A New Public-Key Cryptosystem via Mersenne Numbers

Divesh Aggarwal* Antoine Joux[†] Anupam Prakash[‡] Miklos Santha[§]

November 28, 2017

Abstract

In this work, we propose a new public-key cryptosystem whose security is based on the computational intractability of the following problem: Given a Mersenne number $p = 2^n - 1$, where n is a prime, a positive integer h, and two n-bit integers T, R, decide whether their exist n-bit integers F, G each of Hamming weight less than h such that $T = F \cdot R + G$ modulo p.

1 Introduction

1.1 Motivation

Since the seminal work of Diffie and Hellman [DH76] which presented the fundamentals of public-key cryptography, one of the most important goal of cryptographers has been to construct secure and practically efficient public-key cryptosystems. Rivest, Shamir, and Adleman [RSA78] came up with the first practical public-key cryptosystem based on the hardness of factoring integers, and it remains the most popular scheme till date.

Shor [Sho97] gave a quantum algorithm that solves the abelian hidden subgroup problem and as a result solves both discrete logarithms and factoring. Back in 1994, this was not considered a real threat to the practical cryptographic schemes since quantum computers were far from being a reality. However, given the recent advances in quantum computing, there is serious effort in both the industry and the scientific community to make information security systems resistant to quantum computing. In fact, the National Institute of Standards and Technology (NIST) is now beginning to prepare for the transition into quantum-resistant cryptography and has announced a project where they are accepting submissions for quantum-resistant public-key cryptographic algorithms [NIS17].

In the recent years, some presumably quantum-safe public-key cryptosystems have been proposed in the literature. Perhaps the most promising among these are those based on the hardness

^{*}School of Computing and CQT, NUS.

[†]Chaire de Cryptologie de la Fondation de l'UPMC; Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, Paris, France

[‡]School of Physical and Mathematical Sciences, Nanyang Technological University and Centre for Quantum Technologies, National University of Singapore, Singapore.

[§]IRIF, Université Paris Diderot, CNRS, 75205 Paris, France; and Centre for Quantum Technologies, National University of Singapore Singapore 117543

of lattice problems like Learning with Errors (LWE) based cryptosystems [Reg09], Ring-LWE based cryptosystems [LPR10] and NTRU [HPS98]. While these cryptosystems have so far resisted any classical or quantum attacks, it cannot be excluded that such attacks are possible in the future. In fact, there have been some, albeit unsuccessful, attempts at a quantum algorithm solving the LWE problem [ES16]. In particular, there is no unifying complexity-theoretic assumption (like NP-hardness) that relates the difficulty of breaking all these cryptosystems. Thus, it is desirable to come up with promising new proposals for public-key cryptosystems.

It is worthwhile to note that even though the concept of public-key cryptography was introduced four decades ago, the number of existing public-key cryptographic schemes whose hardness does not depend on the hardness of factoring or finding short vectors in lattices is not very large [KLC⁺00, McE78, LvTMW09, GWO⁺13, NS97]. This is not an exhaustive list but it illustrates the various approaches that have been tried. The rarity of proposals for potentially quantum safe public key cryptosystems further motivates the problem of constructing such cryptosystems.

1.2 Our Cryptosystem

Our cryptosystem is based on arithmetic modulo so called Mersenne numbers, i.e., numbers of the form $p = 2^n - 1$, where n is a prime. These numbers have an extremely useful property: For any number x modulo p, and $y = 2^z$, where z is a positive integer, $x \cdot y$ is a cyclic shift of x by z positions and thus the Hamming weight of x is unchanged under multiplication by powers of 2. Our encryption scheme is based on the simple observation that, given a uniformly random n-bit string R, when we consider $T = F \cdot R + G \pmod{p}$, where the binary representation of F and G modulo p has low Hamming weight, then T looks pseudorandom, i.e., it is hard to obtain any non-trivial information about F, G from R, T.

The public-key is chosen to be the pair (R,T), and the secret key is the string F. The encryption scheme also requires an efficient error correcting code with encoding function $\mathcal{E}: \{0,1\}^k \to \{0,1\}^n$ and decoding function $\mathcal{D}: \{0,1\}^n \to \{0,1\}^k$. In order to encrypt a message $m \in \{0,1\}^k$, the encryption algorithm chooses three random numbers A, B_1, B_2 of low Hamming weight modulo p and then outputs

$$C := C_1, C_2$$
,

where $C_1 = A \cdot R + B_1$, and $C_2 = A \cdot T + B_2 \oplus \mathcal{E}(m)$. Given the private key, one can compute

$$C_2^* := C_1 \cdot F = (A \cdot T + B_2) - A \cdot G - B_2 + B_1 \cdot F$$
.

Since A, B_1, B_2, F, G have low Hamming weight, the Hamming distance between $A \cdot T + B_2$ and C_2^* is expected to be low, and so we get that $\mathcal{D}(C_2 \oplus C_2^*)$ is equal to to m with high probability. For more details on our scheme and the underlying security assumption, we refer the reader to Section 4 and 5.

1.3 Related Work

We are certainly not the first ones to use the idea of adding "small errors" to obtain pseudorandom strings, and use some kind of error correction during decryption to eliminate these errors. In particular, the NTRU cryptosystem [HPS98], the Learning with Errors based cryptosystem [Reg09], and MDPC code based cryptosystems [MTSB13] are all based on this general principle. However,

the error distribution in our cryptosystem is quite different, and hence our security assumption is uncomparable from these prior works. Moreover, our cryptosystem requires only binary operations (as opposed to operations in large rings) and can be made significantly more efficient.

1.4 Organization of the Paper

(Divesh: To write)

2 Preliminaries

Notations. For any distinguisher D that outputs a bit $b \in \{0,1\}$, the distinguishing advantage to distinguish between two random variables X and Y is defined as:

$$\Delta^{D}(X ; Y) := |\Pr[D(X) = 1] - \Pr[D(Y) = 1]|$$
.

The following lemma is well known and easy to see.

Lemma 1. Given a probabilistic polynomial time computable function f on two random variables X and Y, if there is a probabilistic polynomial time distinguisher D that distinguishes between f(X) and f(Y) with advantage δ , then there is a probabilistic polynomial time distinguisher D' that distinguishes between X, and Y with advantage δ .

2.1 Mersenne Numbers and Mersenne Primes

Let n be a positive integer, and let $p=2^n-1$. When n is a prime, p is called a Mersenne number, and if 2^n-1 is itself a prime number, then it is called a Mersenne prime. Note that if n is a composite number of the form $n=k\ell$, then 2^k-1 and $2^\ell-1$ divide p, and hence p is not a prime. The smallest Mersenne primes are

$$2^2-1, 2^3-1, 2^5-1, 2^7-1, 2^{13}-1, 2^{17}-1, \dots$$

We denote by \mathbb{Z}_p the ring of integers modulo p. We index binary strings from right to left, that is for $x \in \{0,1\}^n$ we write x as $x_n \dots x_1$. The Hamming weight of an n-bit string y is the total number of 1's in y and is denoted by $\mathsf{Ham}(y)$. Let $\mathrm{seq}: \mathbb{Z}_p \to \{0,1\}^n$ be the map which to $x \in \mathbb{Z}_p$ associates the binary string $\mathrm{seq}(x)$ representing x. The map int : $\{0,1\}^n \to \mathbb{Z}_p$ sends a string y into the integer represented by y modulo p. Clearly seq and int are inverse functions between \mathbb{Z}_p and $\{0,1\}^n \setminus \{1^n\}$, and $\mathrm{int}(1^n) = 0$. We use this bijection between \mathbb{Z}_p and $\{0,1\}^n \setminus \{1^n\}$ to define addition and multiplication over $\{0,1\}^n$ in the natural way: for $y,y' \in \{0,1\}^n$, let $y+y'=\mathrm{seq}(\mathrm{int}(y)+\mathrm{int}(y'))$, and let $y\cdot y'=\mathrm{seq}(\mathrm{int}(y)\cdot\mathrm{int}(y'))$. It is easy to see that both operations remain associative and commutative, and the distributivity of the multiplication over the addition also holds. We also set $(-1)\cdot y=-y=\mathrm{seq}(-(\mathrm{int}(y))$. Observe that addition is invariant by rotation, that is if $\mathrm{rot}_k(y)$ denotes the circular rotation of y by k positions to the left, then $\mathrm{rot}_k(y+y')=\mathrm{rot}_k(y)+\mathrm{rot}_k(y')$.

