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Abstract. We show that the recent, highly efficient, three-party honest-
majority computationally-secure MPC protocol of Araki et al. can be
generalised to an arbitrary Q2 access structure. Part of the performance
of the Araki et al. protocol is from the fact it does not use a complete
communication network for the most costly part of the computation. Our
generalisation also preserves this property. We present both passively-
and actively-secure (with abort) variants of our protocol. In all cases
we require fewer communication channels for secure multiplication than
Maurer’s “MPC-Made-Simple” protocol forQ2 structures, at the expense
of requiring pre-shared secret keys for Pseudo-Random Functions.

1 Introduction

Secret-sharing-based secure MPC (multi-party computation) is generally consid-
ered to lie in two distinct camps. In the first camp lies the information-theoretic
protocols arising from the original work of Ben-Or, Goldwasser and Wigder-
son [4] and Chaum, Crepeau and Damg̊ard [7]. In this line of work, adversar-
ial parties are assumed to be computationally unbounded, and parties in an
MPC protocol are assumed to be connected by a complete network of secure
channels. Such a model was originally introduced in the context of threshold
adversary structures, i.e. t-out-of-n secret-sharing schemes, which could toler-
ate up to t adversaries amongst n parties. We will call these access structures
(n, t)-threshold. To obtain passively-secure protocols one requires t < n/2, and
to obtain actively-secure protocols one requires t < n/3; these conditions are
also sufficient. Passive adversaries follow the protocol but possibly try to learn
information about other parties’ inputs, whereas active adversaries may deviate
arbitrarily from the protocol.

These results for threshold structures were extended to arbitrary access/ad-
versary structures by Hirt and Maurer [14], in which case the two necessary and
sufficient conditions become Q2 and Q3 respectively. These notions will be dis-
cussed in more detail later, but in brief an access structure is Q` if the union of
no ` unqualified sets is the whole set of parties; for example, an (n, t)-threshold
scheme is Q` if and only if t < n/`.

Another line of work which considered computationally-bounded adversaries
started with [12,13]. Here the parties are connected by a complete network of au-
thenticated channels and one can obtain actively-secure protocols in the threshold



case when t < n/2 (i.e. honest majority), and active security with abort when
only one party is honest. Generally speaking, such computationally-secure pro-
tocols are less efficient than the information-theoretic protocols as they usually
need some form of public-key cryptography.

In recent years there has been considerable progress in practical MPC by
marrying the two approaches. For example, the BDOZ [5], VIFF [9], SPDZ [10]
and Tiny-OT [17] protocols are computationally secure and use information-
theoretic primitives in an online phase, but only computationally-secure prim-
itives in an offline/pre-processing phase. The offline phase is used to produce
so-called Beaver triples [2], which are then consumed in the online phase. In
these protocols, parties are still connected by a complete network of authenti-
cated channels, and they are usually in the full-threshold model (i.e. situations
in which only one party is assumed to be honest). A key observation in much of
the practical MPC work of the last few years is that communication costs in the
practically important online phase are the main bottleneck.

However, recent work has provided a new method to unify information-
theoretic and computationally-secure protocols. Araki et al. [1] provide a very ef-
ficient passively-secure MPC evaluation of the AES circuit in the case of a 1-out-
of-3 adversary structure. This was then generalised to an actively secure protocol
by Furukawa et al. [11]. Both protocols require a pre-processing phase making
use of symmetric-key cryptographic primitives only; thus the pre-processing is
much faster than for the full-threshold protocols mentioned above.

The passively-secure protocol of [1] makes use of a number of optimisations
to the basic offline/online paradigm. Firstly, the offline phase is only used to pro-
duce additive sharings of zero. Additive sharings of zero can be easily produced
using symmetric key primitives and pre-shared secrets. Secondly, the underlying
network is not assumed to be complete: each party only sends data to one other
party via a secure channel, and only receives data from the third party via a
secure channel. Thirdly, parties need only transmit one finite-field element per
multiplication. On the downside, however, each party needs to hold two finite-
field elements per share, as opposed to using an ideal secret-sharing scheme (such
as Shamir’s) in which each party only holds one finite-field element per secret.

The underlying protocol of Araki et al., bar the use of the additive sharings
of zero, is highly reminiscent of the Sharemind system [6], which also assumes a
1-out-of-3 adversary structure. Since both [1] and [6] are based on replicated
secret-sharing, they are also closely related to the “MPC-Made-Simple” ap-
proach of Maurer [16]. Thus, for the case of this specific adversary structure,
the work in [1] shows how to use cryptographic assumptions to optimise the
information-theoretic approach of [16]. The active variant of the protocol given
by Furakawa et al. [11] uses the passively-secure protocol (over an incomplete
network of secure channels) to run an offline phase which produces the Beaver
triples. These are then consumed in the online phase, by using the triples to
check the passively-secure multiplication of actual secrets. The online phase also
runs over an incomplete network of authenticated channels. The question there-
fore naturally arises as to whether the approach outlined in [1], [6] and [11] is
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particularly tied to the 1-out-of-3 adversary structure, or whether it generalises
to other access/adversary structures.

