
Reducing Communication Channels in MPC

Marcel Keller, Dragos Rotaru, Nigel P. Smart, and Tim Wood

University of Bristol, Bristol, UK.
M.Keller@bristol.ac.uk,dragos.rotaru@bristol.ac.uk,

nigel@cs.bris.ac.uk,t.wood@bristol.ac.uk

Abstract. In both information theoretic and computationally secure
Multi-Party Computation (MPC) protocols the parties are usually as-
sumed to be connected by a complete network of, respectively, secure
or authenticated channels. Taking inspiration from a recent, highly effi-
cient, 1-out-of-3 computationally secure MPC protocol of Araki et al, we
show how to perform computationally secure MPC for an arbitrary Q2

access structure over an incomplete network. Our tool is to combine the
practical techniques of Araki with the information theoretic approach
of Maurer for arbitrary Q2 structures. We present both passive and ac-
tively secure (with abort) variants of our protocol. In all cases we require
less communication channels than Maurer’s protocol, at the expense of
requiring pre-shared secret keys for Pseudo-Random Functions (PRFs).
By shedding light on the theoretical underpinnings of the recent proto-
col of Araki et al. we hope that our work may result in future highly
communication-efficient protocols for other access structures.

1 Introduction

The development of secret sharing based secure Multi-Party Computation (MPC)
is generally considered to lie in two distinct camps. In the first camp lies the
information theoretic protocols arising from the original work of Ben-Or, Gold-
wasser and Wigderson [BOGW88] and Chaum, Crepeau and Damg̊ard [CCD88].
In this line of work adversarial parties are assumed to be computationally un-
bounded, and parties in an MPC protocol are assumed to be connected by a
complete network of secure channels. Such a model was originally introduced
in the context of threshold adversary structures, i.e. t-out-of-n secret sharing
schemes which could tolerate up to t adversaries amongst n parties. To obtain
passively secure protocols one requires t < n/2, and to obtain actively secure
protocols one requires t < n/3; such conditions are also sufficient. These thresh-
old structures were extended to arbitrary access/adversary structures by Hirt
and Maurer [HM97], in which case the two necessary and sufficient conditions
become Q2 and Q3 respectively.

Another line of work which considered computationally bounded adversaries
started with [GMW87, GL02]. Here the parties are connected by a complete
network of authenticated channels. Here one can obtain actively secure protocols
in the threshold case when t < n/2 (i.e. honest majority), and one can obtain

active security with abort when only one party is honest. Generally speaking,
such computationally secure protocols are less efficient than the information
theoretic protocols as they usually assume the need for some form of public key
cryptography.

In recent years there has been considerable progress in practical MPC by mar-
rying the two approaches together. For example, the VIFF [DGKN09], BDOZ
[BDOZ11], SPDZ [DPSZ12] and Tiny-OT [NNOB12] protocols are computa-
tionally secure and use information theoretic primitives in an online phase, but
computationally secure primitives in an offline/pre-processing phase. The offline
phase is used to produce so-called Beaver Triples [Bea96], which are then con-
sumed in the online phase. In these protocols, parties are still connected by
a complete network of authenticated channels, and they are usually in the full
threshold model (i.e. when only party is assumed to be honest). A key observation
in much of the practical MPC work of the last few years is that communication
costs are the main bottleneck.

However, recent work has provided a new method to unify information theo-
retic and computationally secure protocols. In [AFL+16] a very efficient passively
secure MPC evaluation of the AES circuit is given in the case of a 1-out-of-
3 adversary structure. This is then generalised to an actively secure protocol
in [FLNW16]. Both protocols require a pre-processing phase making use of sym-
metric key cryptographic primitives only; thus the pre-processing is much faster
than for the full threshold protocols mentioned above. In this paper we gen-
eralise both protocols of Araki et al. to all Q2 access structures, and in the
process hopefully shed some light onto the fundamental nature of what initially
appear to be very specific constructions for 1-out-of-3 adversary structures in
the protocols of Araki et al.

The passively secure protocol of [AFL+16] makes use of a number of opti-
mizations to the basic offline/online hybrid paradigm. Firstly, the offline phase
is only used to produce additive sharings of zero. This therefore dispenses with
the expensive pre-production of Beaver triples from the other hybrid protocols.
Additive sharings of zero can be easily produced using symmetric key primitives
and pre-shared secrets. Secondly, the underlying network is not assumed to be
complete: instead of each of the three parties being connected to the other two
parties, each party is only connected to one other party via a secure channel.
Thirdly, parties need only transmit one finite field element per multiplication.
On the downside, however, each party needs to hold two finite field elements per
share, as opposed to using an ideal secret sharing scheme in which each party
only holds one finite field element.

The underlying protocol, bar the use of the additive sharings of zero, is highly
reminiscent of the Sharemind system [BLW08], which also assumes a 1-out-of-3
adversary structure, since both [AFL+16] and [BLW08] are based on replicated
secret sharing, and hence are closely related to the MPC-made-Simple approach
of Maurer [Mau06]. Thus for the case of this specific adversary structure the work
in [AFL+16] shows that by using cryptography one can obtain optimizations of
the MPC-made-Simple approach of Maurer.

2

The active variant of the protocol of Araki et al. [FLNW16] uses the passively
secure protocol (over an incomplete network of secure channels) to run an offline
phase which produces the Beaver triples. These are then consumed in the online
phase, by using the triples to check the passively secure multiplication of ac-
tual secrets. The online phase runs over an incomplete network of authenticated
channels.

The question therefore arises as to whether the approach outlined in [AFL+16],
[FLNW16], and [BLW08] is particularly tied to the 1-out-of-3 adversary struc-
ture, or whether it generalises to other access/adversary structures. In this paper
we show that the basic passively secure protocol will indeed generalise to arbi-
trary Q2 access structures. We evaluate how many finite field elements need to
be exchanged over how many secure channels. Our passively secure protocol is
for general Q2 structures, implemented via replicated secret sharing. When spe-
cialised to threshold structures we do not obtain any communication efficiency
over using Shamir sharing; but we do obtain a reduction in the required number
of secure channels.

We then show how to extend this to an actively secure protocol (with abort)
for anyQ2 access structure. We take a more traditional approach than [FLNW16]
to obtain active security. In particular we utilize our passive protocol as an offline
phase, then in the online phase multiplication is performed via standard Beaver
multiplication over an incomplete network of authenticated channels. We only
require a full network of secure channels in the active protocol to obtain (verified)
private output in the online phase.

Our work may be viewed as optimizing the communication of the MPC-
made-Simple approach for all Q2 access structures, if we allow for some some
cryptographic assumptions. This work also initiates the study of how many com-
munication channels are necessary to perform MPC in general.

1.1 Prior Work

As remarked above the MPC protocol, known as BGW [BOGW88], showed that
every functionality can be computed with perfect security, assuming the parties
are connected by pairwise private communication channels, and either that the
adversary acts semi-honestly and corrupts at most half of the parties, or that the
adversary acts maliciously and corrupts at most one third. The protocol makes
use of Shamir’s secret sharing [Sha79], which is a perfect secret sharing scheme
for threshold access structures. Addition of secrets requires no communication,
but during a multiplication, in order for the polynomial encoding the secret to be
uniformly random (which is required for security), every party must send a share
to every other party. Thus, in total, O(n2) field elements need to be transmitted,
over a complete secure network. At roughly the same time, Chaum, Crepeau and
Damg̊ard devised a different yet closely related scheme offering essentially the
same results.

Subsequently, Hirt and Maurer [HM97] showed a generalisation of the tech-
niques to an arbitrary access structure, providing necessary and sufficient condi-
tions on the access structure for the parties to be able to compute any function

3

securely. The conditions were subsequently called Q2 and Q3. The construction
of their protocol involves a recursive decomposition of the set of all parties until
the base level at which parties are grouped in threes; at each level the parties ex-
ecute the BGW protocol. Beaver and Wool [BW98] then showed how to improve
the communication costs of Hirt and Maurer’s protocol, by providing a more
direct protocol without needing a recursive definition. Finally Maurer [Mau06]
presented a cleaner definition and construction, using replicated secret-sharing,
with essentially the same methodology as Beaver and Wool.

The basic technique in the passive case is as follows: Suppose the parties
have secrets shared in a Q2 (i.e. multiplicative) linear secret-sharing scheme.
This means that parties can perform local computations, on the shares of two
secrets to be multiplied, so that they hold so that they each obtain a summand
of the product. The parties then create a sharing in the secret-sharing scheme
of this summand and then send the shares to the appropriate parties, according
to the access structure. Since the secret-sharing scheme is additive, the parties
can then locally sum all shares they receive to the one they generated so that
together they obtain a sharing of the product. The local computations that the
parties perform require some agreement of which computations each party shall
undertake. The main cost is the need to compute a new resharing for each parties
partial sum. Leading to a communication cost of O(n2) over a complete network
of secure channels.

The above overview, however, hides some crucial information. Expressing the
communication cost as O(n2) potentially hides a very large constant, depending
on the actual access structure and finite field Fq involved. In the case of threshold
structures when q > n one can utilize Shamir secret sharing, which is an ideal
secret sharing scheme, and so (in this case) the total communication cost is
exactly n · (n− 1) field elements; for other access structures, or even the case of
threshold structures when q ≤ n, one needs to use more elaborate secret sharing
schemes, or to extend the base field. This has led some authors to consider using
algebraic-geometric codes to produce more efficient secret sharing schemes (see,
for example, [CDN15][Part II]). Such works try to stay within the information
theoretic model, but aim to select secret sharing schemes which are as close to
ideal as possible.

In another line of work [HIK07] the authors examine MPC based on Oblivious
Transfer (OT) and aim to reduce the total number of pairwise OT channels
needed to perform an MPC calculation.

The Sharemind system [BLW08] was the first practical system to make use
of an incomplete network of communication. By using replicated secret sharing
in the case of a 1-out-of-3 adversary structure, the authors were able to set
up a passively secure multiplication protocol which requires only three secure
channels, as opposed to the six secure channels which would be required by
following the method of Maurer precisely. Finally, [AFL+16] extended this idea
by making use of a computational assumption to build a pre-processing phase
which allows the evaluation of efficient binary circuits using secret sharing over
the field F2, for a 1-out-of-3 adversary structure, with only three secure channels.

4

A key point is that the pre-processing (requiring cryptographic assumptions) is
so trivial that it can actually be carried out at the same time as the main online
phase.

1.2 Our Work

We take the protocol of Maurer [Mau06] for an arbitrary Q2 access structure and
combine it with the pre-processing idea of [AFL+16] to reduce the required num-
ber of secure channels and the number of communicated field elements needed.
Our actively secure protocol, also requires only a Q2 access structure; which does
not contradict any impossibility results as recall we are assuming a computa-
tionally bounded adversary.

The number of channels and total data communication needed for a given
access structure depends on what the access structure looks like (or, more pre-
cisely, what the maximally unqualified sets of the scheme are). We see our work
as using cryptography to optimize the information theoretic protocol of [Mau06],
and hence shedding light on the (what appears at first sight ad hoc) construction
of [AFL+16].

To provide a concrete basis for our discussion, we provide the following set
of maximally unqualified sets for a six party access structure, which we shall use
as a running example throughout this paper:

M =
{
{2, 5, 6}, {3, 5, 6}, {4, 5, 6},

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6},

{2, 3}, {2, 4}, {3, 4}
}

Our methodology makes a great deal of usage of the set of complements of these
sets which we denote by B; i.e.

