Reducing Communication Channels in MPC

Marcel Keller ${ }^{1}$, Dragos Rotaru ${ }^{1,2}$, Nigel P. Smart ${ }^{1,2}$, and Tim Wood ${ }^{1,2}$
${ }^{1}$ University of Bristol, Bristol, UK.
${ }^{2}$ KU Leuven, Leuven, Belgium.
M.Keller@bristol.ac.uk, Dragos.Rotaru@esat.kuleuven.be, nigel.smart@kuleuven.be,t.wood@bristol.ac.uk

Abstract

In both information-theoretic and computationally-secure MultiParty Computation (MPC) protocols the parties are usually assumed to be connected by a complete network of secure or authenticated channels, respectively. Taking inspiration from a recent, highly efficient, threeparty honest-majority computationally-secure MPC protocol of Araki et al., we show how to perform the most costly part of a computationally secure MPC protocol for an arbitrary Q_{2} access structure over an incomplete network. We present both passive and actively secure (with abort) variants of our protocol. In all cases we require fewer communication channels for secure multiplication than Maurer's "MPC-Made-Simple" protocol, at the expense of requiring pre-shared secret keys for PseudoRandom Functions (PRFs).

1 Introduction

Secret-sharing-based secure MPC (multi-party computation) is generally considered to lie in two distinct camps. In the first camp lies the information-theoretic protocols arising from the original work of Ben-Or, Goldwasser and Wigderson [BOGW88] and Chaum, Crepeau and Damgård [CCD88]. In this line of work, adversarial parties are assumed to be computationally unbounded, and parties in an MPC protocol are assumed to be connected by a complete network of secure channels. Such a model was originally introduced in the context of threshold adversary structures, i.e. t-out-of- n secret-sharing schemes, which could tolerate up to t adversaries amongst n parties. To obtain passively secure protocols one requires $t<n / 2$, and to obtain actively secure protocols one requires $t<n / 3$; these conditions are also sufficient. These threshold structures were extended to arbitrary access/adversary structures by Hirt and Maurer HM97, in which case the two necessary and sufficient conditions become Q_{2} and Q_{3} respectively. These notions will be discussed in more detail later, but in brief an access structure is Q_{ℓ} if the union of no ℓ unqualified sets is the whole set of parties; for example, an (n, t)-threshold scheme is Q_{ℓ} if and only if $t<n / \ell$.

Another line of work which considered computationally-bounded adversaries started with GMW87, GL02]. Here the parties are connected by a complete network of authenticated channels and one can obtain actively-secure protocols in the threshold case when $t<n / 2$ (i.e. honest majority), and active security with
abort when only one party is honest. Generally speaking, such computationallysecure protocols are less efficient than the information-theoretic protocols as they usually assume the need for some form of public-key cryptography.

In recent years there has been considerable progress in practical MPC by marrying the two approaches. For example, the BDOZ BDOZ11, VIFF DGKN09, SPDZ DPSZ12 and Tiny-OT NNOB12 protocols are computationally secure and use information-theoretic primitives in an online phase, but computationallysecure primitives in an offline/pre-processing phase. The offline phase is used to produce so-called Beaver triples Bea96, which are then consumed in the online phase. In these protocols, parties are still connected by a complete network of authenticated channels, and they are usually in the full-threshold model (i.e. situations in which only one party is assumed to be honest). A key observation in much of the practical MPC work of the last few years is that communication costs in the practically important online phase are the main bottleneck.

However, recent work has provided a new method to unify informationtheoretic and computationally-secure protocols. Araki et al. $\mathrm{AFL}^{+} 16$ provide a very efficient passively secure MPC evaluation of the AES circuit in the case of a 1-out-of-3 adversary structure. This is then generalised to an actively secure protocol in FLNW17. Both protocols require a pre-processing phase making use of symmetric-key cryptographic primitives only; thus the pre-processing is much faster than for the full-threshold protocols mentioned above. In this paper we generalise both protocols of Araki et al. to all Q_{2} access structures, and in the process hopefully shed some light onto the fundamental nature of what initially appear to be very specific constructions for 1-out-of-3 adversary structures.

The passively-secure protocol of $\mathrm{AFL}^{+} 16$ makes use of a number of optimisations to the basic offline/online paradigm. Firstly, the offline phase is only used to produce additive sharings of zero. This therefore dispenses with the expensive production of Beaver triples required in the other pre-processing based protocols. Additive sharings of zero can be easily produced using symmetric key primitives and pre-shared secrets. Secondly, the underlying network is not assumed to be complete: instead of each of the three parties being connected to the other two parties, each party is only connected to one other party via a secure channel. Thirdly, parties need only transmit one finite-field element per multiplication. On the downside, however, each party needs to hold two finite-field elements per share, as opposed to using an ideal secret-sharing scheme (in which each party only holds one finite-field element per secret) such as Shamir's.

The underlying protocol, bar the use of the additive sharings of zero, is highly reminiscent of the Sharemind system BLW08, which also assumes a 1-out-of-3 adversary structure. Since both $\mathrm{AFL}^{+} 16$ and BLW08 are based on replicated secret-sharing, they are closely related to the MPC-made-Simple approach of Maurer Mau06. Thus, for the case of this specific adversary structure, the work in $\mathrm{AFL}^{+} 16$ shows that by using cryptography one can obtain optimisations of the MPC-made-Simple approach of Maurer.

The active variant of the protocol of Araki et al. FLNW17] uses the passivelysecure protocol (over an incomplete network of secure channels) to run an offline
phase which produces the Beaver triples. These are then consumed in the online phase, by using the triples to check the passively secure multiplication of actual secrets. The online phase runs over an incomplete network of authenticated channels.

The question therefore arises as to whether the approach outlined in $\mathrm{AFL}^{+} 16$, BLW08 and FLNW17 is particularly tied to the 1-out-of-3 adversary structure, or whether it generalises to other access/adversary structures. In this paper we show that the basic passively-secure protocol indeed generalises to arbitrary Q_{2} access structures. We evaluate how many finite-field elements need to be exchanged over how many secure channels in the multiplication sub-protocol. Our passively-secure protocol is for general Q_{2} structures, implemented via replicated secret-sharing. When specialised to threshold structures we do not obtain any communication efficiency over using Shamir-sharing, but we do obtain a reduction in the required number of secure channels.

We then show how to extend this to an actively-secure protocol (with abort) for any Q_{2} access structure. We take a more traditional approach than FLNW17) to obtain active security. In particular we utilise our passive protocol as an offline phase, and then in the online phase multiplication is performed via standard Beaver multiplication over an incomplete network of authenticated channels. We only require a full network of secure channels in the active protocol to obtain (verified) private output in the online phase and in a short setup phase.

In another, but related, line of work HIK07 involving MPC based on OT (oblivious transfer) the aim is to reduce the total number of pairwise OT channels needed to perform an MPC calculation. This was further developed by Kumaresan et al. KRS16 who gave sufficient and necessary conditions on the graph of OT channels which allows t-secure computation. Thus our work can not only be viewed as optimising the communication of the MPC-made-Simple approach for all Q_{2} access structures (if we allow for some cryptographic assumptions) but also as initiating the study of how many communication channels (not necessarily OT channels) are necessary to perform MPC in general.

1.1 Prior Work

As remarked above, the BGW BOGW88 MPC protocol showed that every functionality can be computed with perfect security, assuming the parties are connected by pairwise private communication channels, and either that the adversary acts semi-honestly (i.e. follows the protocol but possibly tries to learn information about other parties' inputs by inspecting the communication tapes) and corrupts at most half of the parties, or that the adversary acts maliciously (i.e. may deviate arbitrarily from the protocol) and corrupts at most one third. The protocol makes use of Shamir's secret-sharing [Sha79, which is an ideal secret-sharing scheme for threshold access structures. Addition of secrets requires no communication, but during a multiplication, in order for the polynomial encoding the secret to be uniformly random (which is required for security), every party must send a share to every other party. Thus, in total, $O\left(n^{2}\right)$ field elements need to be transmitted, over a complete secure network. At roughly the same
time, Chaum, Crepeau and Damgård CCD88 devised a different yet closely related scheme offering essentially the same results.

Subsequently, Hirt and Maurer HM97 showed a generalisation of the techniques to an arbitrary access structure, providing necessary and sufficient conditions on the access structure for the parties to be able to compute any function securely. The conditions were subsequently called Q_{2} and Q_{3}. The construction of their protocol involves a recursive decomposition of the set of all parties into different "levels" until the base level at which parties are grouped in threes; at each level the parties execute the BGW protocol. Beaver and Wool BW98 then showed how to improve the communication costs of Hirt and Maurer's protocol, by providing a more direct protocol without needing a recursive decomposition. Finally Maurer Mau06 presented a cleaner definition and construction, using replicated secret-sharing, with essentially the same methodology as Beaver and Wool.

The basic technique in the passive case is as follows: Suppose the parties have secrets shared in a Q_{2} (and multiplicative) linear secret-sharing scheme. This means that parties can perform local computations on the shares of two secrets so that each party obtains a summand of the product of the secrets (i.e. the parties obtain an additive sharing of the product). Each party then creates a sharing in the secret-sharing scheme of this summand and then send the shares to the appropriate parties, according to the access structure. Since the secret-sharing scheme is additive, each party can then locally sum all shares they received to the one they generated, so that together they obtain a sharing of the product under the secret-sharing scheme. The exact local computations that the parties perform require some agreement of which computations each party shall undertake, but the main cost is the need to create a sharing for each party's partial sum, leading to a communication cost of $O\left(n^{2}\right)$ field elements over a complete network of secure channels.

Expressing the communication cost of multiplication as $O\left(n^{2}\right)$, however, potentially hides a very large constant, depending on the actual access structure and finite field \mathbb{F}_{q} involved. In the case of threshold structures when $q>n$ one can utilise Shamir's secret-sharing, which is an ideal secret-sharing scheme, and so (in this case) the total communication cost is exactly $n \cdot(n-1)$ field elements; for other access structures, or even the case of threshold structures when $q \leq n$, one must use more elaborate secret-sharing schemes, or extend the base field. This has led some authors to consider using algebraic-geometric codes to produce more efficient secret-sharing schemes (see, for example, [CDN15, Part II]). Such works try to stay within the information-theoretic model, but aim to select secret-sharing schemes which are as close to ideal as possible.

Boyle et al. BGT13 showed how to perform secure MPC where each party need only communicate with polylogarithmically many other parties. They achieve this using a public-key encryption and a standard signature scheme, with optimisations assuming fully-homomorphic encryption and simulation-sound adaptive non-interactive zero-knowledge proofs. Such techniques are far from the efficiency needed in practical MPC protocols.

The Sharemind system BLW08 was the first practical system to make use of an incomplete network of communication. By using replicated secret-sharing in the case of a 1-out-of-3 adversary structure, Bogdanov et al. set up a passivelysecure multiplication protocol which requires only three secure channels, as opposed to the six secure channels required in Maurer's. Finally, AFL+16 extended this idea by making use of a computational assumption to build a preprocessing phase which allows the efficient evaluation of binary circuits using secret-sharing over the field \mathbb{F}_{2}, for a 1-out-of-3 adversary structure, with only three secure channels. A key point is that the pre-processing (requiring cryptographic assumptions) is so trivial that it can actually be carried out at the same time as the main online phase.

We see our work as using cryptography to optimise the information theoretic protocol of Mau06], and hence shedding light on the (what appears at first sight very specialised) construction of $\mathrm{AFL}^{+} 16$.

1.2 Our Work

We take the multiplication protocol of Maurer Mau06 for an arbitrary complete Q_{2} access structure and combine it with the pre-processing idea of $\mathrm{AFL}^{+} 16$ to reduce the required number of secure channels and the number of communicated field elements needed. Our actively-secure protocol also requires only a complete Q_{2} access structure, which does not contradict any impossibility results as we are assuming a computationally-bounded adversary. The number of channels and total data communication needed for a given access structure depends on what the access structure looks like. More precisely, it depends on the set of maximally unqualified sets of the access structure (that is, the unqualified sets whose proper supersets are all qualified).

To provide a concrete basis for our discussion, we provide the following set of maximally unqualified sets for a six-party access structure, which we shall use as a running example throughout this paper:

$$
\begin{aligned}
\mathcal{M}=\{ & \{2,5,6\},\{3,5,6\},\{4,5,6\}, \\
& \{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\}, \\
& \{2,3\},\{2,4\},\{3,4\}\}
\end{aligned}
$$

Let \mathcal{P} be the full set of parties. Our methodology makes a great deal of usage of the set of complements of the sets in \mathcal{M}, the set $\{\mathcal{P} \backslash M: M \in \mathcal{M}\}$ which we denote by \mathcal{B}; i.e.

$$
\begin{aligned}
\mathcal{B}=\{ & \{1,3,4\},\{1,2,4\},\{1,2,3\}, \\
& \{3,4,5,6\},\{2,4,5,6\},\{2,3,5,6\},\{2,3,4,6\},\{2,3,4,5\}, \\
& \{1,4,5,6\},\{1,3,5,6\},\{1,2,5,6\}\}
\end{aligned}
$$

The multiplication of secrets in the passively-secure protocol of Maurer requires all parties to produce one secret-sharing; thus party i sends a total of

$$
\sum_{B \in \mathcal{B}: B \ni i}(|B|-1)+\sum_{B \in \mathcal{B}: B \ngtr i}|B|
$$

finite-field elements, and hence the total communication (for all parties, in one multiplication) is

$$
\sum_{i=1}^{n}\left(\sum_{B \in \mathcal{B}: B \ni i}(|B|-1)+\sum_{B \in \mathcal{B}: B \not \supset i}|B|\right)
$$

finite-field elements (when using replicated sharing for this access structure) over $n \cdot(n-1)$ uni-directional secure channels. In our example this translates into sending $(41-6)+(41-7)+(41-7)+(41-7)+(41-7)+(41-7)=205$ finite-field elements over $6 \cdot 5=30$ secure channels. Note that the same finite-field element will be sent to multiple parties (every set of parties B obtains a share common to them all), but we count these elements as distinct when analysing communication costs.

In our protocol we partition \mathcal{B} into subsets $\left\{\mathcal{B}_{i}\right\}_{i \in \mathcal{P}}$, such that the sets \mathcal{B}_{i} form a non-trivial partition \mathcal{B} (i.e. $\mathcal{B}_{i} \neq \varnothing$ for all $i \in \mathcal{P}$), and for all $B \in \mathcal{B}_{i}$ we have $i \in B$. In our example we set

$$
\begin{aligned}
& \mathcal{B}_{1}=\{\{1,3,4\}\} \\
& \mathcal{B}_{2}=\{\{1,2,4\}\} \\
& \mathcal{B}_{3}=\{\{1,2,3\}\} \\
& \mathcal{B}_{4}=\{\{2,3,4,5\}\}, \\
& \mathcal{B}_{5}=\{\{1,2,5,6\},\{1,3,5,6\},\{1,4,5,6\}\} \\
& \mathcal{B}_{6}=\{\{2,3,4,6\},\{2,3,5,6\},\{2,4,5,6\},\{3,4,5,6\}\} .
\end{aligned}
$$

It is not always possible to create this partition (given an arbitrary access structure), though for many Q_{2} access structures with a small number of parties we are able to do sq ${ }^{3}$. In Section 5 we discuss how to adapt the protocol when this is not possible. We describe the modification separately so as to make the basic ideas of our protocol easier to explain in the description.

Given this partition, our (passively-secure) multiplication protocol makes use of a set of secure channels denoted by $\operatorname{SC}\left(\mathcal{G}_{\Gamma}\right)$ where \mathcal{G}_{Γ} is the set of edges

$$
\mathcal{G}_{\Gamma}=\bigcup_{i \in \mathcal{P}} \bigcup_{B \in \mathcal{B}_{i}} \bigcup_{j \in B \backslash\{i\}}\{(i, j)\}
$$

so that $(i, j) \in \mathrm{SC}\left(\mathcal{G}_{\Gamma}\right)$ implies that party i is connected to party j by a unidirectional secure channel - following good practice, we assume all channels

[^0]are uni-directional. For each multiplication, the overall number of finite-field elements required (by all parties cumulatively) in the communication step is
$$
\sum_{B \in \mathcal{B}}(|B|-1) .
$$

In our example we have

$$
\begin{aligned}
\mathrm{SC}\left(\mathcal{G}_{\Gamma}\right)=\{ & (1,3),(1,4),(2,1),(2,4),(3,1),(3,2),(4,2), \\
& (4,3),(4,5),(5,1),(5,2),(5,3),(5,4),(5,6), \\
& (6,2),(6,3),(6,4),(6,5)\} .
\end{aligned}
$$

Thus in this example we need to send 30 finite-field elements over 18 unidirectional secure channels per multiplication operation, thus giving a saving of 85 percent on the number of finite-field elements it is necessary to transmit, and 40 percent on the number of secure channels needed.