1.1 Our Work

In this paper we show that the basic passively-secure protocol of Araki et al.
generalises to arbitrary Q2 access structures and in the process hopefully shed
some light onto the fundamental nature of what initially appear to be very spe-
cific constructions for 1-out-of-3 adversary structures. Moreover, the generalised
protocol offers significant advantages in terms of communication cost when com-
pared to the prior protocols in this setting.

In the full version we then show how to extend this to an actively-secure
protocol (with abort) for any Q2 access structure. We take a more traditional
approach than [11] to obtain active security. In particular we utilise our pas-
sive protocol as an offline phase, and then in the online phase multiplication
is performed via standard Beaver multiplication over an incomplete network of
authenticated channels. We only require a full network of secure channels in the
active protocol to obtain (verified) private output in the online phase and in a
short setup phase.

The main challenge we meet in attempting to generalise the work of Araki et
al. is that it is not immediately clear what the conditions on its shares mean in
a wider context; more specifically, their protocol relies heavily on the fact that
in the (3, 1)-threshold setting replicated shares are necessarily “consistent” and
consequently their communication pattern allows errors to be detected in the
active variant due to Furukawa et al. [11].

General, as opposed to threshold, access structures are practically interesting
in situations where different groups of parties play different organisational roles.
For example consider a financial application where one may have a computa-
tion performed between a number of banks and regulators; the required access
structures for collaboration between the banks and the regulators may be dif-
ferent. Thus general access structures, such as the Q2 structures considered in
this paper, may have important real-world applications. All protocols have been
implemented in the SCALE-MAMBA system3.

We now proceed to give a high-level overview of our protocol and its main
components. We divide the discussion into looking at the passively secure proto-
col first, and then give the changes needed to consider the actively secure (with
abort) variant.

Passively Secure Protocol: If the access structure is Q2 then the product of
the shared values can be expressed as a linear combination of products of the
values held by individual players. Hence, the product can be expressed as the
sum of a single value held by each party. This is exploited in the protocol of
Maurer to obtain a sharing (in the original replicated scheme) of the product,

3 See https://homes.esat.kuleuven.be/~nsmart/SCALE/ for details.
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by each party producing a resharing of their component of the product. Thus
multiplication of secrets in the passively-secure protocol of Maurer requires all
parties to produce one secret-sharing.

In our protocol we take start as in Maurer’s protocol in forming a represen-
tation of the product as a full threshold additive secret sharing. We then mask
this using a pseudo-random zero sharing (PRZS), and then use the resulting
full threshold sharing as a basis for the original replicated sharing. This means
that each party need only communicate the share they hold to the other parties
which need to replicate it. This produces savings in both the number of elements
transmitted and the number of communication channels. In Sections 3.1 and 3.2
we outline and compare Maurer’s and our protocol.

In a further optimisation, given in Section 3.3, we reduce the number of
channels, which we denote by GΓ , and the required number of finite field elements
transmitted, even further. This optimisation, however, comes at the expense of
requiring more pre-distributed keys and PRF evaluations. But we present a
simple six party access structure for which this optimization that gives a 93
percent saving on transmitted finite-field elements, and a 50 percent saving on
the number of secure channels, compared to the original protocol of Maurer.

To obtain the output from our passively protocol we require a full set of
either authenticated or secure channels (depending on the specific subprotocol
being executed). However, these operations are not performed nearly as often as
multiplication operations. It is the high bandwidth requirements of multiplica-
tion operations that form a bottleneck in many practical instantiations of MPC
protocols.

Actively Secure Protocol: In the full version we then extend this basic pro-
tocol to the case of active security (with abort), again with the objective of
minimising the number of pairwise connections and transmitted finite field el-
ements. Our actively-secure protocol follows the paradigm of Furukawa et al.
However, we need to make a few small changes to allow for arbitrary Q2 ac-
cess structures. We adopt a relatively standard three step approach to obtaining
active security.

1. We use our passively-secure multiplication protocol in an offline phase to
obtain so-called Beaver triples.

2. These triples are then checked using the trick of sacrificing (see e.g. [5]) to
ensure that the triples are actually valid, and have not been tampered with
by a malicious adversary. This requires communication over a reduced set of
authenticated channels HΓ .

3. The triples are then used in a standard Beaver-like online phase which is
executed over the same sub-network of authenticated channels.

Active security is obtained, as in [1], by each player hashing their view during a
multiplication and comparing the resulting hashes at the end (which requires a
complete graph of authenticated channels). We show that this obviates the need
for every party holding a given share to send it to every party who does not.
However, in generalising to arbitrary access structures it is no longer sufficient
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to hash the view of the values opened in the multiplication sub-protocol: one
also needs to hash the vector of shares used to produce these values. This hash-
checking is analogous to the MAC checking in full threshold protocols such as
SPDZ [10].

In this paper we are interested in evaluation of arithmetic circuits over an
arbitrary finite field Fq, which could include q = 2. We will assume, for the
sacrifice step of our actively-secure protocol with abort, that q is sufficiently
large to have a cheating detection probability of 1 − 2−sec for a suitable choice
of sec; i.e. q > 2sec. If this is not the case, then by repeating our checking
procedures sec/ log2 q times, we can reduce the cheating probability to 2−sec. We
do not analyse this aspect in this paper so as to aid the reader in seeing the
main concepts more clearly. This repetition and its generalisation to balls-and-
bins experiments is relatively standard.

