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Abstract

In this work, we propose a new public-key cryptosystem whose security is based on the
computational intractability of the following problem: Given a Mersenne number p = 2n − 1,
where n is a prime, a positive integer h , and an n -bit integer H , decide whether their exist
n -bit integers F,G each of Hamming weight less than h such that H = F

G modulo p .

1 Introduction

1.1 Motivation

Since the seminal work of Diffie and Hellman [DH76] which presented the fundamentals of public-
key cryptography, one of the most important goal of cryptographers has been to construct secure
and practically efficient public-key cryptosystems. Rivest, Shamir, and Adleman [RSA78] came up
with the first practical public-key cryptosystem based on the hardness of factoring integers, and it
remains the most popular scheme till date.

Shor [Sho97] gave a quantum algorithm that solves the abelian hidden subgroup problem and
as a result solves both discrete logarithms and factoring. Back in 1994, this was not considered a
real threat to the practical cryptographic schemes since quantum computers were far from being
a reality. However, given the recent advances in quantum computing, there is serious effort in
both the industry and the scientific community to make information security systems resistant to
quantum computing. In fact, the National Institute of Standards and Technology (NIST) is now
beginning to prepare for the transition into quantum-resistant cryptography and has announced
a project where they are accepting submissions for quantum-resistant public-key cryptographic
algorithms [NIS17].

In the recent years, some presumably quantum-safe public-key cryptosystems have been pro-
posed in the literature. Perhaps the most promising among these are those based on the hardness
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of lattice problems like Learning with Errors (LWE) based cryptosystems [Reg09], Ring-LWE based
cryptosystems [LPR10] and NTRU [HPS98]. While these cryptosystems have so far resisted any
classical or quantum attacks, it cannot be excluded that such attacks are possible in the future.
In fact, there have been some, albeit unsuccessful, attempts at a quantum algorithm solving the
LWE problem [ES16]. In particular, there is no unifying complexity-theoretic assumption (like
NP-hardness) that relates the difficulty of breaking all these cryptosystems. Thus, it is desirable
to come up with promising new proposals for public-key cryptosystems.

It is worthwhile to note that even though the concept of public-key cryptography was introduced
four decades ago, the number of existing public-key cryptographic schemes whose hardness does not
depend on the hardness of factoring or finding short vectors in lattices is not very large [KLC+00,
McE78, LvTMW09, GWO+13, NS97]. This is not an exhaustive list but it illustrates the various
approaches that have been tried. The rarity of proposals for potentially quantum safe public key
cryptosystems further motivates the problem of constructing such cryptosystems.

1.2 Our Cryptosystem

Our cryptosystem is based on arithmetic modulo so called Mersenne numbers, i.e., numbers of the
form p = 2n − 1, where n is a prime. These numbers have an extremely useful property: For
any number x modulo p , and y = 2z , where z is a positive integer, x · y is a cyclic shift of x
by z positions and thus the Hamming weight of x is unchanged under multiplication by powers
of 2. Our encryption scheme is based on the simple observation that when we consider H = F

G
(mod p), where the binary representation of F and G modulo p has low Hamming weight, then
H looks pseudorandom, i.e., it is hard to distinguish H from a random integer modulo p . In order
to encrypt a bit b ∈ {0, 1} , the encryption algorithm chooses two random numbers A,B modulo p
of low Hamming weight and then outputs

C := (−1)b · (A ·H +B) ,

where H is the public key, and G is the private key. Given the private key, one can compute
C ·G to decrypt the bit b by checking whether C ·G has low Hamming weight (corresponding to
b = 0) or high Hamming weight (corresponding to b = 1). For more details on our scheme and the
underlying security assumption, we refer the reader to Section 3 and 4.

Our cryptosystem is somewhat similar to the NTRU cryptosystem [HPS98] , in the sense that
NTRU also uses the idea that if f , g are elements of a certain ring R , g is invertible, and both
f and g are short with respect to some metric, then f/g is pseudorandom. However, the NTRU
cryptosystem requires arithmetic operations over a ring Zq[x]/(xn − 1), where q is a large integer.
Contrary to this, our cryptosystem requires only binary operations and can be made significantly
more efficient. Moreover, Bos et al [BKLM11] showed how to enhance the efficiency of arithmetic
operations modulo Mersenne primes.

