenge instance ψ∗ = (ψ∗cpa, d
∗
1, d
∗
2) is correctly distributed.

Proof. These two claims are proved by a direct calculation. See Appendices E and F, respectively. �

Evaluation of the Advantage of B. Now we are ready to evaluate the advantage of B in the IND-
sel-CPA game. That A wins in the IND-sel-CCA game means that (κ̃, ψ∗ = (ψ∗cpa, d

∗
1, d
∗
2)) is correctly

guessed. This is equivalent to that (κ̃, ψ∗cpa) is correctly guessed because ψ∗cpa determines the consistent

blinding factor κ∗ = e(g, g)αs
∗

uniquely. This means that B wins in the IND-sel-CPA game.
Therefore, the probability that B wins is equal to the probability that A wins, Overlooki never

holds in TwinDH-Testfor each i and Abort never occurs. So we have:

Pr[B wins] = Pr[(A wins) ∧
(qd∧
i=1

¬Overlooki

)
∧ (¬Abort)]

= Pr[A wins]− Pr[(A wins) ∧ ¬
((qd∧

i=1

¬Overlooki

)
∧ (¬Abort)

)
]

≥Pr[A wins]− Pr[¬
((qd∧

i=1

¬Overlooki

)
∧ (¬Abort)

)
]

= Pr[A wins]− (Pr[

qd∨
i=1

Overlooki] + Pr[
(qd∧
i=1

¬Overlooki

)
∧Abort]).

12

Substituting (2), (5) and advantages into the above, we have:

Advind-sel-cpa
CP-ABKEMcpa,B(λ,U)

≥Advind-sel-cca
CP-ABKEM,A(λ,U)− qd

p
−Advtcr

Hfam,CF (λ).

This is what we should prove in Theorem 1. �

4.3 Encryption Version from KEM.

It is straightforward to construct our encryption scheme CP-ABE from CP-ABKEM. The IND-sel-CCA
security of CP-ABE is proved based on IND-sel-CPA security of the Waters KEM CP-ABKEMcpa.
Setup(λ,U). The same as Setup of CP-ABKEM.
Encrypt(PK,A,m). The same as Encap of CP-ABKEM except that Encrypt multiplies m by the blinding
factor κ in the group GT . Encrypt returns CT = (C = mκ,ψ = (C ′, ((Ci, Di); i = 1, . . . , l), d1, d2)).
KeyGen(MSK,PK, S). The same as KeyGen of CP-ABKEM.
Decrypt(PK,CT,SKS). The same as Decap of CP-ABKEM except that Decrypt divides out C by the
decapsulated blinding factor κ̂. Decrypt returns the result m̂.

4.4 Security and Proof

Theorem 2 If the Waters CP-ABKEMcpa [19] is selectively secure against chosen-plaintext attacks and
an employed hash function family Hfam has target collision resistance, then our CP-ABE is selectively
secure against chosen-ciphertext attacks. More precisely, for any given PPT adversary A that attacks
CP-ABE in the IND-sel-CCA game where decryption queries are at most qd times, and for any attribute
universe U , there exist a PPT adversary B that attacks CP-ABKEMcpa in the IND-sel-CPA game and a
PPT target collision finder CF on Hfam that satisfy the following inequality.

Advind-sel-cca
CP-ABE,A (λ,U) ≤ 2

(
Advind-sel-cpa

CP-ABKEMcpa,B(λ,U) + Advtcr
Hfam,CF (λ) +

qd
p

)
.

Proof. Given any adversary A that attacks our scheme CP-ABE in the IND-sel-CCA game, we construct
an adversary B that attacks the Waters KEM CP-ABKEMcpa in the IND-sel-CPA game as follows.
Commit to a Target Access Structure. The same as that of CP-ABKEM.
Set up. In return to outputting A∗, B receives the public key PKcpa for CP-ABKEMcpa. To set up a
public key PK for CP-ABE, B herein needs a challenge instance: B queries its challenger and gets a
challenge instance (κ̃, ψ∗cpa). The rest of procedure is the same as that of CP-ABKEM, and B inputs PK
into A.
Phase 1. The same as that of CP-ABKEM except that B replies a decrypted message m̂ to A for a
decryption query.
Challenge. In the case that A submits two plaintexts (m∗0,m

∗
1) of equal length, B makes a challenge

ciphertext CT∗ as follows and feeds CT∗ to A.