2 Preliminaries

In this section we recap on access structures, and in particular Q2 access struc-
tures, and also look at pseudo-random zero sharings with respect to the additive
secret sharing scheme. In this section we are working over an arbitrary finite
field Fq where q is a prime power, although our protocols also work over any
finite ring R. For any n ∈ N we denote the set {1, . . . , n} by [n]. We denote the
computational security parameter by λ and the statistical security parameter by
sec.

2.1 Access Structures and Secret Sharing

Access Structures. Let P denote the set of parties, P = [n], and let Γ,∆ ∈ 2P .
If Γ ∩∆ = ∅ then we call the pair (Γ,∆) an access structure. We call a set of
parties B ∈ Γ qualified, and a set in A ∈ ∆ unqualified. As is typical in the
literature, we assume monotonicity of the access structure: supersets of qualified
sets are qualified, and subsets of unqualified sets are unqualified. The access
structure is said to be complete if ∆ = 2P \ Γ , (i.e. every set of parties is either
qualified or unqualified), and in this case we will sometimes just write Γ for the
access structure instead of the pair.

A set of parties A ∈ ∆ is called maximally unqualified if ∆ contains no
proper supersets of A. For a complete access structure, this implies that adding
any party not already in A makes the set qualified. We denote byM⊆ ∆ the set
of maximally unqualified sets. Similarly, A set in Γ is called minimally qualified
if it is qualified and every proper subset is unqualified. The set M and its
structure is important for our protocol; however, it will be notationally simpler
for us instead to consider the set of complements of maximally unqualified sets,
which we denote by B = {P \M : M ∈M}. Note that, in general, it is not true
that the set B is equal to the set of minimally qualified sets.
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Q` Access Structures. The set ∆, called the adversary structure, is said to be
Q` (for quorum), where ` ∈ N, if no set of ` sets in ∆ cover P. A result of
Hirt and Maurer [15] says that every function can be computed securely in
the presence of an adaptive, passive (resp. adaptive, active) computationally
unbounded adversary if and only if the adversary structure is Q2 (resp. Q3).

It is clear that if ∆ is Q2, then so is any subset. In particular, the set of
maximally unqualified setsM is also Q2. In fact, ifM is Q2 then ∆ is Q2. Hence,
for the set of complements B it holds that if B1, B2 ∈ B then B1 ∩ B2 6= ∅. A
set B for which this property holds was called a quorum system by Beaver and
Wool [3].

Let S denote a linear secret-sharing scheme which implements the Q2 access
structure (Γ,∆). We use double square brackets, [[v]] to denote a sharing of
the secret v according to this scheme. We let Sv,i denote the set of elements
which player i holds in representing the value v. Hirt and Maurer’s result is
realised by showing that if an access structure is Q2 then it can be realised by a
multiplicative secret sharing scheme, i.e. given two secret shared values [[a]] and
[[b]], the product a · b can be represented as a linear combination of the elements
in the local Schur products

Sa,i ⊗ Sb,i = {sa · sb : sa ∈ Sa,i, sb ∈ Sb,i}.

The fact that by local computations the parties each obtain one summand of
the product is the reason one is able to build an MPC protocol secure against
passive adversaries for any Q2 access structure. For the details, we refer the
reader to [15].

Replicated Secret Sharing. Given a monotone access structure (Γ,∆), we will
make extensive use of the replicated secret sharing scheme which respects it. Let
B be, as above, the set of sets which are complements of maximally unqualified
sets in the access structure. Then to share secret x, a set of shares {xB}B∈B
is sampled uniformly at random from the field subject to x =

∑
B∈B xB and

xB is given to each player in B. From now on, when writing [[x]] we will mean
the secret sharing with respect to this scheme, and in particular the set Sx,i
above is given by Sx,i = {xB : i ∈ B and B ∈ B}. Since every unqualified set
is a (not necessarily proper) subset of a maximally unqualified set, every set of
unqualified parties is missing at least one member of the set {xB}B∈B, and hence
these parties learn no information about the secret. Replicated secret-sharing is
therefore perfect, which is defined to mean that no unqualified set of parties has
any advantage over uniformly guessing the secret. Conversely, a qualified set A
of parties is not a subset of any M ∈ M (i.e., for every M ∈ M, A contains
some i where i 6∈ M), and hence for every B ∈ B, there is at least one party in
A which receives the share xB .

To see that a replicated secret-sharing scheme is multiplicative if the access
structure it realises is Q2, observe that given secrets x and y, for every pair of
sets B1, B2 ∈ B there is some party i in B1 ∩B2, since the intersection of these
sets is non-empty by definition of Q2. Then party i can compute the cross terms
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xB1
·yB2

and xB2
·yB1

(and also the diagonal terms xB1
·yB1

and xB2
·yB2

). Thus
the parties can together obtain all terms of x · y =

(∑
B∈B xB

)
·
(∑

B∈B yB
)

=∑
B1,B2∈B xB1 · yB2 by local computations. Note that the parties do not, in

general, have a correct sharing of the product after these local computations,
since each party now holds only one share: the parties must somehow convert
this additive share of the product into a sharing within the scheme. Minimising
the number of communication channels required after the local computations to
achieve this is the main goal of this paper. Note also that there may be multiple
parties in the intersection of two sets in B, but we only require one of these
parties to include the term in their computation.