Lemma 2. Let $p = 2^n - 1$. For all $A, B \in \{0, 1\}^n$, we have

- 1. $\operatorname{Ham}(A+B) \leq \operatorname{Ham}(A) + \operatorname{Ham}(B)$.
- 2. $\operatorname{Ham}(A \cdot B) \leq \operatorname{Ham}(A) \cdot \operatorname{Ham}(B)$.
- 3. If $A \neq 0^n$ then $\mathsf{Ham}(-A) = n \mathsf{Ham}(A)$.

Proof. 1. If $A = 1^n$ the result is obviously true. When $A \neq 1^n$, we prove the result by induction on the Hamming weight of B. If $B = 0^n$ the statement is obviously true.

For the induction step we first prove the claim when $\mathsf{Ham}(B) = 1$. Let i be the index on which B takes the value 1. Since addition is invariant by rotation, we may assume that i = 1 and thus $B = 0^{n-1}1$. A can be written as $C01^j$ for some $0 \le j \le n-1$, and $A+B = C10^j$. Thus $\mathsf{Ham}(A+B) = \mathsf{Ham}(A) - j + 1 \le \mathsf{Ham}(A) + 1$.

Let $\mathsf{Ham}(B) = k > 1$. Then we can decompose B as $B_1 + B_2$, where $\mathsf{Ham}(B_1) = k - 1$ and $\mathsf{Ham}(B_2) = 1$. By the previous claim and the induction hypothesis we get:

$${\sf Ham}(A+B) = {\sf Ham}((A+B_1)+B_2) \leq {\sf Ham}(A+B_1) + 1 \leq {\sf Ham}(A) + (k-1) + 1,$$

and the result follows.

- 2. If $B=0^n$ the statement is obviously true. Otherwise, for some $k \geq 1$, we can decompose B as $B_1 + \cdots + B_k$, where each B_i has Hamming weight 1, for $1 \leq i \leq k$. Let j_i be the index of the position where B_i takes the value 1. Then $A \cdot B_i = \operatorname{rot}_{j_i-1}(A)$. Thus $\operatorname{Ham}(A \cdot B_i) = \operatorname{Ham}(A)$, and by distributivity we get $A \cdot B = A \cdot B_1 + \cdots + A \cdot B_k$. The result then follows from part (1).
- 3. If $A \neq 0^n$ then -A is the binary string obtained from A by replacing 0's by 1's and 1's by 0's.

2.2 Security Definitions

2.2.1 Public-Key Encryption

A public key encryption scheme comprises of three algorithms: the key generation algorithm KeyGen, the encryption algorithm Enc, and the decryption algorithm Dec. The KeyGen algorithm outputs a public-key pk, and a secret key sk. The encryption algorithm Enc takes as input a message m, and pk, and outputs a ciphertext C. The decryption algorithm takes as input a ciphertext C and sk, and outputs a message m' or a special symbol \bot indicating rejection. We say that the encryption scheme is $1-\delta$ correct if for all m, $\Pr[\text{Dec}(\text{sk}, \text{Enc}(\text{pk}, m))] \ge 1-\delta$, where the probability is over the randomness of pk, sk and the encryption algorithm. We denote the security parameter by λ .

Definition 1. The public-key encryption scheme PKE = (KeyGen, Enc, Dec) is said to be *semantically secure* if for any probabilistic polynomial time distinguisher and any pair of messages m_0, m_1 of equal length, given the public key pk, the advantage for distinguishing $C_0 = \text{Enc}(pk, m_0)$ and $C_1 = \text{Enc}(pk, m_1)$ is at most $\frac{\text{poly}(|C_i|)}{2\lambda}$.

Definition 2. The public-key encryption scheme PKR = (KeyGen, Enc, Dec) is said to be secure under chosen ciphertext attacks if for any probabilistic polynomial time distinguisher that is given access to an oracle that decrypts any given ciphertext, the following holds: For any pair of messages m_0, m_1 of equal length, given the public key pk, the advantage for distinguishing $C_0 = \text{Enc}(pk, m_0)$ and $C_1 = \text{Enc}(pk, m_1)$ is at most $\frac{\text{poly}(|C_i|)}{2^{\lambda}}$ under the assumption that the distinguisher does not query the oracle with C_0 or C_1 .

2.2.2 Key Encapsulation Mechanism

A key-encapsulation mechanism (KEM) comprises of three algorithms: the key generation algorithm KeyGen, the encapsulation algorithm Encaps, and the decapsulation algorithm Decaps, and a key space \mathcal{K} . The KeyGen algorithm outputs a public-key pk , and a secret key sk . The encapsulation algorithm Encaps takes as input a public key pk to produce a ciphertext C and a key $K \in \mathcal{K}$. The decapsulation algorithm Decaps takes as input a ciphertext C and sk , and outputs a key K' or a special symbol \bot indicating rejection. We say that the KEM is $(1 - \delta)$ -correct if

$$\Pr[\mathsf{Decaps}(\mathsf{sk}, C) = K \ : \ (C, K) \leftarrow \mathsf{Encaps}(\mathsf{pk})] \geq 1 - \delta \ .$$

Definition 3. The key-encapsulation mechanism KEM = (KeyGen, Encaps, Decaps) is said to be semantically secure if for any probabilistic polynomial time distinguisher, given the public key pk, the advantage for distinguishing (C, K_0) and (C, K_1) , where $(C, K_0) \leftarrow Encaps(pk)$ and K_1 is uniform and independent of C is at most $\frac{poly(|C|,|K_0|)}{2^{\lambda}}$.

Definition 4. The key-encapsulation mechanism KEM = (KeyGen, Encaps, Decaps) is said to be secure under chosen ciphertext attacks if for any probabilistic polynomial time distinguisher that is given access to the decapsulation oracle and the public key pk, the advantage for distinguishing (C, K_0) and (C, K_1) , where $(C, K_0) \leftarrow \text{Encaps}(pk)$ and K_1 is uniform and independent of C is at most $\frac{\text{poly}(|C|,|K_0|)}{2^{\lambda}}$ under the assumption that the distinguisher does not query the oracle with C.

2.3 Security Assumptions

The semantic security of our encryption scheme is based on the following assumption.

Definition 5. The Mersenne Low Hamming Combination Assumption states that given an n-bit Mersenne prime $p = 2^n - 1$, and an integer h, the advantage of any probabilistic polynomial time adversary attempting to distinguish between

$$\left(\begin{bmatrix} R_1 \\ R_2 \end{bmatrix} , \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \cdot A + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}\right) \quad \text{and} \quad \left(\begin{bmatrix} R_1 \\ R_2 \end{bmatrix} , \begin{bmatrix} R_3 \\ R_4 \end{bmatrix}\right)$$

is at most $\frac{\text{poly}(n)}{2^{\lambda}}$, where R_1, R_2, R_3, R_4 are independent and uniformly random n-bit strings, and A, B, are independently chosen n-bit strings each having Hamming weight h.

We note that the assumption has some striking similarity to the learning with errors assumption by Regev [Reg09], where A corresponds to the secret, and B_1, B_2 correspond to the small error. The Mersenne Low Hamming Combination Assumption, in particular implies that one cannot

obtain any useful information about A, B from the pair $(R_1, A \cdot R_1 + B)$. Notice that if the pair $(R_1, A \cdot R_1 + B)$ is assumed to be pseudorandom, then so is the pair $(R_1, A \cdot (-R_1) + B)$, and so one cannot obtain any useful information about A, B from the pair $(R_1, -A \cdot R_1 + B)$. The Mersenne Low Hamming Ratio Assumption is a homogeneous version of this assumption in the sense that we state that no useful information about A, B can be obtained from $(R_1, -A \cdot R_1 + B)$ given that $-A \cdot R_1 + B = 0$. It is required for the semantic security of the bit-by-bit encryption scheme that we describe in the next section, and was introduced in a previous version of this paper.