Choose b′ ← {0, 1}, put C̃∗ = m∗b′ κ̃;

Put d∗1 = e(C ′∗, g)µ1 , d∗2 = e(C ′∗, g)µ2 ;

Put CT∗ = (C̃∗, ψ∗ = (ψ∗cpa, d
∗
1, d
∗
2)).

Phase 2. The same as in Phase 1.
Guess. In the case that A returns A’s guess b̃, B returns b̃ as B’s guess.
Evaluation of the Advantage of B. A standard argument deduces a loss of tightness by a factor of
1/2. That is;

Advind-sel-cpa
CP-ABKEMcpa,B(λ,U)

≥1

2
Advind-sel-cca

CP-ABE,A (λ,U)− qd
p
−Advtcr

Hfam,CF (λ).

�

13

5 Securing the Ostrovsky-Sahai-Waters KP-ABKEM against
Chosen-Ciphertext Attacks

In this section, we describe our direct chosen-ciphertext security technique by applying it to the
Ostrovsky-Sahai-Waters KP-ABE [16].
Overview of Our Technique The Ostrovsky-Sahai-Waters KP-ABE is proved to be secure in the
IND-sel-CPA game [16]. We convert it into a scheme that is secure in the IND-sel-CCA game by
employing the Twin Diffie-Hellman technique of Cash, Kiltz and Shoup [8] and the algebraic trick of
Boneh and Boyen [5] and Kiltz [12].

In encryption, a ciphertext becomes to contain additional two elements (d1, d2), which function in
decryption as a “check sum” to verify that a tuple is certainly a twin DH tuple.

In security proof, the Twin Diffie-Hellman Trapdoor Test does the function instead. It is noteworthy
that we are unable to use the bilinear map instead because the tuple to be verified is in the target
group. In addition, the algebraic trick enables to answer for adversary’s decryption queries. Note also
that the both technique become compatible by introducing random variables.
Key Encapsulation and Encryption. The Ostrovsky-Sahai-Waters KP-ABE can be captured as a
KP-ABKEM: the blinding factor of the form e(g, g)aαs in the Ostrovsky-Sahai-Waters KP-ABE can be
considered as a random one-time key. So we call it the Ostrovsky-Sahai-Waters KP-ABKEM hereafter
and denote it as KP-ABKEMcpa. Likewise, we distinguish parameters and algorithms of KP-ABKEMcpa by
the index cpa. For theoretical simplicity, we first develop a KEM KP-ABKEM.

5.1 Our Construction

Our KP-ABKEM consists of the following four PPT algorithms (Setup, Encap, KeyGen, Decap). Roughly
speaking, the Ostrovsky-Sahai-Waters original scheme KP-ABKEMcpa (the first scheme in [16]) corre-
sponds to the case k = 1 below excluding the “check sum” (d1, d2).
Setup(λ,U). Setup takes as input the security parameter λ and the attribute universe U = {1, . . . , u}.
It runs BlGrp(λ) to get bilinear groups (p,G,GT , g, e). These parameters become public. Then Setup
chooses u random group elements h1, . . . , hu ∈ G that are associated with the u attributes. In addition,
it chooses random exponents αk ∈ Zp, k = 1, . . . , 4, a ∈ Zp and a hash key η ∈ HKey(λ). The public
key is published as PK = (g, ga, h1, . . . , hu, e(g, g)aα1 , . . . , e(g, g)aα4 , η). The authority sets MSK =
(α1, . . . , α4) as the master secret key.
Encap(PK, S). The encapsulation algorithm Encap takes as input the public key PK and a set S of
attributes. Encap first chooses a random value s ∈ Zp that is the encryption randomness. Then, a pair
of a random one-time key and its encapsulation (κ, ψ) is computed as follows.

Put C ′ = gs; For x ∈ S : Cx = hsx

ψcpa = (S,C ′, (Cx;x ∈ S)), τ ← Hη(ψcpa);

For k = 1 to 4 : κk = e(g, g)aαks; d1 = κτ1κ3, d2 = κτ2κ4;

(κ, ψ) = (κ1, (ψcpa, d1, d2)).