In a further optimisation, given in Section 3.3, we reduce the required size of $\mathrm{SC}\left(\mathcal{G}_{\Gamma}\right)$ in this example to 15 , and the passively secure multiplication protocol only requires sending 15 finite-field elements. This gives a 93 percent saving of transmitted finite-field elements, and a 50 percent saving on the number of secure channels, compared to the original protocol of Maurer. This optimisation, however, comes at the expense of requiring more pre-distributed keys and PRF evaluations.

We then extend this basic protocol to the case of active security (with abort), again with the objective of minimising the number of pairwise connections. Our actively-secure protocol again follows the paradigm of Araki et al. However, we need to make a few small changes to allow for arbitrary Q_{2} access structures. Like Araki et al. we use our passively-secure multiplication protocol in an offline phase over $\operatorname{SC}\left(\mathcal{G}_{\Gamma}\right)$, the set of secure channels, to obtain so-called Beaver triples. These triples are then checked using the usual trick of sacrificing (see e.g. [BDOZ11]).

The triples are then used in an online phase, but, unlike Araki et al., we use a standard Beaver-like online phase which is executed over an incomplete network of authenticated channels. In particular when using replicated secretsharing for an arbitrary Q_{2} access structure our set of authenticated channels, for our actively secure protocol, is denoted by $\operatorname{AC}\left(\mathcal{H}_{\Gamma}\right)$ where \mathcal{H}_{Γ} is the set of edges ${ }^{4}$

$$
\mathcal{H}_{\Gamma}=\bigcup_{i \in \mathcal{P}} \bigcup_{B \in \mathcal{B}_{i}} \bigcup_{j \notin B}\{(i, j)\},
$$

so that $(i, j) \in \mathrm{AC}\left(\mathcal{H}_{\Gamma}\right)$ implies that party i is connected to party j by an authenticated channel. These channels are needed since publicly opening a secret requires every party to receive every share it doesn't have from at least one

[^1]other party, which can be done efficiently in the semi-honest protocol using the partition assignment. In our running example this set is given by
\[

$$
\begin{aligned}
\mathrm{AC}\left(\mathcal{H}_{\Gamma}\right)=\{ & (1,2),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4), \\
& (3,5),(3,6),(4,1),(4,6),(5,2),(5,3),(5,4) \\
& (6,1),(6,2),(6,3),(6,3),(6,5)\}
\end{aligned}
$$
\]

The set of channels which we denote by $\mathrm{SC}\left(\mathcal{H}_{\Gamma}\right)$ is the same set as $\mathrm{AC}\left(\mathcal{H}_{\Gamma}\right)$ but with secure, instead of authenticated, channels. Each online multiplication in our active online protocol will require a total of

$$
\sum_{i \in \mathcal{P}} \sum_{B \in \mathcal{B}_{i}}(n-|B|)=n \cdot|\mathcal{B}|-\sum_{i \in \mathcal{P}} \sum_{B \in \mathcal{B}_{i}}|B|=n \cdot|\mathcal{B}|-\sum_{B \in \mathcal{B}}|B|
$$

finite-field elements to be sent over these secure channels, which in our example equates to $6 \cdot 11-(3 \cdot 3+8 \cdot 4)=25$ finite-field elements, over 19 authenticated channels.

Active security is obtained, as in $\mathrm{AFL}^{+} 16$, by each player hashing their view during a multiplication and comparing the resulting hashes at the end (which requires a complete graph of authenticated channels). However, in generalising to arbitrary access structures it is no longer sufficient to hash the view of the values opened in the multiplication sub-protocol: one also needs to hash the vector of shares used to produce these values. To make clear what channels are required when, and how many, we provide Table 1. Following the standard mathematical notation, we use \mathcal{K}_{n} to denote the complete graph on n vertices (i.e. parties) so that, for example, $\operatorname{SC}\left(\mathcal{K}_{n}\right)$ means that the n parties are connected in a complete network of secure channels.

The set-up of the protocol $\Pi_{\text {Rand }}$ is a one-time offline phase used to generate sharings of random values in the online phase at zero communication cost. While it requires a complete network of secure channels, the main bottleneck in secret-sharing-based MPC is in multiplication, for which our protocol significantly reduces the communication cost.

It should be noted that our online phase methodology can actually be executed using other secret-sharing schemes, assuming the Beaver triples in the offline phase are produced with respect to the corresponding secret-sharing scheme. In particular in the (n, t)-threshold case it turns out that we would obtain, using Shamir sharing, an online phase which only requires $n \cdot t$ authenticated channels, as opposed to $n \cdot(n-1)$ authenticated channels using the naïve protocol.

In this paper we are interested in evaluation of arithmetic circuits over an arbitrary finite field \mathbb{F}_{q}, which could include $q=2$. We will assume, for our actively-secure protocol with abort, that q is sufficiently large to have a cheating detection probability of $1-2^{-\sec }$ for a suitable choice of sec; i.e. $q>2^{\text {sec }}$. If this is not the case, then by repeating our checking procedures sec/ $\log _{2} q$ times, we can reduce the cheating probability to $2^{- \text {sec }}$. We do not analyse this aspect in this paper so as to aid the reader in seeing the main concepts more clearly.

	Procedure	Channels required
$\Pi_{\text {Rand }}$	Set-up	$\mathrm{SC}\left(\mathcal{K}_{n}\right)$
	PRSS	n / a
	PRZS	n / a
Passive Protocol	Input	$\mathrm{SC}\left(\mathcal{G}_{\Gamma}\right)$
	Multiplication	$\mathrm{SC}\left(\mathcal{G}_{\Gamma}\right)$
	Output to one	$\mathrm{SC}\left(\mathcal{K}_{n}\right)$
	Output to all	$\mathrm{AC}\left(\mathcal{K}_{n}\right)$
Active Offline Protocol Triple Gen.	$\mathrm{SC}\left(\mathcal{G}_{\Gamma}\right)$	
	Triple Sac.	$\mathrm{AC}\left(\mathcal{H}_{\Gamma}\right)$
	Authentication check $\mathrm{AC}\left(\mathcal{K}_{n}\right)$	
Active Online Protocol Input	$\mathrm{SC}\left(\mathcal{H}_{\Gamma}\right)+\mathrm{AC}\left(\mathcal{K}_{n}\right)$	
	Multiplication	$\mathrm{AC}\left(\mathcal{H}_{\Gamma}\right)$
	Output to one	$\mathrm{AC}\left(\mathcal{K}_{n}\right)+\mathrm{SC}\left(\mathcal{H}_{\Gamma}\right)$
	Output to all	$\mathrm{AC}\left(\mathcal{K}_{n}\right)+\mathrm{AC}\left(\mathcal{H}_{\Gamma}\right)$

Table 1. Number of channels needed at each point in the computation. The channels for "Output to one" assumes every party will receive private output. Notice that the active variant of our protocol never needs a complete network of secure channels in the online phase and that it only requires a complete authenticated network for the hash-comparison stage only.

This repetition and its generalisation to balls-and-bins experiments is relatively standard.

2 Preliminaries

In this section we recap on access structures, and in particular Q_{2} access structures, and also look at pseudo-random zero sharings with respect to the additive secret sharing scheme. In this section we are working over an arbitrary finite field \mathbb{F}_{q} where q is a prime power, although our protocols also work over any finite ring R. For any $n \in \mathbb{N}$ we denote the set $\{1, \ldots, n\}$ by $[n]$. We denote the computational security parameter by λ and the statistical security parameter by sec.

2.1 Access Structures and Secret Sharing

Access Structures. Let \mathcal{P} denote the set of parties, $\mathcal{P}=[n]$, and let $\Gamma, \Delta \in 2^{\mathcal{P}}$. If $\Gamma \cap \Delta=\varnothing$ then we call the pair (Γ, Δ) an access structure. We call a set of parties $B \in \Gamma$ qualified, and a set in $A \in \Delta$ unqualified. As is typical in the literature, we assume monotonicity of the access structure: supersets of qualified sets are qualified, and subsets of unqualified sets are unqualified. The access structure is said to be complete if $\Delta=2^{\mathcal{P}} \backslash \Gamma$, (i.e. every set of parties is either qualified or unqualified), and in this case we will sometimes just write Γ for the access structure instead of the pair.

A set of parties $A \in \Delta$ is called maximally unqualified if Δ contains no proper supersets of A. For a complete access structure, this means that adding any party not already in A makes the set qualified. We denote by $\mathcal{M} \subseteq \Delta$ the set of maximally unqualified parties. A set in Γ is called minimally qualified if it is qualified and every proper subset is unqualified. The set \mathcal{M} and its structure is important for our protocol; however, it will be notationally simpler for us instead to consider the set of complements of maximally unqualified sets, which we denote by $\mathcal{B}=\{\mathcal{P} \backslash M: M \in \mathcal{M}\}$. Note that, in general, it is not true that the set \mathcal{B} is equal to the set of minimally qualified sets.
Q_{ℓ} Access Structures. The set Δ, called the adversary structure, is said to be Q_{ℓ} (for quorum), where $\ell \in \mathbb{N}$, if no set of ℓ sets in Δ cover \mathcal{P}. A result of Hirt and Maurer HM00 says that every function can be computed securely in the presence of an adaptive, passive (resp. adaptive, active) computationally unbounded adversary if and only if the adversary structure is Q_{2} (resp. Q_{3}).

It is clear that if Δ is Q_{2}, then so is any subset. In particular, the set of maximally unqualified sets \mathcal{M} is also Q_{2}. In fact, if \mathcal{M} is Q_{2} then Δ is Q_{2}. Hence, for the set of complements \mathcal{B} it holds that if $B_{1}, B_{2} \in \mathcal{B}$ then $B_{1} \cap B_{2} \neq \varnothing$. A set \mathcal{B} for which this property holds was called a quorum system by Beaver and Wool BW98.

Let S denote a linear secret-sharing scheme which implements the Q_{2} access structure (Γ, Δ). We use double square brackets, $\llbracket v \rrbracket$ to denote a sharing of the secret v according to this scheme. We let $S_{v, i}$ denote the set of elements which player i holds in representing the value v. Hirt and Maurer's result is realised by showing that if an access structure is Q_{2} then it can be realised by a multiplicative secret sharing scheme, i.e. given two secret shared values $\llbracket a \rrbracket$ and $\llbracket b \rrbracket$, the product $a \cdot b$ can be represented as a linear combination of the elements in the local Schur products

$$
S_{a, i} \otimes S_{b, i}=\left\{s_{a} \cdot s_{b}: s_{a} \in S_{a, i}, s_{b} \in S_{b, i}\right\}
$$

The fact that by local computations the parties each obtain one summand of the product is the reason one is able to build an MPC protocol secure against passive adversaries for any Q_{2} access structure. For the details, we refer the reader to HM00].

Replicated Secret Sharing. Given a monotone access structure (Γ, Δ), we will make extensive use of the replicated secret sharing scheme which respects it. Let \mathcal{B} be, as above, the set of sets which are complements of maximally unqualified sets in the access structure. Then to share secret x, a set of shares $\left\{x_{B}\right\}_{B \in \mathcal{B}}$ is sampled uniformly at random from the field subject to $x=\sum_{B \in \mathcal{B}} x_{B}$ and x_{B} is given to each player in B. From now on, when writing $\llbracket x \rrbracket$ we will mean the secret sharing with respect to this scheme, and in particular the set $S_{x, i}$ above is given by $S_{x, i}=\left\{x_{B}: i \in B\right.$ and $\left.B \in \mathcal{B}\right\}$. Since every unqualified set is a (not necessarily proper) subset of a maximally unqualified set, every set of unqualified parties is missing at least one member of the set $\left\{x_{B}\right\}_{B \in \mathcal{B}}$, and hence
these parties learn no information about the secret. Replicated secret-sharing is therefore perfect, which is defined to mean that no unqualified set of parties has any advantage over uniformly guessing the secret. Conversely, a qualified set A of parties is not a subset of any $M \in \mathcal{M}$ (i.e., for every $M \in \mathcal{M}, A$ contains some i where $i \notin M$), and hence for every $B \in \mathcal{B}$, there is at least one party in A which receives the share x_{B}.

To see that a replicated secret-sharing scheme is multiplicative if the access structure it realises is Q_{2}, observe that given secrets x and y, for every pair of sets $B_{1}, B_{2} \in \mathcal{B}$ there is some party i in $B_{1} \cap B_{2}$, since the intersection of these sets is non-empty by definition of Q_{2}. Then party i can compute the cross terms $x_{B_{1}} \cdot y_{B_{2}}$ and $x_{B_{2}} \cdot y_{B_{1}}$ (and also the diagonal terms $x_{B_{1}} \cdot y_{B_{1}}$ and $x_{B_{2}} \cdot y_{B_{2}}$). Thus the parties can together obtain all terms of $x \cdot y=\left(\sum_{B \in \mathcal{B}} x_{B}\right) \cdot\left(\sum_{B \in \mathcal{B}} y_{B}\right)=$ $\sum_{B_{1}, B_{2} \in \mathcal{B}} x_{B_{1}} \cdot y_{B_{2}}$ by local computations. Note that the parties do not, in general, have a correct sharing of the product after these local computations, since each party now holds only one share: the parties must somehow convert this additive share of the product into a sharing within the scheme. Minimising the number of communication channels required after the local computations is the main goal of this paper. Note also that there may be multiple parties in the intersection of two sets in \mathcal{B}, but we only require one of these parties to include the term in their computation.

Redundancy. A redundant player is one whose shares are not necessarily needed to reconstruct the secret (if it is shared using replicated secret-sharing), and so one could define an MPC protocol achieving the same (passive) security by ignoring this player entirely in the computation and just providing it with the final output.

To provide a more formal definition, consider the replicated scheme above: if there is a party $i \in \mathcal{P}$ for which there exists some other party $j \in \mathcal{P}$ such that for all $B \in \mathcal{B}$ we have $i \in B \Longrightarrow j \in B$, then every share given to party i is also given to party j, and hence we consider party i redundant.

For an access structure Γ with set \mathcal{M} of maximal unqualified sets, we define party i to be redundant if for every $M \in \mathcal{M}$ there exists $j \in \mathcal{P} \backslash\{i\}$ such that $i \notin M \Longrightarrow j \notin M$, and non-redundant otherwise; equivalently, i is nonredundant if for every $j \in \mathcal{P}$ there exists $M \in \mathcal{M}$ such that $i \notin M$ but $j \in M$, and we say that Γ is non-redundant if every party in \mathcal{P} is non-redundant.

For example, consider the set of maximally unqualified sets over $\mathcal{P}=[4]$ given by $\mathcal{M}=\{\{1\},\{2\},\{3,4\}\}$. We obtain the replicated scheme over this access structure by computing $\mathcal{B}=\{\{2,3,4\},\{1,3,4\},\{1,2\}\}$ and splitting a secret s into three shares $s=s_{234}+s_{134}+s_{12}$; then we give player one the shares $\left\{s_{134}, s_{12}\right\}$, player two $\left\{s_{234}, s_{12}\right\}$, player three $\left\{s_{234}, s_{134}\right\}$ and player four $\left\{s_{234}, s_{134}\right\}$. Both shares obtained by player three are also obtained by player four, so we can essentially ignore player four in any protocol design and just provide the output to this player at the end.

Note that if any party is omitted from all sets in \mathcal{M} then it is present in all sets in \mathcal{B} and hence every party, but this party, is redundant, which makes the

MPC protocol trivial. The omitted party simply performs the entire computation itself and outputs the result to all parties.

Partition. In our protocol, we partition the set \mathcal{B} into sets indexed by the parties $\left\{\mathcal{B}_{i}\right\}_{i \in \mathcal{P}}$ such that for every $i \in \mathcal{P}$ we have $B \in \mathcal{B}_{i}$ implies $i \in B$. To make this assignment of sets in \mathcal{B} to parties, we consider all the maps $f: \mathcal{B} \rightarrow \mathcal{P}$ such that for every $i \in \mathcal{P}, f(B)=i$ implies $i \in B$, and choose an f such that $\operatorname{Im}(f)$ is as large as possible. Then for each $i \in \mathcal{P}$ we let $\mathcal{B}_{i}=f^{-1}(i)$.

Note that if f is not surjective then there is at least one set \mathcal{B}_{i} (for some i) which is empty. For the rest of the main body of this paper, we assume that \mathcal{B}_{i} is not empty for all i, since for small numbers of parties on a non-redundant Q_{2} access structure, we can always find a surjective f. For the necessary adaptation to the protocol when this is not the case, and further relevant discussion, see Section 5

Note that in general non-redundancy implies a lower bound on the size of \mathcal{M} : let n^{\prime} be the number of parties which are not maximally unqualified set as singleton sets, and let x be the number of sets in \mathcal{M}. The lower bound on number of sets there must be in \mathcal{M} so that there is no redundancy amongst these n^{\prime} parties is the number of ways of putting each party into at least two sets so that for every pair of parties there is a set containing one and not the other. Thus we require $\binom{x}{2} \geq n^{\prime}$, which means that $x \geq \frac{1+\sqrt{1+8 n^{\prime}}}{2}$. Since there are more sets in \mathcal{M} for non-redundant access structure, it becomes "easier" to find the surjective maps f required by our main protocol.

