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Abstract

Current signature and encryption schemes secure against continual leakage fail completely
if the key in any time period is fully exposed. We suggest forward security as a second line
of defense, so that in the event of full exposure of the current secret key, at least uses of keys
prior to this remain secure, a big benefit in practice. (For example if the signer is a certificate
authority, full exposure of the current secret key would not invalidate certificates signed under
prior keys.) We provide definitions for signatures and encryption that are forward-secure under
continual leakage. Achieving these definitions turns out to be challenging, and we make initial
progress with some constructions and transforms.
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1 Introduction

Classically, cryptography assumes secure endpoints and an insecure communication channel. Mal-
ware and sidechannel attacks bring the threat to the endpoints: Information about keys stored on
our system can be leaked or exfiltrated to the adversary. Let us begin by reviewing two ways to
address this for public-key cryptography, namely forward security and leakage resilience.

Forward security. The threat of exposure of a secret (signing or decryption) key due to compro-
mise of the system storing the key is not new. Forward security (FS) was developed in the late 1990s
as a way to mitigate the damage. The idea of forward secure signatures was suggested by Ander-
son [5] and formalized by Bellare and Miner (BM) [8]. Later Canetti, Halevi and Katz (CHK) [15]
formalized forward secure encryption. Subsequent work gave many schemes and extensions.

Forward-security [5, 8] introduced the key evolution paradigm: evolve the secret key over time
while keeping the public key fixed. At time period i, the secret key is ski, and the signing algorithm
(we will discuss signatures rather than encryption as an example), applied to it and a message m,
produces a signature that is a pair (i, σ), meaning the time period is explicitly included in the
signature. At the start of time period i + 1, a (public) update function is applied to ski to get
ski+1, and ski is deleted from the system. An attack compromising the system at some time i
obtains ski, and automatically skj for any j ≥ i since the update function is public. Security of
signatures as defined in BM [8] required that possession of ski does not allow forgery of signatures
with time period j —meaning ones of the form (j, σ)— for j < i. It follows that possession of ski

does not allow recovery of skj for j < i, meaning the update function must be one-way.

The CA example.What does FS buy us? An illustrative example is when the signer is a certificate
authority (CA). Assume the CA creates certificates using a normal (not forward secure) signature
scheme, with its (single, static) secret key sk. Say that in time period 1, it creates a certificate (m,σ)
for Alice, where m is Alice’s certificate data (her pubic key and so on) and σ is the CA’s signature
on m. Suppose, in time period 168, the CA system is infiltrated by malware (a realistic possibility)
and sk is exposed. Discovering this, the CA immediately revokes its public key. Now suppose
in time period 169, Bob receives from Alice the (valid!) certificate (m,σ) in a TLS connection.
Finding the CA public key on his revocation list, he will reject certificate (m,σ) as invalid and
deny the TLS connection. Security-wise, this is the right and necessary thing to do: there is no
way for Bob to know that (m,σ) is not a forgery. But the cost is enormous: all certificates the
CA had issued prior to the revocation (which could be many years worth of certificates) must be
discarded, and many TLS connections will be rejected, causing serious disruption to web services.
Time-stamping the signature will not fix this, since, once the adversary has the secret key, it can
forge the time-stamp too.

But now suppose the CA used a forward secure signature scheme instead of a normal one, so
that the January 1st signature has the form (1, σ), Alice’s certificate thus being (m, (1, σ)). The
infiltration in time period 168 exposes secret key sk168. As before, the CA revokes its public key,
and now we consider Bob receiving the certificate (m, (1, σ)) in time period 169. He sees the CA
public key on his revocation list, but he also sees the revocation is marked with time period 168 > 1.
Now he can safely accept the certificate (m, (1, σ)) and proceed with the TLS connection, because
forward-security guarantees that (m, (1, σ)) cannot be a forgery. That is, certificates created prior
to the exposure are still secure and valid. This is a significant advantage in the event of compromise.

Note that FS does not prevent (or even make more difficult) exposure of a secret key. That is
not its aim. Its aim is to mitigate the damage caused by an exposure, if and when the latter occurs.

Leakage-resilience. Motivated by sidechannel attacks, leakage resilience aims to preserve secu-
rity even if some information f(sk) about the secret key sk is leaked. In the bounded memory

2



leakage model of Akavia et al. [2] and extensions [38, 21], f is any function returning a number of
bits enough short of the length |sk| of sk. However if the adversary has some sidechannel capability,
it may, over time, gather enough bits to expose the entire key, and then security is lost. To protect
against this, Dodis et al. [19] and Brakerski et al. [14] propose the continual leakage (CL) model.
As in FS, the secret key is updated in each time period while the public key stays fixed. In each
time period i, the adversary may obtain a bounded amount of leakage fi(ski) on the current secret
key, yet security must be maintained. The gain is that the sidechannel attack has limited time to
attack a particular key before it is updated, and once that happens it must effectively start from
scratch.

Security is parameterized by a leakage rate, the scheme being δ-CL if it remains secure when
the number of bits leaked in any period is restricted to at most a δ fraction of the length of
the secret key. Achieving δ-CL-security is not easy. One subtlety is that the update function,
unlike for FS, must be randomized. Secure schemes have been provided in [19, 14] for the cases
of encryption and signatures, while other works looked at extensions to basic notions and treated
other primitives [31, 11, 33, 37, 34, 27, 4, 18, 39, 17].

The problem. Security in the CL model relies on the assumption that the amount of leakage in
a particular time period is bounded, in particular short of the length of the key itself. If the entire
key is leaked in some time period, security is lost entirely. One could make updates more frequent
to restrict the time the attacker has to expose a key before it is updated, but, while this may
be reasonable for certain kinds of side-channel attacks, it may not be effective when the attack is
malware on your system that can directly exfiltrate the key. Also it is not clear how to pick an
update frequency or evaluate the security benefits of a choice. We introduce forward-security under
continual leakage as a way to maintain the CL guarantee but add a second line of defense against
full key exposure via FS.

Forward-security under continual leakage.We continue, as with both FS and CL, to work
in the model where the public key is fixed but the secret key evolves with time, a public update
function being applied to the period i key ski to produce the next key ski+1. The first definition
one might consider is to ask that the scheme be both (1) CL-secure, and (2) FS-secure. We can
do better. We ask that FS holds even under CL, in the following sense. In our game, in any time
period, the adversary get a bounded amount of leakage fi(ski) on the key ski in that time period
i, just as in CL. Additionally, it can, in some time period i of its choice, expose and obtain the
entire secret key ski. The requirement is that of FS, namely security of usages of keys skj for j < i.
Note a FS+CL scheme defined in this way is both CL (restrict attention to adversaries that do
not make the full expose query) and FS (restrict attention to adversaries that do make this query
but do not leak any information on prior keys). But it requires more than the two individually
because security of keys skj for j < i is guaranteed even when ski is known to the adversary and
the adversary has leakage on all the keys skj . As with CL, security is parameterized by a leakage
rate δ.

Within this template, the precise definition of security depends on the primitive. In Section 3, we
define key-evolving signature schemes and a notion of δ-FUFCL security, for Forward Unforgeability
under Continual Leakage. The definition is parameterized by the leakage rate δ. We also define key-
evolving encryption schemes and a notion of δ-FINDCL security, for Forward INDistinguishability
under Continual Leakage. As a tool in obtaining security against continual leakage, Dodis et al. [19]
introduced the notion of relations that are one-way under CL, and in analogy, as a tool to obtain
forward security under continual leakage, we define in Section 5 the notion of a δ-FOWCL relation,
for Forward One-Wayness under Continual Leakage.
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Goal δ′ = Assumptions Section

δ′-FUFCL signatures δ/(d+ 1) δ-CL signatures 4

δ′-FUFCL signatures δ δ-FOWCL KE for T periods + WS 5.1

δ′-FINDCL encryption δ δ-FOWCL KE for T periods + WE 5.2

Figure 1: Proposed constructions of δ′-FUFCL key-evolving signature schemes, and δ′-FINDCL
key-evolving encryption schemes for different values of continual-leakage fraction δ′ and for T time
periods. We assume that T = 2d for some d ∈ N.

The benefits. To see the benefits provided by forward security under continual leakage over CL
security alone, let us return to the CA example discussed above. Suppose that the CA is concerned
about leakage and uses a CL-secure signature scheme in place of the normal secure signature
scheme. Alice’s certificate, produced in time period 1, has the form (m, (1, σ)). Now suppose, due
to malware on the system in time period 168, the secret key sk168 is exposed, and the public key
revoked. Bob receives the certificate (m, (1, σ)) for a TLS connection in time period 169. Seeing the
CA’s public key on the certificate revocation list, he cannot accept Alice’s certificate, because, in a
CL scheme, possession of sk168 could allow forgery of signatures for time period 1. Thus millions
of certificates, issued over years by the CA, suddenly become obsolete. The cost in disruption to
web services (gmail, amazon, ...) using TLS is huge. However if the scheme is FS+CL secure, Bob
can in confidence accept Alice’s certificate, because the revocation period is 168 > 1. Thus we have
provided leakage resilience with a second line of defense that significantly mitigates damage caused
by full key exposures.

Challenges. We would like to give FS+CL schemes for both signatures and encryption, meaning
a δ-FUFCL signature scheme and a δ-FINDCL encryption scheme. This is surprisingly challenging.
The first thought one may have is that perhaps some existing CL-secure scheme is already FS+CL.
This is not true, because all existing CL schemes update their secret keys by merely re-randomizing
them. So a full exposure of the key ski in some time period i results in full recovery of the secret
keys for all time periods, meaning that the schemes are not even FS, let alone FS+CL. The
complementary question is whether any existing FS scheme happens to be FS+CL, but this seems
evidently false because existing FS schemes provide no security under leakage. One reason is that
the update functions are deterministic, and no scheme with a deterministic update function can be
CL secure. The latter is because otherwise an adversary can repeatedly leak bits of a secret key
skt for some future time period t, by querying fi(ski) for functions fi that use ski to compute skt.

The natural next construction approach to consider is a modular one. We have CL-secure
schemes, and we have FS-secure ones. Is there some way to combine a CL scheme with an FS
one to get a FS+CL one? We do not know a fully general way to do this, but our first scheme is
obtained by a generic transform of this ilk, as we now discuss.

Generic transform from CL. Our constructions are summarized in Fig. 1. Our first result is
a generic transform of any CL scheme into a FS+CL one in the case of signatures. FS+CL security
is proven with no extra assumptions beyond the CL security of the base scheme. We can now use
existing CL signature schemes [14, 19]. Thus we obtain the first constructions of FUFCL signatures
schemes.

Our generic transform is tree-based. To get a FS+CL signature scheme, we use the binary tree
FS signature construction from BM [8] with a (any) CL scheme as the base scheme. A drawback
of this transform, however, is that it degrades the relative leakage parameter: If we start with a
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δ-CL scheme and the number of time periods is T = 2d then we get a δ′-FS+CL scheme with
δ′ = δ/(d + 1). In particular we do not get a FUFCL signature scheme with constant relative
leakage.

This approach does not work in the case of encryption. For example, it is tempting to start
from the CL HIBE of Lewko, Rouselakis and Waters [34] and use it to build binary-tree encryption
(BTE) following the construction of FS-encryption from CHK [15], but this fails. The problem is
that FS+CL security of the resulting scheme requires that multiple nodes of the BTE construction
can be leaked on jointly, whereas the CL security of HIBE only buys us leakage on each such node
individually. We will construct a FINDCL encryption scheme in a different way that leverages both
the FUFCL signature scheme we have just built and witness encryption, as we discuss next.