B =
{
{1, 3, 4}, {1, 2, 4}, {1, 2, 3},

{3, 4, 5, 6}, {2, 4, 5, 6}, {2, 3, 5, 6}, {2, 3, 4, 6}, {2, 3, 4, 5},

{1, 4, 5, 6}, {1, 3, 5, 6}, {1, 2, 5, 6}
}

We will recall the definition of Q2 later, but for now notice that B1, B2 ∈ B
implies that B1 ∩ B2 6= ∅, which suffices to show the structure is Q2. A multi-
plication of secrets in the passively secure protocol of Maurer requires all parties
to produce one secret sharing, thus sending a total of

n∑
i=1

 ∑
B∈B,B3i

(|B| − 1) +
∑

B∈B,B 63i

(|B|)

 =

n∑
i=1

∑
B∈B
|B| −

∑
B∈B,B3i

1

finite field elements (when using replicated sharing for this access structure) over
n · (n − 1) uni-directional secure channels. In our example this translates into

5

sending (41− 6) + (41− 7) + (41− 7) + (41− 7) + (41− 7) + (41− 7) = 205 finite
field elements over 6 · 5 = 30 secure channels. Note that the same finite field
element will be sent to multiple parties (every set of parties B obtains a share
common to them all), but we count these elements as distinct when analysing
communication costs.

In our protocol we partition B into subsets {Bi}i∈P , such that the sets Bi
form a non-trivial partition B (i.e. Bi 6= ∅), and for all B ∈ Bi we have i ∈ B. In
our example we set

B1 = {{1, 3, 4}},
B2 = {{1, 2, 4}},
B3 = {{1, 2, 3}},
B4 = {{2, 3, 4, 5}},
B5 = {{1, 2, 5, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}},
B6 = {{2, 3, 4, 6}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}.

We will prove, for access structures in which all players have some part to play
in the MPC protocol, that such a partition always exists. We will also discuss
the fact that for some access structures, it is not necessary for all parties to
be involved in the MPC (barring any input from the said parties). Given this
partition our (passively secure) protocol makes use of a set

SC =
⋃
i∈P

⋃
B∈Bi

⋃
j∈B\{i}

{(i, j)}

of secure channels, where (i, j) ∈ SC implies that party i is connected to party
j by a uni-directional secure channel (following good practice we assume all
channels are uni-directional). For each multiplication we need to send∑

B∈B
(|B| − 1)

finite field elements. In our example we have

SC =
{

(1, 3), (1, 4), (2, 1), (2, 4), (3, 1), (3, 2), (4, 2),

(4, 3), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 6),

(6, 2), (6, 3), (6, 4), (6, 5)
}
.

Thus in this example we need to send 30 finite field elements over 18 (uni-
directional) secure channels per multiplication operation, thus giving a saving of
85 percent on the number of finite field elements it is necessary to transmit, and
40 percent on the number of secure channels needed.

We then extend this basic protocol to the case of active security (with abort);
again with the objective of minimizing the number of pairwise connections. Our
actively secure protocol again follows the paradigm of Araki et al. However, we

6

need to make a small set of changes to allow for arbitrary Q2 access structures.
Like Araki et al. we use our passively secure multiplication protocol in an offline
phase over SC, the set of secure channels, to obtain so-called Beaver triples. These
triples are then checked, using the usual trick of sacrificing (see e.g. [BDOZ11]).

The triples are then used in an online phase, but, unlike Araki et al., we use a
standard Beaver-like online phase which is executed over an incomplete network
of authenticated channels. In particular when using replicated secret sharing for
an arbitrary Q2 access structure our set of authenticated channels is given by

AC =
⋃
i∈P

⋃
B∈Bi

⋃
j 6∈B

{(i, j)},

since publicly opening a secret requires every party to receive every share it
doesn’t have from at least one other party, which can be done efficiently in the
semi-honest protocol using the partition assignment. In our running example
this set is given by

AC =
{

(1, 2), (1, 5), (1, 6), (2, 3), (2, 5), (2, 6), (3, 4),

(3, 5), (3, 6), (4, 1), (4, 6), (5, 2), (5, 3), (5, 4),

(6, 1), (6, 2), (6, 3), (6, 3), (6, 5)
}
.

We denote by SC∗ the same topology but with secure, instead of authenticated,
channels. Each online multiplication in our active online protocol will require a
total of ∑

i∈P

∑
B∈Bi

(n− |B|) = n · |B| −
∑
i∈P

∑
B∈Bi

|B| = n · |B| −
∑
B∈B
|B|

finite field elements need to be sent over these channels. Which in our example
equates to 6 · 11 − (3 · 3 + 8 · 4) = 25 finite field elements, over 19 authentic
channels.

Active security is obtained, as in [AFL+16], by hashing players’ views and
comparing the resulting hashes at the end (which will require a complete set of
authentic channels). However, in generalising to arbitrary access structures it
is no longer sufficient to hash the view of the opened value: one also needs to
hash the shares used to produce this value. This is because each player’s view is
incomplete, and one cannot rely (as Araki et al. do) on there being at least one
honest player receiving data only from honest players, which would otherwise
suffice. To make clear what channels are required when, and how many, we
provide Table 1

It should be noted that our online phase methodology can actually be ex-
ecuted using other secret sharing schemes, assuming the Beaver triples in the
offline phase are produced with respect to this secret sharing scheme. In particu-
lar in the threshold case it turns out that we would obtain, using Shamir sharing,
an online phase which only requires n · t authenticated channels, as opposed to
n · (n− 1) authenticated channels using the näıve protocol.

7

Protocol Procedure Channels required

Passive Protocol Input SC
Multiplication SC
Output to one Complete secure
Output to all Complete authenticated

Active Offline Protocol Triple Gen. SC
Triple Sac. AC
Authentication check Complete authenticated

Active Online Protocol Input SC∗ + Complete authenticated
Multiplication AC
Output to one Complete authenticated + SC∗

Output to all Complete authenticated + AC
Table 1. Number of channels needed at each point in the computation. The channels
for “Output to one” assumes every party will receive private output. Notice that the
active variant of our protocol never needs a complete network of secure channels and
that it only requires a complete authenticated network for the hash-comparison stage
only.

In this paper we are interested in evaluation of arithmetic circuits over an
arbitrary finite field Fq, which could include q = 2. We will assume that q is
sufficiently large to have a cheating detection probability of 1/q, but if this is not
the case, a simple repetition of the checking procedure will reduce the cheating
probability to whatever is required of an application. We do not analyse this
aspect in this paper so as to aid the reader in seeing the main concepts more fully.
This repetition and its generalisation to balls-and-bins experiments is relatively
standard.

2 Preliminaries

In this section we recap on access structures, and in particular Q2 access struc-
tures, and also look at pseudo-random zero sharings with respect to the additive
secret sharing scheme. We then describe the traditional MPC protocol of Mau-
rer to evaluate the multiplication gates. In this section we are working over an
arbitrary finite field Fq.

2.1 General Secret Sharing

Access Structures: Suppose we have a set of parties P = {1, . . . , n}. Let (Γ,∆)
be an access structure on them: Γ and ∆ are subsets of 2P where the sets in Γ
are sets of parties qualified to construct the secret, and the sets in ∆ the sets of
unqualified parties. The access structure is said to be complete if Γ ∪∆ = 2P ,
(i.e. every set of parties is either qualified or unqualified). The structure is said
to be monotone if Γ is closed under taking supersets (i.e., given a set of qualified
parties, adding any other party to this set gives us another set of qualified parties)

8

and ∆ is closed under taking subsets (i.e. any subset of unqualified parties is
also unqualified).

A set of parties in ∆ is called maximally unqualified if by colluding with any
other party not in the set, the parties can together recover the secret. We denote
byM⊂ ∆ the set of maximally unqualified parties. A set in Γ is called minimally
qualified if it is qualified and every proper subset is unqualified. The setM and
its structure is important for our protocol; however, it will be notationally simpler
for us instead to consider the set of complements of maximally unqualified sets,
which we denote by B = {MC ∈ 2P : M ∈M}.

Given an arbitrary X ⊂ 2P , we say that X is valid if the following two
conditions hold:
– If S ⊂ P then there exists a set X ∈ X such that either X ⊆ S or S ⊆ X.
– If X1, X2 ∈ X then X1 6⊂ X2.

Now suppose we are given a valid set of sets M on a set of parties P. If we
take this to be a set of qualified sets, then because M is valid, these are maxi-
mally unqualified sets: the first property defines which sets in 2P are unqualified
(and therefore determines ∆ for some access structure), and the second ensures
the sets are maximal with respect to set inclusion; thus M is the set of maxi-
mally unqualified sets any access structure whose unqualified sets are given by
∆. Assuming the access structure is complete, M also entirely determines the
qualified sets, Γ (= 2P \∆), and thus the access structure (Γ,∆).

Given a valid set of setsM over P and a player i ∈ P, we defineM(i) as the
set of sets over P \ {i} which are just the sets of M after removing player i (if
necessary):M(i) = {M \ {i} : M ∈M}. For an access structure (Γ,∆) given by
M we call a player i redundant if the set M(i) is also valid. A non-redundant
access structure is one in which there are no redundant players. A redundant
player is one whose shares are not necessarily needed to reconstruct the secret,
and so one could define an MPC protocol achieving the same (passive) security by
ignoring this player entirely in the computation. For example, consider the valid
but redundant setM = {{1}, {2}, {3, 4}}. We obtain the replicated scheme over
this access structure, by computing B = {{2, 3, 4}, {1, 3, 4}, {1, 2}} and splitting
a secret s into three shares s = s234 +s134 +s12; then we give player 1 the shares
{s134, s12}, player 2 {s234, s12}, player 3 {s234, s134} and player 4 {s234, s134}.
Everything player 3 can do can also be done by player 4, so we can essentially
ignore player 4 in any protocol design and just provide the output to this player
at the end.

Non-redundant access structures play a crucial role in our protocol due to
the following theorem

Theorem 1. Given a non-redundant access structure (Γ,∆) derived from a
valid set M, the set of complements B of elements in M can be partitioned
into sets {Bi}i∈P such that ∀i ∈ P we have Bi 6= ∅, and B ∈ Bi implies i ∈ B.

Proof. We give a constructive proof which produces the partition. Suppose we
start with a non-redundant valid set M of maximally unqualified sets. We pro-
ceed as follows to define a map from B to P. We note that if M consists of

9

singletons then assigning B to P is trivial: since M is non-redundant, every
party appears in a singleton set; then for each {i} ∈ B we choose any j ∈ P with
j 6= i and add the set {i} to Bj . We therefore proceed inductively, simplifying
our structure at each inductive step by removing players until we get down to
the case of a set of singletons.

Now assume M contains a non-singleton set. Pick the largest one M and
select a party i ∈ M which is not contained in any singleton in M. Such an i
must exist as otherwise the set M is invalid (since it fails the second validity
property).

Now form the set M(i) as above. (Recall that M(i) = {M \ {i} : M ∈M}.)
The set of setsM(i) will be invalid, since by definitionM was non-redundant. Let
B(i) denote the associated complements. Note that each set in B(i) corresponds
uniquely to a set in B (and via the recursion to a set at the top level as well).
Thus we can use B(i) to define an assignment of a subset of the original sets B
to player i.