In Section 5.1, we mention some possible approaches to attack our cryptosystem, and in Sec-
tion 5.2 we discuss active attacks. In section 6, we propose a method to make our scheme CCA-
secure.
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2 Preliminaries

Notations. The Hamming weight of an n-bit string s is the total number of 1’s in s and is
denoted by Ham(s). By x (mod 2n − 1), we denote the number y ∈ {0, 1, . . . , 2n − 2} such
that x ≡ y (mod 2n − 1). We use the binary representation of x and the corresponding integer
x ∈ {0, 1, . . . , 2n − 2} interchangeably, and it will be clear from the context which of the two we
are talking about.

For any distinguisher D that outputs a bit b ∈ {0, 1} , the distinguishing advantage to distin-
guish between two random variables X and Y is defined as:

∆D(X ; Y ) := |Pr[D(X) = 1]− Pr[D(Y ) = 1]| .

The following lemma is well known and easy to see.

Lemma 1. Given a probabilistic polynomial time computable function f on two random variables
X and Y , if there is a probabilistic polynomial time distinguisher D that distinguishes between
f(X) and f(Y ) with advantage δ , then there is a probabilistic polynomial time distinguisher D′

that distinguishes between X , and Y with advantage δ .

2.1 Mersenne Numbers and Mersenne Primes

A Mersenne number p is a number of the form 2n − 1 where n is a prime. If 2n − 1 is itself a
prime number, then it is called a Mersenne prime. Note that if n is a composite number of the
form n = k` , then 2k − 1 and 2`− 1 divide p , and hence p is not a prime. The smallest Mersenne
primes are

22 − 1, 23 − 1, 25 − 1, 27 − 1, 213 − 1, 217 − 1, . . .

Lemma 2. Let A,B ∈ {0, 1}n and p = 2n − 1. Then

1. Ham(A+B (mod p)) ≤ Ham(A) + Ham(B).

2. Ham(A ·B (mod p)) ≤ Ham(A) · Ham(B).

3. If A 6= 0n , Ham(−A (mod p)) = n− Ham(A).

Proof. 1. Without loss of generality, we assume A 6= 1n , since the result is obviously true if
A = 1n . We prove the result by induction on the Hamming weight of B . We first assume
that Ham(B) = 1, and let i be the index on which B takes the value 1. Since addition
modulo p is invariant by rotation, we may assume that i = 0 and thus B = 1. In this
case, if A is even, then A + B is just a copy of A with the low order bit set to 1 and the
Hamming weight increases by 1. Otherwise, A ends by a sequence of the form 011 . . . 1 and
after adding 1, it becomes 100 . . . 0. In that case, the Hamming weight of A+B is at most
the Hamming weight of A .

Let Ham(B) = k . Then B = B1 + B2 , where each B1 is an n-bit string with Hamming
weight k − 1, and B2 is a string of Hamming weight 1. By the induction hypothesis:

Ham(A+B (mod p)) = Ham((A+B1) +B2) ≤ Ham(A+B1) + 1 ≤ Ham(A) + (k − 1) + 1,

and the result follows.
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2. We can write B = B1 + · · · + Bk , where each Bi ∈ {0, 1}n has Hamming weight 1. Then
A ·Bi (mod p) is Ai obtained by shifting A upto rotation by ij positions to the left, where
Bi = 2ij . Thus Ham(Ai) = Ham(A), and

A ·B (mod p) = A1 + · · ·+Ai (mod 2n − 1) .

The result then follows from part (1).

3. Notice that 1n is the binary representation of p , and hence −A (mod p) = p − A is the
bitstring obtained by replacing 0’s by 1’s and 1’s by 0’s in A .

2.2 Security Definitions

In the following, we give the most widely used security definitions for public-key cryptography. Let
(Enc,Dec) be the given public-key encryption scheme with public-key, and private-key being pk
and sk , and let |C| denote the length of the ciphertext C . We denote the security parameter by
λ .