Transforms using Witness primitives. The second set of constructions extends the paradigm
of Dodis et al. [19]. They used a key evolution scheme that is one-way under continual leakage
to build CL-secure signatures and encryption. We assume a key evolution scheme that is forward
one-way under continual-leakage (FOWCL KE). Then we present a unified paradigm to get FS+CL
signatures and encryption using, as an additional tool, WX, where the “W” stands for “Witness”
and X=S for signatures, and X=E for encryption. In other words, we use witness signatures
(WS) [16, 7] to get FS+CL signatures, and witness encryption (WE) [26, 6, 28] to get FS+CL
encryption. In this case there is no loss of relative leakage, meaning if we start with a δ-FOWCL
KE scheme we get δ′-FS+CL encryption and signature schemes with δ′ = δ.

To obtain FS+CL schemes from these results, we need to instantiate the components. This
means we need: (1) A FOWCL key evolution scheme (2) A WS scheme to get FS+CL signatures
and a WE scheme to get FS+CL encryption. Let us now look into this.

First, for (2), witness signatures as we define them in Section 5.1 are, as explained there,
easily obtained from NIZKs since they are just another name for signatures of knowledge [16, 7],
different from the (impossible) witness signatures of GJK [29]. In other words, these are readily
available under standard assumptions. Witness encryption, as we discuss further in Section 5.2,
is more difficult since we do require (a weak form of) extractability. Now turning to (1), we can
get a FOWCL KE scheme by using the tree-based FUFCL signature scheme obtained via our first
(generic transform) result.

The main outcome from this is the first construction of a FINDCL encryption scheme. The
assumptions are any CL signature scheme (which yields a FUFCL signature scheme via our tree-
based construction, and thence a FOWCL KE scheme as noted above) plus extractable witness
encryption. Due to the use of our tree-based construction, the relative leakage will again degrade
compared to that of the starting CL signature scheme, so we again fail to get FINDCL encryption
with constant relative leakage. The extractable witness encryption we use evades the negative
results of Garg et al. [25] because we only require security for a single NP-relation, but it is
nonetheless a very strong assumption.

This paradigm can be used to get FUFCL signatures too, but with the instantiation we have of
the FOWCL KE scheme itself coming from our tree-based FUFCL signature scheme constructed
above, we would not not obtain anything over and above our generic transform result discussed
above. But the transforms are still interesting both for signatures and encryption because if it
were possible to find a FOWCL KE scheme withstanding constant relative leakage, we would
immediately get a FUFCL signature scheme and a FINDCL encryption scheme with the same
constant relative leakage, assuming the witness primitives. Thus they help to reduce the problem
of FS+CL signatures and encryption to the single and hopefully simpler problem of FOWCL KE.

Status and perspective. None of our constructions is entirely satisfactory. Referring to Fig. 1,
the drawback of the result in the 1st row is the factor d+1 loss in relative leakage. While we think
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the transform of the 2nd row is interesting, we do not right now have a constant relative leakage
FOWCL KE to use as a starting point. The drawback of the result in the 3rd row is that the WE
does need some type of extractability, which is sometimes subject to negative results [25].

Our view is that we initiate the study of an interesting goal (FSCL), providing motivation and
definitions. We explore natural construction approaches, such as the generic tree-based transform.
We also reduce achieving FUFCL signatures and FINDCL encryption to the potentially more
tractable task of achieving FOWCL relations, albeit under strong assumptions in the 2nd case.
Our work indicates that full solutions in this domain are challenging, more so than they might
seem. We believe the exposure of our work has value in drawing attention to these open problems,
and that others will find these problems technically interesting and make more progress on them
than we have been able to make.

Related work. Bounded leakage-resilience and its extensions were studied for various primitives
including encryption and signature schemes in [2, 21, 38, 3, 35, 13, 20, 24]. Continual leakage-
resilience (CL) was studied in [14, 19, 34]. In particular, [14, 19] provide CL signature schemes
with leakage rate 1 − o(1) (i.e. arbitrarily close to 1) in bilinear groups. These schemes can be
plugged into our generic transform described above. Extensions of the basic CL notions have been
considered in [31, 11, 33, 37, 34, 27, 4, 18, 39, 17], which yield further CL schemes.

After the initial schemes of BM [8], various follow-up works constructed more efficient forward-
secure signature schemes or gave other extensions, including [1, 32, 30, 10]. Malkin et al. [36]
constructed forward-secure signatures for an unbounded number of time periods. Unfortunately,
their framework does not allow to get FS+CL schemes by composing CL-schemes. Their composi-
tion methods require the secret key to contain various components (other secret keys, and random
seeds) that remain unchanged for a number of time periods. If leakage on these parts of their secret
key is allowed, then security is lost.

Leakage on updates, where leakage is allowed on the coins used in updating keys, is considered
in [33, 22, 17]. Our model and results are a first step that do not allow leakage on updates. This
is an interesting consideration for future work.

2 Preliminaries

Notation. We denote by λ ∈ N the security parameter and by 1λ its unary representation. For
i ∈ N we let [i] denote the set {1, . . . , i}. We let ε denote the empty string. We denote the length of
a string x ∈ {0, 1}∗ by |x|. By x ∥ y we denote the concatenation of strings x, y. Algorithms may be
randomized unless otherwise indicated. Running time is worst case. “PT” stands for “polynomial-
time,” whether for randomized algorithms or deterministic ones. If A is an algorithm, we let
y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and assigning the output
to y. We let y←$ A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r).
We let [A(x1, . . .)] denote the set of all possible outputs of A when invoked with inputs x1, . . ..
We say that f : N → R is negligible if for every positive polynomial p, there exists λp ∈ N such
that f(λ) < 1/p(λ) for all λ ≥ λp. We use the code based game playing framework of Bellare and
Rogaway [9]. (See Fig. 2 for an example.) By GA(λ) we denote the event that the execution of
game G with adversary A and security parameter λ results in the game returning true. Booleans
are assumed initialized to false and integers to 0.

NP-relations. Relation R specifies a PT algorithm R.Vf. Witness verification algorithm R.Vf
takes an instance x ∈ {0, 1}∗ and a candidate witness w ∈ {0, 1}∗ to return a decision in {true, false}.
For any x ∈ {0, 1}∗ we let R(x) = { w ∈ {0, 1}∗ : R.Vf(x,w) } be the witness set of x. We let
L(R) = { x ∈ {0, 1}∗ : R(x) ̸= ∅ } be the language defined by R. We say that R is an NP-relation,
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and L(R) an NP language, if there exists a witness-length polynomial R.wl : N → N such that
R(x) ⊆

∪
ℓ≤R.wl(|x|){0, 1}ℓ for all x ∈ {0, 1}∗.

3 Forward security under continual leakage

In this section we consider key-evolving signature and encryption schemes, for which we provide
definitions of forward security under continual leakage. A key-evolving scheme has a single public
key pk, while its secret key evolves with time, sk1 → sk2 → · · · → skT , where “→” is implemented
by an update algorithm and T is the number of time periods supported by the scheme.

In the continual leakage setting, in every time period t the attacker can obtain leakage on the
current secret key skt. The security requirement from prior work [19, 14] is that security under
all keys be maintained. For this to be achievable, the leakage on each key must be assumed to
be bounded. But this boundedness assumption is unrealistic, and in practice a key may leak
entirely. In this case, prior systems require and provide no security. We propose to add forward
security as a second line of defense, asking that even if a key skt∗ leaks fully for any time period
t∗, security under prior keys will not be compromised. This brings important gains, for example,
when signing certificates, that those signed prior to the full exposure do not have to be revoked.
Forward-security under continual leakage, as we define it, simultaneously implies both security
under continual leakage and classical forward security.

We now define forward unforgeability under continual leakage (FUFCL) for key-evolving signa-
ture schemes, and forward indistinguishability under continual leakage (FINDCL) for key-evolving
encryption schemes. Security games for both notions are in Fig. 2.

Public and secret components of a secret key. We will parameterize security notions of
key-evolving schemes by a function δ : N→ [0, 1] that, informally, denotes the fraction of the secret
key that may leak in every time period. However, the secret key may contain some information that
is necessary only for the key-evolving functionality of the scheme, but is not required to be hidden
for the security of the scheme. Therefore, it is not useful to consider a leakage metric that compares
different schemes based on the fraction of the entire secret key that may be leaked per time period:
this fraction might be very small just because the secret keys of a particular scheme contain a lot
of information that is not required to be kept secret. We address this by requiring that all secret
keys used by key-evolving schemes can be parsed as a pair (pc, sc), where pc denotes the public
component of the secret key and sc denotes the secret component of the secret key. We then define
δ-leakage security of key-evolving schemes to denote the fraction of the secret component of the
secret key that may leak in every time period. Our security games provide the public components
of all secret keys to the adversary for free.

Key-evolving signature schemes. A key-evolving signature scheme KES specifies PT algo-
rithms KES.Kg, KES.Up, KES.Sig and KES.Vf, where KES.Vf is deterministic. Associated to KES are
the following polynomials: public-key length KES.pkl : N → N, secret-key length KES.skl : N → N,
public component length of the secret key KES.pcl : N→ N, secret component length of the secret
key KES.scl : N → N, message length KES.ml : N → N, signature length KES.sigl : N → N, and the
maximum number of time periods KES.T : N→ N. For λ ∈ N we require that any secret key sk ∈
{0, 1}KES.skl(λ) can be parsed as a pair (pc, sc) containing a public component pc ∈ {0, 1}KES.pcl(λ)
and a secret component sc ∈ {0, 1}KES.scl(λ), such that KES.skl(λ) = KES.pcl(λ) + KES.scl(λ).

