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Abstract—Fuzzy extractors have been proposed in 2004 by Dodis et
al. as a secure way to generate cryptographic keys from noisy sources.
Originally, biometrics were the main motivation for fuzzy extractors
but in recent years their practical relevance stems mainly from their
use in secure key generation based on Physical Unclonable Functions
(PUFs). Fuzzy extractors are provably secure against passive attackers,
i.e., attackers that can observe the helper data. A year later, robust
fuzzy extractors were introduced which are also provably secure against
an active attacker, i.e., attackers that can manipulate the helper data.
Hence, the problem of how to build provably secure robust fuzzy
extractors appears to have been solved a long time ago.

However, in this paper we show that from a practical perspective
the problem of building a provably secure fuzzy extractor is actually not
solved yet. The originally proposed robust fuzzy extractors based on BCH
codes either do not have the required error-correction rates for practical
applications or violate the parameters in the security proof. Since no
helper data manipulation attacks on linear codes are known which work
in the robust fuzzy extractor construction, it might be tempting to simply
ignore the parameters of the proof. However, we present new helper
data manipulation attacks on several decoding strategies for linear codes
which set a key as opposed to recovering the key. These new attacks
show that helper data manipulation attacks are indeed feasible against
such constructions if the parameters in the proof are ignored. Robust
fuzzy extractors therefore need to be revisited by both engineers and
cryptographers to solve the problem of building both provably secure as
well as practical robust fuzzy extractors.

Index Terms—Robust Fuzzy Extractor, Physical Unclonable Functions
(PUFs), Helper Data Manipulation Attacks

1 Introduction
Fuzzy extractors have been proposed in 2004 by Dodis et
al. [1] as a provably secure way to generate cryptographic
keys from correlated but possibly noisy sources. The main
motivation for this work back in 2004 were biometrics:
During a generation phase a biometric reading such as
a fingerprint or iris picture is used to generate a crypto-
graphic key and some helper data. At a later time, a sec-
ond, possibly noisy reading of the same biometric source is
used in conjunction with the helper data to reproduce the
cryptographic key. Fuzzy extractors guarantee that i) the
derived key is uniform even after revealing the helper data,
i.e., the helper data does not reveal information about
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the key, and ii) as long as the distance between the two
readings is smaller than or equal to a distance parameter
t, the same key is extracted during the recreation step.
While fuzzy extractors are provably secure against pas-

sive attackers, this does not say anything about attackers
who can alter the helper data. Therefore Boyen et al.
proposed a construct called robust fuzzy extractors in
2005 [2] which is also secure against helper data manip-
ulation attacks. The original robust fuzzy extractor was
only provably secure in the random oracle model but a
provably secure construction in the general model was
proposed a year later in [3] and slightly improved in [4],
[5]. It is noteworthy that in theory any fuzzy extractor can
be turned into a robust fuzzy extractor. Hence, at least
for the Hamming distance metric, how to build provably
secure fuzzy extractors and provably secure robust fuzzy
extractors seems to be solved.

From a practical perspective, fuzzy extractors have
become increasingly important not due to biometrics but
due to Physical Unclonable Functions (PUF) based key
generation. Storing and generating cryptographic keys in
embedded devices can be a challenging task, in particular
if they need to be able to withstand physical attacks.
Standard non-volatile memory has little protection against
unauthorized read-out, especially if the non-volatile mem-
ory is not on the same chip. Only dedicated secure non-
volatile memory can offer protection against an advanced
attacker. PUFs are a promising alternative to such secure
non-volatile memory. The idea of PUFs is to use the
process variations within each chip to derive a unique “fin-
gerprint” for each chip, which is called the PUF response.
A Fuzzy Extractor is then used to derive a cryptographic
key and helper data from this PUF response. In the
recovery phase this helper data in conjunction with a
(possibly noisy) PUF response is used to recover the key
again. PUF-based key generation and in particular how to
construct fuzzy extractors for PUF-based key storage has
been the focus of a lot of research. One important focus
of this research is how to handle the significant level of
noise that can be present in the PUF responses. Several
error-correction codes and decoding strategies have been
proposed to be used in fuzzy extractors for PUF-based key
generation, e.g. in [6], [7], [8], [9], [10], [11]. It is noteworthy
that fuzzy extractors and PUF-based key generation are
not purely academic research topics any more. Several
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high-security products by companies such as Microsemi,
Altera and NXP use fuzzy extractors in conjunction with
PUF-based key generation1.