Definition 6. The Mersenne Low Hamming Ratio Assumption states that given an n-bit Mersenne prime $p = 2^n - 1$, and an integer h, the advantage of any probabilistic polynomial time adversary attempting to distinguish between $\frac{A}{B} \pmod{p}$ and R is at most $\frac{\text{poly}(n)}{2^{\lambda}}$, where R is a uniformly random n-bit string, and A, B, are independently chosen n-bit strings each having Hamming weight h.

3 Basic bit-by-bit Encryption

In the following, we describe a basic encryption scheme to encrypt a single bit $b \in \{0, 1\}$.

Key Generation.

- Given the security parameter λ , choose a Mersenne prime $p = 2^n 1$ and an integer h such that $\binom{n}{h} \geq 2^{\lambda}$ and $4h^2 < n$.
- Choose F, G to be two independent n-bit strings chosen uniformly at random from all n-bit strings of Hamming weight h.
- Set $pk := H = seq(\frac{int(F)}{int(G)})$, and sk := G.

Encryption. The encryption algorithm chooses two independent strings A, B uniformly at random from all strings with Hamming weight h. A bit b is encrypted as

$$C = \mathsf{Enc}(\mathsf{pk}, b) := (-1)^b \left(A \cdot H + B \right) \ .$$

Decryption. The decryption algorithm computes $d = \mathsf{Ham}(C \cdot G)$. If $d \leq 2h^2$, then output 0; if $d \geq n - 2h^2$, then output 1. Else output \perp .

For the correctness of the decryption note that $C \cdot G = (-1)^b \cdot (A \cdot F + B \cdot G)$ which, by Lemma 2, has Hamming weight at most $2h^2$ if b = 0, and at least $n - 2h^2$ if b = 1.

The basic bit-by-bit encryption scheme can be viewed as a simple proposal for a cryptosystem based on arithmetic modulo the Mersenne primes, however it is not efficient with respect to ciphertext size. Since this is not our final proposed encryption scheme, we do not analyze its security although it will easily follow from the Mersenne Low Hamming Ratio and the Mersenne Low Hamming Combination Assumption and appeared in a previous version of this paper. In the next section, we describe a scheme for encrypting longer message blocks.

4 Our Main Semantically Secure Public-Key Cryptosystem

It is reasonable to choose the message block length to be the same as the security parameter in practice. For this reason, we describe below a scheme for encrypting a message block $m \in \{0,1\}^{\lambda}$.

Key Generation.

- Given the security parameter λ , choose a Mersenne prime $p=2^n-1$ such that $h=\lambda$ and $n>10h^2$.
- Let F, G to be two independent n-bit strings chosen uniformly at random from all n-bit strings of Hamming weight h. Let R be a uniformly random n-bit string.
- Set $pk := (R, F \cdot R + G) := (R, T)$, and sk := F.

Encryption. The encryption algorithm chooses three strings A, B_1, B_2 independently and uniformly at random from all strings with Hamming weight h. Let $(\mathcal{E}, \mathcal{D})$ be the encoding and decoding algorithms of an error correcting code that we choose later. The message $m \in \{0,1\}^{\lambda}$ is encrypted as,

$$\mathsf{Enc}(\mathsf{pk},k) := (C_1,C_2) := (A \cdot R + B_1, (A \cdot T + B_2) \oplus \mathcal{E}(m)) \; .$$

Here $\mathcal{E}: \{0,1\}^{\lambda} \to \{0,1\}^n$ is a suitably chosen error correcting code and \oplus denotes the bitwise XOR operation.

Decryption. The decryption algorithm computes $\mathcal{D}((F \cdot C_1) \oplus C_2)$.

In order to say that the scheme is $(1-\delta)$ -correct, we need to choose the error correcting code such that $\Pr_{C_1,C_2\leftarrow \mathsf{Enc}(m)}[\mathcal{D}((F\cdot C_1)\oplus C_2)=m]\geq 1-\delta$, and the probability is over the randomness of the encryption algorithm and the choice of pk,sk . For concrete instantiations of error-correcting codes that satisfy this for a small enough δ , see Section 8.

5 Semantic Security of the Cryptosystem

In this section, we prove the semantic security of the PKE scheme in Section 4.

Theorem 1. The encryption scheme (Enc, Dec) described in Section 4 is semantically secure under the Mersenne Low Hamming Combination Assumption.

Proof. In the following, let $A, B_1, B_2, F, G, R, R', R'', R'''$ be independently chosen such that A, B_1, B_2, F, G are chosen uniformly from all strings of Hamming weight h, and R, R', R'', R''' are uniformly random strings. Let $T = F \cdot R + G$. By the Mersenne Low Hamming Combination Assumption, we have that for any probabilistic polynomial time distinguisher D

$$\Delta^D(R,T ; R,R') \le \frac{\text{poly}(n)}{2^{\lambda}}.$$

Now, from Lemma 1, we have that for any probabilistic polynomial time distinguisher D',

$$\Delta^{D'}(R, T, A \cdot R + B_1, A \cdot T + B_2; R, R', A \cdot R + B_1, A \cdot R' + B_2) \le \frac{\text{poly}(n)}{2^{\lambda}}.$$

Again, by the Mersenne Low Hamming Combination Assumption, we have that

$$\Delta^{D'}(R, R', A \cdot R + B_1, A \cdot R' + B_2 ; R, R', R'', R''') \le \frac{\text{poly}(n)}{2^{\lambda}}.$$

Using the triangle inequality, we get that

$$\Delta^{D'}(R, T, A \cdot R + B_1, A \cdot T + B_2 ; R, R', R'', R''') \le \frac{\text{poly}(n)}{2^{\lambda}}.$$

This implies that for any message m,

$$\Delta^{D'}(R,T,A\cdot R+B_1,A\cdot T+B_2\oplus \mathcal{E}(m)\;;\;R,R',R'',R''')\leq \frac{\operatorname{poly}(n)}{2^{\lambda}}\;,$$

since R, R', R'', R''' and $R, R', R'', R''' \oplus \mathcal{E}(m)$ are identically distributed. This implies the required semantic security.

6 Analysis of our Security Assumption

6.1 Attempts at Cryptanalysis

In this section, we mention the known approaches to break our security assumption and thereby mention the conjectured security guarantee for our scheme. For cryptanalysis, it is often more convenient to talk about search problems. We introduce the following search problem whose solution would imply an attack on our cryptosystem.

Definition 7 (Mersenne Low Hamming Combination Search Problem). For an n-bit Mersenne number $p = 2^n - 1$ and an integer h, given tuple $(R, FR + G \pmod{p})$ where R is a uniformly random n-bit string and F, G have Hamming weight h, find F, G.

For the remainder of the paper, we call this problem \mathcal{P} . It is easy to see that if one can efficiently solve the problem \mathcal{P} , then one can break the assumption in Definition 5, and hence the security of our cryptosystem. It is therefore important to study the hardness of this problem.

Hamming Distance Distribution. Let R be a uniformly random n bit string and Y = FR + G where F, G are chosen uniformly at random from n bit strings with Hamming weight h. A basic test for the assumption that Y is pseudorandom given R is to check that the distribution of $\mathsf{Ham}(R,R')$ is close to the distribution of $\mathsf{Ham}(R,T)$ where T is a uniformly random n bit string.