We now delete sets from M(i) until we obtain a valid set of sets again. The
process for performing this deletion is as follows. We start withM′ =M(i) and
repeat the following process.

– If M′ = ∅ then we stop.
– As M′ is not valid we must have two sets M ′1,M

′
2 ∈M′ with M ′1 ⊂M ′2.

– The value i used to form M(i) must have been deleted from either M ′1 or
M ′2 or both, since M was valid.

– We must have had that i was deleted from M ′1 only, since otherwise the
original set M would have been invalid.

– We now delete the set M ′2 from M′, find the original associated set B in B,
and add this set to Bi. Note this means we never delete singleton sets from
M′, as we always delete the bigger set. Also note that the B contains i as
M ′2 did not contain i.

We can then recurse, assuming the new setM′ output by this procedure is non-
redundant. To prove M′ is non-redundant, we must show that removing any
party creates an invalid set of sets. The first property of validity will hold by
construction: for M, we have that for every set S ⊆ P \ {i} ⊆ P, there exists
a set M ∈ M such that S ⊆ M or M ⊆ S. Then S ⊆ M , and so S ⊆ M \ {i}
since i 6∈ S, and alternatively if M ⊆ S we trivially have M \ {i} ⊆ S, and
M \ {i} ∈ M′ and is non-empty since M 6= {i} by construction.

So forM′ to be non-redundant we must show failure of the second property
of validity, i.e. that for any j ∈ P \ {i}, there exist sets M ′1,M

′
2 ∈M′ such that

j ∈M ′1 and M ′1 \ {j} ⊆M ′2.

Fix j ∈ P \ {i}. By construction we know that {i} 6∈ M, and that M is
non-redundant. Since M is non-redundant, there exist sets M1,M2 ∈ M such
that j ∈ M1 and M1 \ {j} ⊂ M2. Then M′ contains the sets M ′1 ← M1 \ {i}
and M ′2 ← M2 \ {i} (which are non-empty since {i} 6∈ M) and we have that
M ′1 \ {j} ⊂ M ′2. Player j ∈ P \ {i} was chosen arbitrarily, so this holds for all
j ∈ P \ {i}. Thus M′ is non-redundant.

10

We can therefore perform the recursion until all sets in B are assigned to sets
in {Bi}i∈P . ut

Q` Access Structures: The set ∆, called the adversary structure, is said to be Q`

(for quorum) if no ` sets in ∆ cover P. A result of Hirt and Maurer [HM00] says
that every function can be computed securely in the presence of an adaptive,
passive (resp. adaptive, active) computationally unbounded adversary if and only
if the adversary structure is Q2 (resp. Q3).

It is clear that if ∆ is Q2, then so is any subset. In particular, the set of
maximally unqualified sets M is also Q2, Hence, for the set of complements B
it holds that if B1, B2 ∈ B then B1 ∩ B2 6= ∅. A set B for which this property
holds was named a quorum system by Beaver and Wool [BW98].

Let S denote a linear secret sharing scheme which implements the Q2 access
structure (Γ,∆). We use double square brackets, [[v]] to denote a sharing of the
secret v according to this scheme. We let Sv,i denote the set of elements which
player i holds in representing the value v. Another characterisation of Q2 is
as precisely the set of access structures which can be realised by multiplicative
secret sharing schemes, i.e. given two secret shared values [[a]] and [[b]] then the
product a · b can be represented a linear combination of the elements in the local
Schur products

Sa,i ⊗ Sb,i = {sa · sb : sa ∈ Sa,i, sb ∈ Sb,i}.

This property allows us to build an MPC protocol secure against passive adver-
saries for any Q2 access structure.

2.2 Replicated Secret Sharing:

Given a monotone access structure (Γ,∆), we will make extensive use of the
replicated secret sharing scheme which implements this structure. Let B be, as
above, the set of sets which are complements of maximally unqualified sets.
Then to share secret x, we write x =

∑
B∈B xB and give xB to player i if i ∈ B.

From now on, when writing [[x]] we will mean the secret sharing with respect to
this scheme, and in particular the set Sx,i above is given by Sx,i = {xB : i ∈
B and B ∈ B}.

The replicated scheme is linear (i.e. the parties can obtain a sharing of any
linear function under the same secret sharing scheme by local computations) and
is multiplicative if the access structure is Q2: given secrets x and y, for every pair
sets B1, B2 ∈ B there is some party i in B1 ∩B2, since the intersection of these
sets is non-empty. Then party i can compute the terms xB1

· yB2
and xB2

· yB1

(and also xB1 ·yB1 and xB2 ·yB2). Thus the parties can together obtain all terms
of x ·y =

(∑
B∈B xB

)
·
(∑

B∈B yB
)

=
∑
B1,B2∈B xB1

·yB2
by local computations.

Note that the parties do not, in general, have a correct sharing of the product
after these local computations, since each party now holds only one share; the
parties must somehow convert this additive share of the product into a sharing
within the scheme. Minimising the number of communication channels required
after the local computations is the main goal of this paper.

11

2.3 Pseudo-Random Zero Sharing for Additive Secret Sharing
Schemes

At various points we will need to use an additive secret sharing over all players
P = {1, . . . , n}. This shares a value v ∈ Fq as an additive sum v =

∑n
i=1 vi and

gives player i the value vi. We denote such a sharing by 〈v〉. It is obvious that
such a sharing is not Q2, but it will play a crucial role in our protocols.

Improving on the protocol of [BW98] and [Mau06] requires us to sacrifice the
information-theoretic security for a cryptographic assumption. In particular, we
require the parties to engage in a pre-processing phase in which they share keys
for a pseudo-random function (PRF) in order to generate (non-interactively)
pseudo-random zero sharings (PRZS) for the additive secret sharing scheme 〈v〉,
and pseudo-random secret sharings (PRSS) for the replicated scheme [[v]]1. In
particular we wish to implement the functionality given in Figure 1.

The Functionality FRand

PRZS(cnt):
– On input of a counter value cnt from each party, if the counter value is the same

for all parties and has not been used before, for each i ∈ [n−1] the functionality

samples wi
$← F uniformly at random, fixes wn ← −

∑
i∈[n−1] wi and sends wi

to party i for each i ∈ P.

PRSS(cnt):
– On input of a counter value cnt from each party, if the counter value is the

same for all parties and has not been used before, the functionality samples a

set {rB}B∈B
$← F and for each B ∈ B sends rB to all i ∈ B.

Figure 1. The Functionality FRand

Pseudo-random secret sharing, and pseudo-random zero sharings in partic-
ular, for arbitrary access structures can involve a costly setup phase in gen-
eral [CDI05]. However, for the simple additive secret sharing scheme it is rela-
tively easy to construct a non-interactive method for producing PRZSs. In our
situation each party i shares a secret key κi,j with each party j 6= i. The secret
keys are assumed to lie in {0, 1}λ, which is the keyspace of a pseudo-random
function F with codomain our finite field Fq. The set-up procedure, and the
method to generate the PRZS and PRSS is given in Figure 2.

Theorem 2. Assuming a trusted set-up and that F is a pseudo-random func-
tion, the protocol ΠRand securely realises FRand against active adversaries.

1 We could produce these using additional interaction, but recall our goal is to reduce
communication.

12

Protocol ΠRand

Set-up: The parties initialise by doing the following:

1. For each i ∈ P, for each j ∈ P \ {i}, party i samples κi,j
$← {0, 1}λ.

2. For each i ∈ P, for each j ∈ P \ {i}, party i sends κi,j to party j.

3. For each B ∈ B, each party i ∈ B samples κB,i
$← {0, 1}λ

4. For each B ∈ B, each party i ∈ B sends κB,i to all parties j ∈ B \ {i}.
5. Each party i sets κB ← ⊕i∈BκB,i for each B containing i.

PRZS(cnt): Party i computes

wi ←
∑
j 6=i

Fκi,j (cnt)− Fκj,i(cnt).

PRSS(cnt): For each B ∈ B containing i, party i computes

rB ← FκB (cnt).

Figure 2. Protocol ΠRand

Proof. As there is no interaction after Set-up, the protocol is clearly actively
secure, if it is correct and passively secure. Correctness follows from basic algebra,
and security follows from the fact that F is assumed to be a PRF and from the
fact that there is at least one B not held by the adversary (by definition of the
access structure. ut

2.4 Maurer’s MPC-made-Simple Protocol

The information theoretic protocol upon which our protocol is based is the one
due to Maurer [Mau06]. Maurer’s protocol is itself a variant of the protocol of
Beaver and Wool [BW98] but specialised to the case of replicated secret sharing.
By means of comparison, we explain Maurer’s protocol here: We first assume a
Q2 access structure (Γ,∆), and we share data values x via the replicated secret
sharing [[x]], where x =

∑
B∈B xB . Since this secret sharing scheme is linear,

addition of secret shared values comes “for free”, i.e. it requires no interaction
and parties just need to add their local shares together.

The real difficulty in creating an MPC protocol given a linear secret sharing
scheme is in performing secure multiplication of secret shared values, [[x]] and [[y]].
With this goal, we begin by following [BW98] and define a surjective function
ρ : B2 → P such that ρ(B1, B2) = i implies that i ∈ B1 ∩ B2; the existence of
such a function follows from the fact that the access structure is Q2. Note that
party ρ(B1, B2) holds a copy of share xB1 and yB2 . We will put player ρ(B1, B2)
“in charge” of computing the cross term xB1 ·yB2 in the following multiplication
protocol:
1. Party i computes

vi ←
∑

ρ(B1,B2)=i

xB1
· yB2

13

2. Party i creates a sharing [[vi]] of the value vi and distributes the different
summands securely to the appropriate parties according to the replicated
secret sharing scheme.

3. The parties now locally compute

[[z]]←
n∑
i=1

[[vi]].

It is clear that each party i, in sharing vi, needs to generate m = |B| different
finite field elements, each of which is sent to every member of a given set of
parties in B. In particular this means that each party has to maintain a secure
connection to each other party, assuming a non-redundant access structure. If
we let l denote the average size of B ∈ B, i.e. l =

∑
B∈B |B|/m, then it is clear

that the total communication required is n ·m · l finite field elements.

Our protocol is largely the same, except that the parties do not create a
replicated sharing of the partial product vi. Notice that the vi form an additive
sharing 〈z〉 of the sum. Our basic idea is first to re-randomize this sum using
the PRZS scheme, and then to consider the re-randomized vi as one share of
the product, i.e. zB indexed by some B containing i, which should then be
distributed to all other parties in B. (There are some minor technical caveats
but this is the essential idea.) This replaces the creation of n replicated shares
and summing them in Maurer’s protocol, and means that each party does not
need to be connected to each other party by a secure channel. The total number
of distinct finite field elements transmitted in a threshold scheme is O(n · 2n), as
opposed to the O(n2 ·2n) of Maurer’s protocol, as we shall see in the next section.
For other Q2 structures the saving in communication is more significant, as our
earlier example demonstrates. Our method directly generalizes the method used
by [AFL+16], which concentrated on the case of the finite field F2 and a 1-out-
of-3 adversary structure.

3 Passively Secure MPC Protocol

In this section we outline our optimization of Maurer’s protocol. As remarked
earlier, our protocol, instead of being in the information theoretic model, uses
PRFs to obtain additive sharings of zero non-interactively. We assume through-
out that we start with an access structure which does not contain any redundant
players. Thus we can define a partition {Bi} of B such that Bi 6= ∅ and B ∈ Bi
implies i ∈ B. We consider Bi to be the set of sets for which party i will be
“responsible”.