Definition 1. The public-key encryption scheme (Enc,Dec) is said to be semantically secure if for
any probabilistic polynomial time distinguisher and any pair of messages m0,m1 of equal length,
given the public key pk , the advantage for distinguishing C0 = Enc(pk,m0) and C1 = Enc(pk,m1)

is at most poly(|Ci|)
2λ

.

Definition 2. The public-key encryption scheme (Enc,Dec) is said to be secure under chosen ci-
phertext attacks if for any probabilistic polynomial time distinguisher that is given access to an
oracle that decrypts any given ciphertext, the following holds: For any pair of messages m0,m1

of equal length, given the public key pk , the advantage for distinguishing C0 = Enc(pk,m0) and

C1 = Enc(pk,m1) is at most poly(|Ci|)
2λ

under the assumption that the distinguisher does not query
the oracle with C0 or C1 .

3 Basic bit-by-bit Encryption

In the following, we describe the basic scheme to encrypt a single bit b ∈ {0, 1} .

Key Generation.

• Given the security parameter λ , choose a Mersenne prime p = 2n − 1 and an integer h such
that

(
n−1
h−1
)
≥ 2λ and 4h2 < n . For a concrete choice of parameters, refer to Section 6.1.

• Choose F,G to be two independent n-bit strings chosen uniformly at random from all n-bit
strings of Hamming weight h .

• Set pk := H = F
G (mod p), and sk := G .
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Encryption. The encryption algorithm chooses two independent strings A,B uniformly at random
from all strings with Hamming weight h . A bit b is encrypted as

C = Enc(pk, b) := (−1)b (A ·H +B) (mod p) .

Decryption. The decryption algorithm computes d = Ham(C · G (mod p)). If d ≤ 2h2 , then
output 0; if d ≥ n− 2h2 , then output 1. Else output ⊥ .

The correctness of the decryption is immediate from Lemma 2. To see this, note that C · G
(mod p) = (−1)b · (A · F + B ·G) (mod p) which, by Lemma 2 has Hamming weight at most 2h2

if b = 0, and at least n− 2h2 if b = 1.

4 Semantic Security of the bit-by-bit Scheme

For proving semantic security, we need the following assumptions.

Definition 3. • The Mersenne Low Hamming Combination Assumption states that given an
n-bit Mersenne prime p = 2n− 1, and an integer h , the advantage of any probabilistic poly-
nomial time adversary attempting to distinguish between (R1, AR1 + B) and (R1, R2) is at

most poly(n)
2λ

, where R1, R2 are uniformly random n-bit strings, and A,B , are independently
chosen n-bit strings each having Hamming weight h .

• The Mersenne Low Hamming Ratio Assumption states that given an n-bit Mersenne prime
p = 2n − 1, and an integer h , the advantage of any probabilistic polynomial time adversary
attempting to distinguish between F

G (mod p) and R is at most poly(n)
2λ

, where R is a uni-
formly random n-bit strings, and F,G , are independently chosen n-bit strings each having
Hamming weight h .

Before proving the security, we show the following:

Lemma 3. If the two assumptions in Definition 3 hold, then the advantage of any probabilistic poly-
nomial time adversary attempting to distinguish between (H,C∗) and (H,R2) is at most poly(n)

2λ
,

where H = F
G (mod p), C∗ = AH+B (mod p), A,B, F,G, are independently chosen n-bit strings

each having Hamming weight h and R2 is a uniformly random n-bit string.

Proof. By the triangle inequality, we have that for any distinguisher D ,

∆D((H,C∗) ; (H,R2)) ≤ ∆D((H,AH +B) ; (R1, AR1 +B))

+ ∆D((R1, AR1 +B) ; (R1, R2)) + ∆D((R1, R2) ; (H,R2)) .