2.2 Pseudo-Random Zero Sharing for Additive Secret Sharing Schemes

At various points we will need to use an additive secret sharing over all players $\mathcal{P}=\{1, \ldots, n\}$. This shares a value $v \in \mathbb{F}_{q}$ as an additive sum $v=\sum_{i=1}^{n} v_{i}$ and gives player i the value v_{i}. We denote such a sharing by $\langle v\rangle$. It is obvious that this type of secret-sharing does not respect a Q_{2} access structure (since all shares are required to determine the secret), but it will play a crucial role in our protocols.

Improving on the protocol of BW98 and Mau06] requires us to sacrifice the information-theoretic security for a cryptographic assumption. In particular, we require the parties to engage in a pre-processing phase in which they share keys for a pseudo-random function (PRF) in order to generate (non-interactively) pseudo-random zero sharings (PRZSs) for the additive secret sharing scheme $\langle v\rangle$, and pseudo-random secret sharings (PRSSs) for the replicated scheme $\llbracket v \rrbracket^{5}$. In particular we wish to implement the functionality given in Figure 1 .

Pseudo-random secret sharings, and pseudo-random zero sharings in particular, for arbitrary access structures can involve a costly set-up phase in gen-

[^2]
The Functionality $\mathcal{F}_{\text {Rand }}$

Set-up: The functionality accepts Initialise or Abort from all parties and the adversary. If any party inputs Abort, the functionality sends the message Abort to all parties.

PRZS:

- On input PRZS(count) from all parties, if the counter value is the same for all parties and has not been used before, for each $i \in[n-1]$ the functionality
 party i for each $i \in \mathcal{P}$.

PRSS:

- On input PRSS(count) from all parties, if the counter value is the same for all parties and has not been used before, the functionality samples a set $\left\{r_{B}\right\}_{B \in \mathcal{B}} \stackrel{\$}{\leftarrow} \mathbb{F}$ and for each $B \in \mathcal{B}$ sends r_{B} to all $i \in B$.

Figure 1. The Functionality $\mathcal{F}_{\text {Rand }}$
eral CDI05. However, for the simple additive secret-sharing scheme it is relatively easy to construct a non-interactive method for producing PRZSs, assuming access to a commitment functionality $\mathcal{F}_{\text {Commit }}$. In our situation each party i shares a secret key $\kappa_{i, j}$ with each party $j \neq i$. The secret keys are assumed to lie in $\{0,1\}^{\lambda}$, which is the keyspace of a pseudo-random function F with codomain our finite field \mathbb{F}_{q}. The set-up procedure, and the method to generate the PRZS and PRSS is given in Figure 2, which assumes a standard commitment functionality $\mathcal{F}_{\text {Commit }}$.

Theorem 1. Assuming a trusted set-up and that F is a pseudo-random function, the protocol $\Pi_{\text {Rand }}$ securely realises $\mathcal{F}_{\text {Rand }}$ against active adversaries in the $\mathcal{F}_{\text {Commit }}$-hybrid model.

Proof. The Set-up procedure is clearly actively secure assuming an activelysecure commitment functionality. As there is no interaction after Set-up, the protocol is clearly actively secure if it is correct and passively secure. Correctness follows from basic algebra, and security follows from the fact that F is assumed to be a PRF and from the fact that there is at least one B not held by the adversary (by definition of the access structure).

3 Passively Secure MPC Protocol

In this section we outline our optimisation of Maurer's protocol. As remarked earlier, our protocol, instead of being in the information-theoretic model, uses PRFs to obtain additive sharings of zero non-interactively. We assume throughout that we start with an access structure which does not contain any redundant

Protocol $\Pi_{\text {Rand }}$

Let $\mathcal{F}_{\text {Commit }}$ be a standard k-party commitment protocol for $k \geq 2$ which can be realised by a protocol requiring secure channels.

Set-up: The parties initialise by doing the following:

1. For each $i \in \mathcal{P}$, for each $j \in \mathcal{P} \backslash\{i\}$, party i samples $\kappa_{i, j} \stackrel{\$}{\leftarrow}\{0,1\}^{\lambda}$.
2. Each pair of parties initialises an instance of $\mathcal{F}_{\text {Commit }}$; call it $\mathcal{F}_{\text {Commit }}^{\{i, j\}}$.
3. For each $i \in \mathcal{P}$, for each $j \in \mathcal{P} \backslash\{i\}$, the parties call $\mathcal{F}_{\text {Commit }}^{\{i, j\}}$ where i submits input (Commit, $\mathrm{id}_{i, j}, \kappa_{i, j}$) and j gives (Commit, $\mathrm{id}_{i, j}, \perp$).
4. For each $i \in \mathcal{P}$, for each $j \in \mathcal{P} \backslash\{i\}$, the parties execute $\mathcal{F}_{\text {Commit }}^{\{i, j\}}$ with input (Open, $\mathrm{id}_{i, j}$) and abort if $\mathcal{F}_{\text {Commit }}$ returns Abort.
5. For each $B \in \mathcal{B}$, each party $i \in B$ samples $\kappa_{B, i} \stackrel{\&}{\leftarrow}\{0,1\}^{\lambda}$.
6. Each set of parties $B \in \mathcal{B}$ initialises an instance of $\mathcal{F}_{\text {Commit }}$; call it $\mathcal{F}_{\text {Commit }}^{B}$.
7. For each $B \in \mathcal{B}$, for each $i \in B$, the parties call $\mathcal{F}_{\text {Commit }}^{B}$ where i submits input (Commit, id ${ }_{B, i}, \kappa_{B, i}$) and all $j \in B \backslash\{i\}$ give (Commit, id $_{B, i}, \perp$).
8. For each $B \in \mathcal{B}$ and for each $i, j \in \mathcal{P}$ with $i, j \in B$, the parties i and j call $\mathcal{F}_{\text {Commit }}^{B}$ with input (Open, $\mathrm{id}_{B, i}$) and abort if $\mathcal{F}_{\text {Commit }}^{B}$ returns Abort.
9. Each party i sets $\kappa_{B} \leftarrow \oplus_{j \in B} \kappa_{B, j}$ for each B containing i.
10. Finally, each party i sets count $\leftarrow 0$, and count ${ }_{B} \leftarrow 0$ for all $B \in \mathcal{B}$ where $i \in B$.

PRZS: Party i retrieves count from memory and computes

$$
t_{i} \leftarrow \sum_{j \neq i} F_{\kappa_{i, j}}(\text { count })-F_{\kappa_{j, i}}(\text { count })
$$

and increments count.
PRSS: For each $B \in \mathcal{B}$ containing i, party i computes

$$
r_{B} \leftarrow F_{\kappa_{B}}\left(\operatorname{count}_{B}\right)
$$

and increments count ${ }_{B}$.
Figure 2. Protocol $\Pi_{\text {Rand }}$
players. As stated in Section 2, we will assume we can define a partition $\left\{\mathcal{B}_{i}\right\}$ of \mathcal{B} such that $\mathcal{B}_{i} \neq \varnothing$ and $B \in \mathcal{B}_{i}$ implies $i \in B$. We call such a partition (where $\mathcal{B}_{i} \neq \varnothing$ for all i) a surjective partition; when this is not possible we provide the requisite alterations to the protocol in Section 5. We consider \mathcal{B}_{i} to be the set of sets for which party i will be "responsible".

3.1 Maurer's MPC-made-Simple Protocol

The information-theoretic protocol we describe is based on one due to Maurer Mau06. Maurer's protocol is itself a variant of the protocol of Beaver and Wool BW98] but specialised to the case of replicated secret-sharing. For comparison with our protocol, we explain Maurer's protocol here.

We assume a Q_{2} access structure (Γ, Δ), and we share data values x via the replicated secret-sharing $\llbracket x \rrbracket$, where $x=\sum_{B \in \mathcal{B}} x_{B}$. Since this secret-sharing scheme is linear, addition of secret-shared values comes "for free", i.e. it requires no interaction and parties just need to add their local shares together.

The real difficulty in creating an MPC protocol given a linear secret-sharing scheme is in performing secure multiplication of secret-shared values, $\llbracket x \rrbracket$ and $\llbracket y \rrbracket$. With this goal, we begin by following BW98 and define a surjective function $\rho: \mathcal{B}^{2} \rightarrow \mathcal{P}$ such that $\rho\left(B_{1}, B_{2}\right)=i$ implies that $i \in B_{1} \cap B_{2}$; the existence of such a function follows from the fact that the access structure is Q_{2}. Note that there are possibly multiple choices for ρ, and that it is certainly not true in general that $i=\rho\left(B_{1}, B_{2}\right)$ implies $B_{1} \cap B_{2}=\{i\}$ (though clearly $B_{1} \cap B_{2} \supseteq\{i\}$). Note that party $\rho\left(B_{1}, B_{2}\right)$ holds a copy of share $x_{B_{1}}$ and $y_{B_{2}}$. We will put player $\rho\left(B_{1}, B_{2}\right)$ "in charge" of computing the cross term $x_{B_{1}} \cdot y_{B_{2}}$ in the following multiplication protocol:

1. Party i computes

$$
v_{i} \leftarrow \sum_{B_{1}, B_{2} \in \mathcal{B}: \rho\left(B_{1}, B_{2}\right)=i} x_{B_{1}} \cdot y_{B_{2}}
$$

2. Party i creates a sharing $\llbracket v_{i} \rrbracket$ of the value v_{i} and distributes the different summands securely to the appropriate parties according to the replicated secret-sharing scheme.
3. The parties now locally compute

$$
\llbracket z \rrbracket \leftarrow \sum_{i=1}^{n} \llbracket v_{i} \rrbracket .
$$

It is clear that each party i, in sharing v_{i}, needs to generate $m=|\mathcal{B}|$ different finite-field elements, each of which is sent to every member of a given set of parties in \mathcal{B}. In particular this means that each party has to maintain a secure connection to each other party, assuming a non-redundant access structure. If we let l denote the average size of $B \in \mathcal{B}$, i.e. $l=\sum_{B \in \mathcal{B}}|B| / m$, then it is clear that the total communication required is $n \cdot m \cdot l$ finite-field elements.

Our protocol is largely the same, except that the parties do not create a replicated sharing of the partial product v_{i}. Notice that the v_{i} form an additive sharing $\langle z\rangle$ of the sum. Our basic idea is first to re-randomise this sum using the PRZS scheme, and then to consider each re-randomised v_{i} as one share of the product, i.e. z_{B} indexed by some B containing i, which should then be distributed to all other parties in B. There are some minor technical caveats but this is the essential idea.

This idea replaces the creation of n replicated shares and summing them in Maurer's protocol, and means that each party need not be connected to each other party by a secure channel. The total number of distinct finite field elements transmitted in a threshold scheme is $O\left(n \cdot 2^{n}\right)$, as opposed to the $O\left(n^{2} \cdot 2^{n}\right)$ of Maurer's protocol, as we shall see in the next section. For other Q_{2} structures the saving in communication is more significant, as our earlier example demonstrates. Our method directly generalises the method used by $\mathrm{AFL}^{+} 16$, which
concentrated on the case of the finite field \mathbb{F}_{2} and a 1-out-of-3 adversary structure.

3.2 New Protocol

As in Maurer's MPC-Made-Simple protocol, we assume a Q_{2} access structure (Γ, Δ) and share data values x via the replicated secret-sharing $\llbracket x \rrbracket$, so that $x=\sum_{B \in \mathcal{B}} x_{B}$. We also retain the assignment which tells player $i=\rho\left(B_{1}, B_{2}\right)$ to compute the product $x_{B_{1}} \cdot y_{B_{2}}$. However, our basic multiplication procedure is given by the following:

1. Party i computes

$$
v_{i} \leftarrow \sum_{B_{1}, B_{2} \in \mathcal{B}: \rho\left(B_{1}, B_{2}\right)=i} x_{B_{1}} \cdot y_{B_{2}}
$$

We think of v_{i} as an additive sharing $\langle v\rangle$ of the product.
2. The parties obtain an additive sharing of zero $\langle t\rangle$ using the PRZS from earlier; thus party i holds t_{i} such that $\sum_{i=1}^{n} t_{i}=0$.
3. Party i samples u_{B} for $B \in \mathcal{B}_{i}$ such that $\sum_{B \in \mathcal{B}_{i}} u_{B}=v_{i}+t_{i}$.
4. Party i sends, for all $B \in B_{i}$, the value u_{B} to party j for all $j \in B$.

Notice that the parties do not need to perform local computations after the communication as in Maurer's protocol, and that the total number of elements transmitted is $\sum_{B \in \mathcal{B}}(|B|-1)$. Also notice that we obtain a valid sharing of the product as we have assumed $\mathcal{B}_{i} \neq \varnothing$, and thus every share v_{i} has been utilised in the final sharing.

The key observation for security is that the PRZS masks the Schur product terms, so after choosing the u_{B} 's and sending these to the appropriate parties, not even qualified sets of parties can learn any information about these terms, despite being able to compute the secret.

Passively Secure MPC Functionality $\mathcal{F}_{\text {PMPC }}$
Input: On input (Input, x_{i}) by party i, the functionality stores (id, x_{i}) in memory.
Add: On input ($\mathrm{Add}, \mathrm{id}_{1}, \mathrm{id}_{2}, \mathrm{id}_{3}$) from all parties, the functionality retrieves $\left(\mathrm{id}_{1}, x\right)$ and $\left(\mathrm{id}_{2}, y\right)$ and stores $\left(\mathrm{id}_{3}, x+y\right)$.

Multiply: On input (Multiply, $\mathrm{id}_{1}, \mathrm{id}_{2}, \mathrm{id}_{3}$) from all parties, the functionality retrieves (id_{1}, x) and (id_{2}, y) and stores ($\mathrm{id}_{3}, x \cdot y$).

Output: On input (Output, id, i) from all parties, the functionality retrieves (id, x) and returns x to all parties if $i=0$, and to player i only otherwise.

Figure 3. Passively Secure MPC Functionality $\mathcal{F}_{\text {PMPC }}$

Given this informal description, we now give a full description of our MPC protocol, which is the analogue of $\mathrm{AFL}^{+} 16$ for arbitrary Q_{2} access structures and arbitrary finite fields; see Figure 4 for details. One can think of the passivelysecure protocol as being in the pre-processing model in which the offline phase simply involves some key agreement. The online phase is then a standard MPC protocol in which parties can compute an arithmetic circuit on their combined (secret) inputs, using the multiplication procedure described above, so as to implement the functionality in Figure 3. That the protocol securely implements this functionality is given by the following theorem, whose proof is given in Appendix A

For correctness, we do not provide a formal proof. Indeed, we have already (albeit informally) justified the correctness of multiplication of secrets, and addition of secrets is trivial by the commutativity and associativity of addition in the field (or ring). For input by party i, the parties compute an additive sharing of the input by taking a sharing of zero and party i adding on its input; the other steps of the protocol, that is, those involving sampling and communication, are just those required to convert the share from an additive sharing to a sharing in the scheme, the correctness of which holds by the definition of the partition $\left\{\mathcal{B}_{i}\right\}_{i \in \mathcal{P}}$.

Theorem 2. Suppose we have a non-redundant Q_{2} access structure with a surjective partition $\left\{\mathcal{B}_{i}\right\}$ of the set \mathcal{B}. Then the protocol $\Pi_{P M P C}$ securely realises the functionality $\mathcal{F}_{P M P C}$ against passive adversaries in the $\mathcal{F}_{\text {Rand }}$-hybrid mode ${ }^{6}$.

Assuming a surjective partition, the protocol requires at most $\sum_{B \in \mathcal{B}}(|B|-1)$ field elements of communication, over $\left|\mathcal{G}_{\Gamma}\right|$ secure channels, per multiplication gate, and the same number to perform the input procedure.

In the output procedure we require that the parties be connected by a complete network of bilateral secure channels (i.e. $n \cdot(n-1)$ uni-directional channels) if all players are to receive distinct private outputs, and instead a complete network of authenticated channels if only public output is required.

Note that the above theorem is given for non-redundant access structures. To apply the protocol in the case of redundant access structures, we simply remove redundant players from the computation phase and only require interaction with them in the input and output phases. To avoid explaining this (trivial) extra complication we specialise to the case of non-redundant access structures.