As in Maurer’s MPC-Made-Simple protocol, we assume a Q2 access structure
(Γ,∆) and share data values x via the replicated secret sharing [[x]], so that
x =

∑
B∈B xB . We also retain the assignment which tells player i = ρ(B1, B2)

to compute the product xB1
· yB2

. However, our basic multiplication procedure
is given by:

14

1. Party i computes

vi ←
∑

ρ(B1,B2)=i

xB1 · yB2

We think of vi as an additive sharing 〈v〉 of the product.
2. The parties obtain an additive sharing of zero 〈t〉 using the PRZS from

earlier, thus party i holds ti such that
∑n
i=1 ti = 0.

3. Party i samples zB for B ∈ Bi such that
∑
B∈Bi

zB = vi + ti.
4. Party i sends, for all B ∈ Bi, the value zB to party j for all j ∈ B.

Notice that the parties do not need to perform local computations after the
communication as in Maurer’s protocol, and that the total number of elements
transmitted is

∑
B∈B(|B| − 1).

The key observation for security is that the PRZS masks the Schur product
terms, so after choosing the zB ’s and sending these to the appropriate parties,
not even qualified sets of parties can learn any information about these terms,
despite the secret being reconstructible by qualified sets of parties.

Passively Secure MPC Functionality FPMPC

Input: On input (Input, xi) by party i, the functionality stores (id, xi) in memory.

Add: On input (Add, id1, id2, id3), the functionality retrieves (id1, x) and (id2, y)
and stores (id3, x+ y).

Multiply: On input (Multiply, id1, id2, id3), the functionality retrieves (id1, x) and
(id2, y) and stores (id3, x · y).

Output: On input (Output, id, i) from all parties, the functionality retrieves (id, x)
and returns x to all parties if i 6= 0, and to player i only otherwise.

Figure 3. Passively Secure MPC Functionality FPMPC

Given this informal description we now give a full description of our MPC
protocol, which is the analogue of [AFL+16] for arbitrary Q2 access structures
and abitrary finite fields; see Figure 4 for details. One can think of the passively
secure protocol as being in the pre-processing model in which the offline phase
simply involves some key agreement. The online phase is then a standard MPC
protocol in which parties can compute an arithmetic circuit on their combined
(secret) inputs, using the multiplication procedure described above, so as to
implement the functionality in Figure 3. That the protocol securely implements
this functionality is given by the following theorem, whose proof is given in
Appendix A.

Theorem 3. Suppose we have a non-redundant Q2 access structure with a set
B defined as above. Then the protocol ΠPMPC securely realises the functionality
FPMPC against passive adversaries in the FRand-hybrid model.

15

The protocol requires at most
∑
B∈B(|B| − 1) field elements of communica-

tion, over |SC| secure channels, per multiplication gate, and the same number to
perform the input procedure. In the output procedure we require that the parties
be connected by a complete network of bilateral secure channels (i.e. n · (n − 1)
uni-directional channels) if all players are to receive distinct private outputs,
and instead a complete network of authenticated channels if only public output
is required.

Note, the above theorem is given for non-redundant access structures. To apply
the protocol in the case of redundant access structures, we simply remove re-
dundant players from the computation phase and only require interaction with
them in the input and output phases. To avoid explaining this (trivial) extra
complication we specialise to the case of non-redundant access structures.

Protocol ΠPMPC

The set Bi denotes the set of the partition B = {Bi}i∈P containing sets associated
to party i (though note that it is a -usually strict- subset of the sets containing i)
and constructed via proof of Theorem 1.

Input: For party i to provide input x,
1. The parties call FRand.PRZS so that each player j ∈ P obtains tj such that∑

i∈P tj = 0.
2. Party i samples {uB}B∈Bi ← F such that

∑
B∈Bi uB = x+ zi.

3. For each j ∈ P\{i}, party j samples {uB}B∈Bj ← F such that
∑
B∈Bj uB = zj .

4. For all j ∈ P, for each B ∈ Bj , party j sends uB securely to party k for all
k ∈ B.

Add:
1. For each B ∈ B, each party i ∈ B locally computes xB +yB so that collectively

the parties obtain [[x+ y]].

Multiply:
1. For each i ∈ P, party i computes vi ←

∑
ρ(B1,B2)=i

xB1 · yB2 .
2. The parties call FRand.PRZS so that each player i ∈ P obtains ti such that∑

i∈P ti = 0.
3. For each i ∈ P, party i samples {uB}B∈Bi ← F such that

∑
B∈Bi uB = vi + ti.

4. For each i ∈ P, party i sends, for all B ∈ Bi, the value uB securely to party j
for all j ∈ B \ {i}.

Output([[x]], i):
1. If i 6= 0, each player j securely sends xB to i if i 6∈ B, for all B ∈ Bj . If i = 0,

each player j instead sends to all players i for which i 6∈ B. In the latter case
the communication need not be done securely.

2. Player i (or all players if i = 0) computes x←
∑
B∈B xB .

Figure 4. Protocol ΠPMPC

16

We end this section by examining our protocol in the inefficient (for us) but
interesting case of threshold access structures. For an (n, t)-threshold scheme,
each B ∈ B has size n− t, and there are

(
n
t

)
sets in total, so the total number of

elements transmitted is exactly
(
n
t

)
· (n − t − 1). If t is expressed as a constant

fraction of n, then
(
n
t

)
is (asymptotically) exponential in n, so this has complexity

O(n·2n). This compares favourably with Maurer’s protocol which has complexity
O(n2 ·2n), because in that protocol the parties effectively make n shares and add
them together instead of creating one between them as in the new protocol. It was
observed by Beaver and Wool [BW98] that the real overhead in communication
depends on the size of B, which grows exponentially in n for threshold schemes if
the threshold is expressed as a constant fraction of n, and therefore it is desirable
to construct schemes which are oblivious to this parameter. In the threshold case,
both Maurer’s protocol and ours are highly inefficient in terms of the number of
finite field elements transmitted when compared to Shamir sharing.

Note, however, that the main goal of this paper is to reduce the number
of communication channels required to perform the computation. For an (n, t)-
threshold access structure, Maurer’s protocol (and the standard Shamir-based
protocol) requires n · (n − 1) uni-directional secure channels since every party
sends to and receives from every other party; for our passive protocol, we will
still have every party connected to every other party, but for every set in B a
party is in, it will either receive or send, but not both. Thus the number of secure
channels is exactly half, 1

2 · n · (n− 1).

For non-threshold Q2 access structures, since the previous best protocol was
that of Maurer, we obtain also a more efficient protocol in terms of number of
finite field elements transmitted, and comes at the expense of our (limited) use
of cryptographically secure PRFs to set up the correlated randomness.

4 Maliciously Secure MPC Protocol

In this section we show how to realise an actively secure variant of FPMPC in the
standard SPDZ-like fashion – with a pre-processing phase and an online phase,
for our Q2 access structures. Again, we take inspiration from the technique
used in a restricted setting in [FLNW16]. In particular, we show how to achieve
malicious security without using MACs, and how the required communication
channels can be reduced for general access structures.

The offline phase uses our passively secure protocol for multiplication to
produce so-called Beaver triples. These are then checked for correctness using a
sacrificing step. The online phase then proceeds by the standard Beaver method-
ology of opening values to players. Note this is unlike the method in [FLNW16]
where the online multiplication protocol uses the passively secure multiplication
protocol, and then checks this is correct using a Beaver triple. The traditional
method is conceptually easier, and means that the online protocol (bar out-
putting of data privately to one party) may be executed over authenticated, as
opposed to secure, channels.

17

Furthermore, we reduce the number of authenticated channels required for
multiplication by replacing the traditional Beaver “broadcast” phase with an
“opening agreement” phase which requires fewer authenticated channels. This
agreement on an open value is possible because we have a Q2 access structure and
replicated secret sharing. This means that every share must be held by at least
one honest party. Checking of consistency is then done by hashing all the publicly
opened shares (not just the opened secrets they reconstruct to), and then parties
comparing their hashes at various points in the protocol. In [FLNW16] a similar
method is used to maintain consistency by just hashing the opened values. This,
however, only works for limited access structures and communication topologies
(though note that MPC based on multiplicative secret sharing inherently requires
that the access structure be Q2).

To explain our method we use the standard hash API of Init, Update and
Finalise; so that to execute h = H(m1‖m2‖ . . . ‖mt) we actually execute the
statements

H ← Init(), H.Update(m1), H.Update(m2), . . .

. . . , H.Update(mt), h← H.Finalise().

The hash function is used to check views of various opened value as in the
subprotocols defined in Figure 5. This protocol requires a complete network of
authenticated channels to implement CompareView, and a set SC∗ (defined in
the introduction) of secure channels to implement Reveal([[x]], i) for all i 6= 0.

Note that in Reveal([[x]], i 6= 0) the reconstructed secret is guaranteed to
be the correct value because, since the adversary structure is Q2, each value xB
will be received from at least one honest party. Hence, if an adversary deviates
then this is detected by the receiving party. A similar checking is obtained in
Reveal([[x]], 0), i.e. when a secret is opened to everyone, but instead via the hash
function, since two honest parties will differ in their views if the adversary tries
to deviate from the protocol.

We can now define our pre-processing functionality FTriple in Figure 6, and
the protocol ΠTriple in Figure 7 which will implement this, which itself uses the
opening subprotocols defined in Figure 5. We let A denote the set of corrupted
players, and recall we assume (for simplicity) that our finite field Fq is chosen
for a suitably large value of q, so that 1/q is negligible. That the protocol imple-
ments the functionality is given by the following theorem, whose proof we give
in Appendix B.

Theorem 4. The protocol ΠTriple securely realises FTriple in the FRand-hybrid
model against static, malicious adversaries, assuming the hash function H is
collision resistant, and the finite field size q is sufficiently large. The protocol
requires |SC| secure channels to execute the passively secure multiplication proto-
col, which is at the core of the Triple Generation step, and |AC| authenticated
channels to execute Triple Sacrifice. The steps in which the parties verify the
hash values in Opening Check requires a full network of authenticated channels
(over which only a single hash value per channel is sent).

18

Subprotocol ΠOpen

The set P is the set of parties, and the set A ⊂ P the set of corrupt parties in P.
Recall that there is a partition B = {Bi}i∈P

Init: Hi = Init() for all players i.

Broadcast(i, ε): Party i sends ε to all players over authenticated channels. Each
player j ∈ P then executes Hj .Update(ε).

Reveal([[x]], i): If i = 0, the secret is opened to everyone, and otherwise is output
only to party i.

– To open the secret [[x]] to party i,
1. For each share xB where i 6∈ B, every party j ∈ B sends xB to party i over

a secure channel.
2. If any two incoming shares differ, party i sets Abort to true.
3. Otherwise player i computes the secret as x←

∑
xB .

– To open the secret [[x]] to all parties,
1. For every j ∈ P, for every B ∈ Bj , party j sends xB to all k 6∈ B over

authenticated channels.
2. Every party now holds xB for all B ∈ B and so can recover the secret as

x←
∑
xB .