Key generation algorithm KES.Kg takes 1λ to return a public key pk ∈ {0, 1}KES.pkl(1λ) and base
(time period one) secret signing key sk1 ∈ {0, 1}KES.skl(λ). Key update algorithm KES.Up takes
1λ, pk, i and a secret key ski ∈ {0, 1}KES.skl(λ) for time period i to return a KES.skl(λ)-bit se-
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Game FUFCLA
KES(λ)

S ← ∅ ; t← 1 ; t∗ ← KES.T(λ) + 1

(pk, sk1)←$ KES.Kg(1λ) ; (pc, sc)← sk1

(i,m, σ)←$AUp,Lk,Exp,Sign(1λ, pk, pc)

win1 ← (1 ≤ i < t∗) ∧ ((i,m, σ) ̸∈ S)

win2 ← KES.Vf(1λ, pk,m, (i, σ))

Return (win1 ∧ win2)

Up()

If t < KES.T(λ) then

skt+1←$ KES.Up(1λ, pk, t, skt)

(pc, sc)← skt+1 ; t← t+ 1

Return pc

Else return ⊥

Lk(L)

(pc, sc)← skt ; Return L(sc)

Exp()

t∗ ← t ; Return skt

Sign(m)

(t, σ)←$ KES.Sig(1λ,pk, t, skt,m)

S ← S ∪ {(t,m, σ)} ; Return (t, σ)

Game FINDCLA
KEE(λ)

b←$ {0, 1} ; t← 1 ; t∗ ← KEE.T(λ) + 1

(pk, sk1)←$ KEE.Kg(1λ) ; (pc, sc)← sk1

(i,m0,m1, state)←$AUp,Lk,Exp
1 (1λ, pk, pc)

If not (1 ≤ i < t∗) then return false

If |m0| ̸= |m1| then return false

(i, c)←$ KEE.Enc(1λ,pk, i,mb)

b′←$A2(1
λ, state, (i, c))

Return (b′ = b)

Up()

If t < KEE.T(λ) then

skt+1←$ KEE.Up(1λ,pk, t, skt)

(pc, sc)← skt+1 ; t← t+ 1

Return pc

Else return ⊥

Lk(L)

(pc, sc)← skt ; Return L(sc)

Exp()

t∗ ← t ; Return skt

Figure 2: Games defining forward unforgeability of key-evolving signature scheme KES under
continual leakage, and forward indistinguishability of key-evolving encryption scheme KEE under
continual leakage.

cret key for the next time period. Signing algorithm KES.Sig takes 1λ, pk, i, ski and a message
m ∈ {0, 1}KES.ml(λ) to return a pair (i, σ), where σ ∈ {0, 1}KES.sigl(λ) is a signature of m under
secret key ski. Signature verification algorithm KES.Vf takes 1λ, pk,m, (i, σ) to return a decision
in {true, false} regarding whether σ is a valid signature of message m relative to public key pk and
time period i ∈ [KES.T(λ)]. Correctness requires that KES.Vf(1λ, pk,m, (i, σ)) = true for all λ ∈ N,
all m ∈ {0, 1}KES.ml(λ), all (pk, sk1) ∈ [KES.Kg(1λ)], all i ∈ [KES.T(λ)], all sk2, . . . , ski satisfying
skj ∈ [KES.Up(1λ, pk, j − 1, skj−1)] for 2 ≤ j ≤ i, and all σ such that (i, σ) ∈ [KES.Sig(1λ, pk, i,
ski,m)].

Forward unforgeability under continual leakage. Consider game FUFCL of Fig. 2 as-
sociated to a key-evolving signature scheme KES and an adversary A, where Lk takes as input a
Boolean circuit L : {0, 1}KES.scl(λ) → {0, 1}. For λ ∈ N let AdvfufclKES,A(λ) = Pr[FUFCLA

KES(λ)]. We
say that FUFCL adversary A is valid if it makes at most one query to its Exp oracle, and this
is its last oracle query. We say that A is δ-bounded, where δ : N → [0, 1], if A makes at most
δ(λ) · KES.scl(λ) queries to Lk per time period. That is, leakage on the secret component of secret
key in any one time period is restricted to this number of bits. We say that KES is δ-FUFCL
(δ-forward unforgeable under continual leakage) if AdvfufclKES,A(·) is negligible for all valid, δ-bounded
PT adversaries A.

The game begins by picking a public key pk and base secret key sk1 for the first time period.
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The adversary receives pk and the public component pc of the secret key sk1. The current time
period is t and the corresponding key, skt, is the one under attack. The Sign oracle allows the
adversary to obtain signatures under the current key. The adversary may obtain leakage about the
secret component sc of the secret key skt via its leakage oracle Lk. The latter takes an adversary-
provided boolean circuit L : {0, 1}KES.scl(λ) → {0, 1} and returns L(sc) as leakage. Note that the
adversary is restricted to querying Lk with circuits that output only one bit, but it may adaptively
query the oracle multiple times to leak more bits. At any point the adversary may call Up to
advance the key to the next stage, receiving as output the public component of the new secret
key. Calls to Sign, Lk and Up may be adaptively interleaved. At any time the adversary also has
the option of fully exposing the current secret key via its Exp oracle. The time period in which
it does this is denoted t∗. At that point it is disallowed any further calls to its oracles and must
terminate. To win it must output a valid message-signature pair relative to a time period prior
to t∗, where valid means that the signature-verification algorithm KES.Vf accepts it, and that the
message-signature pair for the particular time period was not previously received as an output of
the Sign oracle. Adversary’s advantage is the probability that it wins.

Security under all keys is guaranteed as long as adversary learns at most a δ fraction of every
secret key’s secret component. If leakage exceeds this amount (modeled by an Exp query being
made) then, rather than all being lost, forward security is provided, meaning security of prior keys
is maintained. Forward-secure signatures as defined in [8] are the special case of FUFCL signatures
for adversaries that make no Lk queries. Signatures that are secure against continual leakage are
the special case of FUFCL signatures for adversaries that make no Exp queries. Thus our model
unifies the two notions under the new goal of forward unforgeability under continual leakage. Our
definitions of key-evolving signatures and continual-leakage security are different from those used
in the prior work [19, 14, 11, 12, 37, 27], but they are equivalent up to simple transformations, as
explained below. The difference is that key-evolving signatures from the prior work are defined to
use signing and verification algorithms that are oblivious to the current time period. However, a
key-evolving scheme as per our definition can be constructed from a standard key-evolving scheme
by using the latter to sign and verify messages of the form i ∥m, which is a concatenation of the
current time period i and a message m. Furthermore, a standard key-evolving scheme can be
constructed from a key-evolving scheme as per our definition by building the secret keys of the
standard scheme as i ∥ ski, containing the current time period i and the corresponding secret key
ski for a scheme of our type. The resulting constructions of key-evolving signature schemes inherit
the continual-leakage security of the original schemes.

Key-evolving encryption schemes. A key-evolving encryption scheme KEE specifies PT algo-
rithms KEE.Kg, KEE.Up, KEE.Enc and KEE.Dec, where KEE.Dec is deterministic. Associated to
KEE are the following polynomials: secret-key length KEE.skl : N → N, public component length
of the secret key KEE.pcl : N → N, secret component length of the secret key KEE.scl : N → N,
message length KEE.ml : N → N, and the maximum number of time periods KEE.T : N → N. For
λ ∈ N we require that any secret key sk ∈ {0, 1}KEE.skl(λ) can be parsed as a pair (pc, sc) containing
a public component pc ∈ {0, 1}KEE.pcl(λ) and a secret component sc ∈ {0, 1}KEE.scl(λ), such that
KEE.skl(λ) = KEE.pcl(λ) + KEE.scl(λ). Key generation algorithm KEE.Kg takes 1λ to return a
public key pk and base (time period one) secret signing key sk1 ∈ {0, 1}KEE.skl(λ). Key update
algorithm KEE.Up takes 1λ, pk, i and a secret key ski ∈ {0, 1}KEE.skl(λ) for time period i to return
a KEE.skl(λ)-bit secret key for the next time period. Encryption algorithm KEE.Enc takes 1λ,pk, i
and a message m ∈ {0, 1}KEE.ml(λ) to return (i, c), where c is an encryption of m under pk for time
period i. Decryption algorithm KEE.Dec takes 1λ, pk, i, ski, (j, c) to returnm ∈ {0, 1}KEE.ml(λ)∪{⊥}.
Correctness requires that KEE.Dec(1λ, pk, i, ski, (i, c)) = m for all λ ∈ N, all m ∈ {0, 1}KEE.ml(λ), all
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(pk, sk1) ∈ [KEE.Kg(1λ)], all i ∈ [KEE.T(λ)], all sk2, . . . , ski satisfying skj ∈ [KEE.Up(1λ, pk, j − 1,
skj−1)] for 2 ≤ j ≤ i, and all c such that (i, c) ∈ [KEE.Enc(1λ, pk, i,m)].

Forward indistinguishability under continual leakage. Consider game FINDCL of Fig. 2
associated to a key-evolving encryption scheme KEE and an adversary A, where Lk takes as input a
Boolean circuit L : {0, 1}KEE.scl(λ) → {0, 1}. For λ ∈ N let AdvfindclKEE,A(λ) = 2Pr[FINDCLA

KEE(λ)]− 1.
We say that FINDCL adversary A is valid if it makes at most one query to its Exp oracle, and
this is its last oracle query. We say that A is δ-bounded, where δ : N → [0, 1], if A makes at
most δ(λ) · KEE.scl(λ) queries to Lk per time period. We say that KEE is δ-FINDCL (δ-forward
indistinguishable under continual leakage) if AdvfindclKEE,A(·) is negligible for all valid, δ-bounded PT
adversaries A.

Game FINDCL is similar to game FUFCL in terms of allowing the adversary to obtain infor-
mation about the secret keys in different time periods by providing it with oracle access to Up,
Lk and Exp. Having finished making queries to its oracles, the adversary has to choose a time
period (prior to the key exposure, if Exp was called) and a pair of challenge messages of equal
length. The adversary then is given a challenge ciphertext for the specified time period, and it has
to guess which of the two challenge messages was encrypted in order to win the game. Encryption
secure against continual leakage as defined in [14] is the special case of FINDCL encryption for
adversaries that make no Exp queries (these notions are equivalent up to simple transformations
that are required due to different semantics across the definitions of key-evolving schemes, similar
to the the case for key-evolving signature schemes that we discussed above). Forward-secure en-
cryption as defined in [15] is the special case of FINDCL encryption for adversaries that make no
Lk queries. Our model unifies the two under the new goal of forward indistinguishability under
continual leakage.

Convention for adversary restrictions.Whenever we consider an adversary that meets cer-
tain conditions (e.g. is PT, valid, and δ-bounded), we require that it holds not just in the games
defining security, but regardless of adversary’s inputs and how its oracle queries are answered. This
will help us to simplify the proof of Theorem 5.1 where an FUFCL adversary will be simulated in
an environment that is different than the one it might expect from the FUFCL game.

4 FUFCL signatures from UFCL signatures

In this section we show how to construct a FUFCL signature scheme from any key-evolving signature
scheme that is unforgeable under continual leakage (UFCL). The latter is a standard continual
leakage security notion that is also a special case of FUFCL with respect to adversaries that do not
query the Exp oracle. We define it below.

Unforgeability under continual leakage. Consider game FUFCL of Fig. 2 associated to a
key-evolving signature scheme KES and an adversary A, where Lk takes as input a Boolean circuit
L : {0, 1}KES.scl(λ) → {0, 1}. For λ ∈ N let AdvufclKES,A(λ) = Pr[FUFCLA

KES(λ)]. We say that UFCL
adversary A is valid if it makes no queries to its Exp oracle. We say that A is δ-bounded, where
δ : N → [0, 1], if A makes at most δ(λ) · KES.scl(λ) queries to Lk per time period. We say that
KES is δ-UFCL (δ-unforgeable under continual leakage) if AdvufclKES,A(·) is negligible for all valid,
δ-bounded PT adversaries A.

FUFCL signatures from a binary tree of UFCL signatures. We use the binary tree con-
struction of forward secure signatures by Bellare and Miner [8], with any continual leakage secure
signature scheme as the base scheme. The construction is also similar to the one by Faust el al. [23],
but the goal they achieve is different.
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Figure 3: The construction of a key-evolving signature scheme KES from depth-2 binary tree,
showing the information stored in the tree during the first 3 out of the 4 possible time periods.
Each node corresponds to an independent instance of the underlying key-evolving signature scheme
SIG. Superscripts denote the positions of displayed entities in the tree, and subscripts denote the
time periods of individual secret keys.

We now describe the high-level idea of our construction. Let SIG be a key-evolving signature
scheme; we compose many SIG key-pairs into a binary tree to build a new key-evolving signature
scheme KES. We will then show that if SIG is UFCL then KES is FUFCL. Fig. 3 shows an example
of a binary tree of depth 2 for multiple subsequent time periods.