KeyGen(MSK,PK,A). The key generation algorithm KeyGen takes as input the master secret key
MSK, the public key PK and an LSSS access structure A = (M,ρ), where M is an l × n matrix and
ρ is the function which maps each row index i of M to an attribute in U = {1, . . . , u}. For k = 1 to
4, KeyGen first chooses random values yk,2, . . . , yk,n ∈ Zp and forms a vector vk = (αk, yk,2, . . . , yk,n).
Then, for i = 1 to l, it calculates λk,i = vk ·Mi, where Mi denotes the i-th row vector of M , and it
chooses random values rk,i ∈ Zp. KeyGen generates the secret key SKA as follows.

For k = 1 to 4 : For l = 1 to l :

Kk,i = gaλk,ih
rk,i

ρ(i), Lk,i = grk,i

SKA = (((Kk,i, Lk,i); i = 1, . . . , l)k = 1, . . . , 4).

14

Decap(PK, ψ,SKA). The decapsulation algorithm Decap takes as input the public key PK, an en-
capsulation ψ for an attribute set S and a private key SKA for an access structure A = (M,ρ). It first
checks whether S ∈ A. If the result is False, put κ̂ =⊥. Otherwise, let IS = ρ−1(S) ⊂ {1, . . . , l} and
let {ωi ∈ Zp; i ∈ IS} be a set of linear reconstruction constants. Then, the decapsulation κ̂ is computed
as follows.

Parse ψ into (ψcpa = (S,C ′, (Cx;x ∈ S)), d1, d2);

τ ← Hη(ψcpa);

For k = 1 to 4 :

κ̂k =
∏
i∈IS

(e(C ′,Kk,i)/e(Lk,i, Cρ(i)))
ωi = e(g, g)aαks

If κ̂1
τ κ̂3 6= d1 ∨ κ̂2τ κ̂4 6= d2,

then put κ̂ =⊥, else put κ̂ = κ̂1.

5.2 Security and Proof

Theorem 3 If the Ostrovsky-Sahai-Waters KP-ABKEMcpa [16] is selectively secure against chosen-
plaintext attacks and an employed hash function family Hfam has target collision resistance, then our
KP-ABKEM is selectively secure against chosen-ciphertext attacks. More precisely, for any given PPT
adversary A that attacks KP-ABKEM in the IND-sel-CCA game where decapsulation queries are at most
qd times, and for any attribute universe U , there exist a PPT adversary B that attacks KP-ABKEMcpa in
the IND-sel-CPA game and a PPT target collision finder CF on Hfam that satisfy the following tight
reduction.

Advind-sel-cca
KP-ABKEM,A(λ,U) ≤ Advind-sel-cpa

KP-ABKEMcpa,B(λ,U) + Advtcr
Hfam,CF (λ) +

qd
p
.

Proof. We will omit the description of the proof because the proof goes analogously to the case of
CP-ABKEM in Section 4.2. �

5.3 Encryption Version from KEM.

It is straightforward to construct our encryption scheme KP-ABE from KP-ABKEM. The IND-sel-CCA
security of KP-ABE is proved based on IND-sel-CPA security of the Waters KEM KP-ABKEMcpa.
Setup(λ,U). The same as Setup of KP-ABKEM.
Encrypt(PK,A,m). The same as Encap of KP-ABKEM except that Encrypt multipliesm by the blinding
factor κ in the group GT . Encrypt returns CT = (C = mκ,ψ = (C ′, ((Ci, Di); i = 1, . . . , l), d1, d2)).
KeyGen(MSK,PK, S). The same as KeyGen of KP-ABKEM.
Decrypt(PK,CT,SKS). The same as Decap of KP-ABKEM except that Decrypt divides out C by the
decapsulated blinding factor κ̂. Decrypt returns the result m̂.