3. Each party j calls Hj .Update(xB) for all B ∈ B.

CompareView:
1. Each party i executes hi ← Hi.Finalise() and broadcasts the result.
2. The parties compare all the hashes they see; if any two hashes any party sees

differ, they set Abort to true.
3. Each party i reinitialises the hash function, Hi ← Init().

Figure 5. Subprotocol ΠOpen

Note that since there is at least one set which contains no corrupt parties, the
functionality is able to sample shares indexed by such a B ∈ B with B ∩A = ∅
so that the triple generated is correct regardless of what shares the adversary
sent the functionality.

4.1 Actively Secure Protocol

We can now present our actively secure (with abort) online protocol, see Figure 9,
which implements the functionality given in Figure 8, and uses the opening
protocols defined in Figure 5. Note that a more elaborate input methodology
is required to ensure actively secure input of values, compared to the passively
secure protocol. The following theorem shows that the protocol implements the
functionality, the proof we give in Appendix B.

19

Functionality FTriple

This functionality will generate Beaver triples in batches of nT at a time. Again
recall that there is a partition B = {Bi}i∈P ; we denote by A the indexing set of
corrupt parties.

Triple: On input {Triple, nT } the functionality proceeds as follows. If at any point
the adversary signals abort then the functionality returns ⊥ and terminates.
1. For i = 1, . . . , nT , the functionality does the following:

(a) The functionality samples {a(i)B , b
(i)
B }B∈B ← F and sets

c(i) ←

(∑
B∈B

a
(i)
B

)
·

(∑
B∈B

b
(i)
B

)
.

(b) The functionality sends the adversary the shares

({a(i)B , b
(i)
B : B ∈ B s.t. k ∈ B})k∈A.

[These are all shares which the adversary has access to in sharing a(i) and
b(i).]

(c) The functionality uniformly samples a set
⋃
j 6∈A{c

(i)
B : B ∈ Bj s.t. B ∩A 6=

∅} ← F and sends (
⋃
j 6∈A{c

(i)
B : B ∈ Bj s.t. k ∈ B})k∈A to the adversary.

(d) The functionality waits for the adversary to return a set of shares

(
⋃
k∈A{c

(i)
B,j : B ∈ Bk s.t. j ∈ B})j 6∈A.

(e) If cB,j1 6= cB,j2 for any j1 6= j2 then the flag Abort is set to be true.
[These are all shares which the adversary controls during multiplication.]

2. If Abort is false the functionality samples {c(i)B : B ∈ B s.t. B ∩A = ∅} so that(∑
B∈B

a
(i)
B

)
·

(∑
B∈B

b
(i)
B

)
=

(∑
B∈B

c
(i)
B

)
.

3. The functionality waits for the adversary to signal Abort or Deliver. If it signals
Deliver, then for each B ∈ B, (a

(i)
B , b

(i)
B , c

(i)
B)nT

i=1 are sent to all honest players j
for which j ∈ B. If the adversary instead signals Abort, or the Abort flag is true,
then, for all B ∈ B, the functionality sends (a

(i)
B , b

(i)
B , c

(i)
B)nT

i=1 to the adversary
and ⊥ to all honest players.

Figure 6. Functionality FTriple

Theorem 5. The protocol ΠOnline securely realises the functionality FAMPC against
static, malicious adversaries for any non-redundant Q2 access structure in the
FRand,FTriple-hybrid model, assuming H is collision resistant, and the finite field
size q is sufficiently large.

The protocol uses |SC| secure channels in the offline phase (i.e. for ΠTriple),
and requires |AC| authenticated channels in the online phase for the multiplica-
tion operation. Inputting values requires |SC∗| secure channels and a complete
network of authenticated channels, and output requires a complete network of
authenticated channels for comparing views, and then to output a value privately

20

Protocol ΠTriple

This procedure runs in three phases: triple generation, triple sacrifice and opening
checking. We assume that we start with an unset value for the flag Abort.

Triple Generation:
1. For i = 1, . . . , 2 · nT do

(a) The parties call FRand.PRSS twice to obtain [[a(i)]] and [[b(i)]]

(b) For each j ∈ P, party j computes vj =
∑
ρ(B1,B2)=j

a
(i)
B1
· b(i)B2

.

(c) The parties call FRand.PRZS so that player j obtains tj such that
∑
l∈P tl =

0.
(d) For each j ∈ P, party j samples c

(i)
B for B ∈ Bj such that

∑
B∈Bj c

(i)
B =

vj + tj .

(e) For each j ∈ P, party j sends, for all B ∈ Bj , the value c
(i)
B securely to

party k for all k ∈ B.
2. The parties then run Triple Sacrifice.

Triple Sacrifice:
1. Call ΠOpen.Init.
2. For i = 1, . . . , nT do

(a) The parties run FRand.PRSS to obtain [[r(i)]].
(b) The parties run ΠOpen.Reveal([[r(i)]], 0) to obtain r(i).
(c) The parties run ΠOpen.Reveal(·, 0) on the values

[[b(i)]]− [[b(i+nT)]] and r(i) · [[a(i)]]− [[a(i+nT)]]

and set the outputs to be σ(i) and ρ(i) respectively.
(d) If the flag Abort has not been set to true, the parties locally compute value

[[z]]← r(i) · [[c(i)]]− σ(i) · [[a(i+nT)]]− ρ(i) · [[b(i+nT)]]− [[c(i+nT)]]− σ(i) · ρ(i).

(e) The parties then run ΠOpen.CompareView, and if Abort is not set to true
then they perform ΠOpen.Reveal([[z]], 0). If the returned value is not zero,
the parties set the flag Abort to true.

3. The parties then run Opening Check.

Opening Check:
1. The parties run ΠOpen.CompareView.
2. If the flag Abort is not set to true then the parties output their shares of

([[a(i)]], [[b(i)]], [[c(i)]]), for i = 1, . . . , nT , and otherwise broadcast all shares of all
their triples and output ⊥.

Figure 7. Protocol ΠTriple

requires |SC∗| secure channels, or |AC| authenticated channels if only public out-
put is required.

21

Actively Secure MPC Functionality FAMPC

Init: The functionality receives a command Init from all parties to initialise.

Input: On input (Input, xi) by party i, the functionality stores (id, xi) in memory.

Add: On input (Add, id1, id2, id3), the functionality retrieves (id1, x) and (id2, y)
and stores (id3, x+ y).

Multiply: On input (Multiply, id1, id2, id3), the functionality retrieves (id1, x) and
(id2, y) and stores (id3, x · y).

Output: On input (Output, id, i) from all parties, the functionality retrieves (id, x).
It then does one of two things:

– If i = 0 it outputs x to the adversary. If the adversary returns Abort, then ⊥ is
returned to all players. If the adversary instead returns OK, x is passed to all
players.

– If i 6= 0 then the functionality waits for input from the adversary. If the adver-
sary returns Abort then ⊥ is returned to all players. If the adversary instead
returns OK, x is passed to player i.

Figure 8. Actively Secure MPC Functionality FAMPC

4.2 Extension to Shamir Sharing

Our online protocol also works in the case of Shamir sharing, and here we can
also reduce the required number of authenticated channels. Each party need only
receive t shares (via authenticated channels) in order to reconstruct the sharing
polynomial. From this polynomial they can then reconstruct the supposed shares
of all other parties. By hashing all these shares, and then eventually comparing
the hash values, the honest parties can ensure that the supposed opened values
are all consistent and valid. Thus in the case of Shamir sharing our method of
using hash values to impose honest behavious on malicious parties can result in
a reduction of uni-directional authenticated channels from n · (n − 1) down to
n · t.

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-
IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and
Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract
No. N66001-15-C-4070, and by EPSRC via grants EP/M012824 and EP/N021940/1.

22

The Protocol ΠOnline

Recall the set P is the set of parties, and the set A ⊂ P the set of corrupt parties
in P. Recall that there is a partition B = {Bi}i∈P .

Init:
1. Hi = Init() for all players i.
2. The parties call FTriple to produce nT triples, where nT is the number of multipli-

cation gates in the circuit. If FTriple aborts, then the parties abort the protocol.
[nT can be a crude upper bound, if the number of triples runs out then FTriple can
be called again.]

Input: For party i to provide input x,
1. The parties call FRand.PRSS to obtain a sharing [[r]].
2. The parties call ΠOpen.Reveal([[r]], i) to open r to player i.
3. The players execute ΠOpen.Broadcast(i, ε) where ε = x− r.
4. The parties locally computea [[x]] = [[r]] + ε.

Add:
1. For each B ∈ B, each party i ∈ B locally computes xB +yB so that collectively

the parties obtain [[x+ y]].

Multiply: On input ([[x]], [[y]]), the perform the following:
1. Take one unused multiplication triple ([[a]], [[b]], [[c]]) from the pre-processing.
2. Compute [[ε]]← [[x]]− [[a]] and [[δ]]← [[y]]− [[b]].
3. The parties run ΠOpen.Reveal(·, 0) on [[ε]] and [[δ]] to obtain ε and δ.
4. The parties set [[z]]← [[c]] + ε · [[b]] + δ · [[a]] + ε · δ.

Output([[x]], i):
1. The parties perform ΠOpen.CompareView.
2. If Abort is true then the parties output ⊥ and stop.
3. If i 6= 0 then the parties call ΠOpen.Reveal([[x]], i). If Abort is not set to true,

the party outputs x.
4. If i = 0 then the parties call ΠOpen.Reveal([[x]], 0) to open x, and then

ΠOpen.CompareView. If Abort is true then the parties output ⊥ and stop,
otherwise they output x.

a This computation is done by the parties agreeing on some B and then adding ε
to rB , the rest of the shares being left as they are.

Figure 9. The Protocol ΠOnline

References

AFL+16. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma
Ohara. High-throughput semi-honest secure three-party computation with
an honest majority. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of

23

the 2016 ACM SIGSAC Conference on Computer and Communications Se-
curity, Vienna, Austria, October 24-28, 2016, pages 805–817. ACM, 2016.

BDOZ11. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Pa-
terson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632
of Lecture Notes in Computer Science, pages 169–188, Tallinn, Estonia,
May 15–19, 2011. Springer, Heidelberg, Germany.

Bea96. Donald Beaver. Correlated pseudorandomness and the complexity of pri-
vate computations. In 28th Annual ACM Symposium on Theory of Comput-
ing, pages 479–488, Philadephia, PA, USA, May 22–24, 1996. ACM Press.

BLW08. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework
for fast privacy-preserving computations. In Sushil Jajodia and Javier
López, editors, ESORICS 2008: 13th European Symposium on Research
in Computer Security, volume 5283 of Lecture Notes in Computer Science,
pages 192–206, Málaga, Spain, October 6–8, 2008. Springer, Heidelberg,
Germany.

BOGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th Annual ACM Symposium on Theory of Comput-
ing, pages 1–10, Chicago, IL, USA, May 2–4, 1988. ACM Press.

BW98. Donald Beaver and Avishai Wool. Quorum-based secure multi-party com-
putation. In Kaisa Nyberg, editor, Advances in Cryptology – EURO-
CRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages
375–390, Espoo, Finland, May 31 – June 4, 1998. Springer, Heidelberg,
Germany.

CCD88. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncondi-
tionally secure protocols (extended abstract). In 20th Annual ACM Sym-
posium on Theory of Computing, pages 11–19, Chicago, IL, USA, May 2–4,
1988. ACM Press.