Each node of the tree containts an independently generated SIG public key. A node may also
contain the corresponding secret key, but the secret key is erased as soon as both of its child nodes
have been generated; this will ensure that the constructed KES scheme is forward-secure. Each
non-root node contains a signature of its public key under its parent node’s secret key.

The SIG public key of the root node is used as the public key of the KES scheme. The leaf nodes
of the tree are used to produce KES signatures, each for a separate time period, meaning that a
tree-based construction of depth h has 2h time periods. The secret key of the KES scheme contains
all information about the current tree structure besides its root’s public key; the secret component
of a KES secret key contains all currently available SIG secret keys, whereas everything else is stored
inside its public component. The KES signature of a message m includes a SIG signature of m for
a secret key of (the current) leaf node, along with information about the path from the root node
to this leaf; for each non-root node on this path, it includes this node’s public key and its signature
under its parent’s secret key. This allows to verify signatures having only the public key of the root
node.

The key update procedure of the KES scheme modifies the tree to generate the next leftmost leaf
node (if necessary) and set it as the one that is used to generate signatures. For this to be possible,
the current tree structure always contains the nodes that branch to the right of those nodes that lie
on the path from the root to the current leaf node. To ensure the forward security of KES, the old
leaf node is erased at the end of the update procedure. For the continual-leakage security of KES,
all other SIG secret keys are updated at the end of the update procedure, meaning their individual
time periods get increased (this allows to repeatedly leak on them during each separate KES time
period).

For example, consider the tree-based key-evolving scheme KES from Fig. 3 in time period 1. Its
public key is pkε. Its secret key sk = (pc, sc) consists of a secret component sc = (sk00

1 , sk01
1 , sk1

1)
and a public component pc = ((pk0, 1, σ0), (pk00, 1, σ00), (pk01, 1, σ01), (pk1, 1, σ1)). A signature
of message m is (1, σ) for σ = ((pk0, 1, σ0), (pk00, 1, σ00), (1, σ′)) and σ′←$ SIG.Sig(1λ, pk00, 1,
sk00

1 ,m). The first component of (1, σ) denotes the time period of KES, whereas the first com-
ponent of (1, σ′) denotes the time period of key sk00

1 . The node information of the form (pk0, 1, σ0)
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indicates that σ0 is a signature of pk0 under its parent node’s secret key, and the latter was used
when its time period was 1.

Our construction and its security. We define a key-evolving signature scheme KES =
KES-TREE[SIG, h] as a binary-tree construction described above, where each node of the binary
tree contains a key pair of another key-evolving signature scheme SIG, and the height of the binary
tree is defined by a polynomial h (parameterized by a security parameter). The formal definition
of KES-TREE is in Appendix A. This construction is straightforward, but also very detailed.

We show that if SIG is UFCL-secure, then KES is FUFCL-secure. Note that for any security
parameter λ ∈ N, the secret key of KES contains h(λ) + 1 secret keys of SIG. Therefore, the
continual-leakage fraction supported by KES is h(λ) + 1 times worse than that of SIG.

Theorem 4.1 Let δ : N→ [0, 1]. Let SIG be a δ-UFCL key-evolving signature scheme with SIG.ml =
SIG.pkl + 1. Let h : N → N a polynomial such that 2h(λ)−1 ≤ SIG.T(λ) for all λ ∈ N. Let γ(λ) =
δ(λ)/(h(λ) + 1) for all λ ∈ N. Then the key-evolving signature scheme KES = KES-TREE[SIG, h] is
γ-FUFCL.

The proof is in Appendix B. Informally, it proceeds as follows. Assume that a PT adversary A
breaks the FUFCL-security of KES. In order to do that, it has to forge a valid message-signature
pair of KES scheme for some time period i (which must be prior to the time period of full key
exposure). In terms of the underlying binary tree structure, this means that A succesfully forges
a valid message-signature pair for one of the SIG verification keys that lie on the path from the
root of the KES binary tree to the leaf node that is associated to time period i. We build a PT
adversary B against the UFCL-security of SIG as follows. It attempts to guess the KES binary tree
node x that will be attacked by A (out of the 2h(λ)+1−1 possible nodes); this node will correspond
to the challenge key-pair in game UFCL. It then generates SIG key pairs for all other 2h(λ)+1 − 2
nodes, and uses its UFCL security game oracles to answer any of A’s oracle queries that depend on
the secret key of node x (which is unknown to B). If B guessed the position of the challenge node
correctly, then A breaking the FUFCL-security of KES results in B breaking the UFCL-security of
SIG.

Extensions. Note that a binary tree pre-order traveral can be used to associate each node of the
binary tree with a separate time period of the resulting signature scheme, rather than only use the
leaf nodes as we currently do. This was done in some of the previous results that used tree-based
construction, such as [15, 23].

5 A unified paradigm for constructing FS+CL schemes

In this work we propose to build primitives that are secure against continual leakage and simultane-
ously forward secure, the latter serving as a second line of defense. Towards that end, in Section 3
we defined key-evolving signature and encryption schemes, and the corresponding security notions.
An important part of both schemes is a key update procedure that allows to repeatedly evolve a se-
cret key in the presence of a single, fixed public key. In this section we define key-evolution schemes
that model this process. We consider a security notion called forward one-wayness under continual
leakage (FOWCL) that formalizes properties of the key evolution that are necessary (although not
sufficient) for the security of both signature and encryption schemes as defined in Section 3. We
discuss how to achieve FOWCL key-evolution schemes, and we show how to use them to build
key-evolving signature and encryption schemes that inherit the continual-leakage fraction of the
former in a modular way.
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Game FOWCLA
KE(λ)

t← 1 ; t∗ ← KE.T(λ) + 1

(pk, sk1)←$ KE.Kg(1λ) ; (pc, sc)← sk1

(i, sk)←$AUp,Lk,Exp(1λ, pk,pc)

win1 ← (1 ≤ i < t∗)

win2 ← KE.Vf(1λ, pk, i, sk)

Return (win1 ∧ win2)

Up()

If t < KE.T(λ) then

skt+1←$ KE.Up(1λ,pk, t, skt)

(pc, sc)← skt+1 ; t← t+ 1

Return pc

Else return ⊥

Lk(L)

(pc, sc)← skt ; Return L(sc)

Exp()

t∗ ← t ; Return skt

Figure 4: Game defining forward one-wayness of key-evolution scheme KE under continual leakage.

Key-evolution schemes. A key-evolution scheme KE specifies PT algorithms KE.Kg, KE.Up and
KE.Vf, where KE.Vf is deterministic. Associated to KE are the following polynomials: secret-key
length KE.skl : N→ N, public component length of the secret key KE.pcl : N→ N, secret component
length of the secret key KE.scl : N→ N, and the maximum number of time periods KE.T : N→ N.
For λ ∈ N we require that any secret key sk ∈ {0, 1}KE.skl(λ) can be parsed as a pair (pc, sc)
containing a public component pc ∈ {0, 1}KE.pcl(λ) and a secret component sc ∈ {0, 1}KE.scl(λ), such
that KE.skl(λ) = KE.pcl(λ)+KE.scl(λ). Key generation algorithm KE.Kg takes 1λ to return a public
key pk and base (time period one) secret key sk1 ∈ {0, 1}KE.skl(λ). Key update algorithm KE.Up
takes 1λ, pk, i and a secret key ski ∈ {0, 1}KE.skl(λ) for time period i to return a KE.skl(λ)-bit secret
key for the next time period. Key verification algorithm KE.Vf takes 1λ, pk, i, ski to return a decision
in {true, false} regarding whether ski is a valid secret key relative to public key pk and time period
i ∈ [KE.T(λ)]. Correctness requires that KE.Vf(1λ,pk, i, ski) = true for all λ ∈ N, all (pk, sk1) ∈
[KE.Kg(1λ)], all i ∈ [KE.T(λ)] and all sk2, . . . , ski satisfying skj ∈ [KE.Up(1λ, pk, j − 1, skj−1)] for
2 ≤ j ≤ i. That is, all secret keys that can be obtained via correct updates starting from sk1 should
pass the verification test.

Forward security under continual leakage. Consider game FOWCL of Fig. 4 associated to
a key-evolution scheme KE and an adversaryA, where Lk takes a Boolean circuit L : {0, 1}KE.scl(λ) →
{0, 1}. For λ ∈ N let AdvfowclKE,A(λ) = Pr[FOWCLA

KE(λ)]. We say that FOWCL adversary A is valid
if it makes at most one query to its Exp oracle, and this is its last oracle query. We say that
A is δ-bounded, where δ : N → [0, 1], if A makes at most δ(λ) · KE.scl(λ) queries to Lk per time
period. We say that KE is δ-FOWCL (δ-forward one-way under continual leakage) if AdvfowclKE,A(·) is
negligible for all valid, δ-bounded PT adversaries A.

Game FOWCL is similar to games FINDCL and FUFCL from Section 3 in terms of allowing
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the adversary to obtain information about the secret keys in different time periods by providing it
with oracle access to Up, Lk and Exp. In order to win, the adversary must output a valid secret
key relative to a time period prior to t∗ (when exposure happened), where valid means that the
key-verification function of KE accepts it. Adversary’s advantage is the probability that it wins. To
recover relations that are one-way against continual leakage as defined in [19], one could consider
adversaries that make no Exp queries. The two notions are equivalent up to simple transformations
that are required due to different semantics between the definitions of key-evolving schemes (similar
to the the case of key-evolving signature schemes as discussed in Section 3). Considering adversaries
that make no Lk queries captures relations that provide forward one wayness. Our model unifies
the two security notions.

The familiar requirement for security of a key is that it be indistinguishable from random. This
is not achievable when the adversary is in possession of leakage on the key. The requirement we
make, following [19], is very weak, namely that the adversary be unable to fully recover a valid key
(one-wayness). Then the difficulty is to be able to use such a key for a cryptographic application.
This will be done via witness primitives – encryption and signatures.

Witness encryption and witness signatures. Witness encryption [26, 6, 28] for an NP-
relation R allows anyone to encrypt messages with respect to any instance x ∈ {0, 1}∗. In order to
decrypt a message encrypted to x, it is necessary to know a witness w such that R.Vf(x,w) = true.
Witness signatures [16, 7] for an NP-relation R allow to sign messages with respect to an instance-
witness pair (x,w) such that R.Vf(x,w) = true. In order to verify a signature produced this way,
it is sufficient to know the instance x that was used in the signing process. In the next sections we
will discuss both primitives in more details.

Composing key-evolution schemes with witness primitives. We now discuss how to use
an arbitrary FOWCL key-evolution scheme in order to obtain a FUFCL signature scheme and a
FINDCL encryption scheme. This is done in a generic way via a unified paradigm. Namely in
Sections 5.1 and 5.2 we show that FOWCL + Witness-X yields FS+CL-secure X for X=signatures
and X=encryption.

Let us explain the issues and the idea. The FOWCL key-evolution scheme provides a way to
obtain keys that remain unrecoverable in the FS+CL sense. But it is not clear how to use these keys
for signatures or encryption. The reason is that signature and encryption schemes usually require
keys of very specific structure that varies from scheme to scheme, but here we are handed keys
of a complex structure that are not obviously suitable for any particular application. But witness
primitives are, in the terminology of [7], highly “key-versatile”. That is, they are able to provide
security of the application assuming nothing more than that secret keys are hard to recover from
the public key. We will combine them with key evolution to achieve signatures and encryption.
Note that our security proofs will require some form of extractability from both witness primitives.
Furthermore, we know no direct constructions of FOWCL key-evolution schemes, but any FUFCL
schemes we build based on the construction in Section 4 are also FOWCL by definition.