Now, from Lemma 1 and the second assumption of Definition 3, we have that there exists a
distinguisher D′ such that

∆D((H,AH +B) ; (R1, AR1 +B)) = ∆D′(H ; R1) ≤
poly(n)

2λ
.
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Similarly, using both assumptions from Definition 3 and Lemma 1,

∆D((R1, AR1 +B) ; (R1, R2)) ≤
poly(n)

2λ

and

∆D((R1, R2) ; (H,R2)) ≤
poly(n)

2λ
,

thereby implying the result.

Theorem 1. The bit-by-bit scheme (Enc,Dec) is semantically secure under the Mersenne Low Ham-
ming Combination Assumption.

Proof. Let k be any integer. Consider the following to be chosen independently and uniformly
from all n-bit strings of Hamming weight h

F,G,A1, B1, A2, B2, . . . , Ak, Bk .

Let H = F
G (mod p), and let C∗i = AiH+Bi (mod p). Also, let R1, R2, . . . , Rk be chosen uniformly

at random. Define the random variable Xi for i = 0, . . . , k as follows:

Xi := H,C∗1 , C
∗
2 , . . . , C

∗
i , Ri+1, . . . , Rk .

Consider a probabilistic polynomial time distinguisher D , let ∆D(X0, Xk) = δ . By the triangle
inequality, there exists i ∈ {0, . . . , k − 1} such that ∆D(Xi, Xi+1) ≥ δ

k . Notice that Xi (respec-
tively, Xi+1 ) is f(H,C∗i ) (respectively, f(H,Ri)) where f is a randomized function obtained by
sampling A1, B1, . . . , Ai−1, Bi−1 independently and uniformly from all n-bit strings of Hamming
weight h , computing C∗j = AjH + Bj for 1 ≤ j ≤ i − 1, and sampling Ri+1, . . . , Rk uniformly
and independently from all bistrings of length n . Thus, using Lemma 1, we have that there is an
efficient distinguisher D′ such that

∆D′((H,C∗i ) ; (H,R)) ≥ δ

k
.

Thus, from Lemma 3, we have that

∆D(X0 ; Xk) = δ ≤ poly(k, n)

2λ
.

For any k -bit message m = b1, . . . , bk , where b1, . . . , bk ∈ {0, 1} , the (public-key, ciphertext)
pair is distributed as

H, (−1)b1C∗1 , . . . , (−1)bkC∗k ,

which by the argument above and Lemma 1 cannot be distinguished from

Y (m) := H, (−1)b1R1, . . . , (−1)bkRk ,

with advantage more than poly(k,n)
2λ

.

Note that for any two k -bit messages m0,m1 , Y (m0) and Y (m1) are identically distributed.
Thus, for any probabilistic polynomial time distinguisher D ,

∆D(Enc(pk,m0),Enc(pk,m1)) ≤
poly(k, n)

2λ
,

which proves the desired result.
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5 Analysis of our Security Assumption

5.1 Attempts at Cryptanalysis

In this section, we mention some of the approaches that we tried to break our scheme and thereby
mention the conjectured security guarantee.

For cryptanalysis, it is often more convenient to talk about search problems. Thus, we introduce
the following search problem whose solution would imply an attack on our cryptosystem.

Definition 4 (Mersenne Low Hamming Ratio Search Problem). Given an n-bit Mersenne number
p = 2n − 1, an n-bit string H , and an integer h, find two n-bit strings F,G, each of Hamming
weight at most h such that H = F

G (mod p).

For the remainder of the paper, we call this problem P . It is easy to see that if one can efficiently
solve the problem P , then one can break the assumption in Definition 3, and hence the security of
our cryptosystem. It is thus important to study the hardness of this problem.

Hamming Weight Distribution. Let Y be an n bit string generated as Y = F/G where F,G
are chosen uniformly at random from n bit strings with Hamming weight h . A basic test for
the assumption that Y is pseurandom is to check that the distribution of Ham(Y ) is close the
distribution of the Hamming weights for a uniformly random n bit string.

If X is a uniformly random n bit string, the random variable f(X) = Ham(X)−n/2√
n/4

is approxi-

mated by the standard normal random variable N(0, 1). We generated several samples Y = F/G
where F,G are uniformly distributed over strings of Hamming weight

√
n . A quantile-quantile

plot of f(Yi) against samples from N(0, 1) is close to a straight line and does not show significant
deviations from normality.