CDI05. Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseu-
dorandom secret-sharing and applications to secure computation. In Joe
Kilian, editor, TCC 2005: 2nd Theory of Cryptography Conference, volume
3378 of Lecture Notes in Computer Science, pages 342–362, Cambridge,
MA, USA, February 10–12, 2005. Springer, Heidelberg, Germany.

CDN15. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Secure Multiparty
Computation and Secret Sharing. Cambridge University Press, 2015.

DGKN09. Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen.
Asynchronous multiparty computation: Theory and implementation. In
Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009: 12th International
Conference on Theory and Practice of Public Key Cryptography, volume
5443 of Lecture Notes in Computer Science, pages 160–179, Irvine, CA,
USA, March 18–20, 2009. Springer, Heidelberg, Germany.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Mul-
tiparty computation from somewhat homomorphic encryption. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
643–662, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidel-
berg, Germany.

FLNW16. Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-
throughput secure three-party computation for malicious adversaries and
an honest majority. IACR Cryptology ePrint Archive, 2016:944, 2016.

24

GL02. Shafi Goldwasser and Yehuda Lindell. Secure computation without agree-
ment. In Dahlia Malkhi, editor, Distributed Computing, 16th International
Conference, DISC 2002, Toulouse, France, October 28-30, 2002 Proceed-
ings, volume 2508 of Lecture Notes in Computer Science, pages 17–32.
Springer, 2002.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Computing,
pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.

HIK07. Danny Harnik, Yuval Ishai, and Eyal Kushilevitz. How many oblivious
transfers are needed for secure multiparty computation? In Alfred Menezes,
editor, Advances in Cryptology – CRYPTO 2007, volume 4622 of Lecture
Notes in Computer Science, pages 284–302, Santa Barbara, CA, USA, Au-
gust 19–23, 2007. Springer, Heidelberg, Germany.

HM97. Martin Hirt and Ueli M. Maurer. Complete characterization of adver-
saries tolerable in secure multi-party computation (extended abstract). In
James E. Burns and Hagit Attiya, editors, 16th ACM Symposium Annual
on Principles of Distributed Computing, pages 25–34, Santa Barbara, CA,
USA, August 21–24, 1997. Association for Computing Machinery.

HM00. Martin Hirt and Ueli M. Maurer. Player simulation and general adver-
sary structures in perfect multiparty computation. Journal of Cryptology,
13(1):31–60, 2000.

Mau06. Ueli M. Maurer. Secure multi-party computation made simple. Discrete
Applied Mathematics, 154(2):370–381, 2006.

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-party
computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 681–700, Santa Barbara, CA, USA, August 19–23, 2012.
Springer, Heidelberg, Germany.

Sha79. Adi Shamir. How to share a secret. Communications of the Association
for Computing Machinery, 22(11):612–613, November 1979.

A Proof of Theorem 3

Proof. We prove security in the universal composability (UC) framework. In
the UC model, we model all the possible operations of the world outside the
single execution of the protocol by a probabilistic polynomial-time algorithm Z
called the environment, which provides all inputs and sees all outputs of honest
parties, and arbitrarily interacts with the adversary A. We create a probabilistic
polynomial-time algorithm S, called the simulator whose job it is on one hand to
interact with the adversary via the protocol, and on the other hand to interact
with the ideal world via the functionality.

We prove the theorem if we show that the view of the environment when the
adversary interacts with the real-world protocol is indistinguishable from the
view when the adversary instead interacts with the ideal-world functionality via
the simulator.

25

Simulator SPMPC: Part 1/2

During simulation, whenever an input is provided, an output is given, or a mul-
tiplication is performed, the simulator is sent or already knows what shares the
adversary holds for these secrets, and using this it maintains a list of shares it has
seen. When the simulator and adversary compute a linear function on any of these
secrets, the simulator must locally compute the same linear function on these shares
in order to generate shares for the output which are consistent with the values the
adversary has seen before.

For clarity, we use the variable k for corrupt parties, and the variable j for (simu-
lated) honest parties.

Set-up: On receiving a command from the adversary to run FRand.Set-up, the sim-
ulator simply initialises the functionality (internally).

Input: When party i is to provide input,
– The simulator receives the command FRand.PRZS(cnt) from the adversary,

which it executes honestly (internally).
– The simulator stores all the outputs {ti}i∈P from FRand and sends the appro-

priate shares to the adversary, namely {ti}i∈A.
– The simulator samples shares

⋃
j 6∈A{xB}B∈Bj ← F and sends⋃

j 6∈A

{xB : B ∈ Bj s.t. k ∈ B}

k∈A

to the adversary. Note that there is at least one set B ∈ B such that B∩A = ∅;
the simulator sets xB ← ⊥ for any such set(s). The simulator updates its list
of stored values with these shares.

– (The simulator then waits for the adversary to send shares(⋃
k∈A

{x̃B : B ∈ Bk s.t. j ∈ B}

)
j 6∈A

to the simulator.)
– If i is corrupt, then since every B ∈ B contains an honest party, the adversary

sends the entire set {xB}B∈Bi to the simulator. The simulator is therefore able
to compute x = −ti +

∑
B∈Bi xB , thus extracting the input x which it sends

to the functionality FMPC as input for this party.

Figure 10. Simulator SPMPC: Part 1/2

The simulator has access to the ideal-world functionality, and essentially
extracts the inputs from the data it is sent by the adversary and then, acting as
an “ideal-world” adversary, passes it on to the functionality, and finally returns
to the adversary whatever the functionality returns to the simulator in the ideal
world. Our proof is in the FRand-hybrid model, so the simulator is required to

26

respond to all calls the adversary makes to this functionality. The simulation is
given in Figure 10 and Figure 11.

Now we argue that the simulation creates a view for the adversary which
is indistinguishable from the view it has in the ideal world. The methods Set-
up and Add require no simulation. The uniformly randomly sampled shares
generated in Input and Multiply are computationally indistinguishable from
the shares generated in a real-world execution of the protocol since in both cases
the shares are masked by PRZSs from FRand.

Thus the only difficulty is in Output. Here the simulator must ensure that
the outputs the adversary sees are consistent with what has already been re-
vealed, which we now discuss in detail.

When an honest party provides input or the parties perform a multiplication
of secrets, the simulator samples shares for honest parties uniformly at random,
except at least one share held by only honest parties which it does not (and need
not) fix. Such a share exists since otherwise the adversary holds every share.
When the simulator is required to produce output, two possible cases occur.
Either the output is a linear function of previously seen sharings; in which case
the simulator can compute all of the shares (by computing the linear function)
and hence return the valid sharing. Otherwise the output is not a linear function,
in which case the simulator obtains the desired output from the functionality and
samples the shares of the honest players so that they sum (with the adversaries
shares) to the correct value.

In either case this means that the neither the sets of shares revealed in our
simulation nor the values to which they reconstruct provide the environment
with any information with which to distinguish between a real execution of the
protocol and the ideal world.

ut

27

Simulator SPMPC: Part 2/2

Add: The simulator sends the command (Add, id1, id2, id3) to the functionality
FMPC.

Multiply: To multiply a secret,
– The simulator receives the command FRand.PRZS(cnt) from the adversary,

which it executes honestly (internally).
– The simulator stores all the outputs ti from FRand and sends {ti}i∈A to the

adversary.
– The simulator samples shares

⋃
j 6∈A{zB}B∈Bj ← F and sends⋃

j 6∈A

{zB : B ∈ Bj s.t. k ∈ B}

k∈A

to the adversary. The simulator updates its list of stored values with these
shares.

– (The simulator then waits for the adversary to send shares(⋃
k∈A

{z̃B : B ∈ Bk s.t. j ∈ B}

)
j 6∈A

to the simulator.)
– Finally, the simulator sends the command (Multiply, id1, id2, id3) to the func-

tionality FMPC.

Output: On receiving the command to output shares, with input i,
– The simulator sends the same command to the functionality FMPC and receives

an output value x.
– Using the list of shares it stored throughout, the simulator generates a set of

shares which are consistent with the shares the adversary has seen before and
which also sum to the secret x. This is either done by using a linear function of
existing shares output by the simulator, or by sampling new shares (which it
can always do because there is some B ∈ B such that B ∩ A = ∅), depending
on whether x is a linear combination of previously output values.

– If i 6= 0 and i ∈ A, the simulator sends the set⋃
j 6∈A

{xB : B ∈ Bj s.t. i 6∈ B}

to the adversary, and if i = 0 it sends the tuple⋃
j 6∈A

{xB : B ∈ Bj s.t. k 6∈ B}

k∈A

.

Figure 11. Simulator SPMPC: Part 2/2

28

B Proof of Theorems 4 and 5

Proof (Of Theorem 4). We are in the FRand-hybrid model, so the simulator is
required to respond to all calls made by the adversary to FRand. We describe
the simulator after briefly discussing our notation. In the description of the
simulator, for a secret sharing of a value c, we let the shares of c held by honest
party j, for B ∈ B with j ∈ B, be denoted by cB,j . This is to model the fact that
the adversary can send different values for the same share to different honest
parties, even though they are supposed to be the same. If cB,j = cB,j′ for all
j, j′ we write the share simply as cB . Errors in honest parties’ shares can either
come from this inconsistency, or from the fact that the adversary has given all
honest parties the wrong value of cB for a set B for which it is responsible. The
simulation can be found in Figure 12, Figure 13, Figure 14 and Figure 15.

The functionality is designed so that the adversary can choose its shares, and
subsequently can cause an abort, or can allow honest parties to receive outputs.
In the latter case, the outputs received by honest parties are necessarily a valid
triple with the shares the adversary chose and sent to the functionality. Similarly,
in the protocol, the parties either generate a correct triple, or they abort – they
cannot generate an incorrect triple without aborting. A technicality requires that
the functionality send shares it generated for honest parties to the adversary in
the case of an abort. We will now show that the simulator provides an interface
between the real-world adversary and the ideal-world functionality so that no
environment can determine which of these worlds it is working in.

During Triple Generation (Figure 12), when the adversary calls FRand.PRSS,
the simulator just passes on what it receives from the functionality for the se-
crets a and b. The simulator can do this because FRand is actively secure, so the
uniformly sampled shares from the functionality are indistinguishable from an
output of FRand.

Next, the simulator runs FRand.PRZS, just as the real parties would in the
real world, so the outputs are identically distributed. The shares of the product
c(i) which the simulator samples uniformly at random are indistinguishable from
shares of the masked Schur product because the PRZSs (computationally) hide
the sums. More formally, for any (finite) indexing set I, for any i∗ ∈ I,{

(ai)i∈I\{i∗} : ai ← Fq uniformly
}
q

≡
{

(zi)i∈I\{i∗} : zi ← Fq uniformly s.t.
∑
i∈I

zi = 0
}
q

≈C
{

(zi)i∈I\{i∗} : {zi}i∈I ← FRand.PRZS
}
q
.

If there are any discrepancies between any individual shares of c(i) which are
supposed to be sent to different honest parties, the protocol will abort, because
c(i) forms part of a share which is opened publicly later: while the value c(i)

is never publicly opened, the public value [[z(i)]] in Triple Sacrifice is a linear

29

Simulator STriple: Part 1/4 (Triple Generation)

For clarity, we use the variable k for corrupt parties, and the variable j for (simu-
lated) honest parties.