Example. We will use the following example later to demonstrate the savings
which can result from our method and also to examine the communication chan-
nels in the next paragraph. Consider the following set of maximally unqualified
sets for a six-party access structure, which we shall use as a running example
throughout this section.

M =
{
{2, 5, 6}, {3, 5, 6}, {4, 5, 6}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6},

{2, 3}, {2, 4}, {3, 4}
}
.

Here the set B becomes

B =
{
{1, 3, 4}, {1, 2, 4}, {1, 2, 3}, {3, 4, 5, 6}, {2, 4, 5, 6}, {2, 3, 5, 6},

{2, 3, 4, 6}, {2, 3, 4, 5}, {1, 4, 5, 6}, {1, 3, 5, 6}, {1, 2, 5, 6}
}
.

As stated above, in replicated secret sharing a secret s is shared as an additive
sum s =

∑
B∈B sB , with party i holding value sB if and only if i ∈ B.

Redundancy. A redundant player is one whose shares are not necessarily needed
to reconstruct the secret (if it is shared using replicated secret-sharing), and
so one could define an MPC protocol achieving the same (passive) security by
ignoring this player entirely in the computation and just providing it with the
final output. To provide a more formal definition, consider the replicated scheme
above: if there is a party i ∈ P for which there exists some other party j ∈ P
such that for all B ∈ B we have i ∈ B implies j ∈ B, then every share given to
party i is also given to party j, and hence we consider party i redundant.

For an access structure Γ with setM of maximal unqualified sets, we define
party i to be redundant if for every M ∈ M there exists j ∈ P \ {i} such
that i 6∈M implies j 6∈M , and non-redundant otherwise; equivalently, i is non-
redundant if for every j ∈ P there exists M ∈ M such that i 6∈ M but j ∈ M ,
and we say that Γ is non-redundant if every party in P is non-redundant.

For example, consider the set of maximally unqualified sets over P = [4]
given by M = {{1}, {2}, {3, 4}}. We obtain the replicated scheme over this
access structure by computing B = {{2, 3, 4}, {1, 3, 4}, {1, 2}} and splitting a
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secret s into three shares s = s234 + s134 + s12; then we give player one the
shares {s134, s12}, player two {s234, s12}, player three {s234, s134} and player four
{s234, s134}. Both shares obtained by player three are also obtained by player
four, so we can essentially ignore player four in any protocol design and just
provide the output to this player at the end.

Note that if any party is omitted from all sets inM then it is present in all sets
in B and hence every party, but this party, is redundant, which makes the MPC
protocol trivial: the omitted party can simply perform the entire computation
itself and output the result to all parties.

Partition. In our protocol, we partition the set B into sets indexed by the parties
{Bi}i∈P such that for every i ∈ P we have B ∈ Bi implies i ∈ B. To make this
assignment of sets in B to parties, we consider all the maps f : B → P such that
for every i ∈ P, f(B) = i implies i ∈ B, and choose an f such that Im(f) is as
large as possible; then for each i ∈ P we let Bi = f−1(i), where f−1(i) denotes
the preimage of i under the map f .

Note that if f is not surjective then there is at least one set Bi (for some i)
which is empty. For the rest of the main body of this paper, we assume that Bi
is not empty for all i, since for small numbers of parties on a non-redundant Q2

access structure, we can always find a surjective f . For the necessary adaptation
to the protocol when this is not the case, and further relevant discussion, see
Section 4.

Note that in general non-redundancy implies a lower bound on the size of
M: let n′ be the number of parties which are not maximally unqualified sets
as singleton sets, and let x be the number of sets in M. The lower bound on
number of sets there must be in M so that there is no redundancy amongst
these n′ parties is the number of ways of putting each party into at least two
sets so that for every pair of parties there is a set containing one and not the

other. Thus we require
(
x
2

)
≥ n′, which means that x ≥ 1+

√
1+8n′

2 . Since there
are more sets in M for non-redundant access structures, it becomes “easier” to
find the surjective maps f required by our main protocol.

In our earlier six party example we could set the partition to be

B1 = {{1, 3, 4}},
B2 = {{1, 2, 4}},
B3 = {{1, 2, 3}},
B4 = {{2, 3, 4, 5}},
B5 = {{1, 2, 5, 6}, {1, 3, 5, 6}, {1, 4, 5, 6}},
B6 = {{2, 3, 4, 6}, {2, 3, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}.
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Channel Sets. Given the above partition of B we define the following graphs of
channels:

GΓ =
⋃
i∈P

⋃
B∈Bi

⋃
j∈B\{i}

{(i, j)}

HΓ =
⋃
i∈P

⋃
B∈Bi

⋃
j 6∈B

{(i, j)}

Our (passively-secure) multiplication protocol makes use of the set of secure
channels denoted by SC(GΓ ), namely (i, j) ∈ SC(GΓ ) implies that party i is con-
nected to party j by a uni-directional secure channel. The sacrificing step and
online multiplication protocol in our actively secure protocol requires communi-
cation over an authentic set of channels AC(HΓ ), where (i, j) ∈ AC(HΓ ) implies
that party i is connected to party j by an authenticated channel.