If R is a fixed string and X is a uniformly random n bit string, the random variable $f_R(X) = \frac{\operatorname{Ham}(X,R) - n/2}{\sqrt{n/4}}$ is approximated by the standard normal random variable N(0,1). We generated R at random and then obtained samples Y = FR + G where F,G are uniformly distributed over strings of Hamming weight \sqrt{n} . A quantile-quantile plot of $f_R(Y_i)$ against samples from N(0,1) is close to a straight line and does not show significant deviations from normality.

One could also perform more advanced statistical tests, such as the NIST suite [RSN $^+01$] to verify the pseudorandomness of Y given R. However, in the context of cryptographic schemes, such tests only serve as sanity checks and it is preferable to focus on dedicated cryptanalysis.

Weak key attack. Following the appearance of a preliminary version of this paper, [BCGN17] found a weak key attack on the Mersenne Low Hamming Ratio search problem where given H = F/G mod P with F, G having low Hamming weight, the goal is to find F and G. We observe here that their attack also extends to the Mersenne Low Hamming Combination search problem \mathcal{P} .

The weak key attack of [BCGN17] relies on the following fact about the LLL algorithm, if we have an equation $a_0 = \sum_i a_i x_i \mod p$ where the a_i are known and there is a solution with $\prod_i x_i < p$ then the solutions x_i can be recovered using the LLL algorithm. Thus, if we are given a pair (R, FR + G) where $F, G \leq \sqrt{p}$ then F, G can be found using the LLL algorithm. This event occurs with probability $\approx 2^{-2h}$ as all h bits equal to 1 in binary representation of F, G must be at locations j such that $0 \leq j \leq n/2$.

The weak key attack was extended to a lattice reduction based attack on the Low Mersenne Hamming Ratio search problem in [BCGN17]. We next describe a basic lattice reduction based attack on the Low Mersenne Hamming Combination search problem \mathcal{P} and then the lattice reduction based attack of [BCGN17] adapted to this problem. This is the best known attack on our security assumption and the security parameters in Section 8 have been revised in view of this attack.

Basic lattice reduction attack. A possible approach to solve problem \mathcal{P} , that is to find low Hamming weight F, G such that $Y = FR + G \mod p$ is to consider the (2n + 2) dimensional lattice L(B) with basis given by the columns of the matrix below.

	$\lceil K.R$	$K.(2R \bmod p)$		$K.(2^{n-1}R \bmod p)$	K.1	K.2		$K.2^{n-1}$	-K.Y	K.p
B =	1	0		0	0	0		0	0	0
	0	1		0	0	0		0	0	0
	;	:	٠	:	;	:	٠.	÷	÷	
	0	0		1	0	0		0	0	0
	0	0		0	1	0		0	0	0
	0	0		0	0	1		0	0	0
	:	:	٠	÷	÷	÷	٠.	÷	:	
	0	0		0	0	0		1	0	0
		0		0	0	0		0	1	0

The columns of B are linearly independent so the lattice L(B) has full rank and all the entries of B are n bit integers. The integer K is chosen to be sufficiently large so that any short vector in L(B) has first coordinate 0.

If there exist n bit numbers F, G such that $Y = FR + G + \alpha P$ for some $\alpha \in \mathbb{Z}$ then $B(F, G, 1, \alpha)^T = (0, F, G, 1)^T$. Thus, if there exist F, G with $\mathsf{Ham}(F) = \mathsf{Ham}(G) = h$ and $Y = FR + G \mod p$ then there is a vector in L(B) with norm $\sqrt{2h}$. As a consequence, one could hope to perform lattice reduction algorithm to find this short vector (or a rotated copy) and thus recover a solution to the problem \mathcal{P} .

However, there are many vectors in the lattice which are even shorter than this one. For example, we know that for all i there exists an integer α such that:

$$2(K.((2^{i}H \pmod{p})) - (K.(2^{i+1}H \pmod{p})) - \alpha(K.p) = 0.$$

Thus, $B(0^{i-1}, 2, -1, 0^{2n-i}, \alpha)^T = (0, 0^{i-1}, 2, -1, 0^{2n-i})^T$, and we have found a vector of norm $\sqrt{5}$ in the lattice. One approach for getting rid of these spurious short vectors is to perform lattice reduction in the L_{∞} norm instead of the Euclidean norm, however, we do not know efficient algorithms for this purpose.

Lattice reduction attack of [BCGN17]. A partition π of a binary string $X \in \{0,1\}^n$ into m parts is said to be correct for X if the even numbered blocks in π do not contain any bits equal to 1 in X. Further, a partition is said to be balanced if the combined size of the even and odd numbered blocks differ by at most 1. The [BCGN17] attack finds balanced partitions that are correct for F, G by random sampling, about 2^{2h} samples are required before correct partitions are found. Let f, g be correct balanced partitions for F, G with non zero blocks starting at positions f_i, g_i and having sizes u_i, v_i for $i \in [m/2]$ and let $w = \max_{i \in [m/2]} (u_i, v_i)$.

We are given the pair (R, FR + G := Y) and the goal is to recover F, G. Define the vector $a \in \mathbb{Z}^{m+2}$ such that,

$$a_{i} = \begin{cases} R.2^{f_{i}} \mod p & \text{if } 0 < i \le m/2\\ 2^{g_{i}} & \text{if } m/2 < i \le m\\ -Y & \text{if } i = m+1\\ p & \text{if } i = m+2 \end{cases}$$
(1)

Consider the (m+2) dimensional lattice with basis vectors given below. The integer K is chosen to be sufficiently large so that any short vector in L(B) has first coordinate 0.

Let $v:=(F_1,F_2,\cdots,F_{m/2},G_1,G_2,\cdots,G_{m/2},1,t)$ where FR+G-Y=tp over the integers, then $Bv=(0,F_12^{w-u_1},\cdots,F_{m/2}2^{w-u_{m/2}},G_12^{w-v_1},\cdots,G_{m/2}2^{w-v_{m/2}},2^w,0)$ has norm at most $2^w\sqrt{m}$. It was experimentally demonstrated in [BCGN17], that the LLL algorithm for this lattice recovers F,G for the Mersenne Low Hamming Ratio search problem where FR-G=0. It is therefore reasonable to expect that the LLL algorithm for the lattice below will recover (F,G) for the Mersenne Low Hamming Combination search problem \mathcal{P} . This attack requires time 2^{2h} times the cost of lattice reduction and It may be feasible to further improve if further to 2^{ch} for some constant c<2.

$$B = \begin{bmatrix} K.a_1 & K.a_2 & \dots & K.a_{m/2} & K.a_{m/2+1} & K.a_{m/2+2} & \dots & K.a_m & K.a_{m+1} & K.a_{m+2} \\ 2^{w-u_1} & 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 2^{w-u_2} & \dots & 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 2^{w-u_{m/2}} & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & \dots & 0 & 2^{w-v_1} & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 2^{w-v_2} & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 2^{w-v_{m/2}} & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

Quantum Speedup via Grover's Algorithm. If one had access to a quantum computer, one could use Grover's algorithm [Gro96] to obtain a quadratic speedup over the above attack. The attack performs a lattice reduction step for each guess of partitions f, g and concludes that they are correct if the lattice reduction step recovers F, G of Hamming weight H such that Y = FR + G.

The lattice reduction step must be performed inside the oracle required for Grover search, that is we need a quantum circuit for performing lattice reduction in order to implement this attack. A lattice reduction circuit has high depth so a universal quantum computer would be required to obtain a quadratic quantum speedup for problem \mathcal{P} . Such a speedup may therefore be infeasible for near term quantum devices. Hoever, in view of this potential quantum attack, we assume that the best possible attack on the Mersenne Low Hamming Combination problem has complexity 2^h for our security estimates in Section 8.

Attacking the system if n is not a prime. We mention here that it is quite important to choose n to be a prime for our cryptosystem. There is at least a partial attack when n is not prime. Indeed if n_0 divides n, then $q = 2^{n_0} - 1$ divides $p = 2^n - 1$, and also F, G have Hamming weight at most h modulo q. Thus, given $Y = FR + G \mod q$, one can try to guess the secret key G modulo q, which can be done in $\sqrt{\binom{n_0}{h}}$ time using a quantum algorithm. This also reveals F modulo q and we can likely use it to guess F, G modulo p much faster than the attacks described above.