5.4 Security and Proof

Theorem 4 If the Ostrovsky-Sahai-Waters KP-ABKEMcpa [16] is selectively secure against chosen-
plaintext attacks and an employed hash function family Hfam has target collision resistance, then
our KP-ABE is selectively secure against chosen-ciphertext attacks. More precisely, for any given PPT
adversary A that attacks KP-ABE in the IND-sel-CCA game where decryption queries are at most qd
times, and for any attribute universe U , there exist a PPT adversary B that attacks KP-ABKEMcpa in the
IND-sel-CPA game and a PPT target collision finder CF on Hfam that satisfy the following inequality.

Advind-sel-cca
KP-ABE,A (λ,U) ≤ 2

(
Advind-sel-cpa

KP-ABKEMcpa,B(λ,U) + Advtcr
Hfam,CF (λ) +

qd
p

)
.

Proof. We will omit the description of the proof because the proof goes in the same way as the case of
CP-ABE in Section 4.4. �

15

Table 1. Efficiency comparison of IND-sel-CCA secure ABKEMs with the original IND-sel-CPA secure
ABKEMs [19, 16].

Scheme L(PK) L(SKS) L(CT) C(Enc) C(Dec)

Generic transform [20], CP-ABE +4λ2(G) +4λ2(G) +3λ2(bit) +2λ2exp.(G) +2λ2pair.(e)
Our individual modification (CP-ABE) +3(GT) ×4 +2(GT) +4exp.(GT) ×4

Generic transform [20], KP-ABE +4λ2(G) +0 +3λ2(bit) +2λ2exp.(G) +2λ2pair.(e)
Our individual modification (KP-ABE) +3(GT) ×4 +2(GT) +4exp.(GT) ×4

1) λ is the security parameter. (For instance, λ = 224 or 256.)
2) L(data) denotes length of data, C(algorithm) denotes computational amount of algorithm.
3) + and × mean increment and multiplier to the length or computational amount of the Waters CP-ABKEMcpa.
4) (G), (GT) and (bit) mean elements in G, elements in GT and bits, respectively.
5) exp.(G) and pair.(e) mean a computational amount of one exponentiation in G and one pairing computation

by the map e, respectively.

6 Efficiency Discussion

First, we remark that our individual modification to attain CCA security is applicable when a Diffie-
Hellman tuple to be verified is in the target group of a bilinear map e : G×G→ GT . Especially, it is
applicable even when an original CPA secure scheme is based on asymmetric pairing [9], e : G1×G2 →
GT . For example, the Type 3 version [9] of the Waters CP-ABE scheme [19] can be found in [21].
Detailed discussions and results on real implementations are found for the case of CPA-secure ABE
schemes [18, 21]. We note that the efficiency comparison below enables to guess the implementation
results of our modification technique.

We compare efficiency of our CP-ABE to the original Waters CP-ABEcpa, and our KP-ABE to the
original Ostrovsky-Sahai-Waters KP-ABEcpa. We also compare efficiency of the CP-ABE and KP-ABE
obtained by the generic transformation of Yamada et al. [20]. Here the generic transformation [20] is
considered in the case of a small attribute universe [11], the delegation type [20] and the Lamport one-
time signature [13]. Table 1 shows these comparison. Note that a hash function is applied to generate
a message digest of bit-length λ before signing by a secret key of the one-time signature. Note also,
for simplicity, we evaluate the lengths and the amounts of computation below in the case that an
access structure A is “all-AND” and an attribute map ρ is injective (i.e. “single-use” that is opposed
to “multi-use”).

Our individual modification results in expansion of the length of a secret-key and the amount of
decryption computation by a factor of four, while the length of a public-key, the length of a ciphertext
and the amount of encryption computation are almost the same as those of the original CPA-secure
schemes. In the case that the size of an attribute set is up to (2

3 of) the square of the security parameter
λ, the amount of decryption computation of our CP-ABE and KP-ABE are smaller than those of the CP-
ABE and KP-ABE obtained by the generic transformation [20], respectively.