The encryption and signature schemes constructed using our approach will inherit the leakage
rate of the used key-evolution scheme, as opposed to the direct construction in Section 4 where
the leakage rate detoriates logarithmically with the maximum number of time periods. Another
advantage of this approach is modularity. We do not need to re-enter any details of our construction
of a FOWCL key-evolution scheme, leading to conceptual simplicity. Also, should any new, more
efficient or better constructions of FOWCL key-evolution schemes arise in the future, the transforms
in this section can be invoked to automatically turn them into FS+CL signature and encryption
schemes.
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Game SIMA
WS,R(λ)

b←$ {0, 1}
wp1←$ WS.Pg(1λ)

(wp0, std , xtd)←$ WS.SimPg(1λ)

b′←$ASign(1λ,wpb)

Return (b′ = b)

Sign(x,w,m)

If not R.Vf(x,w) then return ⊥
If b = 1 then σ←$ WS.Sig(1λ,wp1, x, w,m)

Else σ←$ WS.SimSig(1λ,wp0, x, std ,m)

Return σ

Game EXTA
WS,R(λ)

Q← ∅ ; (wp, std , xtd)←$ WS.SimPg(1λ)

(x,m, σ)←$ASign(1λ,wp)

If (x,m, σ) ∈ Q then return false

If x ̸∈ L(R) then return false

d←WS.Vf(1λ,wp, x,m, σ)

If not d then return false

w←$ WS.Ext(1λ,wp, x, xtd ,m, σ)

Return not R.Vf(x,w)

Sign(x,w,m)

If not R.Vf(x,w) then return ⊥
σ←$ WS.SimSig(1λ,wp, x, std ,m)

Q← Q ∪ {(x,m, σ)} ; Return σ

Figure 5: Games defining signature simulatability of witness signature scheme WS for NP-relation
R, and witness extractability of witness signature scheme WS for NP-relation R.

5.1 FUFCL signatures from FOWCL key-evolution schemes

In this section we define witness signatures and show how to use them in order to transform a
FOWCL key-evolution scheme into a FUFCL signature scheme.

Witness signatures. Let R be anNP-relation as defined in Section 2. A witness signature scheme
WS for R specifies PT algorithms WS.Pg, WS.Sig, WS.Vf, WS.SimPg, WS.SimSig and WS.Ext,
where WS.Vf is deterministic. Associated to WS is a message length polynomial WS.ml : N → N.
Parameter generation algorithm WS.Pg takes 1λ to return public parameters wp. Signing algorithm
WS.Sig takes 1λ,wp, an instance x ∈ {0, 1}∗, a witness w ∈ {0, 1}∗ and a message m ∈ {0, 1}WS.ml(λ)

to return a signature σ. Signature verification algorithm WS.Vf takes 1λ,wp, x,m, σ to return a
decision in {true, false}. Correctness requires that WS.Vf(1λ,wp, x,m, σ) = true for all λ ∈ N,
all wp ∈ [WS.Pg(1λ)], all x,w such that R.Vf(x,w) = true, all m ∈ {0, 1}WS.ml(λ) and all σ ∈
[WS.Sig(1λ,wp, x, w,m)].

Simulated parameter generation algorithm WS.SimPg takes 1λ to return simulated parameters
wp, a signing trapdoor std and an extraction trapdoor xtd . Simulated signing algorithm WS.SimSig
takes 1λ,wp, an instance x, signing trapdoor std and a message m (but no witness) to return a
simulated signature σ. Extraction algorithm WS.Ext takes 1λ,wp, instance x, extraction trapdoor
xtd , message m and signature σ to return a candidate witness w for x.

Signature simulatability. Consider game SIM of Fig. 5 associated to an NP-relation R, a wit-
ness signature schemeWS for R, and an adversaryA. For λ ∈ N let AdvsimWS,R,A(λ) = 2Pr[SIMA

WS,R(λ)]−
1. We say that WS,R is signature simulatable if AdvsimWS,R,A(·) is negligible for every PT adversary
A. This requires that the signature simulator, given simulated auxiliary parameters and a signa-
ture trapdoor, can produce a signature σ indistinguishable from the real one produced under the
witness, when not just the message m, but even the instance x and witness w, are adaptively chosen
by the adversary.

Witness extractability. Consider game EXT of Fig. 5 associated to an NP-relation R, a wit-
ness signature schemeWS for R, and an adversaryA. For λ ∈ N let AdvextWS,R,A(λ) = Pr[EXTA

WS,R(λ)].
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R.Vf(x, sk)

(1λ, pk, i)← x
win1 ← (1 ≤ i ≤ KE.T(λ))
win2 ← (KE.Vf(1λ, pk, i, sk))
Return (win1 ∧ win2)

Figure 6: NP-relation KE-REL = KE-REL[KE].

We say that WS,R is witness extractable if AdvextWS,R,A(·) is negligible for every PT adversary A.
This requires that the witness extractor, given simulated auxiliary parameters and an extraction
trapdoor, can extract from any valid forgery relative to x an underlying witness w, even when x
is chosen by the adversary and the adversary can adaptively obtain simulated signatures under
instances and witnesses of its choice.

Obtaining witness signatures. Witness signatures as we define them above are effectively an-
other name for Signatures of Knowledge as defined by Chase and Lysyanskaya [16] and refined by
Bellare, Meiklejohn and Thomson [7]. Indeed the latter say that one might refer to this primitive
as witness signatures, and we have followed that naming suggestion in order to have a unified
terminology across encryption and signatures. The construction uses simulation sound extractable
(SSE) NIZKs and follows [16, 20, 7]. Given any NP-relation R and polynomial p, it is possible to
construct a witness signature scheme WS such that WS,R are signature simulatable and witness
extractable and also WS.ml = p. We omit the details and assume this capability in what follows.
Note that these witness signatures are different from the ones of Goyal, Jain and Khurana [29]. In
the latter, public parameters are not allowed and they show that in this case witness signatures are
impossible. In our case, the public parameters can simply be put into the public key of the scheme
we are constructing and are not an added assumption. In this case, as noted, witness signatures
are easily constructed from NIZKs.

Construction of a FUFCL signature scheme. Assume we are given a key-evolution scheme
KE that is FOWCL secure as defined in Section 5. We want to build a FUFCL secure key-evolving
signature scheme. The difficulty is that the keys in KE may not have the structure required for any
particular signature scheme and furthermore the security guarantee on them is weak, namely just
that they are hard to recover in full. We achieve our ends through witness signatures. Informally,
we associate to KE an NP-relation in which the role of the instance x is played by a triple (1λ, pk, i)
containing security parameter, public key and time period for KE, and the role of the witness w is
played by a secret key sk for KE. We then define a key-evolving signature scheme that uses this
NP-relation to produce and verify signatures, as shown below.

NP-relation KE-REL. Let KE be a key-evolution scheme. We build an NP-relation R =
KE-REL[KE] as defined in Fig. 6, where R.wl = KE.skl.

Key-evolving signature scheme WITNESS-KES. Let KE be a key-evolution scheme. Let WS
be a witness signature scheme for the NP-relation R = KE-REL[KE]. We build a key-evolving
signature scheme KES = WITNESS-KES[KE,WS] as defined in Fig. 7. The values of KES.skl,
KES.pcl, KES.scl, KES.T are same as those of KE, and the values of KES.ml, KES.sigl are inherited
from WS.

We now show that if KE is FOWCL-secure and WS is signature simulatable and witness ex-
tractable with respect to R, then KES is FUFCL-secure.

Theorem 5.1 Let δ : N→ [0, 1]. Let KE be a δ-FOWCL key-evolution scheme. Let R = KE-REL[KE]
be the NP-relation as defined above. Let WS be a witness signature scheme for R. Assume
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KES.Kg(1λ)

(pk, sk1)←$ KE.Kg(1λ)
wp←$ WS.Pg(1λ)
Return ((pk,wp), sk1)

KES.Up(1λ, (pk,wp), i, ski)

ski+1←$ KE.Up(1λ, pk, i, ski)
Return ski+1

KES.Sig(1λ, (pk,wp), i, ski,m)

σ←$ WS.Sig(1λ,wp, (1λ, pk, i), ski,m)
Return (i, σ)

KES.Vf(1λ, (pk,wp),m, (i, σ))

d1 ← (1 ≤ i ≤ KE.T(λ))
d2 ←WS.Vf(1λ,wp, (1λ,pk, i),m, σ)
Return (d1 ∧ d2)

Figure 7: Key-evolving signature scheme KES = WITNESS-KES[KE,WS].

WS,R is signature simulatable and witness extractable. Then key-evolving signature scheme KES =
WITNESS-KES[KE,WS] is δ-FUFCL secure.

The proof idea is as follows. In structure, it follows proofs from [7]. Given an adversary A
attacking FUFCL security of KES we want to build an adversary B attacking FOWCL security of
KE. Adversary B can trivially answer Up,Lk,Exp queries of A via its own corresponding oracles,
but faces two problems. The first is to answer Sign queries of A without having any of the secret
keys. The second is that, even if A can be run to completion, what it returns is a forgery, and what
B needs to win its game is a valid secret key. To solve these problems, B will generate simulated
parameters for WS along with the associated trapdoors, answer Sign queries of A via simulated
signatures, and then use the witness extractor to extract a secret key from the forgery.

To show that this works we use a game sequence. First we use the signature simulatability of
WS to switch from game FUFCL to one with simulated parameters and signatures. Next we use
witness extractability of WS to show that whenever A breaks the FUFCL security of KES, one can
use the provided forgery to succesfully extract a valid witness for the used relation. Since a valid
witness in our relation consists of the secret key for KE, this allows us to build adversary B that
simulates A and wins the game against FOWCL security of KE by returning a witness it extracted
from A’s forgery.

Proof of Theorem 5.1: LetA be a valid, δ-bounded PT adversary attacking KES in game FUFCL.
We build a valid, δ-bounded PT adversary B attacking KE in game FOWCL, and PT adversaries
A1,A2 attacking signature simulatability and witness extractability of WS,R giving

AdvfufclKES,A(λ) ≤ AdvsimWS,R,A1
(λ) + AdvextWS,R,A2

(λ) + AdvfowclKE,B(λ)

for all λ ∈ N. This justifies the claim in the theorem statement.