6.2 Active attacks

Active attacks and/or decryption errors attacks are powerful tools that can be used to attack our bit-by-bit encryption. We recall that the basic idea of such attacks is to ask for the decryption of incorrectly formed ciphertext and use the answers to recover information about the key.

For example, incorrect ciphertexts can be obtained by picking a random bitstring, by modifying a valid one or encrypting in a non conformant way. Here, we review the attack in the context of a single bit, but it is important to note that the encryption of many bits remain vulnerable to such attacks, even if plaintext redundancy in the style of OAEP paddings [Sho02] is added. We show in Section 7 how to withstand such attacks using appropriate checks of ciphertext validity.

For simplicity, assume that we have access to a decryption oracle. Forming pseudo ciphertexts of the form $A^*H + B^*$ with A^* and B^* with low but not conformant Hamming weights can leak information about the private key. In particular, one might incrementally add '1' bits into B^* (or A^*) until decryption transitions from 0 to \bot . We did not concretely write down a full working attack along this line, but it is clear that our encryption scheme would be vulnerable to such attacks.

7 Mersenne Key Encapsulation Mechanism

Since we have seen that the semantically secure cryptosystem described in Section 4 cannot offer resistance to chosen-ciphertext attack, we need to integrate it into a more complex scheme with this ability. A first approach would be to use an existing generic transformation for this purpose. However, this is not a simple matter, indeed, systems such as OAEP or REACT [OP01] perform checks at the plaintext level and thus cannot protect against the attack strategy of Section 6.2.

The Naor-Yung paradigm [NY90, CHK10] would be more suitable but the introduction of dual-encryption and non-interactive proofs is too costly for our purpose.

In this section, we specify a full cryptosystem that achieves this level of resistance using a transformation specifically designed for our encryption scheme. We present our cryptosystem as a key encapsulation mechanism. It can be turned into an public key encryption scheme using a standard transformation.

Let Enc, Dec be the encryption and decryption algorithms as defined in Section 4. In addition to this, our transformation uses a random oracle \mathcal{H} that takes as input λ -bit strings, and outputs a uniformly random string that is long enough to compute three independent n-bit strings, each chosen uniformly over all strings of Hamming weight h. Let $\mathcal{H}_1(k), \mathcal{H}_2(k), \mathcal{H}_3(k)$ be the three such outputs obtained from the random oracle on input k. As usual, every output is randomly selected whenever a fresh query is asked.

Key Generation. The key generation is identical to the semantically secure cryptosystem and produces $pk := R, T := F \cdot R + G$, and sk := F where R is a uniformly random n-bit string, and F, G are chosen uniformly at random from n-bit strings of Hamming weight h.

Key Encapsulation. Given the public key pk = R, T, the algorithm Encaps proceeds as follows:

- 1. Pick a uniformly random λ -bit string K.
- 2. Let $A = \mathcal{H}_1(K)$, $B_1 = \mathcal{H}_2(K)$, and $B_2 = \mathcal{H}_3(K)$.
- 3. Let $C = (C_1, C_2)$, where $C_1 = A \cdot R + B_1$, and $C_2 = \mathcal{E}(K) \oplus (A \cdot T + B_2)$.
- 4. Output C, K.

Decapsulation. Given a ciphertext $C = (C_1, C_2)$, and sk = F, the decapsulation algorithm Decaps algorithm proceeds as follows:

- 1. Compute $K' = \mathcal{D}((F \cdot C_1) \oplus C_2)$.
- 2. Let $A' = \mathcal{H}_1(K')$, $B'_1 = \mathcal{H}_2(K')$, and $B_2 = \mathcal{H}_3(K')$.
- 3. Let $C' = (C'_1, C'_2)$, where $C'_1 = A' \cdot R + B'_1$, and $C'_2 = \mathcal{E}(K') \oplus (A' \cdot T + B'_2)$.
- 4. If C = C', output K', else output \perp .

Theorem 2. Assume that \mathcal{H} is a random oracle and that the scheme from Section 4 is semantically secure. Then the above mentioned key encapsulation mechanism is secure against adaptive chosen-ciphertext attacks.

Proof. We need to show that chosen-ciphertext queries are not helping the adversary, i.e. that they can be simulated without significantly degrading the adversary's advantage. Once this is done, the semantic security suffices to conclude our result.

For this, we consider the behavior of the decapsulation oracle when receiving a ciphertext $C^* = (C_1^*, C_2^*)$. We want to conclude, that unless the ciphertext was produced by a procedure

functionally equivalent to the encapsulation specification, the decapsulation oracle outputs \perp with overwhelming probability.

The decapsulation oracle, on input $C^* = (C_1^*, C^*, 2)$ computes $K^* = \mathcal{D}((F \cdot C_1^*) \oplus C_2^*)$, and then calls the encapsulation algorithm with input \widetilde{K} to obtain $\widetilde{C} = (\widetilde{C}_1, \widetilde{C}_2)$. If $\widetilde{C} = C^*$, then the oracle outputs \widetilde{K} , and the oracle outputs \bot otherwise.

If the random oracle was previously queried with the seed \widetilde{K} by the adversary, then since the encapsulation procedure is a deterministic function of \widetilde{K} , the output of the decapsulation oracle could be efficiently simulated by the adversary. On the other hand, if the random oracle was never queried with the key \widetilde{K} , then we have that $\widetilde{C}_1 = A \cdot R + B_1$, where $A = \mathcal{H}_1(\widetilde{K})$ and $B_1 = \mathcal{H}_2(\widetilde{K})$. Since \mathcal{H}_2 is a random oracle, A, B are assumed to be independent of everything else, and hence the probability that the decapsulation oracle does not output \bot is at most

$$\Pr[A \cdot R + B_1 = C_1^*] = \Pr[B_1 = C_1^* - A \cdot R] \le \frac{1}{\binom{n}{h}}.$$

8 Instantiating Error-correcting Code in Our Scheme

In this section, we give a concrete choice of parameters, instantiate error-correcting codes in our scheme, and analyze the probability of decryption error.

We will set the security parameter to $\lambda = 256$. This is the one of the most acceptable choices in the cryptographic community given the current computational powers.

As we discussed in Section 6, the best known efficient attack on our cryptosystem succeeds with probability about $\frac{1}{2^{2h}}$. We assume, somewhat conservatively, that even with future advancements in cryptanalysis of our scheme, this success probability cannot be improved beyond $\frac{1}{2^h}$. Under this assumption, we set h to be the security parameter λ . Thus, $\lambda = k = h = 256$. Also, in order to prevent against unforeseen attacks that exploit the factorization of p, we choose $p = 2^n - 1$ to be a Mersenne prime.

8.1 Instantiation based on Deterministic Error-Correction Codes

We will need the following result. We prove this in Section 9.

Theorem 3. Let U be a random variable having uniform distribution on strings of length n. For every n-bit string x of Hamming weight Δ and for every $\varepsilon > 0$,

$$\Pr[\mathsf{Ham}(U,U+x) \geq 2(1+\varepsilon)\Delta] \leq 2^{-2\Delta(\varepsilon - \ln(1+\varepsilon))} \;.$$

We now bound the Hamming distance between $F \cdot (A \cdot R + B_1)$ and $A \cdot (F \cdot R + G) + B_2$. Using Theorem 3, and Lemma 2, we get that for any $\varepsilon \in (0,1)$,

$$\Pr[\mathsf{Ham}(F \cdot (A \cdot R + B_1), F \cdot (A \cdot R)) \ge 2h^2(1+\varepsilon)] \le 2^{-2h^2(\varepsilon - \ln(1+\varepsilon))},$$

and

$$\Pr[\mathsf{Ham}(A\cdot (F\cdot R+G)+B_2,F\cdot (A\cdot R))\geq 2(h^2+h)(1+\varepsilon)]\leq 2^{-(2h^2+h)(\varepsilon-\ln(1+\varepsilon))}\;.$$

Using union bound, and triangle inequality, we get that

$$\begin{split} \Pr[\mathsf{Ham}(F \cdot (A \cdot R + B_1), A \cdot (F \cdot R + G) + B_2) &\geq (4h^2 + 2h)(1 + \varepsilon)] &\leq 2^{-(2h^2 - 1)(\varepsilon - \ln(1 + \varepsilon))} \\ &\leq 2^{-(2h^2 - 1)(\varepsilon^2/2 - \varepsilon^3/3)} \\ &\leq 2^{-(2h^2 - 1)(\varepsilon^2/6)} \;, \end{split}$$

where the second to last inequality follows from the Taylor series expansion of $\ln(1+\varepsilon)$.