We end this section by examining our protocol in the inefficient (for us) but interesting case of threshold access structures. For an (n, t)-threshold scheme, each $B \in \mathcal{B}$ has size $n-t$, and there are $\binom{n}{t}$ sets in total, so the total number of elements transmitted is exactly $\binom{n}{t} \cdot(n-t-1)$. If t is expressed as a constant fraction of n, then $\binom{n}{t}$ is (asymptotically) exponential in n, so this has complexity $O\left(n \cdot 2^{n}\right)$. This compares favourably with Maurer's protocol which has complexity $O\left(n^{2} \cdot 2^{n}\right)$, because in that protocol the parties effectively make n shares and add

[^3]
Protocol $\Pi_{\text {PMPC }}$

The set \mathcal{B}_{i} denotes the set of the partition $\mathcal{B}=\left\{\mathcal{B}_{i}\right\}_{i \in \mathcal{P}}$ containing sets associated to party i (though note that it is a -usually strict- subset of the sets containing i).

Set-up: The parties set count $\leftarrow 0$.
Input: For party i to provide input x,

1. The parties call $\mathcal{F}_{\text {Rand }}$ with input PRZS(count) so that each player $j \in \mathcal{P}$ obtains t_{j} such that $\sum_{j \in \mathcal{P}} t_{j}=0$.
2. Party i samples $\left\{u_{B}\right\}_{B \in \mathcal{B}_{i}} \leftarrow \mathbb{F}$ such that $\sum_{B \in \mathcal{B}_{i}} u_{B}=x+t_{i}$.
3. For each $j \in \mathcal{P} \backslash\{i\}$, party j samples $\left\{u_{B}\right\}_{B \in \mathcal{B}_{j}} \leftarrow \mathbb{F}$ such that $\sum_{B \in \mathcal{B}_{j}} u_{B}=t_{j}$.
4. For each $j \in \mathcal{P}$, for each $B \in \mathcal{B}_{j}$, for each $k \in B$, party j sends u_{B} securely to party k.
5. The parties increment count by one.

Add:

1. For each $B \in \mathcal{B}$, each party $i \in B$ locally computes $x_{B}+y_{B}$ so that collectively the parties obtain $\llbracket x+y \rrbracket$.

Multiply:

1. For each $i \in \mathcal{P}$, party i computes $v_{i} \leftarrow \sum_{B_{1}, B_{2} \in \mathcal{B}}: \rho\left(B_{1}, B_{2}\right)=i=1 x_{B_{1}} \cdot y_{B_{2}}$.
2. The parties call $\mathcal{F}_{\text {Rand }}$ with input PRZS(count) so that each player $i \in \mathcal{P}$ obtains t_{i} such that $\sum_{i \in \mathcal{P}} t_{i}=0$.
3. For each $i \in \mathcal{P}$, party i samples $\left\{u_{B}\right\}_{B \in \mathcal{B}_{i}} \leftarrow \mathbb{F}$ such that $\sum_{B \in \mathcal{B}_{i}} u_{B}=v_{i}+t_{i}$.
4. For each $i \in \mathcal{P}$, for each $B \in \mathcal{B}_{i}$, for each $j \in B \backslash\{i\}$, party i securely sends the value u_{B} to party j.
5. The parties increment count by one.

Output $(\llbracket x \rrbracket, i)$:

1. If $i \neq 0$, for each $j \in \mathcal{P}$, for each $B \in \mathcal{B}_{j}$, party j securely sends x_{B} to i if $i \notin B$. If $i=0$, each player j instead sends to all players i for which $i \notin B$. In the latter case the communication need not be done securely.
2. Player i (or all players if $i=0$) computes $x \leftarrow \sum_{B \in \mathcal{B}} x_{B}$.

Figure 4. Protocol $\Pi_{\text {PMPC }}$
them together instead of creating one between them as in the new protocol. It was observed by Beaver and Wool BW98 that the real overhead in communication depends on the size of \mathcal{B}, which grows exponentially in n for threshold schemes if the threshold is expressed as a constant fraction of n, and therefore it is desirable to construct schemes which are oblivious to this parameter. In the threshold case, both Maurer's protocol and ours are highly inefficient in terms of the number of finite-field elements transmitted when compared to Shamir sharing.

Note, however, that the main goal of this paper is to reduce the number of communication channels required to perform the computation. For an (n, t) threshold access structure, Maurer's protocol (and the standard Shamir-based protocol) requires $n \cdot(n-1)$ uni-directional secure channels since every party
sends to and receives from every other party; for our passive protocol, we will still have every party connected to every other party, but for every set in \mathcal{B} a party is in, it will either receive or send, but not both. Thus the number of secure channels is exactly half, $\frac{1}{2} \cdot n \cdot(n-1)$.

For non-threshold Q_{2} access structures, since the previous best protocol was that of Maurer, we obtain also a more efficient protocol in terms of number of finite-field elements transmitted, and comes at the expense of our (limited) use of cryptographically-secure PRFs to set up the correlated randomness.

3.3 An Optimisation

We end this section by presenting a minor optimisation of our passively secure multiplication protocol, which can result in a further reduction in both the number of communication channels and the number of finite-field elements that need to be sent. However, this comes at the expense of needing further PRF evaluations.

Recall to each player i we associated a set \mathcal{B}_{i}, of sets B for which player i is "responsible" for producing the sharing u_{B} during the multiplication protocol. In our optimisation we make player i responsible for only a single set, which we call B_{i}, which is an element of \mathcal{B}_{i}. All other values u_{B} for $B \in \mathcal{B}_{i} \backslash\left\{B_{i}\right\}$ are generated by a PRF evaluation.

We informally describe the extensions needed here in the case of a surjective partition; the extension to non-surjective partitions is immediate. First we extend the $\mathcal{F}_{\text {Rand }}$ functionality so that it contains an additional command $\mathcal{F}_{\text {Rand }} \cdot \operatorname{Rand}(B)$. This command, on input of a set of players B, will output the same uniformly random value z_{B} to all players in B. Clearly, this additional command is a component of the existing command $\mathcal{F}_{\text {Rand }} . \mathbf{P R S S}$, and so can be implemented in the same way.

Our optimisation of the multiplication protocol is then given in Figure 5 . It is then clear that we require to transmit only n distinct, finite-field elements over the set

$$
\widehat{\mathcal{G}_{\Gamma}}=\bigcup_{i \in \mathcal{P}} \bigcup_{j \in B_{i} \backslash\{i\}}\{(i, j)\}
$$

of secure channels, which we denote by $\mathrm{SC}\left(\widehat{\mathcal{G}_{\Gamma}}\right)$. (Observe that $\widehat{\mathcal{G}_{\Gamma}} \subseteq \mathcal{G}_{\Gamma}$.) The total number of (non-distinct) finite fields elements that need to be sent is equal to $\sum_{i=1}^{n}\left(\left|B_{i}\right|-1\right)$.

When specialised to our six-party example from the introduction, and taking $B_{5}=\{1,2,5,6\}$ and $B_{6}=\{2,3,4,6\}$ (with the obvious definition of B_{1}, B_{2}, B_{3}, and B_{4}), we find

$$
\begin{aligned}
\widehat{\mathcal{G}_{\Gamma}}=\{ & (1,3),(1,4),(2,1),(2,4),(3,1),(3,2),(4,2),(4,3),(4,5), \\
& (5,1),(5,2),(5,6),(6,2),(6,3),(6,4)\}
\end{aligned}
$$

```
            Optimised Passively Secure Multiplication Protocol
Multiply:
    1. For each \(i \in \mathcal{P}\), party \(i\) computes \(v_{i} \leftarrow \sum_{B_{1}, B_{2} \in \mathcal{B}: \rho\left(B_{1}, B_{2}\right)=i} x_{B_{1}} \cdot y_{B_{2}}\).
    2. The parties call \(\mathcal{F}_{\text {Rand }}\).PRZS so that each player \(i \in \mathcal{P}\) obtains \(t_{i}\) such that
        \(\sum_{i \in \mathcal{P}} t_{i}=0\).
    3. For each \(B \in \mathcal{B}_{i} \backslash\left\{B_{i}\right\}\) the players execute \(\mathcal{F}_{\text {Rand }}\). Rand \((B)\), so that each player
        \(j \in B\) obtains a uniformly random element \(u_{B}\).
    4. Party \(i\) defines \(u_{B_{i}}\) by setting \(u_{B_{i}} \leftarrow v_{i}+t_{i}-\sum_{B \in\left(\mathcal{B}_{i} \backslash\left\{B_{i}\right\}\right)} u_{B}\).
    5. For each \(i \in \mathcal{P}\), party \(i\) sends the value \(u_{B_{i}}\) securely to party \(j\) for all \(j \in B_{i}\).
```

Figure 5. Optimised Passively Secure Multiplication Protocol

Thus we need to send only 15 finite fields elements over 15 uni-directional secure channels. This equates to a bandwidth saving of an additional 50 percent over our initial protocol, and a 17 percent saving over the number of secure channels. Compared to the initial protocol of Maurer we obtain a saving of 93 percent in the number of transmitted finite field elements, and a saving of 50 percent in the number of secure channels.

4 Maliciously Secure MPC Protocol

In this section we show how to realise an actively-secure variant of $\mathcal{F}_{\text {PMPC }}$ in the standard SPDZ-like fashion - with a pre-processing phase and an online phase, for our Q_{2} access structures. Again, we take inspiration from the technique used in a restricted setting in FLNW17. In particular, we show how to achieve malicious security without using MACs, and how the required communication channels can be reduced for general access structures.

The offline phase uses our passively-secure protocol for multiplication to produce so-called Beaver triples. These are then checked for correctness using a sacrificing step. The online phase then proceeds by the standard Beaver methodology of opening values to players. Note this is unlike the method in [FLNW17] where the online multiplication protocol uses the passively secure multiplication protocol, and then checks this is correct using a Beaver triple. The traditional method is conceptually easier, and means that the online protocol (bar outputting of data privately to one party) may be executed over authenticated, as opposed to secure, channels.

Furthermore, we reduce the number of authenticated channels required for multiplication by replacing the traditional Beaver "broadcast" phase with an "opening agreement" phase which requires fewer authenticated channels. This agreement on an open value is possible because we have a Q_{2} access structure and replicated secret sharing. This means that every share must be held by at least one honest party. Checking of consistency is then done by hashing all the publicly opened shares (not just the opened secrets they reconstruct to), and then parties comparing their hashes at various points in the protocol. Note that although the hash function is not guaranteed to be hiding we only hash
shares that are opened to each party, hence no extra information is leaked. In FLNW17] a similar method is used to maintain consistency by just hashing the opened values. This, however, only works for limited access structures and communication topologies.

To explain our method we use the standard hash API of Init, Update and Finalise; so that to execute $h=H\left(m_{1}\left\|m_{2}\right\| \ldots \| m_{t}\right)$ we actually execute the statements

$$
\begin{aligned}
H \leftarrow \operatorname{Init}(), \quad & H . U p d a t e\left(m_{1}\right), \quad H . U p d a t e\left(m_{2}\right), \ldots \\
& \ldots, H . U p d a t e\left(m_{t}\right), \quad h \leftarrow H . \text { Finalise }() .
\end{aligned}
$$

The hash function is used to check views of various opened value as in the subprotocols defined in Figure 6. This protocol requires a complete network of authenticated channels to implement CompareView, and a set $\operatorname{SC}\left(\mathcal{H}_{\Gamma}\right)$ (defined in the introduction) of secure channels to implement Reveal $(\llbracket x \rrbracket, i)$ for all $i \neq 0$.

Note that, in Reveal $(\llbracket x \rrbracket, i \neq 0)$ the reconstructed secret is guaranteed to be the correct value because, since the adversary structure is Q_{2}, each value x_{B} will be received from at least one honest party. Hence, if an adversary deviates then this is detected by the receiving party. A similar checking method is used in $\operatorname{Reveal}(\llbracket x \rrbracket, 0)$ (i.e. when a secret is opened to everyone) but is achieved instead via the hash function, since two honest parties will differ in their views if the adversary tries to deviate from the protocol.

We can now define our pre-processing functionality $\mathcal{F}_{\text {Triple }}$ in Figure 7. Note that since there is at least one set in \mathcal{B} which contains no corrupt parties, the functionality is able to choose shares indexed by (at least) one $B \in \mathcal{B}$ with $B \cap \mathcal{A}=\varnothing$ so that the triple generated is correct regardless of what shares the adversary sent the functionality.

The protocol $\Pi_{\text {Triple }}$ in Figure 8 implements the $\mathcal{F}_{\text {Triple }}$ functionality, with Figure 8 itself using the opening subprotocols defined in Figure 6. We let \mathcal{A} denote the set of corrupted players, and recall we assume (for simplicity) that our finite field \mathbb{F}_{q} is chosen for a suitably large value of q, so that $1 / q$ is negligible.

That the protocol implements the functionality is given by the following theorem, whose proof we give in Appendix B.

Theorem 3. The protocol $\Pi_{\text {Triple }}$ securely realises $\mathcal{F}_{\text {Triple }}$ in the $\mathcal{F}_{\text {Rand }}$-hybrid model against static, malicious adversaries, assuming the hash function H is collision resistant, and the finite field size q is sufficiently large.

The protocol requires $\left|\mathcal{G}_{\Gamma}\right|$ secure channels to execute the passively secure multiplication protocol, which is at the core of the Triple Generation step, and $\left|\mathcal{H}_{\Gamma}\right|$ authenticated channels to execute Triple Sacrifice.

The steps in which the parties verify the hash values in Opening Check requires a full network of authenticated channels (over which only a single hash value per channel is sent).

Subprotocol $\Pi_{\text {Open }}$

The set \mathcal{P} is the set of parties, and the set $\mathcal{A} \subset \mathcal{P}$ the set of corrupt parties in \mathcal{P}. Recall that there is a partition $\mathcal{B}=\left\{\mathcal{B}_{i}\right\}_{i \in \mathcal{P}}$

Init: $H_{i} \leftarrow \operatorname{Init}()$ for all players i.
Broadcast (i, ϵ) : Party i sends ϵ to all players over authenticated channels. Each player $j \in \mathcal{P}$ then executes H_{j}.Update (ϵ).
$\operatorname{Reveal}(\llbracket x \rrbracket, i)$: If $i=0$, the secret is opened to everyone, and otherwise is output only to party i.

- To open the secret $\llbracket x \rrbracket$ to party i,

1. For each share x_{B} where $i \notin B$, every party $j \in B$ sends x_{B} to party i over a secure channel.
2. If any two incoming shares differ, party i sets Abort to true.
3. Otherwise player i computes the secret as $x \leftarrow \sum x_{B}$.

- To open the secret $\llbracket x \rrbracket$ to all parties,

1. For every $j \in \mathcal{P}$, for every $B \in \mathcal{B}_{j}$, party j sends x_{B} to all $k \notin B$ over authenticated channels.
2. Every party now holds x_{B} for all $B \in \mathcal{B}$ and so can recover the secret as $x \leftarrow \sum x_{B}$.
3. Each party j calls H_{j}. Update $\left(x_{B}\right)$ for all $B \in \mathcal{B}$.

CompareView:

1. Each party i executes $h_{i} \leftarrow H_{i}$. Finalise() and broadcasts the result.
2. The parties compare all the hashes they see; if any two hashes any party sees differ, they set Abort to true.
3. Each party i reinitialises the hash function, $H_{i} \leftarrow \operatorname{Init}()$.

Figure 6. Subprotocol $\Pi_{\text {Open }}$

4.1 Actively Secure Protocol

We can now present our actively secure (with abort) online protocol (see Figure 10) which implements the functionality given in Figure 9 , and uses the opening protocols defined in Figure 6. Note that a more elaborate input methodology is required to ensure actively-secure input of values, compared to the passivelysecure protocol. The following theorem shows that the protocol implements the functionality; the proof we give in Appendix B.

Theorem 4. The protocol $\Pi_{\text {Online }}$ securely realises the functionality $\mathcal{F}_{A M P C}$ against static, malicious adversaries for any non-redundant Q_{2} access structure in the $\mathcal{F}_{\text {Rand }}, \mathcal{F}_{\text {Triple-hybrid model, assuming } H}$ is collision resistant, and the finite field size q is sufficiently large.

The protocol uses $\left|\mathcal{G}_{\Gamma}\right|$ secure channels in the offline phase (i.e. for $\Pi_{\text {Triple }}$), and requires $\left|\mathcal{H}_{\Gamma}\right|$ authenticated channels in the online phase for the multiplication operation.

$$
\text { Functionality } \mathcal{F}_{\text {Triple }}
$$

This functionality will generate Beaver triples in batches of n_{T} at a time. Again recall that there is a partition $\mathcal{B}=\left\{\mathcal{B}_{i}\right\}_{i \in \mathcal{P}}$; we denote by \mathcal{A} the indexing set of corrupt parties.

Triple: On input (Triple, n_{T}) the functionality proceeds as follows. If at any point the adversary signals abort then the functionality returns \perp and terminates.