Consider games G0, G1, G2 of Fig. 8. Lines not annotated with comments are common to all
games. Game G0 is equivalent to game FUFCLA

KES(λ) with the code of KES expanded according
to its definition, so Pr[G0] = Pr[FUFCLA

KES(λ)]. Game G1 switches to using simulated parameters
and signatures. Game G2 additionally requires that the forgery produced by A allows to extract a
valid secret key for the corresponding time period. We build PT adversaries A1,A2,B so that for
all λ ∈ N,

Pr[G0]− Pr[G1] = AdvsimWS,R,A1
(λ) , (1)

Pr[G1 sets bad] ≤ AdvextWS,R,A2
(λ) , (2)

Pr[G2] ≤ AdvfowclKE,B(λ) . (3)

Games G1 and G2 are identical until bad, so by the Fundamental Lemma of Game-Playing [9] and
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Games G0–G2

S ← ∅ ; t← 1 ; t∗ ← KE.T(λ) + 1
(pk, sk1)←$ KE.Kg(1λ) ; (pc, sc)← sk1

wp←$ WS.Pg(1λ) // G0

(wp, std , xtd)←$ WS.SimPg(1λ) // G1, G2

(i,m, σ)←$AUp,Lk,Exp,Sign(1λ, (pk,wp),pc)
sk←$ WS.Ext(1λ,wp, (1λ, pk, i), xtd ,m, σ)
win1 ← (1 ≤ i < t∗) ∧ ((i,m, σ) ̸∈ S)
win2 ←WS.Vf(1λ,wp, (1λ,pk, i),m, σ)
d← false
If (win1 ∧ win2) then
d← true
If not KE.Vf(1λ, pk, i, sk) then

bad← true
d← false // G2

Return d

Up()

If t < KE.T(λ) then
skt+1←$ KE.Up(1λ, pk, t, skt)
(pc, sc)← skt+1 ; t← t+ 1
Return pc

Else return ⊥
Lk(L)

(pc, sc)← skt ; Return L(sc)

Exp()

t∗ ← t ; Return skt

Sign(m)

σ←$ WS.Sig(1λ,wp, (1λ, pk, t), skt,m) // G0

σ←$ WS.SimSig(1λ,wp, (1λ, pk, t), std ,m) // G1, G2

S ← S ∪ {(t,m, σ)} ; Return (t, σ)

Figure 8: Games G0–G2 for proof of Theorem 5.1.

the above, for all λ ∈ N we have

AdvfufclKES,A(λ) = Pr[FUFCLA
KES(λ)] = Pr[G0]

= (Pr[G0]− Pr[G1]) + (Pr[G1]− Pr[G2]) + Pr[G2]

≤ AdvsimWS,R,A1
(λ) + AdvextWS,R,A2

(λ) + AdvfowclKE,B(λ).

This bounds the advantage of A as required for the theorem statement. We now provide the
constructions of A1,A2,B.

Consdier PT adversaries A1,A2 as defined in Fig. 9. The procedures to simulate the oracles of A
are the same for both and thus for brevity written only once.

Adversaries A1,A2 generate their own keys for KE and can thus simulate the Up,Lk,Exp oracles
of A directly. They simulate A’s Sign oracle via their own Sign oracle. If the challenge bit b in
game SIMA1

WS,R(λ) is 1 then adversary A1 simulates game G0 for adversary A, and if b = 0 then
adversary A1 simulates game G1. We thus have Equation (1). To establish Equation (2), note that
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ASign
1 (1λ,wp)

S ← ∅ ; t← 1 ; t∗ ← KE.T(λ) + 1
(pk, sk1)←$ KE.Kg(1λ) ; (pc, sc)← sk1

(i,m, σ)←$AUpSim,LkSim,ExpSim,SignSim(1λ, (pk,wp), pc)
win1 ← (1 ≤ i < t∗) ∧ ((i,m, σ) ̸∈ S)
win2 ←WS.Vf(1λ,wp, (1λ, pk, i),m, σ)
If (win1 ∧ win2) then b′ ← 1 else b′ ← 0
Return b′

ASign
2 (1λ,wp)

S ← ∅ ; t← 1 ; t∗ ← KE.T(λ) + 1
(pk, sk1)←$ KE.Kg(1λ) ; (pc, sc)← sk1

(i,m, σ)←$AUpSim,LkSim,ExpSim,SignSim(1λ, (pk,wp), pc)
x← (1λ, pk, i)
Return (x,m, σ)

UpSim()

If t < KE.T(λ) then
skt+1←$ KE.Up(1λ, pk, t, skt)
(pc, sc)← skt+1 ; t← t+ 1
Return pc

Else return ⊥
LkSim(L)

(pc, sc)← skt ; Return L(sc)

ExpSim()

t∗ ← t ; Return skt

SignSim(m)

σ←$ Sign((1λ, pk, t), skt,m)
S ← S ∪ {(t,m, σ)} ; Return (t, σ)

Figure 9: Adversaries A1, A2 for proof of Theorem 5.1.

adversary A2 winning in game EXTA2
WS,R(λ) is equivalent to adversary A setting bad flag true in

game G1 by construction, except when A returns a forgery for time period i ≥ t∗. In the latter
case, A will not set bad flag true in G1, whereas A2 may still win in its game.

Define PT adversary B against FOWCL-security of KE as follows:

BUp,Lk,Exp(1λ, pk, pc)

t← 1 ; (wp, std , xtd)←$ WS.SimPg(1λ)
(i,m, σ)←$AUpSim,LkSim,ExpSim,SignSim(1λ, (pk,wp), pc)
sk←$ WS.Ext(1λ,wp, (1λ,pk, i), xtd ,m, σ)
Return (i, sk)

SignSim(m)

σ←$ WS.SimSig(1λ,wp, (1λ, pk, t), std ,m)
Return (t, σ)

UpSim()

If t < KE.T(λ) then
t← t+ 1

Return Up()

LkSim(L)

Return Lk(L)

ExpSim()

Return Exp()

Adversary B simulates A’s oracles Up,Lk,Exp via its own oracles of the same names. It answers
A’s Sign queries using simulated signatures generated under the simulation trapdoor that it has
itself picked. When A returns a forgery, B runs the witness extractor to learn the secret key (wit-
ness) and returns it as an output value. Adversary B is valid and δ-bounded because it makes the
same Up, Lk and Exp queries as A, whereas A is both valid and δ-bounded. (Note that the use of
simulated parameters and signatures in games G1 and G2 results in a different environment than the
one A may expect in game FUFCLA

KES(λ). But, as per convention outlined in Section 3, adversary
A is valid and δ-bounded regardless of its inputs and how its oracle queries are answered. Alter-
natively, one could ensure this by checking both conditions in code of games G0–G2.) To establish
Equation (3), note that adversary B winning in game FOWCLB

KE(λ) is equivalent to adversary A
winning in game G2 by construction, except when A returns an invalid forgery (containing either
an invalid signature, or a message-signature pair learned as a result of calling its Sign oracle). If
the forgery is not valid, A will not win in G2, but B may still win in FOWCLB

KE(λ).
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Game XSA,E
WE,R(λ)

b←$ {0, 1}
(x,m0,m1, state)←$A1(1

λ)

win1 ← (x ∈ L(R)) ∧ (|m0| = |m1|)
c←$ WE.Enc(1λ, x,mb)

b′←$A2(1
λ, state, c)

win2 ← (b′ = b)

w←$ E(1λ, x,m0,m1, state, c)

win3 ← (not R.Vf(x,w))

Return (win1 ∧ win2 ∧ win3)

Figure 10: Game defining extractable security of witness encryption scheme WE for NP-relation
R.

5.2 FINDCL encryption from FOWCL key-evolution schemes

In this section we show that an FINDCL key-evolving encryption scheme can be constructed from
any FOWCL key-evolution scheme, assuming the existence of a weak form of extractable witness
encryption [26, 6, 28]. A witness encryption scheme for an NP-relation R allows to encrypt a
message to an instance x ∈ {0, 1}∗. To decrypt the resulting ciphertext, one has to provide a
witness w such that (x,w) belongs to R. Extractable security of witness encryption requires that
no PT adversary can distinguish between encryptions of any two equal-length messages m0,m1 to
an instance x, unless a valid witness w can be efficiently recovered from x.

Given any FOWCL key-evolution scheme KE, we assume an extractable witness encryption
scheme for a single NP-relation R = KE-REL[KE] as defined in Section 5.1. The relation R maps
any triple (1λ, pk, i) containing a security parameter, a public key and a time period associated to
KE to all corresponding valid secret keys ski as per the verification algorithm of this scheme. Here
(1λ, pk, i) is an instance to which a message can be encrypted, and ski is a witness that would allow
to decrypt the resulting ciphertext.

Garg, Gentry, Halevi and Wichs [25] showed that there is an NP-relation for which there exist
no extractable witness encryption schemes, using a novel special-purpose obfuscation assumption
introduced in their work. As a result, it is implausible that there is an extractable witness encryption
scheme that is secure for all NP-relations. However, we require extractable security for a single
NP-relation (different from the one used in [25]), thus evading their negative result. We note that
this is nonetheless a very strong assumption, and our result in this section is interesting mostly in
the context of building FS+CL primitives in a unified way.

We do not require the witness encryption scheme to provide any security in the case when a
message is encrypted for an instance (1λ, pk, i) that is outside the relation, meaning when the former
does not correspond to any valid secret key ski. This does not help to evade the implausibility result
of [25], but it contrasts with the prior work on witness encryption that predominantly discusses the
notion of soundness security that is only required to hold when encrypting messages for instances
outside the relation [26, 6].

Witness encryption schemes. Let R be an NP-relation. A witness encryption scheme WE for R
specifies PT algorithmsWE.Enc andWE.Dec, whereWE.Dec is deterministic. Encryption algorithm
WE.Enc takes 1λ, an instance x ∈ {0, 1}∗ and a message m ∈ {0, 1}∗ to return a ciphertext c.
Decryption algorithm WE.Dec takes a witness w and ciphertext c to return m ∈ {0, 1}∗ ∪ {⊥}.
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KEE.Kg(1λ)

(pk, sk1)←$ KE.Kg(1λ)
Return (pk, , sk1)

KEE.Up(1λ, pk, i, ski)

Return KE.Up(1λ, pk, i, ski)

KEE.Enc(1λ, pk, i,m)

x← (1λ, pk, i)
c←$ WE.Enc(1λ, x,m)
Return (i, c)

KEE.Dec(1λ, pk, i, ski, (j, c))

w ← ski

Return WE.Dec(w, c)

Figure 11: Definition of key-evolving encryption scheme KEE = WITNESS-KEE[KE,WE, ℓ].

Correctness requires that WE.Dec(w, c) = m for all λ ∈ N, all m ∈ {0, 1}∗, all x ∈ L(R), all
w ∈ R(x) and all c ∈ [WE.Enc(1λ, x,m)].

Extractable witness encryption. Consider game XS of Fig. 10 associated to an NP-relation
R, a witness encryption scheme WE for R, an adversary A and an extractor E . For λ ∈ N let
AdvxsWE,R,A,E(λ) = 2Pr[XSA,E

WE,R(λ)] − 1. We say that WE is XS[R]-secure if for every PT adversary
A there exists a PT extractor E such that AdvxsWE,R,A,E(·) is negligible. Our security definition is
adapted from [6], weakening it to require that A chooses an instance x that belongs to L(R).

Key-evolving encryption scheme WITNESS-KEE. Let ℓ : N → N be a polynomial. Let KE
be a key-evolution scheme. Let R = KE-REL[KE] be the NP-relation as defined in Section 5.1.
Let WE be a witness encryption scheme for R. We build a key-evolving encryption scheme
KEE = WITNESS-KEE[KE,WE, ℓ] as defined in Fig. 11, where KEE.skl = KE.skl, KEE.pcl = KE.pcl,
KEE.scl = KE.scl, KEE.ml = ℓ and KEE.T = KE.T.

We show that if KE is FOWCL-secure and WE is XS[R]-secure for R = KE-REL[KE], then KEE
is FINDCL-secure.

Theorem 5.2 Let δ : N → [0, 1]. Let ℓ : N → N be a polynomial. Let KE be a δ-FOWCL key-
evolution scheme. Let R = KE-REL[KE] be the NP-relation as defined in Section 5.1. Let WE
be a witness encryption scheme for R, and assume that WE is XS[R]-secure. Then key-evolving
encryption scheme KEE = WITNESS-KEE[KE,WE, ℓ] is δ-FINDCL secure.