This our scheme is $1-\delta$ -correct if the error correction code $(\mathcal{E},\mathcal{D})$ corrects up to $(4h^2+2h)(1+\varepsilon)$ errors where ε is chosen such that $2^{-(2h^2-1)(\varepsilon^2/6)} < \delta$.

This implies that by choosing an appropriate error-correction code, we get that for any $\delta > 0$, and for $n = ch^2$, for a large enough constant c, our scheme is $1 - \delta$ -correct. In particular, we can instantiate our scheme with $n \geq 2^{22} = 64h^2$, and using Reed-Muller Codes [HCA+10], we can encode a message of length

$$k = \binom{22}{0} + \binom{22}{1} + \binom{22}{2} = 254$$

and corrects up to $\frac{n}{8} > 8h^2$ errors. Thus, choosing $\varepsilon = \frac{8h^2}{4h^2 + 2h} - 1$ gives an instantiation of our scheme with decryption error as low as $2^{-h^2/4}$.

One can choose more sophisticated error correcting codes like dual BCH codes to obtain a construction with small decryption error and a smaller n. However, this will likely still be far from optimal. Notice that the bound on the Hamming weight of $F \cdot B_1$, $A \cdot G$, and also the bound on the Hamming distance in Theorem 3 is not tight, and perhaps it will be difficult to prove much tighter bounds. Moreover, the error distribution is randomized, which could perhaps lead to even better error correction as we discuss in the next section.

8.2 Instantiation based on Repetition Codes

In the previous section we considered Reed Muller codes which correct a certain fraction of errors no matter how these errors are distributed. On the other hand we observe that for our particular application, the error is "quite" random, and even though this distribution is difficult to mathematically analyze, it is reasonable to conjecture that the error pattern is somewhat similar to the model where each bit is flipped with probability $q < \frac{(4h^2+2h)(1+\varepsilon)}{n}$. As we stated in the previous section, the bounds on the Hamming weight of $F \cdot B_1$ and $A \cdot G$, and also the bound in Theorem 3 are not tight, which means q will likely be sufficiently smaller than $\frac{4h^2+2h}{n}$.

Thus if we choose $n > 10h^2$, and we encode each bit b of the message $m \in \{0,1\}^k$ using a repetition code of length ρ (where $k \cdot \rho < n$) as $bb \cdots b \in \{0^{\rho}, 1^{\rho}\}$, then we expect the number of bits flipped to be smaller than $\rho/2$ with very high probability. Thus, we could decrypt correctly by looking at blocks of length ρ , and decode 1 if the number of 1s in this block of length ρ is more than $\rho/2$, and is 0, otherwise.

We analyzed the error probability when we choose n = 756839, k = 256, and $\rho = 2048$. At the present time, we are unable to provide a tight rigorous analysis of the decryption error probability.

In order to give a satisfactory bound (say below 2^{-128}), we would need either to enlarge the parameters (as discussed in the previous section) of the scheme again or to replace the very simple repetition encoding that we are using by a more complex one. One very simple option would be to combine the repetition encoding with a random permutation of the bits of C_2 which are used to mask the encoded value at encryption time. This random permutation could be built from C_1 using the XOF provided by NIST. However, this would make the cryptosystem too slow and add an extra layer of complexity that is really undesirable.

Thus, we propose a heuristic analysis of the decryption error probability. This analysis is based on the distribution of the Hamming weights that are encountered in the decryption blocks corresponding to a single bit. Since, with our choice of parameters every bit is encoded into $\rho=2048$ bits, we want to see how often a bit might cross the Hamming weight 1024 boundary. It is easy to equip the code and count the Hamming weights encountered during decryption. We performed experiments involving 10000 of each key generation, encapsulation and decapsulation in order to collect the distribution shown in Figure 1. We see that the distribution looks like a superposition of two Gaussian distributions one corresponding to encryptions of a 0 and one to encryptions of a 1. Our heuristic assumption is that the probability of decryption failure is very close to the one corresponding to these Gaussian distributions. More precisely, we fitted a Gaussian G_0 corresponding to zeroes by searching for best fitting values of p and σ in:

$$G_0(x) = \frac{1}{2\sigma\sqrt{2\pi}}e^{-\frac{(x-p)^2}{2\sigma^2}}.$$

Note the extra 1/2 compared to a usual normal distribution. This is due to the fact that half of the encrypted bits are zeroes and half are ones. By symmetry, the Gaussian distribution corresponding to ones is simply $G_1(x) = G_0(\rho - x)$. We found that taking p = 499.6 and $\sigma = 28.64$ yields the very good approximation shown on Figure 2 where the two Gaussian are superposed with the measured data.

As a consequence, the probability that a single bit crosses the 1024 boundary is approximated by:

$$0.5\operatorname{erfc}(\frac{1024 - p}{\sigma\sqrt{2}}) < 2^{-247}.$$

Since the encrypted value is formed of 256-bits, the overall probability of decryption failure can be heuristically upper bounded by 2^{-239} .

9 Proof of Theorem 3

Let x be an arbitrary n-bit string of Hamming weight Δ , for some positive integer Δ . We can decompose x as $x_1 + \ldots x_{\Delta}$ where for all $1 \le i \le \Delta$, the string x_i has Hamming distance 1 whose single 1 bit is in position j_i , and $j_1 < \ldots < j_{\Delta}$. Let $U = U^0$ be the random variable which takes an n-bit binary string with uniform distribution. For $1 \le i \le \Delta$, we define the random variables $U^i = U^{i-1} + x_i$ and $Y_i = \operatorname{Ham}(U, U^i) - \operatorname{Ham}(U, U^{i-1})$. The main result in this section is an upper bound the tail of the random variable measuring the Hamming distance of U and U + x, that is U and U^{Δ} .

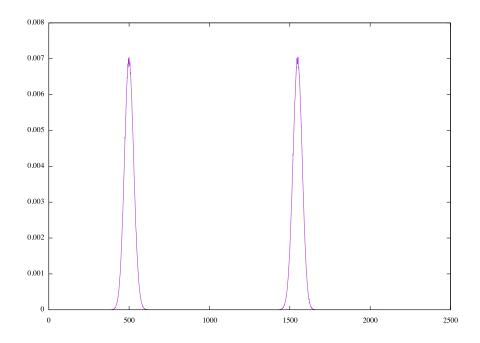


Figure 1: Density distribution of Hamming Weights during decryption

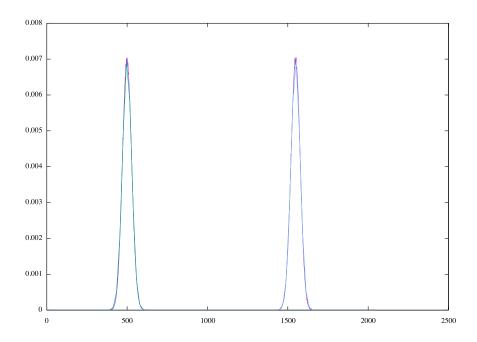


Figure 2: Density distribution with fitted Gaussians

Theorem 4. Let U be a random variable having uniform distribution on strings of length n. For every n-bit string x of Hamming weight Δ and for every $\varepsilon > 0$,

$$\Pr[\mathsf{Ham}(U, U + x) \ge 2(1 + \varepsilon)\Delta] \le 2^{-2\Delta(\varepsilon - \ln(1 + \varepsilon))}$$
.