Triple Generation:
– The simulator does the following 2 · nT times, indexed by i:
• The simulator invokes the functionality FTriple and receives

({a(i)B , b
(i)
B : B ∈ B s.t. k ∈ B})k∈A.

This is a tuple of sets of shares, where the set indexed by k ∈ A is the set
of shares received by corrupt party k.

• When the adversary makes a call to FRand.PRSS for a(i) and b(i), if i ≤ nT
the simulator just returns the shares it received from FTriple, and if i > nT
the simulator executes FRand.PRSS honestly and returns the appropriate
shares to the adversary.

• When the adversary makes a call to FRand.PRZS for a secret-shared zero, the
simulator executes this internally to obtain {t(i)l }l∈P with

∑
l∈P t

(i)
l = 0,

which the simulator stores. The simulator sends (t
(i)
k)k∈A to the adversary.

• The simulator samples a set
⋃
j 6∈A{c

(i)
B : B ∈ Bj s.t. B ∩ A 6= ∅} ← F,

sends the tuple ⋃
j 6∈A

{c(i)B : B ∈ Bj s.t. k ∈ B}

k∈A

to the adversary, and receives back a tuple

S ←

(⋃
k∈A

{c(i)B,j : B ∈ Bk s.t. j ∈ B}

)
j 6∈A

,

• If c
(i)
B,j1

6= c
(i)
B,j2

for any j1 6= j2 and the simulator sends S to the func-
tionality, it will abort; instead, in this case, for each B ∈

⋃
k∈A Bk, the

simulator chooses c
(i)
B,j for some j ∈ A, fixes c

(i)
B ← c

(i)
B,j , and then sends

the tuple (
⋃
j 6∈A{c

(i)
B : B ∈ Bk s.t. j ∈ B})j 6∈A to the functionality. The

simulator then immediately sends Abort to the functionality and receives
back {a(i)B , b

(i)
B , c

(i)
B : B ∈ B s.t. B ∩ A = ∅}.

• If c
(i)
B,j1

= c
(i)
B,j2

for all j1, j2, the simulator sends the set S to the functional-
ity. The functionality now waits for the Abort or Deliver signal. Meanwhile,
the simulation continues: for each B ∈ B, the simulator sets c

(i)
B ← c

(i)
B,j for

any j 6∈ A (since they are all the same).
– The simulator then executes STriple.Triple Sacrifice with the adversary.

Figure 12. Simulator STriple: Part 1/4 (Triple Generation)

combination of this (and other) secrets, so if the adversary sends different values

30

for the same share to different honest parties, the shares of z(i) will necessarily
differ between honest parties and thus be detected in CompareView later on.

In Triple Sacrifice (Figure 13 and Figure 14), the simulator initialises the
hashes as in ΠOpen.Init and then runs FRand.PRSS just as the parties do in the real
protocol execution to receive some r(i) and all of its shares. When the adversary
and simulator open r(i), the shares are added to the hash in ΠOpen.Reveal(), so
any discrepancies between honest shares are detected in CompareView later
on.

To the adversary (and the environment) the shares of the public values σ(i)

and ρ(i), and indeed the values themselves, are indistinguishable from uniformly
random in the real world since the secrets a(i+nT) and b(i+nT) are never opened.
Thus it suffices for the simulator to sample shares uniformly at random for
these two public values for all shares held only by honest parties (but since the
simulator actually computes them anyway they are included in the simulation).
The shares held by the adversary for these values are the result of a linear
function on shares already sent from or received by the adversary (i.e. which are
in the transcript between the adversary and the simulator). Because, for each
share, there is at least one (simulated) honest party which will have computed
the linear function faithfully, if the adversary sends a share of σ(i) or ρ(i) which
is different from what it should have calculated according to previous shares it
sent or received, the protocol aborts in CompareView.

In the protocol, before the parties open the (alleged) zero, they run Com-
pareView, and abort if any two hashes differ. If the parties abort, the simulator
also aborts, and otherwise continues. This ensures that all shares of r(i), σ(i) and
ρ(i) are consistent, since otherwise the adversary would have broken the collisin
resistance of the hash function. Moreover, if CompareView did not abort, this
means that the adversary cannot have introduced an error on any of these three
values, by the correctness of ΠRand.PRSS.

Now we will discuss what happens when the simulator and adversary compute
[[z(i)]]. If the values c(i) ← a(i) · b(i) or c(i+nT) ← a(i+nT) · b(i+nT) have had errors
∆c(i) and ∆c(i+nT) introduced on them, then value z(i) becomes

[[z(i)]]← r(i) · [[c(i) +∆c(i)]]− σ(i) · [[a(i+nT)]]− ρ(i) · [[b(i+nT)]]

− [[c(i+nT) +∆c(i+nT)]]− σ(i) · ρ(i),

and will be zero if and only if r·∆c(i)−∆c(i+nT) = 0, which occurs with probability
1/q (where q is the field size) since r is chosen (computationally indistinguishably
from) uniformly at random (and is chosen after the adversary has already chosen
the errors on c(i) and c(i+nT).

The simulator performs local operations on the shares it sent and received

to produce shares z
(i)
B for all B ∈ B where B ∩ A 6= ∅. Note that different

(simulated) honest parties will (potentially) compute different values for the
same shares for certain shares of z(i), depending on what the adversary sent to

the simulator for the shares of c(i): for example, if the adversary sent c
(i)
B,1 to

31

party 1 and c
(i)
B,2 to party 2, then the defining equation for z(i) shows that their

shares for z
(i)
B will differ by r · (c(i)B,1 − c

(i)
B,2).

For the remaining shares, that is, z
(i)
B for B ∈ B with B ∩ A = ∅, the

simulator must sample shares so that they appear to be consistent with the
values the adversary has seen before, i.e. as something indistinguishable from
what it would see in an execution of the protocol. To do this, the simulator must
first compute some errors; in particular, the simulator uses the fact that it knows

the shares a
(i)
B , b

(i)
B , and PRZSs ti held by corrupt parties to compute any errors

the adversary introduced when multiplying secrets during Triple Generation.
Observe that the errors computed in the simulation depend on the choice

of shares for c
(i)
B : recall that the adversary sent the simulator a set of shares

(
⋃
k∈A{c

(i)
B,j : B ∈ Bk s.t. j ∈ B})j 6∈A from which it arbitrarily assigned c

(i)
B to be

c
(i)
B,j for any j ∈ B\A. Importantly, the value r ·∆c(i)−∆c(i+nT)−

∑
B:B∩A6=∅ z

(i)
B

is independent of the choice made for the c
(i)
B ’s since the errors are dependent

on the choice. (More explicitly, observe that

r ·∆c(i) − ∆c(i+nT) −
∑

B:B∩A6=∅
z
(i)
B

= r(i) ·
∑
k∈A

 ∑
B∈Bk

c
(i)
B −

t(i)k +
∑

ρ(B1,B2)=k

a
(i)
B1
· b(i)B2

−
∑
k∈A

 ∑
B∈Bk

c
(i+nT)
B −

t(i+nT)
k +

∑
ρ(B1,B2)=k

a
(i+nT)
B1

· b(i+nT)
B2

−

∑
B:B∩A6=∅

r(i) · c(i)B − σ
(i) · a(i+nT)

B − ρ(i) · b(i+nT)
B − c(i+nT)

B

− σ(i) · ρ(i)

= −
(∑
B∈Bj :B∩A6=∅

r(i) · c(i)B − c
(i+nT)
B

)
+ k,

where k is a constant independent of c
(i)
B and c

(i+nT)
B , is independent of any shares

sent by the adversary.) This means that whatever is sampled for the remaining
shares of z(i) is consistent with the choice made before.

In Opening Checking (Figure 15), the simulator follows the protocol, and
aborts exactly when the real-world execution of the protocol would abort, since
the simulator only sets the flag Abort to true if the protocol is able to detect
the adversary has cheated. In particular, this check ensures that whenever the
adversary sends different values for the same shares of a given secret to different
honest parties (e.g. when opening σ(i), ρ(i), r(i) or z(i)), the hashes will differ,
causing an abort.

We have shown that distributions of shares of individual secrets are indistin-
guishable in both worlds, but we must also ensure that the combined distribution

32

of all shares received by the adversary and the outputs of the honest parties is
indistinguishable as a whole. This follows trivially from the fact that, for each
of the nT triples output, the parties in the ideal world only receive one triple
and the other is discarded (sacrificed), and not output by the honest parties, so
these triples mask the triples which are output, and from the fact that all public
values are indistinguishable from uniformly random and are independent, and
that there are no secrets which the environment can reconstruct at the end of
the computation except the triples, which are identical in both worlds by con-
struction. ut

33

Simulator STriple: Part 2/4 (Triple Sacrifice Part I)

Triple Sacrifice:
– The simulator first initialises the hash function for all (simulated) honest par-

ties.
– The simulator does the following nT times, indexed by i:
• The simulator responds to the adversary’s call to FRand.PRSS by executing

it locally (obtaining some r(i)) and sending ({r(i)B : B ∈ B s.t. k ∈ B})k∈A
to the adversary.

• The simulator then sends⋃
j 6∈A

{r(i)B : B ∈ Bj s.t. k 6∈ B}

k∈A

to the adversary to open the secret r(i), and receives back a tuple(⋃
k∈A

{r(i)B,j : B ∈ Bk s.t. j 6∈ B}

)
j 6∈A

.

If r
(i)
B,j 6= r

(i)
B for any j 6∈ A, the simulator signals Abort to the functionality

(if it has not already done so) and receives {a(i)B , b
(i)
B , c

(i)
B : B ∈ B s.t. B ∩

A = ∅}.
• Then the simulator does the following:
∗ For each B ∈

⋃
j 6∈A Bj , the simulator sets r

(i)
B,j ← r

(i)
B for all j ∈ B \A.

∗ For each j 6∈ A, the simulator executes Hj .Update(r
(i)
B,j) for all B ∈ B.

• The simulator then samples
⋃
j 6∈A{σ

(i)
B , ρ

(i)
B : B ∈ Bj} ← F for the public

values σ(i) and ρ(i), sends to the adversary the set⋃
j 6∈A

{σ(i)
B , ρ

(i)
B : B ∈ Bj s.t. k 6∈ B}

k∈A

,

and receives back a tuple(⋃
k∈A

{σ(i)
B,j , ρ

(i)
B,j : B ∈ Bk s.t. j 6∈ B}

)
j 6∈A

.

If σB,j1 6= σB,j2 or ρB,j1 6= ρB,j2 for any j1 6= j2, for any B ∈ B, the
simulator signals Abort to the functionality (if it has not already done so)

and receives {a(i)B , b
(i)
B , c

(i)
B : B ∈ B s.t. B ∩ A = ∅}.

• Then the simulator does the following:
∗ For each B ∈

⋃
j 6∈A Bj , the simulator sets σB,j ← σB and ρB,j ← ρB

for each j ∈ B \ A.

∗ For each j 6∈ A, the simulator executes Hj .Update(σ
(i)
B,j) and

Hj .Update(ρ
(i)
B,j) for all B ∈ B.

[Continued]

Figure 13. Simulator STriple: Part 2/4 (Triple Sacrifice Part I)

34

Simulator STriple: Part 3/4 (Triple Sacrifice Part II)

• For each j 6∈ A, the simulator computes hj ← Hj .Finalise() and sends these
to the adversary. It also receives a set of hashes from the adversary. If any
two hashes differ, the simulator sets the flag Abort to true. Otherwise, the
parties all have consistent shares for r(i), σ(i) and ρ(i), so we label them
rB for B ∈ B etc.