To prove this theorem, we assume for a contradiction that there exists a PT adversary that breaks
the FINDCL-security of KEE. We use it to build a PT adversary B against the XS[R]-security of
WE. We then consider two cases. If there does not exist a PT extractor E such that AdvxsWE,R,B,E(·)
is negligible, then WE is not XS[R]-secure, which contradicts our assumption about WE. Otherwise,
there exists a PT extractor E that succeeds to recover the witness with a non-negligible probability,
and we use it to break the FOWCL-security of KE.

Proof of Theorem 5.2: Let A = (A1,A2) be a valid, δ-bounded PT adversary attacking KEE
in game FINDCL. We build a PT adversary B = (B1,B2) against the XS[R]-security of WE such
that for every PT extractor E there exists a valid, δ-bounded PT adversary I against the FOWCL-
security of KE giving

AdvfindclKEE,A(λ) ≤ AdvxsWE,R,B,E(λ) + 2 · AdvfowclKE,I(λ)

for all λ ∈ N.

We build a PT adversary B = (B1,B2) against the XS[R]-security of WE as defined in Fig. 12.
Algorithm B1 generates its own keys for the key evolution scheme KE and uses them to answer A1’s
queries to oracles Up, Lk and Exp. When A1 chooses challenge messages m0,m1, algorithm B1
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B1(1λ)
t← 1
(pk, sk1)←$ KE.Kg(1λ) ; (pc, sc)← sk1

(i,m0,m1, state)←$AUpSim,LkSim,ExpSim
1 (1λ,pk, pc)

x← (1λ,pk, i)
Return (x,m0,m1, (state, i))

B2(1λ, (state, i), c)
b′←$A2(1

λ, state, (i, c))
Return b′

UpSim()

If t < KE.T(λ) then
skt+1←$ KE.Up(1λ, pk, t, skt)
(pc, sc)← skt+1 ; t← t+ 1
Return pc

Else return ⊥
LkSim(L)

(pc, sc)← skt ; Return L(sc)

ExpSim()

Return skt

Figure 12: Adversary B = (B1,B2) for proof of Theorem 5.2.

Games G0–G1

b←$ {0, 1} ; t← 1 ; t∗ ← KE.T(λ) + 1
(pk, sk1)←$ KE.Kg(1λ) ; (pc, sc)← sk1

(i,m0,m1, state)←$AUp,Lk,Exp
1 (1λ, pk,pc)

If not (1 ≤ i < t∗) then return false
If |m0| ̸= |m1| then return false
x← (1λ, pk, i) ; c←$ WE.Enc(1λ, x,mb)
b′←$A2(1

λ, state, (i, c))
w←$ E(1λ, x,m0,m1, (state, i), c)
If R.Vf(x,w) then
bad← true
Return false // G0

Return (b′ = b)

Up()

If t < KE.T(λ) then
skt+1←$ KE.Up(1λ, pk, t, skt)
(pc, sc)← skt+1 ; t← t+ 1
Return pc

Else return ⊥
Lk(L)

(pc, sc)← skt ; Return L(sc)

Exp()

t∗ ← t ; Return skt

Figure 13: Games for proof of Theorem 5.2.

requests the corresponding challenge ciphertext in the witness extractability game against WE,R.
Algorithm B1 passes the rest of A1’s output over to B2 which runs A2 on this data along with the
received challenge ciphertext.

Let E be any PT extractor. Consider games G0, G1 of Fig. 13. Lines not annotated with comments
are common to all games. Game G1 is equivalent to game FINDCLA

KEE(λ), with the code of KEE
expanded according to its definition, so we have Pr[G1] = Pr[FINDCLA

KEE(λ)] for all λ ∈ N. Game

G0 is equivalent to game XSB,EWE,R(λ), except when A1 in G0 returns a pair of challenge messages
for time period i ≥ t∗. In this case, A can not win in G0, but B can still win in its game. We have
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Pr[G0] ≤ Pr[XSB,EWE,R(λ)] for all λ ∈ N.

We now build a valid, δ-bounded PT adversary I against the FOWCL-security of KE such that

Pr[G0(λ) sets bad] ≤ AdvfowclKE,I(λ)

for all λ ∈ N. The construction is as follows:

IUp,Lk,Exp(1λ, pk, pc)

b←$ {0, 1}
(i,m0,m1, state)←$AUp,Lk,Exp

1 (1λ, pk, pc)
x← (1λ, pk, i) ; c←$ WE.Enc(1λ, x,mb)
w←$ E(1λ, x,m0,m1, (state, i), c)
Return (i, w)

Adversary I uses its inputs pk, pc in game FOWCLI
KE(λ) to simulate A1. It samples its own

challenge bit b, encrypts the corresponding challenge message received from A1, and runs the
witness extractor algorithm E in an attempt to recover a witness for instance (1λ, pk, i). Any
corresponding witness in relation R is a valid secret key ski for KE, meaning that adversary I
breaks the FOWCL security of KE whenever E succeeds to recover a witness. The later event in
game G0 sets bad flag to true, yielding the above equation.

Adversary I is valid and δ-bounded because it makes the same Up, Lk and Exp queries as A1,
whereas A is both valid and δ-bounded. (Note that game FINDCLA

KEE is perfectly simulated for
A1, so it is guaranteed to make at most δ(λ) · KEE.scl(λ) queries to its Lk oracle per time period,
regardless of the convention about adversary restrictions from Section 3.)

Games G0 and G1 are identical until bad, so by the Fundamental Lemma of Game-Playing [9] we
have

Pr[G1(λ)]− Pr[G0(λ)] ≤ Pr[G0(λ) sets bad]

for all λ ∈ N. Combining all of the above, it follows that:

AdvfindclKEE,A(λ) = 2Pr[FINDCLA
KEE(λ)]− 1

= 2Pr[G1(λ)]− 1

= 2 ((Pr[G1(λ)]− Pr[G0(λ)]) + Pr[G0(λ)])− 1

≤ 2
(
Pr[G0(λ) sets bad] + Pr[XSB,EWE,R(λ)]

)
− 1

≤ 2 AdvfowclKE,I(λ) + AdvxsWE,R,B,E(λ)

for all λ ∈ N. This establishes the theorem statement.
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A Construction of KES-TREE

Let SIG be a key-evolving signature scheme. We define a new key-evolving signature scheme
KES-TREE in two steps. First, we will use SIG to specify a single node of a binary tree, defining a
scheme KES-NODE that is parameterized by SIG. We will then build a signature scheme KES-TREE
by composing multiple KES-NODE[SIG] nodes into a binary tree. We stress that KES-NODE is an
auxiliary scheme whose only purpose is to simplify the definition and analysis of the key-evolving
signature scheme KES-TREE. We now start by defining KES-NODE.

Key-evolving signature wrapper-node KES-NODE. Let SIG be a key-evolving signature scheme
with SIG.ml = SIG.pkl + 1. Let Fig. 14 define the node scheme NODE = KES-NODE[SIG]. We use
KES-NODE to provide an abstraction for a single node of a binary tree. It encapsulates a public key
pk, the current time period i (at any moment, different nodes may have different individual time
periods, depending on when they were created), the corresponding secret key ski, and a signature
(j, σ) of its public key under parent node’s secret key (where j indicates the time period of parent
node’s secret key when it was used to produce this signature). For the interface of the node, we
define the following procedures. NODE.Gen generates a node with a fresh key-pair containing a
public key and a secret key. NODE.GetKeys returns the pair of keys that are used for the node,
and NODE.GetPk returns only its public key. NODE.EraseSk erases the secret key, and NODE.Up
evolves the secret key. NODE.Sign takes a message m to return its signature under the current
secret key. NODE.GenChildren generates and returns two new nodes with independent, fresh keys.
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Algorithm NODE.Gen(1λ)

(pk, sk1)←$ SIG.Kg(1λ)
Return (pk, 1, sk1, (⊥,⊥))
Algorithm NODE.GetKeys(node)

(pk, i, ski, (j, σ))← node
Return (pk, i, ski)

Algorithm NODE.GetPk(node)

(pk, i, ski, (j, σ))← node
Return pk

Algorithm NODE.EraseSk(node)

(pk, i, ski, (j, σ))← node
Return (pk,⊥, (⊥,⊥), (j, σ))
Algorithm NODE.Up(1λ, node)

(pk, i, ski, (j, σ))← node
ski+1←$ SIG.Up(1λ, pk, i, ski)
Return (pk, i+ 1, ski+1, (j, σ))

Algorithm NODE.Sign(1λ, node,m)

(pk, i, ski)← NODE.GetKeys(node)
(i, σm)←$ SIG.Sig(1λ, pk, i, ski,m)
Return (i, σm)

Algorithm NODE.GenChildren(1λ, node)

nodel←$ NODE.Gen(1λ)
noder←$ NODE.Gen(1λ)
(pkl, il, lsk)← NODE.GetKeys(nodel)
(pkr, ir, rsk)← NODE.GetKeys(noder)
(i, σl)←$ NODE.Sign(1λ, node, 0 ∥pkl)
(i, σr)←$ NODE.Sign(1λ, node, 1 ∥pkr)
nodel ← (pkl, il, lsk, (i, σl))
noder ← (pkr, ir, rsk, (i, σr))
Return (nodel, noder)

Figure 14: Definition of key-evolving signature wrapper-node NODE = KES-NODE[SIG].

It uses the current node’s secret key to sign each of the newly generated public keys (we prepend
‘0’ to the public key of the left child, and we prepend ‘1’ to the public key of the right child). The
resulting signatures are stored in the corresponding child nodes.

Notation conventions. We now introduce additional notation that will be useful for the def-
inition of signature scheme KES-TREE (see Section 2 for base notation). We denote vectors by
boldface lowercase letters, for example x. We denote the number of coordinates of a vector x by
|x|. We denote the i-th bit of a string x ∈ {0, 1}∗ by x[i] for any 1 ≤ i ≤ |x|, and the i-th coordinate
of a vector x by x[i] for any 1 ≤ i ≤ |x|. If x ∈ {0, 1}∗ is a string then x[i, j] denotes the substring
x[i] . . . x[j] for any 1 ≤ i ≤ j ≤ |x|. If i, ℓ ∈ N such that i < 2ℓ then ⟨i⟩ℓ ∈ {0, 1}ℓ denotes the ℓ-bit
binary representation of i. We associate each position in a binary tree with a string w ∈ {0, 1}∗;
the root node is associated to an empty string ε. For any node associated with a string w, we use
w ∥ 0 to denote the position of its left child and we use w ∥ 1 to denote the position of its right
child. Fig. 3 shows three binary trees with each node labeled as described above. We use map[w]
for w ∈ {0, 1}∗ to store information about the binary tree node at the position that is associated to
w. This notation is used for readability; it helps to avoid specifying a more detailed data structure
for storing information about the binary tree and its nodes.

Key-evolving signature scheme KES-TREE. Let SIG be any key-evolving signature scheme
with SIG.ml = SIG.pkl + 1. Let h : N → N be a polynomial such that 2h(λ)−1 ≤ SIG.T(λ) for
all λ ∈ N. We build a key-evolving signature scheme KES = KES-TREE[SIG, h] as follows. Let
NODE = KES-NODE[KES], KES.pkl = SIG.pkl, KES.ml = SIG.ml and let the algorithms associated
to KES be defined according to Fig. 15. For any λ ∈ N we have KES.T(λ) = 2h(λ) and KES.scl(λ) =
SIG.scl(λ)·(h(λ)+1). Furthermore, KES.pcl(λ),KES.sigl(λ) = O(h(λ)·SIG.pkl(λ)+h(λ)·SIG.sigl(λ)).