7 Conclusion

We developed a technique of direct chosen-ciphertext security for ABE in the standard model in the case
of the Waters scheme (CP-ABKEMcpa, CP-ABEcpa) and the Ostrovsky-Sahai-Waters scheme (KP-ABKEMcpa,
KP-ABEcpa). We utilized the Twin Diffie-Hellman Trapdoor Test of Cash, Kiltz and Shoup and the
algebraic trick of Boneh and Boyen [5] and Kiltz [12]. Our technique is helpful when a Diffie-Hellman
tuple to be verified is in the target group of the bilinear map. It results in expansion of secret key
length and decryption cost of computation by a factor of four, while public key length, ciphertext
length and encryption cost of computation are almost the same as the original CPA secure schemes.
In comparison with the versatile generic transformation, the amount of decryption computation of our
individual modification is smaller when the size of an attribute set is up to about the square of the
security parameter λ.

16

References

1. N. Attrapadung. Dual system encryption via doubly selective security: Framework, fully secure functional
encryption for regular languages, and more. In Advances in Cryptology - EUROCRYPT 2014 - 33rd An-
nual International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 557–577, 2014.

2. N. Attrapadung, B. Libert, and E. de Panafieu. Expressive key-policy attribute-based encryption with
constant-size ciphertexts. In Public Key Cryptography - PKC 2011 - 14th International Conference on
Practice and Theory in Public Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings, pages
90–108, 2011.

3. J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In 2007 IEEE
Symposium on Security and Privacy (S&P 2007), 20-23 May 2007, Oakland, California, USA, pages 321–
334, 2007.

4. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without random oracles. In
Advances in Cryptology - EUROCRYPT 2004, International Conference on the Theory and Applications
of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 223–238, 2004.

5. D. Boneh and X. Boyen. Efficient selective-id secure identity-based encryption without random oracles. In
Advances in Cryptology - EUROCRYPT 2004, International Conference on the Theory and Applications
of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 223–238, 2004.

6. X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-based techniques. In Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security, CCS 2005, Alexandria,
VA, USA, November 7-11, 2005, pages 320–329, 2005.

7. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. In Ad-
vances in Cryptology - EUROCRYPT 2004, International Conference on the Theory and Applications of
Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 207–222, 2004.

8. D. Cash, E. Kiltz, and V. Shoup. The twin diffie-hellman problem and applications. In Advances in
Cryptology - EUROCRYPT 2008, 27th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, pages 127–145, 2008.

9. S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete Applied Mathe-
matics, 156(16):3113–3121, 2008.

10. M. C. Gorantla, C. Boyd, and J. M. G. Nieto. Attribute-based authenticated key exchange. In Information
Security and Privacy - 15th Australasian Conference, ACISP 2010, Sydney, Australia, July 5-7, 2010.
Proceedings, pages 300–317, 2010.

11. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of
encrypted data. In Proceedings of the 13th ACM Conference on Computer and Communications Security,
CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006, pages 89–98, 2006.

12. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In Theory of Cryptography, Third Theory
of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, pages 581–
600, 2006.

13. L. Lamport. Constructing digital signatures from a one-way function. Technical report, Oct. 1979.

14. A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure functional encryption:
Attribute-based encryption and (hierarchical) inner product encryption. In Advances in Cryptology - EU-
ROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, French Riviera, May 30 - June 3, 2010. Proceedings, pages 62–91, 2010.

15. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In Proceed-
ings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton,
USA, pages 33–43, 1989.

16. R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-monotonic access structures.
In Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007,
Alexandria, Virginia, USA, October 28-31, 2007, pages 195–203, 2007.

17. A. Sahai and B. Waters. Fuzzy identity-based encryption. In Advances in Cryptology - EUROCRYPT
2005, 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings, pages 457–473, 2005.

18. A. H. Sánchez and F. Rodŕıguez-Henŕıquez. NEON implementation of an attribute-based encryption
scheme. In Applied Cryptography and Network Security - 11th International Conference, ACNS 2013,
Banff, AB, Canada, June 25-28, 2013. Proceedings, pages 322–338, 2013.

17

19. B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure
realization. In Public Key Cryptography - PKC 2011 - 14th International Conference on Practice and
Theory in Public Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings, pages 53–70, 2011.

20. S. Yamada, N. Attrapadung, G. Hanaoka, and N. Kunihiro. Generic constructions for chosen-ciphertext
secure attribute based encryption. In Public Key Cryptography - PKC 2011 - 14th International Conference
on Practice and Theory in Public Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings, pages
71–89, 2011.