The key operation in both sacrificing and the online phase is being able to
open a value to all parties in an authenticated manner. Publicly opening a secret
requires every party to receive every share it does not have from at least one
other party holding that share. Thus the definition of HΓ .

2.2 Pseudo-Random Zero Sharing for Additive Secret Sharing
Schemes

At various points we will need to use an additive secret sharing over all players
P = {1, . . . , n}. This shares a value v ∈ Fq as an additive sum v =

∑n
i=1 vi

and gives player i the value vi. We denote such a sharing by 〈v〉. This type of
secret-sharing does not respect a Q2 access structure since all shares are required
to determine the secret, but it will play a crucial role in our protocols.

Improving on the protocol of [3] and [16] requires us to sacrifice the information-
theoretic security for a cryptographic assumption. In particular, we require the
parties to engage in a pre-processing phase in which they share keys for a pseudo-
random function (PRF) in order to generate (non-interactively) pseudo-random
zero sharings (PRZSs) for the additive secret sharing scheme 〈v〉, and pseudo-
random secret sharings (PRSSs) for the replicated scheme [[v]]. Note, we could
produce these using additional interaction, but recall our goal is to reduce com-
munication. In particular, we make black-box use of the functionality given in
Figure 1. Pseudo-random secret sharings, and pseudo-random zero sharings in
particular, for arbitrary access structures can involve a set-up phase requiring
the agreement of exponentially-many keys in general. The protocol is given in [8]
and so we omit it here, though the reader may refer to the full version for an
overview of our variant (specialised for replicated secret-sharing).

3 Passively-Secure MPC Protocol

In this section we outline our optimisation of Maurer’s protocol. As remarked
earlier, our protocol, instead of being in the information-theoretic model, uses
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The Functionality FRand

Set-up: The functionality accepts Initialise or Abort from all parties and the ad-
versary. If any party inputs Abort, the functionality sends the message Abort to all
parties.

PRZS:
– On input PRZS(count) from all parties, if the counter value is the same for all

parties and has not been used before, for each i ∈ [n − 1] the functionality

samples ti
$← F uniformly at random, fixes tn ← −

∑n−1
i=1 ti and sends ti to

party i for each i ∈ P.

PRSS:
– On input PRSS(count) from all parties, if the counter value is the same for

all parties and has not been used before, the functionality samples a set

{rB}B∈B
$← F and for each B ∈ B sends rB to all i ∈ B.

Figure 1. The Functionality FRand

PRFs to obtain additive sharings of zero non-interactively. We assume through-
out that we start with an access structure which does not contain any redundant
players. As stated in Section 2, we will assume we can define a partition {Bi} of
B such that Bi 6= ∅ and B ∈ Bi implies i ∈ B. We call such a partition (where
Bi 6= ∅ for all i) a surjective partition; when this is not possible we provide the
requisite alterations to the protocol in Section 4. We consider Bi to be the set
of sets for which party i will be “responsible”.

3.1 Maurer’s “MPC-Made-Simple” Protocol

The information-theoretic protocol we describe is based on one due to Maurer
[16]. Maurer’s protocol is itself a variant of the protocol of Beaver and Wool [3]
but specialised to the case of replicated secret-sharing. For comparison with our
protocol, we explain Maurer’s protocol here.

We assume a Q2 access structure (Γ,∆), and we share data values x via
the replicated secret-sharing [[x]], where x =

∑
B∈B xB . Since this secret-sharing

scheme is linear, addition of secret-shared values comes “for free”, i.e. it requires
no interaction and parties just need to add their local shares together.

The real difficulty in creating an MPC protocol given a linear secret-sharing
scheme is in performing secure multiplication of secret-shared values, [[x]] and
[[y]]. With this goal, we begin by following [3] and define a surjective function
ρ : B2 → P such that ρ(B1, B2) = i implies that i ∈ B1 ∩ B2; the existence
of such a function follows from the fact that the access structure is Q2. Note
that there are possibly multiple choices for ρ, and that it is certainly not true in
general that i = ρ(B1, B2) implies B1∩B2 = {i} (though clearly B1∩B2 ⊇ {i}).
Note that party ρ(B1, B2) holds a copy of share xB1

and yB2
. We will put player
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ρ(B1, B2) “in charge” of computing the cross term xB1
· yB2

in the following
multiplication protocol:
1. Party i computes

vi ←
∑

B1,B2∈B : ρ(B1,B2)=i

xB1
· yB2

2. Party i creates a sharing [[vi]] of the value vi and distributes the different
summands securely to the appropriate parties according to the replicated
secret-sharing scheme.

3. The parties now locally compute

[[z]]←
n∑
i=1

[[vi]].

It is clear that each party i, in sharing vi, needs to generate |B| different finite-
field elements, each of which is sent to every member of a given set of parties in
B. In particular this means that each party has to maintain a secure connection
to each other party, assuming a non-redundant access structure. If we let l denote
the average size of B ∈ B, i.e. l =

∑
B∈B |B|/|B|, then it is clear that the total

communication required is n · |B| · l finite-field elements.
In fact each party i sends a total of∑

B∈B:B3i
(|B| − 1) +

∑
B∈B:B 63i

|B| =
∑
B∈B
|B| −

∑
B∈B:B3i

1

finite-field elements, and hence the total communication (for all parties) for one
multiplication is

n∑
i=1

(∑
B∈B
|B| −

∑
B∈B:B3i

1

)
= (n− 1) ·

∑
B∈B
|B|

finite-field elements over n · (n − 1) uni-directional secure channels4. For our
example Q2 access structure this translates into sending (6−1) ·41 = 205 finite-
field elements over 6 · 5 = 30 secure channels. Note that the same finite-field
element will be sent to multiple parties (every set of parties B ∈ B obtains
a share common to them all), but we count these elements as distinct when
analysing communication costs.