Proof. The string U^h is constructed from U in Δ steps, where in every step we add a new string of Hamming weight 1 to the string obtained in the previous steps. Our first lemma bounds the tail of the random variable measuring the increase in the Hamming distance in one step.

Lemma 3. For every n-bit string x of Hamming weight Δ , for all integers $s, y_1, \ldots, y_{\Delta-1}$, we have

$$\Pr[Y_{\Delta} \ge s | Y_1 = y_1, \dots, Y_{\Delta - 1} = y_{\Delta - 1}] \le \min\{1, 2^{-(s - 1)}\}.$$

Proof. Observe that for $s \leq 1$ the statement is trivial, therefore we only consider $s \geq 2$. For every $r \geq s$, and for every Δ , we well determine $\Pr[Y_{\Delta} = r | Y_1, \dots, Y_{\Delta-1} | Y_1 = y_1, \dots, Y_{\Delta-1} = y_{\Delta-1}]$, and then we will sum up these values. Let $Z^{\Delta-1}$ denote the event $Y_1 = y_1, \dots, Y_{\Delta-1} = y_{\Delta-1}$.

Since addition, Hamming distance and the uniform distribution are invariant under rotation, we can suppose without generality that $x_1 = 1$. Under the condition that U and x don't have a 1 in the same position, $Y_{\Delta} = 1$ with probability 1, and the statement follows. Therefore we can work under the condition that U and x have a common 1, and we can suppose, again without loss of generality, that $U_1 = 1$.

First we consider the case $\Delta = 1$. For $2 \le r \le n$, the random variable Y_1 is r when $U_r = 0$ and $U_{r-1} = \ldots = U_2 = 1$. Thus $\Pr[Y_1 = r] = 2^{-r+1}$.

We suppose now that $\Delta \geq 2$. We say that $i \leq \Delta$ is a wrap-around step if $U_n^{i-1} = 1$ and $U_n^i = 0$. Observe that in that case U_1^{i-1} and U_1^i are different. We define the random variable t_Δ as n+1 if i is a wrap-around step for some $1 \leq i \leq \Delta-1$. Otherwise, let t_Δ be the smallest integer such that all but the first (from right) t_Δ bits are the same in U and $U^{\Delta-1}$. Since the single 1 bit in $x_{\Delta-1}$ is in position $j_{\Delta-1}$, it follows from the definition that $t_\Delta \geq j_{\Delta-1}$, and that $U_{t_\Delta-1}^{\Delta-1} = \ldots = U_{j_{\Delta-1}}^{\Delta-1} = 0$. In addition, if $t_\Delta \leq n$ then $U_{t_\Delta}^{\Delta-1} = 1$.

Case 1: $j_{\Delta} \leq t_{\Delta} - 1$. Since $j_{\Delta} > j_{\Delta-1}$, we have then $U_{j_{\Delta}}^{\Delta-1} = 0$. Therefore $U^{\Delta-1}$ and U^{Δ} differ only in one position, implying Y_{Δ} is never more than 1.

Case 2: $j_{\Delta} \geq t_{\Delta}$. Then $t_{\Delta} \leq n$ and therefore none of the previous steps was a wrap-around step. Thus $U_1^{\Delta-1} = \ldots = U_1^1 = U_{t_{\Delta}} = 0$ and $U_{t_{\Delta}}^{\Delta-1} = 1$.

Step Δ is a wrap-around step when $U_{j_{\Delta}}^{\Delta-1}=\ldots=U_{n}^{\Delta-1}=1$. When $j_{\Delta}>t_{\Delta}$, this is equivalent to $U_{j_{\Delta}}=\ldots=U_{n}=1$, and happens with probability $2^{-(n-j_{\Delta}+1)}$. In that case $U^{\Delta-1}$ and U^{Δ} differ in positions $1,j_{\Delta}\ldots,n$. Among these positions U^{Δ} and U differ at j_{Δ},\ldots,n but $U_{1}^{\Delta}=U_{1}=1$, and therefore $Y_{\Delta}=n-j_{\Delta}$. When $j_{\Delta}=t_{\Delta}$, this is equivalent to $U_{j_{\Delta}+1}=\ldots=U_{n}=1$, and happens with probability $2^{-(n-j_{\Delta})}$. In that case $U^{\Delta-1}$ and U^{Δ} differ in positions $1,j_{\Delta}\ldots,n$. Among these positions U^{Δ} and U differ at $j_{\Delta}+1,\ldots,n$ but $U_{1}^{\Delta}=U_{1}=1$, and therefore $Y_{\Delta}=n-j_{\Delta}-1$.

Step Δ is not a wrap-around step when $U_\ell^{\Delta-1}=0$ and $U_{j_\Delta}^{\Delta-1}=\ldots=U_{\ell-1}^{\Delta-1}=1$, for some $j_\Delta \leq \ell \leq n$. This never happens when $j_\Delta=n$. When $t_\Delta < j_\Delta < n$, this is equivalent to $U_\ell=0$ and $U_{j_\Delta}^{\Delta-1}=\ldots=U_{\ell-1}^{\Delta-1}=1$, which happens with probability $2^{-(\ell-j_\Delta+1)}$. In that case $U^{\Delta-1}$ and U^Δ differ in positions j_Δ,\ldots,ℓ , where $U^{\Delta-1}$ coincides with U and U^Δ differs from U, implying

 $Y_{\Delta} = \ell - j_{\Delta} + 1$. When $j_{\Delta} = t_{\Delta}$, ℓ must be at least $j_{\Delta} + 1$, and the condition is equivalent to $U_{\ell} = 0$ and $U_{j_{\Delta}+1}^{\Delta-1} = \ldots = U_{\ell-1}^{\Delta-1} = 1$, which happens with probability $2^{-(\ell-j_{\Delta})}$. In that case $U^{\Delta-1}$ and U^{Δ} differ in positions $j_{\Delta} + 1, \ldots, \ell$, where $U^{\Delta-1}$ coincides with U and U^{Δ} differs from U, implying $Y_{\Delta} = \ell - j_{\Delta}$.

All together, $\Pr[Y_{\Delta}=r|Z^{\Delta-1}]\neq 0$ in the following cases. When $j_{\Delta}>t_{\Delta}$, we have $\Pr[Y_{\Delta}=r|Z^{\Delta-1}]=2^{-r}$ for $r\in\{2,\ldots n-j_{\Delta}-1,n-j_{\Delta}+1\}$ and $\Pr[Y_{\Delta}=n-j_{\Delta}]=2^{-(n-j_{\Delta}+1)}+2^{-(n-j_{\Delta})}$. When $j_{\Delta}=t_{\Delta}$, we have $\Pr[Y_{\Delta}=r|Z^{\Delta-1}]=2^{-r}$ for $r\in\{2,\ldots n-j_{\Delta}-2,n-j_{\Delta}\}$ and $\Pr[Y_{\Delta}=n-j_{\Delta}-1|Z^{\Delta-1}]=2^{-(n-j_{\Delta})}+2^{-(n-j_{\Delta}-1)}$. The statement follows by summing up these probabilities for $r\geq s$.

Observe that $\operatorname{Ham}(U,U+x)=Y_1+\ldots+Y_\Delta$. In order to bound the tail of $Y_1+\ldots+Y_\Delta$, we introduce the independent random variables $X_1,\ldots X_\Delta$, where X_i is a geometric random variable with success probability $\frac{1}{2}$, for each $1\leq i\leq \Delta$. This means that by definition, for every positive integer r, we have $\Pr[X_i=r]=2^{-r}$. The definition immediately implies that for every integer s, we also have $\Pr[X_i\geq s]=\min\{1,2^{-(s-1)}\}$. Our next lemma states that the tail of $Y_1+\ldots+Y_\Delta$ can be upper bounded by the tail of $X_1+\ldots+X_\Delta$.