21. E. Zavattoni, L. J. D. Perez, S. Mitsunari, A. H. Sánchez-Ramı́rez, T. Teruya, and F. Rodŕıguez-Henŕıquez.
Software implementation of an attribute-based encryption scheme. IEEE Trans. Computers, 64(5):1429–
1441, 2015.

18

Appendix

A Proof of Lemma 2

The only one point to be complemented to the original proof (in [8]) is that even for any algorithm A with
unbounded computational power, the statement holds. This is because, conditioning on input fixed values
(g,X1, X2), A at most reduces two-dimensional freedom (r, s) ∈ Z2

p into one-dimensional freedom r ∈ Zp even
if A correctly guesses the relation s = rx1 + x2. �

B Proof of Claim 1

For the index 3, we have implicitly set t3 = tcpa,3(−τ∗) and we get:

K3 = gµ1K−τ
∗

cpa,3 = gµ1(gα1gatcpa,3)−τ
∗

= gµ1−α1τ
∗
gat3 = gα3gat3 ,

L3 = L−τ
∗

cpa,3 = (gtcpa,3)−τ
∗

= gt3 ,

K3,x = K−τ
∗

cpa,3,x = (h
tcpa,3
x)−τ

∗
= ht3x , x ∈ S.

For the index 4, we have implicitly set t4 = tcpa,4(γ1τ
∗) and we get:

K4 = gµ2−γ2τ∗Kγ1τ
∗

cpa,4 = gµ2−γ2τ∗(gα1gatcpa,4)γ1τ
∗

= gµ2−γ2τ∗gα1γ1τ
∗
gat4 = gµ2−(γ2−α1γ1)τ

∗
gat4 = gµ2−α2τ

∗
gat4 = gα4gat4 ,

L4 = Lγ1τ
∗

cpa,4 = (gtcpa,4)γ1τ
∗

= gt4 ,

K4,x = Kγ1τ
∗

cpa,4,x = (h
tcpa,4
x)γ1τ

∗
= ht4x , x ∈ S.

�

C Proof of Claim 2

Suppose that we are given a twin DH tuple (e(g, g), e(g, g)α1 , e(g, g)α2 , Ŷ , Ẑ1, Ẑ2). Then, di/e(C
′, g)µi =

(e(g, g)αi)s(τ−τ
∗), i = 1, 2. So, using the implicit relations (1), we have:

di = e(g, g)αis(τ−τ∗)e(gs, g)µi = (e(g, g)αi(τ−τ∗)e(g, g)µi)s

=(e(g, g)αi(τ−τ∗)e(g, g)αiτ
∗+α(i+2))s = (e(g, g)αiτe(g, g)α(i+2))s, i = 1, 2.

This means that (e(g, g), e(g, g)α1τe(g, g)α3 , e(g, g)α2τe(g, g)α4 , e(C′, g), d1, d2) is a twin Diffie-Hellman tuple.
The converse is also verified by the reverse calculation. �

D Proof of Claim 5

To reduce to the target collision resistance of an employed hash function family Hfam, we construct a PPT
target collision finder CF that attacks Hfam using A as a subroutine. The construction is shown in Fig.2. (Note
that the case Collision is defined in Fig.2.)

Note that the view of A in CF is the same as the real view of A until the case Collision occurs and hence
the algorithm A works as designed.

To evaluate the probability in Claim 5, we consider the following two cases.
Case 1 : the case that Abort (τ = τ∗) occurs in B in Phase 1. In this case, the target τ∗ has not been given
to A. So A needs to guess τ∗ to cause a collision τ = τ∗. Hence:

Pr[Phase 1 ∧
(qd∧
i=1

¬Overlooki
)
∧Abort] ≤ Pr[Phase 1 ∧Collision]. (6)