Of course, one could also perform more advanced statistical tests, such as the NIST suite [RSN+01].
However, in the context of cryptographic schemes, such tests only serve as sanity checks and it is
preferable to focus on dedicated cryptanalysis.

Lattice-based Attacks. The analogy with NTRU suggests that one could hope to come up with
lattice reduction based cryptanalytic attacks on our scheme. A possible approach to solve problem
P stated in Definition 4 is to consider the (2n + 1) dimensional lattice L(B) with basis given by
the columns of the matrix below.

B =



K.H K.(2H mod p) . . . K.(2n−1H mod p) K.1 K.2 . . . K.2n−1 K.p
1 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 1 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . 1 0
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The columns of B are linearly independent so the lattice L(B) has full rank and all the entries of
B are n bit integers. The integer K is chosen to be sufficiently large so that any short vector in
L(B) has first coordinate 0.

If there exist n bit numbers F,G such that H = F/G then B(G,−F, 0)T = (0, G,−F )T . If
there exist F,G with Ham(F ) = Ham(G) = h and H = F/G then there is a vector in L(B) with
norm

√
2h . As a consequence, one could hope to perform lattice reduction algorithm to find this

short vector (or a rotated copy) and thus recover a solution to the problem P .

However, there are many vectors in the lattice which are even shorter than this one. For
example, we know that for all i there exists an integer α such that:

2 (K.((2iH (mod p)))− (K.(2i+1H (mod p)))− α (K.p) = 0.

Thus, B(0i−1, 2,−1, 02n−i−1, α)T = (0, 0i−1, 2,−1, 02n−i−1)T , and we have found a vector of norm√
5 in the lattice. These very short vectors prevent usual lattice reduction algorithms to find the

vector that corresponds to the solution of P . To get rid of these parasitical short vectors, one could
perform lattice reduction in the L∞ norm instead of the Euclidean norm, however, we do not know
efficient algorithms for this purpose.

Meet in the middle attacks. The problem P can also be reformulated as a problem similar to the
cyclic subset sum problem. Let vi be the n-bit vector that is the binary representation of 2i ·H
(mod p). Note that vi is obtained from H by applying the cyclic left shift operator i times. The
problem P is equivalent to finding a subset S ⊂ [n] such that |S| = h and Ham(

∑
j∈S vj) = h .

The search problem can be solved by enumerating all possible S in time
(
n
h

)
poly(n). A meet

in the middle attack reduces the complexity of the search problem to
(
n
h/2

)
poly(n). We describe a

meet in the middle attack for the cyclic subset sum problem where the goal is to find S ⊂ [n], |S| = h
such that

∑
j∈S vj = 0. The algorithm enumerates all subsets S′ ⊂ [n] of size h/2, computes the

list of partial sums f(S′) =
∑

j∈S′ vj and sorts the list. A solution exists if there are two subsets
S′, T ′ such that f(S′) + f(T ′) = 0. The algorithm then enumerates T ′ and performs binary search
on the sorted list to locate S′ if it exists.

The above meet in the middle attack fails for the problem P as one needs to search for S′ such
that f(S′) + f(T ′) has low hamming weight. There are

(
n
h/2

)
possible values of f(S′) to search

for, thus the running time for the meet in the middle attack described above is
(
n
h

)
.

Guess and Win. An obvious approach to break the scheme is to try and guess one of F or G
given H , and thereby obtain the private key. Notice that both H and the Hamming weight of F
and G is unaffected if we multiply both F and G by a fixed power of 2. Thus, without loss of
generality, we can assume that the first bit of F is 1 and then guess the remaining bits. Thus, the
success probability of being able to guess one of F or G is 1

(n−1
h−1)

.