1. For $i=1, \ldots, n_{T}$, the functionality does the following:
(a) The functionality samples $\left\{a_{B}^{(i)}, b_{B}^{(i)}\right\}_{B \in \mathcal{B}} \leftarrow \mathbb{F}$ and sets

$$
c^{(i)} \leftarrow\left(\sum_{B \in \mathcal{B}} a_{B}^{(i)}\right) \cdot\left(\sum_{B \in \mathcal{B}} b_{B}^{(i)}\right) .
$$

(b) The functionality sends the adversary the shares

$$
\left(\left\{a_{B}^{(i)}, b_{B}^{(i)}: B \in \mathcal{B} \text { s.t. } k \in B\right\}\right)_{k \in \mathcal{A}} .
$$

[This is a tuple of shares, indexed by the corrupt parties, which the adversary has access to in sharing $a^{(i)}$ and $b^{(i)}$.]
(c) The functionality uniformly samples a set $\bigcup_{j \notin \mathcal{A}}\left\{c_{B}^{(i)}: B \in \mathcal{B}_{j}\right.$ s.t. $B \cap \mathcal{A} \neq$ $\varnothing\} \leftarrow \mathbb{F}$ and sends $\left(\bigcup_{j \notin \mathcal{A}}\left\{c_{B}^{(i)}: B \in \mathcal{B}_{j} \text { s.t. } k \in B\right\}\right)_{k \in \mathcal{A}}$ to the adversary.
(d) The functionality waits for the adversary to return a set of shares $\left(\bigcup_{k \in \mathcal{A}}\left\{c_{B, j}^{(i)}: B \in \mathcal{B}_{k} \text { s.t. } j \in B\right\}\right)_{j \notin \mathcal{A}}$.
(e) If $c_{B, j_{1}} \neq c_{B, j_{2}}$ for any $j_{1} \neq j_{2}$ then the flag Abort is set to be true. [These are all shares which the adversary controls during multiplication.]
(f) If Abort is false the functionality samples $\left\{c_{B}^{(i)}: B \in \mathcal{B}\right.$ s.t. $\left.B \cap \mathcal{A}=\varnothing\right\}$ so that

$$
\left(\sum_{B \in \mathcal{B}} a_{B}^{(i)}\right) \cdot\left(\sum_{B \in \mathcal{B}} b_{B}^{(i)}\right)=\left(\sum_{B \in \mathcal{B}} c_{B}^{(i)}\right) .
$$

2. The functionality waits for the adversary to signal Abort or Deliver. If it signals Deliver, then for each $B \in \mathcal{B},\left(a_{B}^{(i)}, b_{B}^{(i)}, c_{B}^{(i)}\right)_{i=1}^{n_{T}}$ are sent to all honest players j for which $j \in B$. If the adversary instead signals Abort, or the Abort flag is true, then, for all $B \in \mathcal{B}$, the functionality sends $\left(a_{B}^{(i)}, b_{B}^{(i)}, c_{B}^{(i)}\right)_{i=1}^{n_{T}}$ to the adversary and \perp to all honest players.

Figure 7. Functionality $\mathcal{F}_{\text {Triple }}$

Inputting values requires $\left|\mathcal{H}_{\Gamma}\right|$ secure channels and a complete network of authenticated channels, and output requires a complete network of authenticated channels for comparing views, and then to output a value privately requires $\left|\mathcal{H}_{\Gamma}\right|$ secure channels, or $\left|\mathcal{H}_{\Gamma}\right|$ authenticated channels if only public output is required.

$$
\text { Protocol } \Pi_{\text {Triple }}
$$

This procedure runs in three phases: triple generation, triple sacrifice and opening checking. We assume that we start with an unset value for the flag Abort.

Triple Generation:

1. For $i=1, \ldots, 2 \cdot n_{T}$ do
(a) The parties call $\mathcal{F}_{\text {Rand }}$. PRSS twice to obtain $\llbracket a^{(i)} \rrbracket$ and $\llbracket b^{(i)} \rrbracket$
(b) For each $j \in \mathcal{P}$, party j computes $v_{j}=\sum_{\rho\left(B_{1}, B_{2}\right)=j} a_{B_{1}}^{(i)} \cdot b_{B_{2}}^{(i)}$.
(c) The parties call $\mathcal{F}_{\text {Rand }}$.PRZS so that player j obtains t_{j} subject to $\sum_{l \in \mathcal{P}} t_{l}=0$.
(d) For each $j \in \mathcal{P}$, party j samples $c_{B}^{(i)}$ for $B \in \mathcal{B}_{j}$ subject to $\sum_{B \in \mathcal{B}_{j}} c_{B}^{(i)}=$ $v_{j}+t_{j}$.
(e) For each $j \in \mathcal{P}$, party j sends, for all $B \in \mathcal{B}_{j}$, the value $c_{B}^{(i)}$ securely to party k for all $k \in B$.
2. The parties then run Triple Sacrifice.

Triple Sacrifice:

1. Call $\Pi_{\text {Open }}$.Init.
2. For $i=1, \ldots, n_{T}$ do
(a) The parties run $\mathcal{F}_{\text {Rand }}$. PRSS to obtain $\llbracket r^{(i)} \rrbracket$.
(b) The parties run $\Pi_{\text {Open }} \cdot \operatorname{Reveal}\left(\llbracket r^{(i)} \rrbracket, 0\right)$ to obtain $r^{(i)}$.
(c) The parties run $\Pi_{\text {Open }}$.Reveal $(\cdot, 0)$ on the values

$$
\llbracket b^{(i)} \rrbracket-\llbracket b^{\left(i+n_{T}\right)} \rrbracket \text { and } r^{(i)} \cdot \llbracket a^{(i)} \rrbracket-\llbracket a^{\left(i+n_{T}\right)} \rrbracket
$$

and set the outputs to be $\sigma^{(i)}$ and $\rho^{(i)}$ respectively.
(d) If the flag Abort has not been set to true, the parties locally compute value

$$
\llbracket z \rrbracket \leftarrow r^{(i)} \cdot \llbracket c^{(i)} \rrbracket-\sigma^{(i)} \cdot \llbracket a^{\left(i+n_{T}\right)} \rrbracket-\rho^{(i)} \cdot \llbracket b^{\left(i+n_{T}\right)} \rrbracket-\llbracket c^{\left(i+n_{T}\right)} \rrbracket-\sigma^{(i)} \cdot \rho^{(i)} .
$$

(e) The parties then run $\Pi_{\text {Open }}$.CompareView, and if Abort is not set to true then they perform $\Pi_{\text {Open }} \cdot \operatorname{Reveal}(\llbracket z \rrbracket, 0)$. If the returned value is not zero, the parties set the flag Abort to true.
3. The parties then run Opening Check.

Opening Check:

1. The parties run $\Pi_{\text {Open }}$. CompareView again.
2. If the flag Abort is not set to true then the parties output their shares of $\left(\llbracket a^{(i)} \rrbracket, \llbracket b^{(i)} \rrbracket, \llbracket c^{(i)} \rrbracket\right)$, for $i=1, \ldots, n_{T}$, and otherwise broadcast all shares of all their triples and output \perp.

Figure 8. Protocol $\Pi_{\text {Triple }}$

4.2 Extension to Shamir Sharing

Our online protocol also works in the case of Shamir sharing, and here we can also reduce the required number of authenticated channels. Each party need only receive t shares (via authenticated channels) in order to reconstruct the sharing

Actively Secure MPC Functionality $\mathcal{F}_{\text {AMPC }}$

Init: The functionality receives a command Init from all parties to initialise.
Input: On input (Input, x_{i}) by party i, the functionality stores (id, x_{i}) in memory.
Add: On input ($\operatorname{Add}, \mathrm{id}_{1}, \mathrm{id}_{2}, \mathrm{id}_{3}$) from all parties, the functionality retrieves $\left(\mathrm{id}_{1}, x\right)$ and (id_{2}, y) and stores ($\mathrm{id}_{3}, x+y$).

Multiply: On input (Multiply, $\mathrm{id}_{1}, \mathrm{id}_{2}, \mathrm{id}_{3}$) from all parties, the functionality retrieves $\left(\mathrm{id}_{1}, x\right)$ and (id_{2}, y) and stores ($\mathrm{id}_{3}, x \cdot y$).

Output: On input (Output, id, i) from all parties, the functionality retrieves (id, x). It then does one of two things:

- If $i=0$ it outputs x to the adversary. If the adversary returns Abort, then \perp is returned to all players. If the adversary instead returns OK, x is passed to all players.
- If $i \neq 0$ then the functionality waits for input from the adversary. If the adversary returns Abort then \perp is returned to all players. If the adversary instead returns OK, x is passed to player i.

Figure 9. Actively Secure MPC Functionality $\mathcal{F}_{\text {AMPC }}$
polynomial. From this polynomial they can then reconstruct the supposed shares of all other parties. By hashing all these shares, and then eventually comparing the hash values, the honest parties can ensure that the supposed opened values are all consistent and valid. Thus in the case of Shamir sharing our method of using hash values to impose honest behaviour on malicious parties can result in a reduction of uni-directional authenticated channels from $n \cdot(n-1)$ down to $n \cdot t$.

5 Passive Multiplication Protocol when f is not Surjective

We now describe the modifications to our basic protocol when we cannot find a partition of the set \mathcal{B} into non-empty sets $\left\{\mathcal{B}_{i}\right\}_{i \in[n]}$ such that $i \in B$ for all $B \in \mathcal{B}_{i}$. We also work out how this change affects our overall consumption of bandwidth, and the number (and type) of communication channels. We first select, for efficiency, a map $f: \mathcal{B} \longrightarrow \mathcal{P}$ for which $\operatorname{Im}(f)$ is as large as possible.

Recall that our basic protocol works when $\operatorname{Im}(f)=\mathcal{P}$. The modification is simply to apply the standard protocol for all $i \in \operatorname{Im}(f)$, and apply Maurer's protocol when $i \notin \operatorname{Im}(f)$. The multiplication protocol then becomes:

1. For each $i \in \mathcal{P}$, party i computes $v_{i} \leftarrow \sum_{\rho\left(B_{1}, B_{2}\right)=i} x_{B_{1}} \cdot y_{B_{2}}$.
2. The parties call $\mathcal{F}_{\text {Rand }}$. PRZS so that each player $i \in \mathcal{P}$ obtains t_{i} such that $\sum_{i \in \mathcal{P}} t_{i}=0$.
3. For each $i \in \operatorname{Im}(f)$

The Protocol $\Pi_{\text {Online }}$

Recall the set \mathcal{P} is the set of parties, and the set $A \subset \mathcal{P}$ the set of corrupt parties in \mathcal{P}. Recall that there is a partition $\mathcal{B}=\left\{\mathcal{B}_{i}\right\}_{i \in \mathcal{P}}$.

Init:

1. $H_{i} \leftarrow \operatorname{lnit}()$ for all players i.
2. The parties call $\mathcal{F}_{\text {Triple }}$ to produce n_{T} triples, where n_{T} is the number of multiplication gates in the circuit. If $\mathcal{F}_{\text {Triple }}$ aborts, then the parties abort the protocol.
[n_{T} can be a crude upper bound, if the number of triples runs out then $\mathcal{F}_{\text {Triple }}$ can be called again.]

Input: For party i to provide input x,

1. The parties call $\mathcal{F}_{\text {Rand }}$.PRSS to obtain a sharing $\llbracket r \rrbracket$.
2. The parties call $\Pi_{\text {Open }} \cdot \operatorname{Reveal}(\llbracket r \rrbracket, i)$ to open r to player i.
3. The players execute $\Pi_{\text {Open }}$. $\operatorname{Broadcast}(i, \epsilon)$ where $\epsilon=x-r$.
4. The parties locally comput $\AA^{a} \llbracket x \rrbracket=\llbracket r \rrbracket+\epsilon$.

Add:

1. For each $B \in \mathcal{B}$, each party $i \in B$ locally computes $x_{B}+y_{B}$ so that collectively the parties obtain $\llbracket x+y \rrbracket$.

Multiply: On input ($\llbracket x \rrbracket, \llbracket y \rrbracket)$, the perform the following:

1. Take one unused multiplication triple $(\llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket)$ from the pre-processing.
2. Compute $\llbracket \varepsilon \rrbracket \leftarrow \llbracket x \rrbracket-\llbracket a \rrbracket$ and $\llbracket \delta \rrbracket \leftarrow \llbracket y \rrbracket-\llbracket b \rrbracket$.
3. The parties run $\Pi_{\text {Open }}$.Reveal $(\cdot, 0)$ on $\llbracket \varepsilon \rrbracket$ and $\llbracket \delta \rrbracket$ to obtain ϵ and δ.
4. The parties set $\llbracket z \rrbracket \leftarrow \llbracket c \rrbracket+\varepsilon \cdot \llbracket b \rrbracket+\delta \cdot \llbracket a \rrbracket+\varepsilon \cdot \delta$.

Output $(\llbracket x \rrbracket, i)$:

1. The parties perform $\Pi_{\text {Open }}$.CompareView.
2. If Abort is true then the parties output \perp and stop.
3. If $i \neq 0$ then the parties call $\Pi_{\text {Open }} \cdot \operatorname{Reveal}(\llbracket x \rrbracket, i)$. If Abort is not set to true, the party outputs x.
4. If $i=0$ then the parties call $\Pi_{\text {Open }}$.Reveal $(\llbracket x \rrbracket, 0)$ to open x, and then $\Pi_{\text {Open }}$.CompareView. If Abort is true then the parties output \perp and stop, otherwise they output x.
${ }^{a}$ This computation is done by fixing some set $B \in \mathcal{B}$ and then the parties holding r_{B} adding ϵ to r_{B}; the rest of the shares are left as they are.

Figure 10. The Protocol $\Pi_{\text {Online }}$
(a) Party i samples $\left\{u_{B}\right\}_{B \in \mathcal{B}_{i}} \leftarrow \mathbb{F}$ such that $\sum_{B \in \mathcal{B}_{i}} u_{B}=v_{i}+t_{i}$.
(b) Party i sends, for all $B \in \mathcal{B}_{i}$, the value u_{B} securely to party j for all $j \in B \backslash\{i\}$.
4. For each $i \notin \operatorname{Im}(f)$
(a) Party i samples $\left\{s_{B}^{i}\right\}_{B \in \mathcal{B}} \leftarrow \mathbb{F}$ such that $\sum_{B \in \mathcal{B}} s_{B}^{i}=v_{i}+t_{i}$. Note that the sum is over all $B \in \mathcal{B}$ not $B \in \mathcal{B}_{i}$ (which by assumption is empty).
(b) Party i sends, for all $B \in \mathcal{B}$, the value s_{B}^{i} securely to party j for all $j \in B \backslash\{i\}$. Note, the transmission is over all $B \in \mathcal{B}$ not \mathcal{B}_{i}.
5. Party i for each $B \in \mathcal{B}$ with $i \in B$ computes

$$
z_{B}=u_{B}+\sum_{j \notin \operatorname{Im}(f)} s_{B}^{j}
$$

That the multiplication protocol is correct and secure can be easily verified. The only issue is to adapt our formulae for the number of secure and authenticated channels needed. Instead of the graph \mathcal{G}_{Γ}, we have

$$
\widetilde{\mathcal{G}_{\Gamma}}=\left(\bigcup_{i \in \operatorname{Im}(f)} \bigcup_{B \in \mathcal{B}_{i}} \bigcup_{j \in B \backslash\{i\}}\{(i, j)\}\right) \bigcup\left(\bigcup_{i \notin \operatorname{Im}(f)} \bigcup_{B \in \mathcal{B}} \bigcup_{j \in B \backslash\{i\}}\{(i, j)\}\right)
$$

and hence a set $\mathrm{SC}\left(\widetilde{\mathcal{G}_{\Gamma}}\right)$ of secure channels. The number of finite-field elements needed to be transmitted in our passively secure protocol above becomes

$$
\left(\sum_{B \in \mathcal{B}}(|B|-1)\right)+\sum_{i \notin \operatorname{Im}(f)}\left(\sum_{B \in \mathcal{B}: B \ni i}(|B|-1)+\sum_{B \in \mathcal{B}, B \not \supset i}|B|\right) .
$$

Recall that for the set of authenticated channels we just need to guarantee that every party receives one share from at least one player. Hence, each party in $\mathcal{P} \backslash \operatorname{Im}(f)$ can receive all their required values from any one of the parties in $\operatorname{Im}(f)$. Thus, instead of \mathcal{H}_{Γ}, we have

$$
\widetilde{\mathcal{H}_{\Gamma}}=\left(\bigcup_{i \in \operatorname{Im}(f)} \bigcup_{B \in \mathcal{B}_{i}} \bigcup_{j \notin B}\{(i, j)\}\right)
$$

and hence a set $\mathrm{AC}\left(\widetilde{\mathcal{H}_{\Gamma}}\right)$ of authenticated channels.
We end this section by showing that the above protocol is not vacuous, by giving an example of an access structure for which no surjective partition f exists. Consider the access structure with the following set of maximally unqualified sets

$$
\mathcal{M}=\{\{1,2,4\},\{1,3,5\},\{2,3\},\{4,5\},\{6\}\}
$$

and the following set of minimally qualified sets:

$$
\{\{1,6\},\{2,5\},\{3,4\},\{1,2,3\},\{1,4,5\},\{2,6\},\{3,6\},\{4,6\},\{5,6\}\}
$$

One can check that every set in $2^{[6]}$ is a subset or superset of at least one of these sets, which determines whether or not the set is qualified, hence these sets suffice to define the entire access structure. It is easily verified that this access structure is Q_{2} and contains no redundant players. However, since there are only five sets in \mathcal{M}, there is no surjective map f from the five sets in \mathcal{B} to the six parties in \mathcal{P}.