The secret component of the secret key for KES scheme consists of all secret keys that descend
from the path going from the binary tree’s root node to the currently active leaf node, as well as
the secret key for the leaf node. The public component of the secret key stores all public keys and
signatures that are associated to this path, including those that lie on this path.

The construction of KES-TREE specifies a number of auxiliary procedures that perform low-
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Algorithm KES.Kg(1λ)

node←$ NODE.Gen(1λ)
pk ← NODE.GetPk(node)
map←⊥ ; map[ε]← node
map← GenBranch(1λ,map, ε)
sk1 ← GetSkFromMap(1λ,map)
Return (pk, sk1)

Algorithm KES.Sig(1λ, pk, i, ski,m)

If not (1 ≤ i ≤ KES.T(λ)) then return ⊥
map← GetMapFromSk(1λ, ski)
w ← ⟨i− 1⟩h(λ)
(j, σm)←$ NODE.Sign(1λ,map[w],m)
σ ← BuildSignature(map, (j, σm), w)
Return (i, σ)

Algorithm KES.Up(1λ, pk, i, ski)

If not (1 ≤ i < KES.T(λ)) then return ⊥
map← GetMapFromSk(1λ, ski)
w ← ⟨i− 1⟩h(λ)
p← (max d ∈ [h(λ)] : w[d] = 0)
map←$ EvolveKeys(1λ,map, w, p)
map← EraseNodes(1λ,map, w, p)
v ← w[1, p− 1] ∥ 1
map←$ GenBranch(1λ,map, v)
ski+1 ← GetSkFromMap(1λ,map)
Return ski+1

Algorithm KES.Vf(1λ, pk,m, (i, σ))

If not (1 ≤ i ≤ KES.T(λ)) then return ⊥
(σ, (j, σm))← σ ; w ← ⟨i− 1⟩h(λ)
valid← true
For d = 1, . . . , h(λ) do

(pk∗, j∗, σ∗)← σ[d] ; m∗ ← w[d] ∥pk∗

valid← valid ∧ SIG.Vf(1λ, pk,m∗, (j∗, σ∗))
pk ← pk∗

valid← valid ∧ SIG.Vf(1λ,pk,m, (j, σm))
Return valid

Procedure GenBranch(1λ,map, w)

While |w| < h(λ) do
(l, r)←$ NODE.GenChildren(1λ,map[w])
map[w ∥ 0]← l ; map[w ∥ 1]← r
map[w]← NODE.EraseSk(map[w])
w ← w ∥ 0

Return map

Procedure BuildSignature(map, (j, σm), w)

For d = 1, . . . , h(λ) do
v ← w[1, d]
(pk, i, ski, (j, σ))← map[v]
σ[d]← (pk, j, σ)

Return (σ, (j, σm))

Procedure EvolveKeys(1λ,map, w, p)

For d = 1, . . . , p− 1 do
If w[d] = 0 then
v ← w[1, d− 1] ∥ 1
map[v]←$ NODE.Up(1λ,map[v])

Return map

Procedure EraseNodes(1λ,map, w, p)

For d = p, . . . , h(λ)
v ← w[1, p] ; map[v]←⊥

Return map

Procedure GetSkFromMap(1λ,map)

. . . // Omitted.
ski ← (pc, sc)
Return ski

Procedure GetMapFromSk(1λ, ski)

(pc, sc)← ski

. . . // Omitted.
Return map

Figure 15: Definition of key-evolving signature scheme KES = KES-TREE[SIG, h].

level operations on the tree. Given a tree node, GenBranch repeatedly generates two child nodes
and moves down to the left child; this procedure is used to generate the tree nodes that lie on (and
descend from) the path from the current node to the leftmost leaf node that is reachable from the
current node. Procedure BuildSignature takes a label associated to some leaf node, along with a SIG
signature that was produced using this node, and collects all SIG public keys and signatures that lie
on the path from the root to this leaf; all of these entities together form a KES signature. Procedure
EvolveKeys is called during every key-update call: it evolves the secret keys of all nodes that are
a part of the secret key for the KES scheme. Procedure EraseNodes deletes binary tree nodes that
were used for the previous time period and are no longer needed. Procedures GetSkFromMap and
GetMapFromSk allow to change the representation of KES secret keys, transforming them between
the map representation (mapping each valid label of a node to all available information about the
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Adversary BUp,Lk,Sign(1λ,pkch, pcch)

p←$ [2h(λ)+1 − 1] ; num← 0
S ← ∅ ; t← 1 ; t∗ ← KES.T(λ) + 1
(pk, sk1)←$ KES.Kg(1λ) ; (pc, sc)← sk1

(i,m, σ)←$AUpSim,LkSim,ExpSim,SignSim(1λ, pk, pc)
(σ, (j, σm))← σ ; w ← ⟨i− 1⟩h(λ)
For d = 1, . . . , h(λ) do
(pk∗, j∗, σ∗)← σ[d] ; m∗ ← w[d] ∥pk∗

If pk = pkch then return (j∗,m∗, σ∗)
pk ← pk∗

Return (j,m, σm)

UpSim()

If t < KES.T(λ) then
skt+1←$ KES.Up(1λ, pk, t, skt)
(pc, sc)← skt+1 ; t← t+ 1
Return pc

Else return ⊥
LkSim(L)

(pc, sc)← skt ; L∗ ← L(skt, ·) ; Return Lk(L∗)

ExpSim()

t∗ ← t ; Return skt

SignSim(m)

(t, σ)←$ KES.Sig(1λ, pk, t, skt,m)
S ← S ∪ {(t,m, σ)} ; Return (t, σ)

Figure 16: Adversary B for proof of Theorem 4.1.

corresponding node) and the component representation (organizing the information about all nodes
into a public component and a secret component); we omit the (trivial but detailed) code of these
procedures.

B Proof of Theorem 4.1

Let A be a valid, γ-bounded PT adversary attacking the FUFCL-security of KES. We build a valid,
δ-bounded PT adversary B attacking the UFCL-security of SIG such that

AdvufclSIG,B(λ) ≥
AdvfufclKES,A(λ)

2h(λ)+1 − 1
≥

AdvfufclKES,A(λ)

4 · SIG.T(λ)− 1
(4)

for all λ ∈ N. Our proof is similar to that of [23].
Informally, adversary B will be constructed as follows. It will simulate game FUFCL for A,

embedding its own challenge public-key pkch in a random position of the binary tree construction
of KES = KES-TREE[SIG, h]. Specifically, out of all the 2h(λ)+1 − 1 nodes that are required to
build KES (across all time periods), adversary B will itself generate the keys for 2h(λ)+1−2 of these
nodes, and use them to answer A’s oracle queries. The remaining single node (in a randomly chosen
position) will correspond to a challenge key-pair (pkch, skch) when attacking the UFCL-security of
SIG. Although B will not know the secret key skch, it will use its oracles Up, Lk,Sign to answer
A’s queries that require the knowledge of this secret key.

In order to win in game FUFCL, adversary A has to forge a valid KES signature for some
time period i. This is only possible if A succeeds to forge a signature for a SIG public key that is
associated to some node that belongs to the path from the root of the KES binary-tree construction
to the leaf that is associated with time period i. Adversary B then returns this SIG signature as its
own forgery. Adversary B breaks the UFCL-security of SIG if adversary A was succesful and if B
managed to guess the exact node for which the forgery was going to happen, where the probability
of the latter is 1/(2h(λ)+1 − 1).

Note that A is γ-bounded for γ(·) = δ(·)/(h(·) + 1) and the secret component of the secret key
in scheme KES is at most h(·) + 1 times larger than that of scheme SIG (its size varies depending
on the time period), so the described construction of B will be δ-bounded.

We build adversary B attacking the UFCL-security of SIG as defined in Fig. 16. Adversary B
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Algorithm NODE.Gen(1λ)

num← num+ 1
If num = numch then
pk ← pkch ; sk1 ← (pcch,⊥)

Else
(pk, sk1)←$ SIG.Kg(1λ)

Return (pk, 1, sk1, (⊥,⊥))

Algorithm NODE.Up(1λ, node)

(pk, i, ski, (j, σ))← node
If ski =⊥ then
pc ← Up() ; ski+1 ← (pc,⊥)

Else
ski+1←$ SIG.Up(1λ, pk, i, ski)

Return (pk, i+ 1, ski+1, (j, σ))

Algorithm NODE.Sign(1λ, node,m)

(pk, i, ski)← NODE.GetKeys(node)
If ski =⊥ then
z←$ Sign(m)

Else
z←$ SIG.Sig(1λ, pk, i, ski,m)

(i, σm)← z ; Return (i, σm)

Figure 17: Overrided definitions of NODE.Gen, NODE.Up and NODE.Sign as implemented by ad-
versary B for the simulation of adversary A in proof of Theorem 4.1.

simulates game FUFCLA
KES(λ) for adversary A, and for that purpose it has to implement the code

of KES = KES-TREE[SIG, h]. In order to avoid repeating the detailed definition of KES-TREE in
its entirety, we only redefine the algorithms that are changed (compared to their original speci-
fications). Specifically, we do not redefine any of the algorithms that are associated directly to
KES = KES-TREE[SIG, h] (meaning KES.* and the associated procedures from Fig. 15), because all
of them remain the same. For the auxiliary scheme NODE = KES-NODE[SIG] that is used by KES,
we redefine algorithms that make use of the stored secret key. These algorithms are provided in
Fig. 17.

Adversary B samples p←$ [2h(λ)+1−1] to denote a random position in the tree. It then maintains
a variable num to count the number of nodes that were created this far, incrementing it prior to
generating every next key pair for scheme SIG; this is done inside the redefined algorithm NODE.Gen
in Fig. 17. If num = p then instead of sampling a new key pair, adversary sets pkch as the public
key of the new node, it sets pcch as the public component of this node’s secret key, and it uses ⊥
to mark that the secret component of the secret key is unknown. Every time a secret key of some
node has to be accessed, we consider two cases: Either the secret key is known, and hence it can
be used directly. Or it is unknown (meaning it corresponds to the challenge public key pkch), in
which case B’s oracles are used to perform the necessary operations instead. This is done inside
the redefined algorithms NODE.Up and NODE.Sign in Fig. 17.

In procedure LkSim we use L∗ ← L(skt, ·) to denote the process of building a circuit L∗ by
hardwiring the input gates of circuit L to contain the known values of skt. As a result, circuit L∗

may take only the challenge secret key skch as input. Note that if skt does not contain the challenge
node at the current time period, then L∗ is a constant circuit with a single-bit output. We assume
that a call to Lk(L∗) returns a valid output in both cases.

According to the definition of KES, its signature consists of a chain of SIG signatures along
the path in the binary tree of SIG nodes, going from its root node down to the leaf node that
corresponds to the returned KES time period i. If the KES signature is valid, then for every two
nearby nodes on this path, the public key of the parent’s node is used to sign its child node’s public
key. If adversary A returns a KES forgery and any of the parent nodes have a public key that
matches pkch then adversary returns the corresponding child’s public key and its signature as a
potential SIG forgery. Otherwise, it returns the last message-signature pair from this path.
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