We could also potentially try to guess the randomness used by the encryption in order to break
the scheme. Given C = (−1)b(AH+B) (mod p) for a uniformly random bit b , one can try to guess
B as an h-bit string, and then if C−B

H (mod p) has Hamming weight h , then we output b′ = 0,
if −C−BH (mod p) has Hamming weight less than H , then output b′ = 1, and otherwise output a
uniformly random bit b′ . Note that b′ = b with probability 1 if B is guessed correctly, and the
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probability that b′ = b is almost 1
2 if B is guessed incorrectly. Thus, the success probability is

1
2 + 1

(nh)
. A similar attempt can be made by trying to guess A and then checking the Hamming

weight of C −AH and −C −AH .

Quantum Speedup via Grover’s Algorithm. If one were to attempt to break this scheme using a
quantum algorithm, one could use Grover’s algorithm [Gro96] to obtain a quadratic speedup over
the above mentioned attacks by guessing one of F,G,A,B . Assuming that this is the best possible
quantum attack on our scheme, and based on the choice of the parameters in our encryption scheme,
our scheme is secure with security parameter λ .

Attacking the system if n is not a prime. We mention here that it is quite important to choose n
to be a prime for our cryptosystem. There is at least a partial attack when n is not prime. Indeed
if n0 divides n , then q = 2n0 − 1 divides p = 2n− 1, and also F,G have Hamming weight at most
h modulo q . Thus, given H modulo q , one can try to guess the secret key G modulo q , which

can be done in
√(

n0−1
h−1

)
time using a quantum algorithm. This also reveals F modulo q and we

can likely use it to guess F,G modulo p much faster than the brute force attack described above.

5.2 Active attacks

Active attacks and/or decryption errors attacks are powerful tools that can be used to attack our
bit-by-bit encryption. We recall that the basic idea of such attacks is to ask for the decryption of
incorrectly formed ciphertext and use the answers to recover information about the key.

For example, incorrect ciphertexts can be obtained by picking a random bitstring, by modifying
a valid one or encrypting in a non conformant way. Here, we review the attack in the context of a
single bit, but it is important to note that the encryption of many bits remain vulnerable to such
attacks, even if plaintext redundancy in the style of OAEP paddings [Sho02] is added. We show in
Section 6 how to withstand such attacks using appropriate checks of ciphertext validity.

For simplicity, assume that we have access to a decryption oracle. Forming pseudo ciphertexts
of the form A∗H + B∗ with A∗ and B∗ with low but not conformant Hamming weights can leak
information about the private key. In particular, one might incrementally add ’1’ bits into B∗ (or
A∗ ) until decryption transitions from 0 to ⊥ . We did not concretely write down a full working
attack along this line, but it is clear that the bit-by-bit scheme would be vulnerable to such attacks.

6 Mersenne authenticated encryption plus key exchange

Since we have seen that the bit-by-bit system cannot offer resistance to chosen-ciphertext attack, we
need to integrate it into a more complex scheme with this ability. A first approach would be to use
an existing generic transformation for this purpose. However, this is not a simple matter, indeed,
systems such as OAEP or REACT [OP01] perform checks at the plaintext level and thus cannot
protect against the attack strategy of Section 5.2. The Naor-Yung paradigm [NY90, CHK10] would
be more suitable but the introduction of dual-encryption and non-interactive proofs is too costly
for our purpose.
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In this section, we specify a full cryptosystem that achieves this level of resistance using a
transformation specifically designed for our bit-by-bit encryption. This cryptosystem simultane-
ously encrypts a message M and performs a key exchange of a random key. Note that there is no
major obstacle to turn this method into a generic transformation, this will be presented in the full
paper.

In addition to the bit-by-bit Mersenne system, our transformation uses a random oracle H .
More precisely, this random oracle H receives as input an arbitrary bitstring and outputs a λ-bit
value. As usual, every output is randomly selected whenever a fresh query is asked.

Since our transformation requires the ability to derandomize the bit-by-bit encryption process,
it also needs a sampling subroutine to provide the auxiliary values used during encryption. For
this purpose, we need a routine S that produces n-bit strings of Hamming weight h from a binary
string of λ bits. This routine should be such that S(x) is statistically undistinguishable from a
random n-bit string of weight h when x is uniformly random.