3.2 New Protocol

Our protocol is largely the same as Maurer’s, with one major difference: in
our protocol, the parties do not each create a replicated sharing of the partial

4 Note, as is common in security systems we assume channels are uni-directional; as
good security practice is to have different secret keys securing communication in
different directions so as to avoid various reflection attacks etc. This is exactly how
TLS and IPSec secure channels are configured.
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product vi – instead, they do the following. Notice that the vi form an additive
sharing 〈z〉 of the sum. Our basic idea is first to re-randomise this sum using
a PRZS, and then to consider each re-randomised vi as one share of the new
secret (namely, the product of the previous two secrets), i.e. consider each share
vi as zB indexed by some B containing i, which should then be distributed to
all other parties in B. There are some minor technical caveats but this is the
essential idea.

Our method directly generalises the method used by [1], which concentrated
on the case of the finite field F2 and a 1-out-of-3 adversary structure. It results in
each party not needing to be connected to each other party by a secure channel.
The total number of distinct finite field elements transmitted for a threshold
structure via this method is then O(n · 2n), as opposed to the O(n2 · 2n) of
Maurer’s protocol. For other Q2 structures the saving in communication is more
significant, as our earlier example demonstrates.

As in Maurer’s “MPC-Made-Simple” protocol, we assume a Q2 access struc-
ture (Γ,∆) and share data values x via the replicated secret-sharing [[x]], so that
x =

∑
B∈B xB . We also retain the assignment which tells player i = ρ(B1, B2)

to compute the product xB1
· yB2

. However, our basic multiplication procedure
is given by the following:

1. Party i computes

vi ←
∑

B1,B2∈B : ρ(B1,B2)=i

xB1 · yB2

We think of vi as an additive sharing 〈v〉 of the product.
2. The parties obtain an additive sharing of zero 〈t〉 using the PRZS from

Figure 1; thus party i holds ti such that
∑n
i=1 ti = 0.

3. Party i samples uB for B ∈ Bi such that
∑
B∈Bi

uB = vi + ti.
4. Party i sends, for all B ∈ Bi, the value uB to party j for all j ∈ B.

Notice that the parties do not need to perform local computations after the
communication as in Maurer’s protocol, and that the total number of elements
transmitted is

∑
B∈B(|B| − 1). Also notice that we obtain a valid sharing of the

product as we have assumed Bi 6= ∅, and thus every share vi has been utilised
in the final sharing.

The key observation for security is that the PRZS masks the Schur product
terms, so after choosing the uB ’s and sending these to the appropriate parties,
not even qualified sets of parties can learn any information about these terms,
despite being able to compute the secret.

Given this informal description, we now give a full description of our MPC
protocol, which is the analogue of [1] for arbitrary Q2 access structures and
arbitrary finite fields; see Figure 3 for details. One can think of the passively-
secure protocol as being in the pre-processing model in which the offline phase
simply involves some key agreement. The online phase is then a standard MPC
protocol in which parties can compute an arithmetic circuit on their combined
(secret) inputs, using the multiplication procedure described above, so as to

12



Passively Secure MPC Functionality FPMPC

Input: On input (Input, xi) by party i, the functionality stores (id, xi) in memory.

Add: On input (Add, id1, id2, id3) from all parties, the functionality retrieves (id1, x)
and (id2, y) and stores (id3, x+ y).

Multiply: On input (Multiply, id1, id2, id3) from all parties, the functionality re-
trieves (id1, x) and (id2, y) and stores (id3, x · y).

Output: On input (Output, id, i) from all parties, the functionality retrieves (id, x)
and returns x to all parties if i = 0, and to player i only otherwise.

Figure 2. Passively Secure MPC Functionality FPMPC

implement the functionality in Figure 2. That the protocol securely implements
this functionality is given by the following theorem, whose proof is given in the
full version.

Theorem 1. Suppose we have a non-redundant Q2 access structure with a sur-
jective partition {Bi} of the set B. Then the protocol ΠPMPC securely realises the
functionality FPMPC against passive adversaries in the FRand-hybrid model5.

Assuming a surjective partition, the protocol requires at most
∑
B∈B(|B|−1)

field elements of communication, over |GΓ | secure channels, per multiplication
gate, and the same number to perform the input procedure.

In the output procedure we require that the parties be connected by a complete
network of bilateral secure channels (i.e. n · (n− 1) uni-directional channels) if
all players are to receive distinct private outputs, and instead a complete network
of authenticated channels if only public output is required.

Note that the above theorem is given for non-redundant access structures. To
apply the protocol in the case of redundant access structures, we simply remove
redundant players from the computation phase and only require interaction with
them in the input and output phases. To avoid explaining this (trivial) extra
complication we specialise to the case of non-redundant access structures.