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2015-AdGIMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070, and by EPSRC via grants EP/M012824 and EP/N021940/1.

References

AFL^{+}16. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-throughput semi-honest secure three-party computation with an honest majority. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16: 23rd Conference on Computer and Communications Security, pages 805-817, Vienna, Austria, October 24-28, 2016. ACM Press.
BDOZ11. Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semihomomorphic encryption and multiparty computation. In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages 169-188, Tallinn, Estonia, May 15-19, 2011. Springer, Heidelberg, Germany.
Bea96. Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In 28th Annual ACM Symposium on Theory of Computing, pages 479-488, Philadephia, PA, USA, May 22-24, 1996. ACM Press.
BGT13. Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication locality in secure multi-party computation - how to run sublinear algorithms in a distributed setting. In Amit Sahai, editor, TCC 2013: 10th Theory of Cryptography Conference, volume 7785 of Lecture Notes in Computer Science, pages 356-376, Tokyo, Japan, March 3-6, 2013. Springer, Heidelberg, Germany.
BLW08. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-preserving computations. In Sushil Jajodia and Javier López, editors, ESORICS 2008: 13th European Symposium on Research in Computer Security, volume 5283 of Lecture Notes in Computer Science, pages 192-206, Málaga, Spain, October 6-8, 2008. Springer, Heidelberg, Germany.
BOGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In 20th Annual ACM Symposium on Theory of Computing, pages 1-10, Chicago, IL, USA, May 2-4, 1988. ACM Press.
BW98. Donald Beaver and Avishai Wool. Quorum-based secure multi-party computation. In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT'98, volume 1403 of Lecture Notes in Computer Science, pages 375-390, Espoo, Finland, May 31 - June 4, 1998. Springer, Heidelberg, Germany.
CCD88. David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (extended abstract). In 20th Annual ACM Symposium on Theory of Computing, pages 11-19, Chicago, IL, USA, May 2-4, 1988. ACM Press.

CDI05. Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudorandom secret-sharing and applications to secure computation. In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryptography Conference, volume 3378 of Lecture Notes in Computer Science, pages 342-362, Cambridge, MA, USA, February 10-12, 2005. Springer, Heidelberg, Germany.
CDN15. Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure Multiparty Computation and Secret Sharing. Cambridge University Press, 2015.
DGKN09. Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asynchronous multiparty computation: Theory and implementation. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009: 12th International Conference on Theory and Practice of Public Key Cryptography, volume 5443 of Lecture Notes in Computer Science, pages 160-179, Irvine, CA, USA, March 18-20, 2009. Springer, Heidelberg, Germany.
DPSZ12. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 643-662, Santa Barbara, CA, USA, August 19-23, 2012. Springer, Heidelberg, Germany.
FLNW17. Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. Highthroughput secure three-party computation for malicious adversaries and an honest majority. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017, Part II, volume 10211 of Lecture Notes in Computer Science, pages 225-255, Paris, France, May 8-12, 2017. Springer, Heidelberg, Germany.
GL02. Shafi Goldwasser and Yehuda Lindell. Secure computation without agreement. In Dahlia Malkhi, editor, Distributed Computing, 16th International Conference, DISC 2002, Toulouse, France, October 28-30, 2002 Proceedings, volume 2508 of Lecture Notes in Computer Science, pages 17-32. Springer, 2002.
GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Computing, pages 218-229, New York City, NY, USA, May 25-27, 1987. ACM Press.
HIK07. Danny Harnik, Yuval Ishai, and Eyal Kushilevitz. How many oblivious transfers are needed for secure multiparty computation? In Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages 284-302, Santa Barbara, CA, USA, August 19-23, 2007. Springer, Heidelberg, Germany.
HM97. Martin Hirt and Ueli M. Maurer. Complete characterization of adversaries tolerable in secure multi-party computation (extended abstract). In James E. Burns and Hagit Attiya, editors, 16th ACM Symposium Annual on Principles of Distributed Computing, pages 25-34, Santa Barbara, CA, USA, August 21-24, 1997. Association for Computing Machinery.
HM00. Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures in perfect multiparty computation. Journal of Cryptology, 13(1):31-60, 2000.
KRS16. Ranjit Kumaresan, Srinivasan Raghuraman, and Adam Sealfon. Network oblivious transfer. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016, Part II, volume 9815 of Lecture

Notes in Computer Science, pages 366-396, Santa Barbara, CA, USA, August 14-18, 2016. Springer, Heidelberg, Germany.
Mau06. Ueli M. Maurer. Secure multi-party computation made simple. Discrete Applied Mathematics, 154(2):370-381, 2006.
NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach to practical active-secure two-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 681-700, Santa Barbara, CA, USA, August 19-23, 2012. Springer, Heidelberg, Germany.
Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery, 22(11):612-613, November 1979.

A Proof of Theorem 2

Proof. We prove security in the universal composability (UC) framework. In the UC model, all the possible operations of the world outside the single execution of the protocol are modelled by a probabilistic polynomial-time algorithm \mathcal{Z} called the environment, which provides all inputs and sees all outputs of honest parties, and arbitrarily interacts with the adversary \mathcal{A}. We create a probabilistic polynomial-time algorithm \mathcal{S}, called the simulator whose job it is on one hand to interact with the adversary via the protocol, and on the other hand to interact with the ideal world via the functionality.

Given a real-world adversary \mathcal{A}, the simulator emulates a set of honest parties interacting with \mathcal{A} as it would during a real-world exection of the protocol. During this interaction, the simulator must additionally extract the corrupt parties' inputs and forward these inputs, along with any errors induced, to the ideal-world functionality. The functionality receives inputs (chosen by the environment) from the honest parties and returns outputs (of different forms, depending on what routines the functionality has executed) to the honest parties and the simulator. When the simulator receives information from the functionality, it must be able to generate a view for \mathcal{A} that is indistinguishable from the view the adversary would have had if it had instead been interacting with the actual honest parties (not via the simulator). Our proof is in the $\mathcal{F}_{\text {Rand }}$-hybrid model, so the simulator is required to respond to all calls the adversary makes to this functionality. The simulation is given in Figure 11 and Figure 12 .

Based on this simulation, we argue that the view of the adversary \mathcal{A} is indistinguishable between worlds.

The method Add requires no simulation, since there is no communication involved. Furthermore, the uniformly-randomly-sampled shares generated in the simulation of Input and Multiply are computationally indistinguishable from the shares generated in a real-world execution of the protocol: In both of these parts of the protocol, the secrets (x and z respectively, in the simulation) are are masked by PRZSs from $\mathcal{F}_{\text {Rand }}$; since the adversary is missing at least one share of each of these secrets, all shares are computationally indistinguishable from uniformly random to the adversary.

Simulator $\mathcal{S}_{\text {PMPC }}$: Part $1 / 2$

During simulation, whenever an input is provided, an output is given, or a multiplication is performed, the simulator is sent or already knows what shares the adversary holds for these secrets, and using this it maintains a list of shares it has seen. When the simulator and adversary compute a linear function on any of these secrets, the simulator must locally compute the same linear function on these shares in order to generate shares for the output which are consistent with the values the adversary has seen before.

For clarity, we use the variable k for corrupt parties, and the variable j for (simulated) honest parties.

Input: When party i is to provide input,

- The simulator receives the command $\mathcal{F}_{\text {Rand }}($ PRZS(count)) from the adversary, which it executes honestly (internally).
- The simulator stores all the outputs $\left\{t_{i}\right\}_{i \in \mathcal{P}}$ from $\mathcal{F}_{\text {Rand }}$ and sends the appropriate shares to the adversary, namely $\left\{t_{i}\right\}_{i \in \mathcal{A}}$.
- The simulator samples shares $\bigcup_{j \notin \mathcal{A}}\left\{x_{B}\right\}_{B \in \mathcal{B}_{j}} \leftarrow \mathbb{F}$ and sends

$$
\left(\bigcup_{j \notin \mathcal{A}}\left\{x_{B}: B \in \mathcal{B}_{j} \text { s.t. } k \in B\right\}\right)_{k \in \mathcal{A}}
$$

to the adversary. Note that there is at least one set $B \in \mathcal{B}$ such that $B \cap \mathcal{A}=\varnothing$; the simulator sets $x_{B} \leftarrow \perp$ for any such set(s). The simulator updates its list of stored values with these shares.

- (The simulator then waits for the adversary to send shares

$$
\left(\bigcup_{k \in \mathcal{A}}\left\{\tilde{x}_{B}: B \in \mathcal{B}_{k} \text { s.t. } j \in B\right\}\right)_{j \notin \mathcal{A}}
$$

to the simulator.)

- If i is corrupt, then since every $B \in \mathcal{B}$ contains an honest party, the adversary sends the entire set $\left\{x_{B}\right\}_{B \in \mathcal{B}_{i}}$ to the simulator. The simulator is therefore able to compute $x=-t_{i}+\sum_{B \in \mathcal{B}_{i}} x_{B}$, thus extracting the input x which it sends to the functionality $\mathcal{F}_{\text {PMPC }}$ as input for this party.

Figure 11. Simulator $\mathcal{S}_{\text {PMPC }}$: Part $1 / 2$

Thus the only difficulty in creating the view is in Output. Here the simulator must ensure that the outputs the adversary sees are consistent with what has already been revealed, which we now discuss in detail.

When an honest party provides input or the parties perform a multiplication of secrets, the simulator samples shares for honest parties uniformly at random, except at least one share held by only honest parties which the simulator does not (and need not) fix. Such a share exists since otherwise the adversary holds every share.

When the simulator is required to produce output, two possible cases occur:

1. The output is a linear function of previously seen sharings; in this case, the simulator can compute all of the shares (by computing the linear function) and hence return the valid sharing.
2. The output is not a linear function of previously seen sharings; in this case, the simulator obtains the desired output from the functionality and samples the shares of the honest players so that they sum (with the adversaries' shares) to the correct value.
In either case, neither the sets of shares revealed in our simulation nor the values to which they reconstruct provide the environment with any information with which to distinguish between a real execution of the protocol and the ideal world.

B Proof of Theorems 3 and 4

Proof (Of Theorem 3). We are in the $\mathcal{F}_{\text {Rand }}$-hybrid model, so the simulator is required to respond to all calls made by the adversary to $\mathcal{F}_{\text {Rand }}$. We describe the simulator after briefly discussing our notation. In the description of the simulator, for a secret sharing of a value c, we let the shares of c held by honest party j, for $B \in \mathcal{B}$ with $j \in B$, be denoted by $c_{B, j}$. This is to model the fact that the adversary can send different values for the same share to different honest parties, even though they are supposed to be the same. If $c_{B, j}=c_{B, j^{\prime}}$ for all j, j^{\prime} we write the share simply as c_{B}. Errors in honest parties' shares can either come from this inconsistency, or from the fact that the adversary has given all honest parties the wrong value of c_{B} for a set B for which it is responsible. The simulation can be found in Figure 13 , Figure 14 , Figure 15 and Figure 16.

The functionality is designed so that the adversary can choose its shares, and subsequently (not necessarily consequently) can cause an abort, or can allow honest parties to receive outputs. In the latter case, the outputs received by honest parties are necessarily a valid triple with the shares the adversary chose and sent to the functionality. Thus, in the protocol, the parties either generate a correct triple, or they abort - they cannot generate an incorrect triple without aborting. A technicality requires that the functionality send shares it generated for honest parties to the adversary in the case of an abort. We will now show that the simulator succeeds in creating a view for the adversary which is indistinguishable between worlds.

During Triple Generation (Figure 13), when the adversary calls $\mathcal{F}_{\text {Rand }}$.PRSS, the simulator just passes on what it receives from the functionality for the secrets a and b. The simulator can do this because $\mathcal{F}_{\text {Rand }}$ is actively secure, so the uniformly sampled shares from the functionality are indistinguishable from an output of $\mathcal{F}_{\text {Rand }}$.

Next, the simulator runs $\mathcal{F}_{\text {Rand }}$.PRZS, just as the real parties would in the real world, so the outputs are identically distributed. The shares of the product $c^{(i)}$ which the simulator samples uniformly at random are indistinguishable from

Simulator $\mathcal{S}_{\text {PMPC }}$: Part $2 / 2$

Add: The simulator sends the command $\left(\mathrm{Add}, \mathrm{id}_{1}, \mathrm{id}_{2}, \mathrm{id}_{3}\right)$ to the functionality $\mathcal{F}_{\text {PMPC }}$.

Multiply: To multiply a secret,

- The simulator receives the command $\mathcal{F}_{\text {Rand }}($ PRZS (count)) from the adversary, which it executes honestly (internally).
- The simulator stores all the outputs t_{i} from $\mathcal{F}_{\text {Rand }}$ and sends $\left\{t_{i}\right\}_{i \in \mathcal{A}}$ to the adversary.
- The simulator samples shares $\bigcup_{j \notin \mathcal{A}}\left\{z_{B}\right\}_{B \in \mathcal{B}_{j}} \leftarrow \mathbb{F}$ and sends

$$
\left(\bigcup_{j \notin \mathcal{A}}\left\{z_{B}: B \in \mathcal{B}_{j} \text { s.t. } k \in B\right\}\right)_{k \in \mathcal{A}}
$$

to the adversary. The simulator updates its list of stored values with these shares.

- (The simulator then waits for the adversary to send shares

$$
\left(\bigcup_{k \in \mathcal{A}}\left\{\tilde{z}_{B}: B \in \mathcal{B}_{k} \text { s.t. } j \in B\right\}\right)_{j \notin \mathcal{A}}
$$

to the simulator.)

- Finally, the simulator sends the command (Multiply, $\mathrm{id}_{1}, \mathrm{id}_{2}, \mathrm{id}_{3}$) to the functionality $\mathcal{F}_{\text {PMPC }}$.

Output: On receiving the command to output shares, with input i,

- The simulator sends the same command to the functionality $\mathcal{F}_{\text {PMPC }}$ and receives an output value x.
- Using the list of shares it stored throughout, the simulator generates a set of shares which are consistent with the shares the adversary has seen before and which also sum to the secret x. This is either done by using a linear function of existing shares output by the simulator, or by sampling new shares (which it can always do because there is some $B \in \mathcal{B}$ such that $B \cap \mathcal{A}=\varnothing$), depending on whether x is a linear combination of previously output values.
- If $i \neq 0$ and $i \in \mathcal{A}$, the simulator sends the set

$$
\bigcup_{j \notin \mathcal{A}}\left\{x_{B}: B \in \mathcal{B}_{j} \text { s.t. } i \notin B\right\}
$$

to the adversary, and if $i=0$ it sends the tuple

$$
\left(\bigcup_{j \notin \mathcal{A}}\left\{x_{B}: B \in \mathcal{B}_{j} \text { s.t. } k \notin B\right\}\right)_{k \in \mathcal{A}} .
$$

Figure 12. Simulator $\mathcal{S}_{\text {PMPC }}$: Part $2 / 2$

$$
\text { Simulator } \mathcal{S}_{\text {Triple }}: \text { Part } 1 / 4 \text { (Triple Generation) }
$$

For clarity, we use the variable k for corrupt parties, and the variable j for (simulated) honest parties.

Triple Generation:

- The simulator does the following $2 \cdot n_{T}$ times, indexed by i :
- The simulator invokes the functionality $\mathcal{F}_{\text {Triple }}$ and receives

$$
\left(\left\{a_{B}^{(i)}, b_{B}^{(i)}: B \in \mathcal{B} \text { s.t. } k \in B\right\}\right)_{k \in \mathcal{A}} .
$$

This is a tuple of sets of shares, where the set indexed by $k \in \mathcal{A}$ is the set of shares received by corrupt party k.