Key Generation. The key generation is identical to the bit-by-bit system and produces pk := H =
F
G (mod p), and sk := G as before.

Encryption with key exchange. Given a message M , the algorithm proceeds as follows:

1. Pick a uniformly random λ-bit string K .

2. Encrypt bit-by-bit the concatenation T = K‖M . To encrypt bit number i of the string T ,
use the strings Ai = S(H(0‖K‖[2i]2)) and Bi = S(H(0‖K‖[2i+ 1]2)). Here, [j]2 denotes the
binary string representing integer j .

Let C denote the concatenation of all encrypted values, i.e. of the sequence of numbers
(−1)Ti(AiH +Bi) (mod p).

3. Output (C,H(1‖K‖C)) as ciphertext and K as exchanged key.

Decryption and key extraction. Given a ciphertext (C∗,m), the algorithm proceeds as follows:

• Decrypt C∗ bit-by-bit and parse the decryption as K‖M .

• Check that m is equal to H(1‖K‖C∗)

• Run step 2 of encryption producing C

• Check that C = C∗

• If both checks were successful, output (M,K). Otherwise, output ⊥ .
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Note. This algorithm can also be used with the empty message in order to provide stand-alone
key exchange.

Theorem 2. Assuming that H is a random oracle and that the bit-by-bit scheme is semantically
secure then the authenticated encryption plus key exchange is secure against adaptive chosen-
ciphertext attacks.

Sketch of proof. We need to show that chosen-ciphertext queries are not helping the adversary, i.e.
that they can be simulated without significantly degrading the adversary’s advantage. Once this is
done, the semantic security suffices to conclude.

For this, lets consider the behavior of the decryption oracle when receiving a ciphertext (C∗,m).
We want to conclude, that unless the ciphertext was produced by a procedure functionaly equivalent
to the encryption specification, the decryption oracle outputs ⊥ with overwhelming probability.

First, remark that H(1‖K‖C) is simply an unforgeable MAC of the string C under key K . The
fact that m is correct implies that (with overwhelming probability) that the player that produced
(C∗,m) made the corresponding query to H and thus had knowledge of the key K corresponding
to the bit-by-bit decryption of the λ first encrypted bit.

The second check verifies that the decryption box does not provide anything which does not
match a correct encryption following from this key K . In addition, assuming that the encryption is
correctly formed, the decryption box does not return anything which cannot already be recovered
from K . Indeed, when K is known, decryption can be performed without the private key G . More
precisely, to decrypt bit i of a correctly formed ciphertext (given K ) it suffices to regenerate the
values of Ai and Bi and compare the corresponding encrypted bit with AiH + Bi and −(AiH +
Bi).

6.1 Concrete choice of parameters

Assuming that the attacks mentioned in Section 5.1 are the best possible, for getting λ-bit classical
security, and λ

2 -bit quantum security, we need to set
(
n−1
h−1
)
> 2λ . Also, for correctness, we require

4h2 < n . Given our current computational capabilities, λ = 128-bit security is what we usually
desire [NIS17]. Thus, choosing h = b

√
n/2c , and λ = blog2

(
n−1
h−1
)
c , we get the following results

depending on the desired security and efficiency.

n h λ

1279 17 120
2203 23 174
3217 28 221
4253 32 260
9689 49 432

We mention here that even though our scheme has been defined for p being a Mersenne prime,
we are not aware of any attacks even if p = 2n − 1 for any large enough prime n . If we are willing
to relax this requirement, then we can choose other values of n to get the desired security.
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7 Conclusions and Future Work.

In this paper, we propose a simple new public-key encryption scheme. As with other public-
key cryptosystems, the security of our cryptosystem relies on unproven assumptions mentioned in
Definition 3. In Section 5.1, we mentioned some unsuccessful attempts we made at trying to break
this scheme, and this led us to conjecture the security guarantee of our scheme. Of course, there
might be other ways to attack this scheme and we urge the readers to try and find attacks on
our scheme that run in time faster than

(
n−1
h−1
)
, or a quantum attack that runs in time faster than√(

n−1
h−1
)
.
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