• The simulator then forms honest players’ shares z
(i)
B,j for B with B∩A 6= ∅

of

[[z(i)]]← r(i) · [[c(i)]]− σ(i) · [[a(i+nT)]]− ρ(i) · [[b(i+nT)]]− [[c(i+nT)]]− σ(i) · ρ(i)

using the values it already has.
• Before the simulator computes shares for honest parties z

(i)
B for B with

B ∩ A = ∅, the simulator computes various errors which could have been
introduced by the adversary,

∆c(i) ←
∑
k∈A

 ∑
B∈Bk

c
(i)
B −

t(i)k +
∑

ρ(B1,B2)=k

a
(i)
B1
· b(i)B2

 ,

∆c(i+nT) ←
∑
k∈A

(∑
B∈Bk

c
(i+nT)
B

−

(
t
(i+nT)
k +

∑
ρ(B1,B2)=k

a
(i+nT)
B1

· b(i+nT)
B2

))
,

• The simulator then computes a(i+nT) ←
∑
B∈B a

(i+nT)
B and b(i+nT) ←∑

B∈B b
(i+nT)
B . (Recall these were just the outputs of ΠRand.PRSS.)

• Using the chosen shares {cB : B ∈ B s.t. B ∩ A 6= ∅}, the simulator
computes corresponding shares {zB : B ∈ B s.t. B ∩ A 6= ∅} and then
samples {zB : B ∈ B s.t. B ∩ A = ∅} ← F such that∑

B∩A=∅

z
(i)
B +

∑
B∩A6=∅

z
(i)
B = r(i) ·∆c(i) −∆c(i+nT)

• The simulator sets zB,j ← zB for every B ∈ Bj where j 6∈ A and sends the

tuple (
⋃
j 6∈A{z

(i)
B,j : B ∈ Bj s.t. k 6∈ B)k∈A to the adversary. The adversary

returns a tuple of shares (
⋃
k∈A{z

(i)
B,j : B ∈ Bk s.t. j 6∈ B)j 6∈A and for each

j 6∈ A, the simulator executes Hj .Update(z
(i)
B,j) for all B ∈ B. If z(i) 6= 0,

the simulator sets the Abort flag to true.
– The simulator then runs STriple.Opening Check with the adversary.

Figure 14. Simulator STriple: Part 3/4 (Triple Sacrifice Part II)

35

Simulator STriple: Part 4/4 (Opening Check)

Opening Check: The simulator and adversary run the final check before output:
– The simulator sets hj ← Hj .Finalise for each honest party j 6∈ A and sends

them to the adversary; the adversary returns some set of hashes.
– The simulator compares all hashes and sets Abort to true if two hashes differ.
– If the simulator or adversary has set Abort to true, the simulator sends the

message Abort to the functionality (unless it has already done so). The func-
tionality returns the honest parties shares for the values a(i), b(i), and c(i). The
simulator passes these on, by sending ({(a(i)B,j , b

(i)
B,j , c

(i)
B,j : B ∈ B s.t. j ∈ B})j 6∈A

to the adversary,
– If the flag Abort has not been set to true, the simulator signals Deliver to the

functionality.

Figure 15. Simulator STriple: Part 4/4 (Opening Check)

36

Proof (Of Theorem 5).

Finally, we can prove that ΠOnline securely realises the actively secure func-
tionality FAMPC. To do this, we first provide a simulator, given in Figure 16 and
Figure 17.

Online Simulator SOnline: Part 1/2

During simulation, whenever an input is provided, an output is given, or a mul-
tiplication is performed, the simulator is sent or already knows what shares the
adversary holds for these secrets, and using this it maintains a list of shares it has
seen. It also stores a list of all shares it has sampled and sent to the adversary. When
the simulator and adversary compute a linear function on any of these secrets, the
simulator must locally compute the same linear function on these shares in order to
generate shares for the output which are consistent with the values the adversary
has seen before.

Init: The simulator initialises the hash for simulated honest parties, Hj ← Init()
and then responds to the adversary’s call to FTriple with the appropriate shares of
the triples obtained by running FTriple internally. Note that if the adversary signals
Abort to the simulator to abort FTriple, the simulator can abort the functionality
and return shares to the adversary, and the protocol aborts. If FTriple aborted, the
simulator does not send the signal Init to the functionality FAMPC.

Input: If input is to be given by party i,
– The simulator first responds to the call by the adversary to FRand.PRSS by

returning ({rB : B ∈ B s.t. k ∈ B)k∈A from an internally-executed instance of
FRand.

– If i is honest,
• The simulator waits for the adversary to send shares

({rB,j : B ∈ B s.t. j ∈ B and i 6∈ B})j∈A. If rB,j 6= rB for any j ∈ A, the
simulator sets the flag Abort to true. The simulator and stores these shares
in the list of shares (see preamble).

• The simulator samples ε ← F and sends (ε)j∈A to the adversary. The
simulator also updates the hash Hj .Update(ε) for every j 6∈ A.

– If i is corrupt,
• The simulator sends shares ({rB : B ∈ B s.t. j ∈ B and i 6∈ B})j 6∈A to the

adversary, which is the opening of [[r]] to corrupt party i ∈ A.
• The adversary returns a tuple (εj)j 6∈A and the simulator updates the hash
Hj .Update(εj) for every j 6∈ A.

• If the εj are equal for all j ∈ A, the simulator computes x ← εj + r and
forwards x to the functionality. If not, the simulator sets the Abort flag to
true and chooses any εj to derive some x to send to the functionality (since
the functionality will abort anyway).

Add: The simulator sends the command (Add, id1, id2, id3) to the functionality.

Figure 16. Online Simulator SOnline: Part 1/2

37

Online Simulator SOnline: Part 2/2

Multiply: To multiply secrets x and y,
– The simulator retrieves the shares for [[a]], [[b]], [[c]], [[x]] and [[y]] from the list of

shares it has stored, samples a set
⋃
j 6∈A{εB , δB : B ∈ Bj s.t. B ∩A 6= ∅} ← F

and sends
(⋃

j 6∈A{εB , δB : B ∈ Bj s.t. k 6∈ B}
)
k∈A

to the adversary and adds

these shares to the list of stored shares.
– The adversary returns a set

(⋃
k∈A{εB,j , δB,j : B ∈ Bk s.t. j 6∈ B}

)
j 6∈A which

the simulator stores in its list of shares.
– For each B ∈

⋃
j 6∈A Bj , the simulator sets εB,j ← εB and ρB,j ← ρB and then

for each j 6∈ A executes Hj .Update(εB,j) and Hj .Update(ρB,j) for all B ∈ B.
– Finally, the simulator sends the command (Multiply, id1, id2, id3) to the func-

tionality.)

Output: When the simulator receives the command Output([[x]], i) from the ad-
versary,

– The simulator sends the message Output(idx, i) to FAMPC. If i = 0 then the
functionality just returns x to the simulator straight away.

– The simulator computes hj ← Hj .Finalise for all j 6∈ A and sends them to the
adversary. If any two hashes are different or the adversary outputs Abort, the
simulator sets its internal Abort flag to true.

– The simulator reinitialises the hash for the (simulated) honest players.
– If the Abort flag has been set to true, the simulator tells the functionality FAMPC

to abort and outputs ⊥ to the adversary. Otherwise the simulator continues as
follows.

– If i 6= 0 is honest, the simulator waits for shares ({xB,j : B ∈ B, i 6∈ B, j ∈
B})j∈A from the adversary. If xB,j1 6= xB,j2 for any j1 6= j2, the simulator sets
Abort to true, signals Abort to the functionality, and sends ⊥ to the adversary;
otherwise, it sends the command OK to the functionality, which passes x to
honest player i.

– If i 6= 0 is corrupt, the simulator signals OK to the functionality and receives
x back. Using the list of shares it stored throughout, the simulator generates
a set of shares for x which are consistent with the shares the adversary has
seen before and which also sum to the secret x. Finally, the simulator sends the

shares
(⋃

j 6∈A{xB : B ∈ B s.t. j ∈ B and k 6∈ B}
)
k∈A

to the adversary.

– If i = 0, the simulator does the same generation of consistent shares so that
they sum to the output x as in the case where i 6= 0 is corrupt and sends

the set of shares
(⋃

j 6∈A{xB : B ∈ Bj s.t. k 6∈ B}
)
k∈A

to the adversary. The

adversary returns a set
(⋃

k∈A{xB : B ∈ Bk s.t. j 6∈ B}
)
j 6∈A to the simulator

and the simulator and adversary compute the hashes as before and set the
flag Abort if either any two hashes differ. If the flag Abort has not been set to
true by either the adversary or the simulator, the simulator signals OK to the
functionality, and otherwise signals Abort.

Figure 17. Online Simulator SOnline: Part 2/2

38

We first note that in the simulation, when a secret value is opened using
in the Input, Multiply or Output commands by calling ΠOpen.Reveal, we
are gauranteed that the values the adversary sends to each honest player are
identical. Since otherwise the adversary would be able to break the collision
resistance of the hash function.

During Init, the simulator just sends output from FTriple, which was run
internally by the simulator, which is what the parties do in the protocol.

For Input, if the party providing input is honest, after receiving the opening
of [[r]] from the adversary the simulator just broadcasts a uniformly randomly
sampled value ε to the adversary. This ε is (computationally) indistinguishable
from what an honest party sends in the real world since an honest party’s input
is masked with a mask from the PRSS in the protocol execution. The simulator
sets the Abort flag to true if the adversary sends different shares of r from what
were prescribed during PRSS; this cheating is caught in the protocol because
every share party i does not have is sent to by at least one honest party, and
ΠOpen.Reveal causes an abort in if any shares differ. If the party providing input
is corrupt, and it sends a different εj to each j 6∈ A, the simulator sets the Abort
flag to true. The ability of the simulator to detect the error is mirrored in the
protocol by the fact that the broadcasted value is added to the hash input (in
ΠOpen.Broadcast), so if any honest parties receive different values the protocol
aborts before output is given (or the adversary has broken collision resistance of
the hash function).

No simulation is required for Add since there is no communication.
During the method Multiply, the simulator just samples shares to send to

the adversary and stores shares sent to it. It can do this because the environment
will not be able to reconstruct secrets before a value has been output in Output,
so all shares are indistinguishable from uniformly random, as they would be in
a real execution of the protocol.

For Output, when values are opened to the adversary, because linear func-
tions on secrets are executed in the protocol by performing the same linear
functions on the individual shares, it is necessary for the simulator to ensure
that any shares the simulator sends to the adversary are consistent with any
shares of secrets which have been opened already or for which the adversary
otherwise knows some of the shares. Using the shares it stores at various points
in the simulation, the simulator can do precisely this, and moreover can cause
the secret being revealed to be opened to whatever it chooses. This is because
there is at least one share which is held only by honest parties, and is therefore
not already included in the transcript of communication between the adversary
and the simulator.

Because the simulator can provide a consistent set of shares for any secret that
needs to be opened (by using the shares it stored throughout the simulation),
and can also choose one of the shares to be whatever it designs, the environment
can use neither the sets of shares sent it by the simulator nor the reconstructed
secrets themselves to distinguish between worlds. ut

39

	Reducing Communication Channels in MPC