- When the adversary makes a call to $\mathcal{F}_{\text {Rand }}$.PRSS for $a^{(i)}$ and $b^{(i)}$, if $i \leq n_{T}$ the simulator just returns the shares it received from $\mathcal{F}_{\text {Triple }}$, and if $i>n_{T}$ the simulator executes $\mathcal{F}_{\text {Rand }}$.PRSS honestly and returns the appropriate shares to the adversary.
- When the adversary makes a call to $\mathcal{F}_{\text {Rand }}$.PRZS for a secret-shared zero, the simulator executes this internally to obtain $\left\{t_{l}^{(i)}\right\}_{l \in \mathcal{P}}$ with $\sum_{l \in \mathcal{P}} t_{l}^{(i)}=$ 0 , which the simulator stores. The simulator sends $\left(t_{k}^{(i)}\right)_{k \in \mathcal{A}}$ to the adversary.
- The simulator samples a set $\bigcup_{j \notin \mathcal{A}}\left\{c_{B}^{(i)}: B \in \mathcal{B}_{j}\right.$ s.t. $\left.B \cap \mathcal{A} \neq \varnothing\right\} \leftarrow \mathbb{F}$, sends the tuple

$$
\left(\bigcup_{j \notin \mathcal{A}}\left\{c_{B}^{(i)}: B \in \mathcal{B}_{j} \text { s.t. } k \in B\right\}\right)_{k \in \mathcal{A}}
$$

to the adversary, and receives back a tuple

$$
S \leftarrow\left(\bigcup_{k \in \mathcal{A}}\left\{c_{B, j}^{(i)}: B \in \mathcal{B}_{k} \text { s.t. } j \in B\right\}\right)_{j \notin \mathcal{A}}
$$

- If $c_{B, j_{1}}^{(i)} \neq c_{B, j_{2}}^{(i)}$ for any $j_{1} \neq j_{2}$ and the simulator sends S to the functionality, it will eventually abort; however, the protocol will continue (although it too will eventually abort), so instead, for each $B \in \bigcup_{k \in \mathcal{A}} \mathcal{B}_{k}$, the simulator chooses $c_{B, j}^{(i)}$ for some $j \in \mathcal{A}$, fixes $c_{B}^{(i)} \leftarrow c_{B, j}^{(i)}$, and then sends the tuple $\left(\bigcup_{j \notin \mathcal{A}}\left\{c_{B}^{(i)}: B \in \mathcal{B}_{k} \text { s.t. } j \in B\right\}\right)_{j \notin \mathcal{A}}$ to the functionality.
- If $c_{B, j_{1}}^{(i)}=c_{B, j_{2}}^{(i)}$ for all j_{1}, j_{2}, then for each $B \in \bigcup_{k \in \mathcal{A}} \mathcal{B}_{k}$, the simulator chooses any $j \notin \mathcal{A}$ and sets $c_{B} \leftarrow c_{B, j}$, and then sends the set S to the functionality.
- The simulator then executes $\mathcal{S}_{\text {Triple }}$.Triple Sacrifice with the adversary.

Figure 13. Simulator $\mathcal{S}_{\text {Triple }}$: Part $1 / 4$ (Triple Generation)
shares of the masked Schur product because the PRZSs (computationally) hide
the sums. More formally, for any (finite) indexing set I, for any $i^{*} \in I$,

$$
\begin{aligned}
\left\{\left(a_{i}\right)_{i \in I \backslash\left\{i^{*}\right\}}: a_{i} \leftarrow \mathbb{F}_{q}\right. & \text { uniformly }\}_{q} \\
& \equiv\left\{\left(z_{i}\right)_{i \in I \backslash\left\{i^{*}\right\}}: z_{i} \leftarrow \mathbb{F}_{q} \text { uniformly s.t. } \sum_{i \in I} z_{i}=0\right\}_{q} \\
& \approx_{C}\left\{\left(z_{i}\right)_{i \in I \backslash\left\{i^{*}\right\}}:\left\{z_{i}\right\}_{i \in I} \leftarrow \mathcal{F}_{\text {Rand }} . \text { PRZS }\right\}_{q}
\end{aligned}
$$

If there are any discrepancies between any individual shares of $c^{(i)}$ which are supposed to be sent to different honest parties, the protocol will abort, because $c^{(i)}$ forms part of a share which is opened publicly later: while the value $c^{(i)}$ is never publicly opened, the public value $\llbracket z^{(i)} \rrbracket$ in Triple Sacrifice is a linear combination of this (and other) secrets, so if the adversary sends different values for the same share to different honest parties, the shares of $z^{(i)}$ will necessarily differ between honest parties and thus be detected in CompareView later on.

In Triple Sacrifice (Figure 14 and Figure 15), the simulator initialises the hashes as in $\Pi_{\text {Open }}$.Init and then runs $\mathcal{F}_{\text {Rand }} . \mathbf{P R S S}$ just as the parties do in the real protocol execution to receive some $r^{(i)}$ and all of its shares. When the adversary and simulator open $r^{(i)}$, the shares are added to the hash in $\Pi_{\text {Open }}$.Reveal(), so any discrepancies between honest shares are detected in CompareView later on.

To the adversary (and the environment) the shares of the public values $\sigma^{(i)}$ and $\rho^{(i)}$, and indeed the values themselves, are indistinguishable from uniformly random in the real world since the secrets $a^{\left(i+n_{T}\right)}$ and $b^{\left(i+n_{T}\right)}$ are never opened. Thus it suffices for the simulator to sample shares uniformly at random for these two public values for all shares held only by honest parties (but since the simulator actually computes them anyway they are included in the simulation). The shares held by the adversary for these values are the result of a linear function on shares already sent from or received by the adversary (i.e. which are in the transcript between the adversary and the simulator). Because, for each share, there is at least one (simulated) honest party which will have computed the linear function faithfully, if the adversary sends a share of $\sigma^{(i)}$ or $\rho^{(i)}$ which is different from what it should have calculated according to previous shares it sent or received, the protocol aborts in CompareView.

In the protocol, before the parties open the (alleged) zero, they run CompareView, and abort if any two hashes differ. If the parties abort, the simulator also aborts, and otherwise continues. This ensures that all shares of $r^{(i)}, \sigma^{(i)}$ and $\rho^{(i)}$ are consistent, since otherwise the adversary would have broken the collision resistance of the hash function. Moreover, if CompareView did not abort, this means that the adversary cannot have introduced an error on any of these three values, by the correctness of $\Pi_{\text {Rand }}$.PRSS.

Now we will discuss what happens when the simulator and adversary compute $\llbracket z^{(i)} \rrbracket$. If the values $c^{(i)} \leftarrow a^{(i)} \cdot b^{(i)}$ or $c^{\left(i+n_{T}\right)} \leftarrow a^{\left(i+n_{T}\right)} \cdot b^{\left(i+n_{T}\right)}$ have had errors

Triple Sacrifice:

- The simulator first initialises the hash function for all (simulated) honest parties.
- The simulator does the following n_{T} times, indexed by i :
- The simulator responds to the adversary's call to $\mathcal{F}_{\text {Rand }}$.PRSS by executing it locally (obtaining some $\left.r^{(i)}\right)$ and sending $\left(\left\{r_{B}^{(i)}: B \in \mathcal{B} \text { s.t. } k \in B\right\}\right)_{k \in \mathcal{A}}$ to the adversary.
- The simulator then sends

$$
\left(\bigcup_{j \notin \mathcal{A}}\left\{r_{B}^{(i)}: B \in \mathcal{B}_{j} \text { s.t. } k \notin B\right\}\right)_{k \in \mathcal{A}}
$$

to the adversary to open the secret $r^{(i)}$, and receives back a tuple

$$
\left(\bigcup_{k \in \mathcal{A}}\left\{r_{B, j}^{(i)}: B \in \mathcal{B}_{k} \text { s.t. } j \notin B\right\}\right)_{j \notin \mathcal{A}}
$$

If $r_{B, j}^{(i)} \neq r_{B}^{(i)}$ for any $j \notin \mathcal{A}$, the simulator sets the flag Abort.

- The simulator does the following:
* For each $B \in \bigcup_{j \notin \mathcal{A}} \mathcal{B}_{j}$, the simulator sets $r_{B, j}^{(i)} \leftarrow r_{B}^{(i)}$ for all $j \in B \backslash \mathcal{A}$.
* For each $j \notin \mathcal{A}$, the simulator executes H_{j}. Update $\left(r_{B, j}^{(i)}\right)$ for all $B \in \mathcal{B}$.
- The simulator then samples $\bigcup_{j \notin \mathcal{A}}\left\{\sigma_{B}^{(i)}, \rho_{B}^{(i)}: B \in \mathcal{B}_{j}\right\} \leftarrow \mathbb{F}$ for the public values $\sigma^{(i)}$ and $\rho^{(i)}$, sends to the adversary the set

$$
\left(\bigcup_{j \notin \mathcal{A}}\left\{\sigma_{B}^{(i)}, \rho_{B}^{(i)}: B \in \mathcal{B}_{j} \text { s.t. } k \notin B\right\}\right)_{k \in \mathcal{A}},
$$

and receives back a tuple

$$
\left(\bigcup_{k \in \mathcal{A}}\left\{\sigma_{B, j}^{(i)}, \rho_{B, j}^{(i)}: B \in \mathcal{B}_{k} \text { s.t. } j \notin B\right\}\right)_{j \notin \mathcal{A}}
$$

If $\sigma_{B, j_{1}} \neq \sigma_{B, j_{2}}$ or $\rho_{B, j_{1}} \neq \rho_{B, j_{2}}$ for any $j_{1} \neq j_{2}$, for any $B \in \mathcal{B}$, the simulator sets the flag Abort.

- Then the simulator does the following:
* For each $B \in \bigcup_{j \notin \mathcal{A}} \mathcal{B}_{j}$, the simulator sets $\sigma_{B, j} \leftarrow \sigma_{B}$ and $\rho_{B, j} \leftarrow \rho_{B}$ for each $j \in B \backslash \mathcal{A}$.
* For each $j \notin \mathcal{A}$, the simulator executes H_{j}.Update $\left(\sigma_{B, j}^{(i)}\right)$ and H_{j}. Update $\left(\rho_{B, j}^{(i)}\right)$ for all $B \in \mathcal{B}$.
[Continued]
Figure 14. Simulator $\mathcal{S}_{\text {Triple }}$: Part $2 / 4$ (Triple Sacrifice Part I)
- For each $j \notin \mathcal{A}$, the simulator computes $h_{j} \leftarrow H_{j}$. Finalise() and sends these to the adversary. It also receives a set of hashes from the adversary. If any two hashes differ, the simulator sets the flag Abort to true. Otherwise, the parties all have consistent shares for $r^{(i)}, \sigma^{(i)}$ and $\rho^{(i)}$, so we label them r_{B} for $B \in \mathcal{B}$ etc.
- The simulator then forms honest players' shares $z_{B, j}^{(i)}$ for B with $B \cap \mathcal{A} \neq \varnothing$ of

$$
\llbracket z^{(i)} \rrbracket \leftarrow r^{(i)} \cdot \llbracket c^{(i)} \rrbracket-\sigma^{(i)} \cdot \llbracket a^{\left(i+n_{T}\right)} \rrbracket-\rho^{(i)} \cdot \llbracket b^{\left(i+n_{T}\right)} \rrbracket-\llbracket c^{\left(i+n_{T}\right)} \rrbracket-\sigma^{(i)} \cdot \rho^{(i)}
$$

using the values it already has.

- Before the simulator computes shares for honest parties $z_{B}^{(i)}$ for B with $B \cap \mathcal{A}=\varnothing$, the simulator computes various errors which could have been introduced by the adversary,

$$
\begin{aligned}
\Delta_{c^{(i)}} \leftarrow & \sum_{k \in \mathcal{A}}\left(\sum_{B \in \mathcal{B}_{k}} c_{B}^{(i)}-\left(t_{k}^{(i)}+\sum_{\rho\left(B_{1}, B_{2}\right)=k} a_{B_{1}}^{(i)} \cdot b_{B_{2}}^{(i)}\right)\right), \\
\Delta_{c^{\left(i+n_{T}\right)}} \leftarrow & \sum_{k \in \mathcal{A}}\left(\sum_{B \in \mathcal{B}_{k}} c_{B}^{\left(i+n_{T}\right)}\right. \\
& \left.\quad-\left(t_{k}^{\left(i+n_{T}\right)}+\sum_{\rho\left(B_{1}, B_{2}\right)=k} a_{B_{1}}^{\left(i+n_{T}\right)} \cdot b_{B_{2}}^{\left(i+n_{T}\right)}\right)\right),
\end{aligned}
$$

- The simulator then computes $a^{\left(i+n_{T}\right)} \leftarrow \sum_{B \in \mathcal{B}} a_{B}^{\left(i+n_{T}\right)}$ and $b^{\left(i+n_{T}\right)} \leftarrow$ $\sum_{B \in \mathcal{B}} b_{B}^{\left(i+n_{T}\right)}$. (Recall these were just the outputs of $\Pi_{\text {Rand }}$.PRSS.)
- Using the chosen shares $\left\{c_{B}: B \in \mathcal{B}\right.$ s.t. $\left.B \cap \mathcal{A} \neq \varnothing\right\}$, the simulator computes corresponding shares $\left\{z_{B}: B \in \mathcal{B}\right.$ s.t. $\left.B \cap \mathcal{A} \neq \varnothing\right\}$ and then samples $\left\{z_{B}: B \in \mathcal{B}\right.$ s.t. $\left.B \cap \mathcal{A}=\varnothing\right\} \leftarrow \mathbb{F}$ such that

$$
\sum_{B \cap \mathcal{A}=\varnothing} z_{B}^{(i)}+\sum_{B \cap \mathcal{A} \neq \varnothing} z_{B}^{(i)}=r^{(i)} \cdot \Delta_{c^{(i)}}-\Delta_{c^{\left(i+n_{T}\right)}}
$$

- The simulator sets $z_{B, j} \leftarrow z_{B}$ for every $B \in \mathcal{B}_{j}$ where $j \notin \mathcal{A}$ and sends the tuple $\left(\bigcup_{j \notin \mathcal{A}}\left\{z_{B, j}^{(i)}: B \in \mathcal{B}_{j} \text { s.t. } k \notin B\right)_{k \in \mathcal{A}}\right.$ to the adversary. The adversary returns a tuple of shares $\left(\bigcup_{k \in \mathcal{A}}\left\{z_{B, j}^{(i)}: B \in \mathcal{B}_{k} \text { s.t. } j \notin B\right)_{j \notin \mathcal{A}}\right.$ and for each $j \notin \mathcal{A}$, the simulator executes H_{j}. Update $\left(z_{B, j}^{(i)}\right)$ for all $B \in \mathcal{B}$. If $z^{(i)} \neq 0$, the simulator sets the Abort flag to true.
- The simulator then runs $\mathcal{S}_{\text {Triple }}$. Opening Check with the adversary.

Figure 15. Simulator $\mathcal{S}_{\text {Triple }}$: Part $3 / 4$ (Triple Sacrifice Part II)
$\Delta_{c^{(i)}}$ and $\Delta_{c^{\left(i+n_{T}\right)}}$ introduced on them, then value $z^{(i)}$ becomes

$$
\begin{gathered}
\llbracket z^{(i)} \rrbracket \leftarrow r^{(i)} \cdot \llbracket c^{(i)}+\Delta_{c^{(i)}} \rrbracket-\sigma^{(i)} \cdot \llbracket a^{\left(i+n_{T}\right)} \rrbracket-\rho^{(i)} \cdot \llbracket b^{\left(i+n_{T}\right)} \rrbracket \\
-\llbracket c^{\left(i+n_{T}\right)}+\Delta_{c^{\left(i+n_{T}\right)}} \rrbracket-\sigma^{(i)} \cdot \rho^{(i)},
\end{gathered}
$$

and will be zero if and only if $r \cdot \Delta_{c^{(i)}}-\Delta_{c^{\left(i+n_{T}\right)}}=0$, which occurs with probability $1 / q$ (where q is the field size) since r is chosen (computationally indistinguishably from) uniformly at random (and is chosen after the adversary has already chosen the errors on $c^{(i)}$ and $\left.c^{\left(i+n_{T}\right)}\right)$.

The simulator performs local operations on the shares it sent and received to produce shares $z_{B}^{(i)}$ for all $B \in \mathcal{B}$ where $B \cap \mathcal{A} \neq \varnothing$. Note that different (simulated) honest parties will (potentially) compute different values for the same shares for certain shares of $z^{(i)}$, depending on what the adversary sent to the simulator for the shares of $c^{(i)}$: for example, if the adversary sent $c_{B, 1}^{(i)}$ to party 1 and $c_{B, 2}^{(i)}$ to party 2 , then the defining equation for $z^{(i)}$ shows that their shares for $z_{B}^{(i)}$ will differ by $r \cdot\left(c_{B, 1}^{(i)}-c_{B, 2}^{(i)}\right)+\left(c_{B, 1}^{(i)}-c_{B, 2}^{(i)}\right)$.