In our previous six party example we have

SC(GΓ ) =
{

(1, 3), (1, 4), (2, 1), (2, 4), (3, 1), (3, 2), (4, 2), (4, 3), (4, 5),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 6), (6, 2), (6, 3), (6, 4), (6, 5)
}
.

Thus in this example we need to send 30 finite-field elements over 18 uni-
directional secure channels per multiplication operation, thus giving a saving
of 85 percent on the number of finite-field elements transmitted, and 40 percent
on the number of secure channels needed.
5 The alterations to the protocol for when there is no surjective partition are discussed

in Section 4.
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Protocol ΠPMPC

The set Bi denotes the set of the partition B = {Bi}i∈P containing sets associated
to party i (though note that it is usually a strict subset of the sets containing i).

Set-up: The parties set count← 0.

Input: For party i to provide input x,
1. The parties call FRand with input PRZS(count) so that each player j ∈ P obtains

tj such that
∑
j∈P tj = 0.

2. Party i samples {uB}B∈Bi ← F such that
∑
B∈Bi uB = x+ ti.

3. For each j ∈ P \{i}, party j samples {uB}B∈Bj ← F such that
∑
B∈Bj uB = tj .

4. For each j ∈ P, for each B ∈ Bj , for each k ∈ B, party j sends uB securely to
party k.

5. The parties increment count by one.

Add:
1. For each B ∈ B, each party i ∈ B locally computes xB +yB so that collectively

the parties obtain [[x+ y]].

Multiply:
1. For each i ∈ P, party i computes vi ←

∑
B1,B2∈B : ρ(B1,B2)=i

xB1 · yB2 .

2. The parties call FRand with input PRZS(count) so that each player i ∈ P obtains
ti such that

∑
i∈P ti = 0.

3. For each i ∈ P, party i samples {uB}B∈Bi ← F such that
∑
B∈Bi uB = vi + ti.

4. For each i ∈ P, for each B ∈ Bi, for each j ∈ B \ {i}, party i securely sends
the value uB to party j.

5. The parties increment count by one.

Output([[x]], i):
1. If i 6= 0, for each j ∈ P, for each B ∈ Bj , party j securely sends xB to i if

i 6∈ B. If i = 0, each player j instead sends to all players i for which i 6∈ B. In
the latter case the communication need not be done securely.

2. Player i (or all players if i = 0) computes x←
∑
B∈B xB .

Figure 3. Protocol ΠPMPC

3.3 An Optimisation

We end this section by presenting a minor optimisation of our passively se-
cure multiplication protocol, which can result in a further reduction in both the
number of communication channels and the number of finite-field elements that
need to be sent. However, this comes at the expense of needing further PRF
evaluations.

Recall that to each player i we associated a set Bi, of sets B for which player i
is “responsible” for producing the sharing uB during the multiplication protocol.
In our optimisation we make player i responsible for only a single set, which we
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call Bi, which is an element of Bi. All other values uB for B ∈ Bi \ {Bi} are
generated by a PRF evaluation.

We informally describe the extensions needed here in the case of a surjec-
tive partition; the extension to non-surjective partitions is immediate. First
we extend the FRand functionality so that it contains an additional command
FRand.Rand(B). This command, on input of a set of players B, will output the
same uniformly random value zB to all players in B. Clearly, this additional
command is a component of the existing command FRand.PRSS, and so can be
implemented in the same way.

Our optimisation of the multiplication protocol is then given in Figure 4. It
is then clear that we need to transmit only n distinct, finite-field elements over
the set

ĜΓ =
⋃
i∈P

⋃
j∈Bi\{i}

{(i, j)} ⊆ GΓ

of secure channels, which we denote by SC(ĜΓ ). The total number of (non-
distinct) finite fields elements that need to be sent is equal to

∑n
i=1(|Bi| − 1).

Optimised Passively Secure Multiplication Protocol

Multiply:
1. For each i ∈ P, party i computes vi ←

∑
B1,B2∈B : ρ(B1,B2)=i

xB1 · yB2 .
2. The parties call FRand.PRZS so that each player i ∈ P obtains ti such that∑

i∈P ti = 0.
3. For each B ∈ Bi \{Bi} the players execute FRand.Rand(B), so that each player

j ∈ B obtains a uniformly random element uB .
4. Party i defines uBi by setting uBi ← vi + ti −

∑
B∈Bi\{Bi} uB .

5. For each i ∈ P, party i sends the value uBi securely to party j for all j ∈ Bi.

Figure 4. Optimised Passively Secure Multiplication Protocol

When specialised to our six-party example from the introduction, and taking
B5 = {1, 2, 5, 6} and B6 = {2, 3, 4, 6} (with the obvious definition of B1, B2, B3,
and B4), we find

ĜΓ =
{

(1, 3), (1, 4), (2, 1), (2, 4), (3, 1), (3, 2), (4, 2), (4, 3), (4, 5),

(5, 1), (5, 2), (5, 6), (6, 2), (6, 3), (6, 4)
}
.