Lemma 4. For every n-bit string x of Hamming weight Δ , for every integer s,

$$\Pr[Y_1 + \ldots + Y_{\Delta} \ge s] \le \Pr[X_1 + \ldots + X_{\Delta} \ge s].$$

Proof. We prove it by induction on Δ . When $\Delta = 1$, from Lemma 3 we have

$$\Pr[Y_1 \ge s] \le \min\{1, 2^{-(s-1)}\} = \Pr[X_1 \ge s].$$

When $\Delta \geq 2$, we have the following series of (in)equalities:

$$\begin{split} \Pr[\sum_{i=1}^{\Delta} Y_i \geq s] &= \sum_{y_1, \dots, y_{\Delta-1}} \Pr[Y_1 = y_1, \dots, Y_{\Delta-1} = y_{\Delta-1}] \Pr[Y_{\Delta} \geq s - \sum_{i=1}^{\Delta-1} y_i | Y_1 = y_1, \dots, Y_{\Delta-1} = y_{\Delta-1}] \\ &\leq \sum_{y_1, \dots, y_{\Delta-1}} \Pr[Y_1 = y_1, \dots, Y_{\Delta-1} = y_{\Delta-1}] \Pr[X_{\Delta} \geq s - \sum_{i=1}^{\Delta-1} y_i] \\ &= \Pr[\sum_{i=1}^{\Delta-1} Y_i + X_{\Delta} \geq s] \\ &= \sum_{y} \Pr[\sum_{i=1}^{\Delta-1} Y_i \geq y] \Pr[X_{\Delta} = s - y] \\ &\leq \sum_{y} \Pr[\sum_{i=1}^{\Delta-1} X_i \geq y] \Pr[X_{\Delta} = s - y] \\ &= \Pr[\sum_{i=1}^{\Delta} X_i \geq s]. \end{split}$$

The first inequality follows from Lemma 3 and the second inequality from the inductive hypothesis. For the third equality we have used that X_{Δ} is independent from the random variables Y_i .

Our final lemma is a special case of Theorem 2.3 in the artice [Jan17] on tail bounds for sums of geometric and exponential variables.

Lemma 5. [Jan17] Let $X_1, ... X_{\Delta}$ be independent geometric random variables with success probability $\frac{1}{2}$, and let $\varepsilon > 0$. Then

$$\Pr[\sum_{i=1}^{\Delta} X_i \ge 2(1+\varepsilon)\Delta] \le 2^{-2\Delta(\varepsilon - \ln(1+\varepsilon))}.$$

Putting together Lemmas 4 and 5, we immediately obtain our bound on the Hamming distance of U and U_{Δ} , which concludes the proof.

10 Conclusions and Future Work.

In this paper, we propose a simple new public-key encryption scheme. As with other public-key cryptosystems, the security of our cryptosystem relies on unproven assumptions mentioned in Definition 5. In Section 6.1, we mentioned some unsuccessful attempts we made at trying to break this scheme, and this led us to conjecture the security guarantee of our scheme. Of course, there might be other ways to attack this scheme and we urge the readers to try and find attacks on our scheme that run in time faster than $\binom{n}{h}$, or a quantum attack that runs in time faster than $\sqrt{\binom{n}{h}}$.

Acknowledgments

This research was partially funded by the Singapore Ministry of Education and the National Research Foundation, also through the Tier 3 Grant "Random numbers from quantum processes," MOE2012-T3-1-009. This work has been supported in part by the European Union's H2020 Programme under grant agreement number ERC-669891 and the French ANR Blanc program under contract ANR-12-BS02-005 (RDAM project). The second author is grateful to CQT where the work has started during his visit.

References

- [BCGN17] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache. On the hardness of the Mersenne Low Hamming Ratio assumption. Technical report, Cryptology ePrint Archive, 2017/522, 2017.
- [CHK10] Ronald Cramer, Dennis Hofheinz, and Eike Kiltz. A twist on the Naor-Yung paradigm and its application to efficient CCA-secure encryption from hard search problems. In *Theory of Cryptography*, 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, pages 146–164, 2010.
- [DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. *IEEE transactions on Information Theory*, 22(6):644–654, 1976.
- [ES16] Lior Eldar and Peter W Shor. An efficient quantum algorithm for a variant of the closest lattice-vector problem. arXiv preprint arXiv:1611.06999, 2016.

- [Gro96] Lov K Grover. A fast quantum mechanical algorithm for database search. *Proceedings of the twenty-eighth annual ACM symposium on Theory of computing*, pages 212–219, 1996.
- [GWO⁺13] Lize Gu, Licheng Wang, Kaoru Ota, Mianxiong Dong, Zhenfu Cao, and Yixian Yang. New public key cryptosystems based on non-abelian factorization problems. *Security and Communication Networks*, 6(7):912–922, 2013.
- [HCA⁺10] Prahladh Harsha, Moses Charikar, Matthew Andrews, Sanjeev Arora, Subhash Khot, Dana Moshkovitz, Lisa Zhang, Ashkan Aazami, Dev Desai, Igor Gorodezky, et al. Limits of approximation algorithms: Pcps and unique games (dimacs tutorial lecture notes). arXiv preprint arXiv:1002.3864, 2010.
- [HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman. Ntru: A ring-based public key cryptosystem. Algorithmic number theory, pages 267–288, 1998.
- [Jan17] Svante Janson. Tail bounds for sums of geometric and exponential variables. arXiv preprint arXiv:1709.08157, 2017.
- [KLC⁺00] Ki Hyoung Ko, Sang Jin Lee, Jung Hee Cheon, Jae Woo Han, Ju-sung Kang, and Choonsik Park. New public-key cryptosystem using braid groups. In *Annual International Cryptology Conference*, pages 166–183. Springer, 2000.
- [LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In *Annual International Conference on the Theory and Applications of Cryptographic Techniques*, pages 1–23. Springer, 2010.
- [LvTMW09] Wolfgang Lempken, Trung van Tran, Spyros S. Magliveras, and Wandi Wei. A public key cryptosystem based on non-abelian finite groups. *Journal of Cryptology*, 22(2):62–74, 2009.
- [McE78] Robert J McEliece. A public-key cryptosystem based on algebraic coding theory. *Coding Thv*, 4244:114–116, 1978.
- [MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo SLM Barreto. Mdpc-mceliece: New mceliece variants from moderate density parity-check codes. In *Information Theory Proceedings (ISIT)*, 2013 IEEE International Symposium on, pages 2069–2073. IEEE, 2013.
- [NIS17] NIST. Post quantum crypto project. http://csrc.nist.gov/groups/ST/post-quantum-crypto/, 2017. Accessed: 2017-05-19.
- [NS97] David Naccache and Jacques Stern. A new public key cryptosystem. In *EUROCRYPT 1997*, Lecture Notes in Computer Science 1233, pages 27–36, 1997.
- [NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In *Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing*, STOC '90, pages 427–437, New York, NY, USA, 1990. ACM.
- [OP01] Tatsuaki Okamoto and David Pointcheval. REACT: rapid enhanced-security asymmetric cryptosystem transform. In *Topics in Cryptology CT-RSA 2001*, *The Cryptographer's Track at RSA Conference 2001*, *San Francisco*, *CA*, *USA*, *April 8-12*, *2001*, *Proceedings*, pages 159–175, 2001.
- [Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. *Journal* of the ACM, 56(6):Art. 34, 40, 2009.
- [RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures and public-key cryptosystems. *Communications of the ACM*, 21(2):120–126, 1978.
- [RSN⁺01] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine Barker. A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, DTIC Document, 2001.

[Sho 97]	Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
	a quantum computer. SIAM journal on computing, 26(5):1484-1509, 1997.

 $[Sho02] \hspace{1cm} \hbox{Victor Shoup. OAEP reconsidered. } \emph{J. Cryptology}, 15(4):223-249, 2002.$