For the remaining shares, that is, $z_{B}^{(i)}$ for $B \in \mathcal{B}$ with $B \cap \mathcal{A}=\varnothing$, the simulator must sample shares so that they appear to be consistent with the values the adversary has seen before, i.e. as something indistinguishable from what it would see in an execution of the protocol. To do this, the simulator must first compute some errors; in particular, the simulator uses the fact that it knows the shares $a_{B}^{(i)}, b_{B}^{(i)}$, and PRZSs t_{i} held by corrupt parties to compute any errors the adversary introduced when multiplying secrets during Triple Generation.

Observe that the errors computed in the simulation depend on the choice of shares for $c_{B}^{(i)}$: recall that the adversary sent the simulator a set of shares $\left(\bigcup_{k \in \mathcal{A}}\left\{c_{B, j}^{(i)}: B \in \mathcal{B}_{k} \text { s.t. } j \in B\right\}\right)_{j \notin \mathcal{A}}$ from which it arbitrarily assigned $c_{B}^{(i)}$ to be $c_{B, j}^{(i)}$ for any $j \in B \backslash \mathcal{A}$. Importantly, the value $r \cdot \Delta_{c^{(i)}}-\Delta_{c^{\left(i+n_{T}\right)}}-\sum_{B: B \cap \mathcal{A} \neq \varnothing} z_{B}^{(i)}$ is independent of the choice made for the $c_{B}^{(i)}$'s since the errors are dependent on the choice. (More explicitly, observe that

$$
\begin{aligned}
r^{(i)} \cdot \Delta_{c^{(i)}}- & \Delta_{c^{\left(i+n_{T}\right)}}-\sum_{B: B \cap \mathcal{A} \neq \varnothing} z_{B}^{(i)} \\
& =r^{(i)} \cdot \sum_{k \in \mathcal{A}}\left(\sum_{B \in \mathcal{B}_{k}} c_{B}^{(i)}-\left(t_{k}^{(i)}+\sum_{\rho\left(B_{1}, B_{2}\right)=k} a_{B_{1}}^{(i)} \cdot b_{B_{2}}^{(i)}\right)\right) \\
& -\sum_{k \in \mathcal{A}}\left(\sum_{B \in \mathcal{B}_{k}} c_{B}^{\left(i+n_{T}\right)}-\left(t_{k}^{\left(i+n_{T}\right)}+\sum_{\rho\left(B_{1}, B_{2}\right)=k} a_{B_{1}}^{\left(i+n_{T}\right)} \cdot b_{B_{2}}^{\left(i+n_{T}\right)}\right)\right) \\
& -\sum_{B: B \cap \mathcal{A} \neq \varnothing} r^{(i)} \cdot c_{B}^{(i)}-\sigma^{(i)} \cdot a_{B}^{\left(i+n_{T}\right)}-\rho^{(i)} \cdot b_{B}^{\left(i+n_{T}\right)}-c_{B}^{\left(i+n_{T}\right)} \\
& -\sigma^{(i)} \cdot \rho^{(i)} \\
= & -\left(\sum_{B \in \mathcal{B}_{j}: B \cap \mathcal{A} \neq \varnothing} r^{(i)} \cdot c_{B}^{(i)}-c_{B}^{\left(i+n_{T}\right)}\right)+k,
\end{aligned}
$$

(where k is a constant independent of $c_{B}^{(i)}$ and $c_{B}^{\left(i+n_{T}\right)}$) is independent of any shares sent by the adversary. To see this, note that in the middle equation, all of the terms involving c 's in the first two lines are subtracted in the third line,
leaving only terms that the simulator has generated.) This means that whatever is sampled for the remaining shares of $z^{(i)}$ is consistent with the choice made before.

$$
\text { Simulator } \mathcal{S}_{\text {Triple }}: \text { Part 4/4 (Opening Check) }
$$

Opening Check: The simulator and adversary run the final check before output:

- The simulator sets $h_{j} \leftarrow H_{j}$. Finalise for each honest party $j \notin \mathcal{A}$ and sends them to the adversary; the adversary returns some set of hashes.
- The simulator compares all hashes and sets Abort to true if two hashes differ.
- If the simulator or adversary has set Abort to true, the simulator sends the message Abort to the functionality. The functionality returns the honest parties shares for the values $a^{(i)}, b^{(i)}$, and $c^{(i)}$. The simulator passes these on, by sending $\left(\left\{\left(a_{B, j}^{(i)}, b_{B, j}^{(i)}, c_{B, j}^{(i)}: B \in \mathcal{B} \text { s.t. } j \in B\right\}\right)_{j \in \mathcal{P}}\right.$ to the adversary. (I.e. the adversary obtains all shares of all parties' triples.)
- Otherwise, the flag Abort has not been set to true, so the simulator signals Deliver to the functionality.

Figure 16. Simulator $\mathcal{S}_{\text {Triple }}$: Part $4 / 4$ (Opening Check)

In Opening Checking (Figure 16), the simulator follows the protocol, and aborts exactly when the real-world execution of the protocol would abort, since the simulator only sets the flag Abort to true if the protocol is able to detect the adversary has cheated. In particular, this check ensures that whenever the adversary sends different values for the same shares of a given secret to different honest parties (e.g. when opening $\sigma^{(i)}, \rho^{(i)}, r^{(i)}$ or $z^{(i)}$), the hashes will differ, causing an abort.

We have shown that distributions of shares of individual secrets are indistinguishable in both worlds, but we must also ensure that the combined distribution of all shares received by the adversary and the outputs of the honest parties is indistinguishable as a whole. This follows trivially from the fact that, for each of the n_{T} triples output, the parties in the ideal world only receive one triple and the other is discarded (sacrificed), and not output by the honest parties, so these triples mask the triples which are output, and from the fact that all public values are indistinguishable from uniformly random and are independent, and that there are no secrets which the environment can reconstruct at the end of the computation except the triples, which are identical in both worlds by construction.

Proof (Of Theorem 4).
Finally, we can prove that $\Pi_{\text {Online }}$ securely realises the actively secure functionality $\mathcal{F}_{\text {AMPC }}$. To do this, we first provide a simulator, given in Figure 17 and Figure 18 .

$$
\text { Online Simulator } \mathcal{S}_{\text {Online: }} \text { Part } 1 / 2
$$

During simulation, whenever an input is provided, an output is given, or a multiplication is performed, the simulator is sent or already knows what shares the adversary holds for these secrets, and using this it maintains a list of shares it has seen. It also stores a list of all shares it has sampled and sent to the adversary. When the simulator and adversary compute a linear function on any of these secrets, the simulator must locally compute the same linear function on these shares in order to generate shares for the output which are consistent with the values the adversary has seen before.

Init: The simulator initialises the hash for simulated honest parties, $H_{j} \leftarrow \operatorname{Init}()$ and then responds to the adversary's call to $\mathcal{F}_{\text {Triple }}$ with the appropriate shares of the triples obtained by running $\mathcal{F}_{\text {Triple }}$ internally. Note that if the adversary signals Abort to the simulator to abort $\mathcal{F}_{\text {Triple }}$, the simulator can abort the functionality and return shares to the adversary, and the protocol aborts. If $\mathcal{F}_{\text {Triple }}$ aborted, the simulator does not send the signal Init to the functionality $\mathcal{F}_{\text {AMPC }}$.

Input: If input is to be given by party i,

- The simulator first responds to the call by the adversary to $\mathcal{F}_{\text {Rand }}$.PRSS by returning $\left(\left\{r_{B}: B \in \mathcal{B} \text { s.t. } k \in B\right)_{k \in \mathcal{A}}\right.$ from an internally-executed instance of $\mathcal{F}_{\text {Rand }}$.
- If i is honest,
- The simulator waits for the adversary to send shares $\left(\left\{r_{B, j}: B \in \mathcal{B} \text { s.t. } j \in B \text { and } i \notin B\right\}\right)_{j \in \mathcal{A}}$. If $r_{B, j} \neq r_{B}$ for any $j \in \mathcal{A}$, the simulator sets the flag Abort to true. The simulator and stores these shares in the list of shares (see preamble).
- The simulator samples $\epsilon \leftarrow \mathbb{F}$ and sends $(\epsilon)_{j \in \mathcal{A}}$ to the adversary. The simulator also updates the hash H_{j}.Update (ϵ) for every $j \notin \mathcal{A}$.
- If i is corrupt,
- The simulator sends shares $\left(\left\{r_{B}: B \in \mathcal{B} \text { s.t. } j \in B \text { and } i \notin B\right\}\right)_{j \notin \mathcal{A}}$ to the adversary, which is the opening of $\llbracket r \rrbracket$ to corrupt party $i \in \mathcal{A}$.
- The adversary returns a tuple $\left(\epsilon_{j}\right)_{j \notin \mathcal{A}}$ and the simulator updates the hash H_{j}.Update $\left(\epsilon_{j}\right)$ for every $j \notin \mathcal{A}$.
- If the ϵ_{j} are equal for all $j \in \mathcal{A}$, the simulator computes $x \leftarrow \epsilon_{j}+r$ and forwards x to the functionality. If not, the simulator sets the Abort flag to true and chooses any ϵ_{j} to derive some x to send to the functionality (since the functionality will abort anyway).

Add: The simulator sends the command $\left(\mathrm{Add}, \mathrm{id}_{1}, \mathrm{id}_{2}, \mathrm{id}_{3}\right)$ to the functionality.
Figure 17. Online Simulator $\mathcal{S}_{\text {Online }}$: Part $1 / 2$

We first note that in the simulation, when a secret value is opened using in the Input, Multiply or Output commands by calling $\Pi_{\text {Open }}$.Reveal, we are guaranteed that the values the adversary sends to each honest player are identical, since otherwise the adversary would be able to break the collision resistance of the hash function.

$$
\text { Online Simulator } \mathcal{S}_{\text {Online: }} \text { Part } 2 / 2
$$

Multiply: To multiply secrets x and y,

- The simulator retrieves the shares for $\llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket, \llbracket x \rrbracket$ and $\llbracket y \rrbracket$ from the list of shares it has stored, samples a set $\bigcup_{j \notin \mathcal{A}}\left\{\varepsilon_{B}, \delta_{B}: B \in \mathcal{B}_{j}\right.$ s.t. $\left.B \cap \mathcal{A} \neq \varnothing\right\} \leftarrow \mathbb{F}$ and sends $\left(\bigcup_{j \notin \mathcal{A}}\left\{\varepsilon_{B}, \delta_{B}: B \in \mathcal{B}_{j} \text { s.t. } k \notin B\right\}\right)_{k \in \mathcal{A}}$ to the adversary and adds these shares to the list of stored shares.
- The adversary returns a set $\left(\bigcup_{k \in \mathcal{A}}\left\{\varepsilon_{B, j}, \delta_{B, j}: B \in \mathcal{B}_{k} \text { s.t. } j \notin B\right\}\right)_{j \notin \mathcal{A}}$ which the simulator stores in its list of shares.
- For each $B \in \bigcup_{j \notin \mathcal{A}} \mathcal{B}_{j}$, the simulator sets $\epsilon_{B, j} \leftarrow \epsilon_{B}$ and $\rho_{B, j} \leftarrow \rho_{B}$ and then for each $j \notin \mathcal{A}$ executes H_{j}. Update $\left(\epsilon_{B, j}\right)$ and H_{j}. Update $\left(\rho_{B, j}\right)$ for all $B \in \mathcal{B}$.
- Finally, the simulator sends the command (Multiply, $\mathrm{id}_{1}, \mathrm{id}_{2}, \mathrm{id}_{3}$) to the functionality.)

Output: When the simulator receives the command Output($\llbracket x \rrbracket, i)$ from the adversary,

- The simulator sends the message Output $\left(\mathrm{id}_{x}, i\right)$ to $\mathcal{F}_{\text {AMPC }}$. If $i=0$ then the functionality just returns x to the simulator straight away.
- The simulator computes $h_{j} \leftarrow H_{j}$. Finalise for all $j \notin \mathcal{A}$ and sends them to the adversary. If any two hashes are different or the adversary outputs Abort, the simulator sets its internal Abort flag to true.
- The simulator reinitialises the hash for the (simulated) honest players.
- If the Abort flag has been set to true, the simulator tells the functionality $\mathcal{F}_{\text {AMPC }}$ to abort and outputs \perp to the adversary. Otherwise the simulator continues as follows.
- If $i \neq 0$ is honest, the simulator waits for shares $\left(\left\{x_{B, j}: B \in \mathcal{B}, i \notin B, j \in\right.\right.$ $B\})_{j \in \mathcal{A}}$ from the adversary. If $x_{B, j_{1}} \neq x_{B, j_{2}}$ for any $j_{1} \neq j_{2}$, the simulator sets Abort to true, signals Abort to the functionality, and sends \perp to the adversary; otherwise, it sends the command OK to the functionality, which passes x to honest player i.
- If $i \neq 0$ is corrupt, the simulator signals OK to the functionality and receives x back. Using the list of shares it stored throughout, the simulator generates a set of shares for x which are consistent with the shares the adversary has seen before and which also sum to the secret x. Finally, the simulator sends the shares $\left(\bigcup_{j \notin \mathcal{A}}\left\{x_{B}: B \in \mathcal{B} \text { s.t. } j \in B \text { and } k \notin B\right\}\right)_{k \in \mathcal{A}}$ to the adversary.
- If $i=0$, the simulator does the same generation of consistent shares so that they sum to the output x as in the case where $i \neq 0$ is corrupt and sends the set of shares $\left(\bigcup_{j \notin \mathcal{A}}\left\{x_{B}: B \in \mathcal{B}_{j} \text { s.t. } k \notin B\right\}\right)_{k \in \mathcal{A}}$ to the adversary. The adversary returns a set $\left(\bigcup_{k \in \mathcal{A}}\left\{x_{B}: B \in \mathcal{B}_{k} \text { s.t. } j \notin B\right\}\right)_{j \notin \mathcal{A}}$ to the simulator and the simulator and adversary compute the hashes as before and set the flag Abort if either any two hashes differ. If the flag Abort has not been set to true by either the adversary or the simulator, the simulator signals OK to the functionality, and otherwise signals Abort.

Figure 18. Online Simulator $\mathcal{S}_{\text {Online }}$: Part $2 / 2$

During Init, the simulator just sends output from $\mathcal{F}_{\text {Triple }}$, which was run internally by the simulator, which we proved was UC-secure.

For Input, if the party providing input is honest, after receiving the opening of $\llbracket r \rrbracket$ from the adversary the simulator just broadcasts a uniformly randomly sampled value ϵ to the adversary. This ϵ is (computationally) indistinguishable from what an honest party sends in the real world since an honest party's input is masked with a mask from the PRSS in the protocol execution. The simulator sets the Abort flag to true if the adversary sends different shares of r from what were prescribed during PRSS; this cheating is caught in the protocol because every share party i does not have is sent to by at least one honest party, and $\Pi_{\text {Open }}$.Reveal causes an abort in if any shares differ. If the party providing input is corrupt, and it sends a different ϵ_{j} to each $j \notin \mathcal{A}$, the simulator sets the Abort flag to true. The ability of the simulator to detect the error is mirrored in the protocol by the fact that the broadcasted value is added to the hash input (in $\Pi_{\text {Open }}$.Broadcast), so if any honest parties receive different values the protocol aborts before output is given (or the adversary has broken collision resistance of the hash function).

No simulation is required for Add since there is no communication.
During the method Multiply, the simulator just samples shares to send to the adversary and stores shares sent to it. It can do this because the environment will not be able to reconstruct secrets before a value has been output in Output, so all shares are indistinguishable from uniformly random, as they would be in a real execution of the protocol.

For Output, when values are opened to the adversary, because linear functions on secrets are executed in the protocol by performing the same linear functions on the individual shares, it is necessary for the simulator to ensure that any shares the simulator sends to the adversary are consistent with any shares of secrets which have been opened already or for which the adversary otherwise knows some of the shares. Using the shares it stores at various points in the simulation, the simulator can do precisely this, and moreover can cause the secret being revealed to be opened to whatever it chooses. This is because there is at least one share which is held only by honest parties, and is therefore not already included in the transcript of communication between the adversary and the simulator.

Because the simulator can provide a consistent set of shares for any secret that needs to be opened (by using the shares it stored throughout the simulation), and can also choose one of the shares to be whatever it designs, the environment can use neither the sets of shares sent it by the simulator nor the reconstructed secrets themselves to distinguish between worlds.

[^0]: ${ }^{3}$ Indeed the smallest example we could find of an interesting access structure for which the partition can not be created has six parties.

[^1]: ${ }^{4}$ This assumes the previously discussed amendments to the protocol for certain special access structures: see Section 5

[^2]: ${ }^{5}$ We could produce these using additional interaction, but recall our goal is to reduce communication.

[^3]: ${ }^{6}$ The alterations to the protocol for when there is no surjective partition are discussed in Section 5