19

Given λ as input :
Set up
Initialize inner state;
Choose a polynomial size attribute universe U at random;
Get a target access structure A∗ ← A(λ,U);
Run Setupcpa(λ,U) to get (p,G,GT , g, e),PKcpa,MSKcpa;
Get (κ∗, ψ∗cpa)← Encapcpa(PKcpa,A∗);
Output ψ∗cpa;
Receive, in return,η ← HKey(λ) and compute τ∗ ← Hη(ψ∗cpa);
Choose α2, α3, α4 ← Zp;
Put PK = (PKcpa, e(g, g)α2 , e(g, g)α3 , e(g, g)α4 , η),MSK = (gα1 , gα2 , gα3 , gα4);
Give PK to A;
Phase 1
In the case that A makes a key-extraction query for S ⊂ U ;
Reply SKS to A in the same way as KeyGen does using MSK;
In the case that A makes a decapsulation query for (S, ψ = (ψcpa, d1, d2));
Reply κ̂ to A in the same way as Decap does using MSK;
If κ̂ 6=⊥ and τ = τ∗ (: call this case Collision)
then return ψcpa and stop;
Challenge
In the case that A makes a challenge instance query;
Using MSK, put d∗1 = e(gα1 , C′∗)τ

∗
e(gα3 , C′∗), d∗2 = e(gα2 , C′∗)τ

∗
e(gα4 , C′∗),

ψ∗ = (ψ∗cpa, d
∗
1, d
∗
2);

Choose κ← KeySp(λ), b← {0, 1};
If b = 1 then put κ̃ = κ∗ else put κ̃ = κ;
Reply (κ̃, ψ∗) to A;
Phase 2
The same as in Phase 1;
Return
In the case that A returns its guess b∗;
Stop.

Fig. 2. A PPT collision finder CF that attacks Hfam for the proof of Claim 5.

Case 2 : the case that Abort (τ = τ∗) occurs in B in Phase 2. In this case, if, in addition to τ = τ∗, it occurred
that ψcpa = ψ∗cpa (and hence C′ = C′∗), then it would occur that ψ = ψ∗. This is because the following two
tuples are equal twin DH tuples by the fact that Overlooki never occurs:

(e(g, g), e(g, g)α1τe(g, g)α3 , e(g, g)α2τe(g, g)α4 , e(C′, g), d1, d2),

(e(g, g), e(g, g)α1τ
∗
e(g, g)α3 , e(g, g)α2τ

∗
e(g, g)α4 , e(C′∗, g), d∗1, d

∗
2).

Hence both S ∈ A and ψ = ψ∗ would occur. This is ruled out in decapsulation query; a contradiction. So we
have ψcpa 6= ψ∗cpa; that is, a collision:

ψcpa 6= ψ∗cpa ∧Hη(ψcpa) = τ = τ∗ = Hη(ψ∗cpa).

Therefore, if Overlooki never occurs for each i, then only decapsulation queries for which (e(g, g), e(g, g)α1 ,
e(g, g)α2 , Ŷ , Ẑ1, Ẑ2) are certainly twin DH tuples have the chance to cause a collision τ = τ∗, as is the case
in CF . Hence we have:

Pr[Phase 2 ∧
(qd∧
i=1

¬Overlooki
)
∧Abort] ≤ Pr[Phase 2 ∧Collision]. (7)

Taking a sum of both sides of (6) and (7), we get:

Pr[
(qd∧
i=1

¬Overlooki
)
∧Abort] ≤ Pr[Collision] = Advtcr

Hfam,CF (λ). (8)

�

20

E Proof of Claim 6

It is enough to prove that

When (e(g, g), e(g, g)α1 , e(g, g)α2 , Ŷ , Ẑ1, Ẑ2) is a twin DH tuple,

κ̂ = Ẑ1
1/(τ−τ∗)

= e(g, g)α1s holds.

This is deduced as follows:

κ̂ = (d1/e(C
′, g)µ1)1/(τ−τ

∗) = ((e(g, g)α1)s(τ−τ
∗))1/(τ−τ

∗) = e(g, g)α1s.

�

F Proof of Claim 7

A direct calculation with equalities (1) shows:

d∗i = e(C′∗, g)µi = e(g, g)s
∗(αiτ

∗+α(i+2)) = e(g, g)αis
∗τ∗e(g, g)α(i+2)s

∗
, i = 1, 2.

Hence ψ∗ = (ψ∗cpa, d
∗
1, d
∗
2) is legitimate and correctly distributed. �

21