Thus we need to send only 15 finite fields elements over 15 uni-directional secure
channels. This equates to a bandwidth saving of an additional 50 percent over
our initial protocol, and a 17 percent saving over the number of secure channels.
Compared to the initial protocol of Maurer we obtain a saving of 93 percent in
the number of transmitted finite field elements, and a saving of 50 percent in
the number of secure channels.
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4 Passive Multiplication Protocol when f is not
Surjective

We now describe the modifications to our basic protocol when we cannot find a
partition of the set B into non-empty sets {Bi}i∈[n] such that i ∈ B for all B ∈ Bi.
We also work out how this change affects our overall consumption of bandwidth,
and the number (and type) of communication channels. For efficiency, we first
select any map f : B −→ P for which Im(f) is as large as possible.

Recall that our basic protocol works in the case that Im(f) = P. The mod-
ification is simply to apply the standard protocol for all i ∈ Im(f), and apply
Maurer’s protocol when i 6∈ Im(f). The multiplication protocol then becomes:
1. For each i ∈ P, party i computes vi ←

∑
ρ(B1,B2)=i

xB1
· yB2

.
2. The parties call FRand.PRZS so that each player i ∈ P obtains ti such that∑

i∈P ti = 0.
3. For each i ∈ Im(f)

(a) Party i samples {uB}B∈Bi ← F such that
∑
B∈Bi

uB = vi + ti.
(b) Party i sends, for all B ∈ Bi, the value uB securely to party j for all

j ∈ B \ {i}.
4. For each i 6∈ Im(f)

(a) Party i samples {siB}B∈B ← F such that
∑
B∈B s

i
B = vi + ti. Note that

the sum is over all B ∈ B not B ∈ Bi (which by assumption is empty).
(b) Party i sends, for all B ∈ B, the value siB securely to party j for all

j ∈ B \ {i}. Note, the transmission is over all B ∈ B not Bi.
5. Party i for each B ∈ B with i ∈ B computes

zB = uB +
∑

j 6∈Im(f)

sjB .

The fact that the multiplication protocol is correct and secure can be easily
verified. The only issue is to adapt our formulae for the number of secure and
authenticated channels needed. Instead of the graph GΓ , we have

G̃Γ =

 ⋃
i∈Im(f)

⋃
B∈Bi

⋃
j∈B\{i}

{(i, j)}

⋃ ⋃
i 6∈Im(f)

⋃
B∈B

⋃
j∈B\{i}

{(i, j)}

 .

and hence we require the set SC(G̃Γ ) of secure channels. The number of finite-
field elements needed to be transmitted in our passively secure protocol above
becomes(∑

B∈B
(|B| − 1)

)
+

∑
i6∈Im(f)

 ∑
B∈B:B3i

(|B| − 1) +
∑

B∈B,B 63i

|B|

 .

Recall that for the set of authenticated channels HΓ , needed in the actively
secure variant, we just need to guarantee that every party receives one share
from at least one player. Hence, each party in P \ Im(f) can receive all their
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required values from any one of the parties in Im(f). Thus, instead of HΓ , we
have

H̃Γ =

 ⋃
i∈Im(f)

⋃
B∈Bi

⋃
j 6∈B

{(i, j)}

 .

and hence a set AC(H̃Γ ) of authenticated channels is needed in place of HΓ in
our actively secure protocol.

5 Summary

To make clear what channels are required when, and how many, we provide
Table 1. Following the standard mathematical notation, we use Kn to denote the
complete graph on n vertices (i.e. parties) so that, for example, SC(Kn) means
that the n parties are connected in a complete network of secure channels. The
table presents the costs in terms of the sets of edges Kn, GΓ and HΓ . Apart from
the first set, the cardinalities of these sets depend crucially on the precise access
structure one is considering, so it is not possible to give formulae describing
their size. However, since GΓ and HΓ are strict subsets of Kn, we always obtain
benefits over the naive protocol(s).

Protocol Procedure Channels required

ΠRand Set-up SC(Kn)
PRSS n/a
PRZS n/a

Passive Protocol Input SC(GΓ )
Multiplication SC(GΓ )
Output to one SC(Kn)
Output to all AC(Kn)

Active Offline Protocol Triple Gen. SC(GΓ )
Triple Sac. AC(HΓ )
Authentication check AC(Kn)

Active Online Protocol Input SC(HΓ ) + AC(Kn)
Multiplication AC(HΓ )
Output to one SC(HΓ ) + AC(Kn)
Output to all AC(HΓ ) + AC(Kn)

Table 1. Number of channels needed at each point in the computation. The channels
for “Output to one” assumes every party will receive private output. Notice that the
active variant of our protocol never needs a complete network of secure channels in
the online phase and that it only requires a complete authenticated network for the
hash-comparison stage only.

The set-up of the protocol ΠRand is a one-time offline phase used to gener-
ate sharings of random values at various points for zero communication cost.
While it requires a complete network of secure channels, the main bottleneck
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in secret-sharing-based MPC is in multiplication, for which our protocol signifi-
cantly reduces the communication cost.

It should be noted that our online phase methodology can actually be exe-
cuted using other secret-sharing schemes, assuming the Beaver triples in the of-
fline phase are produced with respect to the corresponding secret-sharing scheme.
In particular in the (n, t)-threshold case it turns out that we would obtain, using
Shamir sharing, an online phase which only requires n · t authenticated channels,
as opposed to n · (n− 1) authenticated channels using the näıve protocol.
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