The first helper data manipulation attacks against PUF
based key generation were not on fuzzy extractors but
on helper data algorithm based on pattern matching [12]
and designs specifically for Ring-Oscillators [13]. Another
helper data manipulation attack was presented on soft-
decision error-correction [14]. While the attack was de-
scried based on the helper data algorithm by Maes et
al. [9], which is strictly speaking not a fuzzy extractor
as no bound on the min-entropy is provided, the attack
can also be applied to even number repetition codes and
hence fuzzy extractors.

The fact that in practice for most PUF-based key
generation solutions robust fuzzy extractors are needed is
acknowledged in many papers. However, papers describing
actual implementations only used fuzzy extractors and not
robust fuzzy extractors.

1.1 Main contribution
In this paper we will show that how to build provably
secure as well as practical robust fuzzy extractors is not a
solved problem. In particular, we show that:
• It is actually not possible to build a provably secure

robust fuzzy extractor based on the BCH construction
proposed by Boyen et al. [2] for noise levels above 3%.

• The concatenated code constructions used in practi-
cal fuzzy extractor implementations that can handle
noise levels of 15% or more are actually not well-
formed and therefore using them in Boyen et al. ’s
construction violates the security proof.

• We introduce a new helper data manipulation attack
strategy on linear codes which we demonstrate based
on several decoding strategies for Reed-Muller codes
and soft-decision decoding.

• In this new attack strategy the attacker sets a key
as opposed to recovering a key. Therefore the new
attack strategy can be used to attack a robust fuzzy
extractor like construction which uses a hash function
to check the integrity of the helper data.

Finally, we also propose some promising research direc-
tions to solve this problem in the future.

1.2 Outline
The next Sections provides some necessary background
information. In particular, robust fuzzy extractors and
their related constructions are formally defined and intro-
duced. In Section 3 the robust fuzzy extractor based on
BCH codes is examined in greater detail and it is shown
that building a robust fuzzy extractor based on BCH
codes is not possible for realistic parameters. Section 4
introduces the attack model and strategy of our new

1. NXP announced that the upcoming SmartMX2 security chips
will feature a PUF, Altera uses PUFs in their Stratix 10 FPGAs,
Microsemi in their SmartFusion FPGAs. All these products use
Intrinsic-ID’s licenses and PUF solutions.

helper data manipulation attack and Section 4 presents
some concrete examples how the attack works against
Reed-Muller codes and soft-decision decoding. Finally, a
discussion outlook is provided in Section 6 with promising
future research directions before the paper finishes with a
short conclusion.

2 Background
In the following we will provide the formal definitions
of robust fuzzy extractors and their building blocks. The
corresponding proofs and a more detailed description can
be found in the referenced papers. In the following we will
use the definitions from [2].

2.1 Notations
In this paper we will use the following notations: A vector
is represented with a bold lowercase character, a matrix
with a bold uppercase character, a scalar with a lowercase
character, a random variable with an uppercase character,
and a set with calligraphic character. Table 1 is a summary
of the variable names used in this paper to describe the
robust fuzzy extractor for PUF based key generation and
the helper data manipulation attack. In this context, a
variable that is used in the recovery phase before the error-
correction is denoted with a tick mark, a variable after the
error-correction is denoted with a bar and a value chosen
or predicted by the attacker is indicated with an a index.
For binary error-correction codes we use to the notion of
[n, k, d], with n being the codeword length, k being the
dimension and d denoting the minimum distance between
codewords.

TABLE 1: Overview of variable definitions
Original Before After Attacker’s

Error Corr. Error Corr. choice
PUF response w w′ w̄ w̄a

codeword x x′ x̄ x̄a

helper data s sa

hash value h h̄ h̄a

secret key r r̄ r̄a

error vector e
attack vector ea

2.2 Definitions of secure sketches and fuzzy extractors
Fuzzy extractors and secure sketches were proposed by
Dodis et al. in 2004 [1]. A secure sketch is defined as
follows: [2]
Definition 1: An (m,m′, t)-secure sketch over a metric

space (M, d) comprises a sketching procedure SS : M →
{0, 1}∗ and a recovery procedure Rec, where:
1) (Security) For all random variablesW overM such

that H∞(W ) ≥ m, we have H∞(W |SS(W )) ≥ m′,
with H∞ denoting the min-entropy.

2) (Error tolerance) For all pairs of points
w,w′ ∈ M with d(w,w′) ≤ t, it holds that
Rec(w′,SS(w)) = w.
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In the context of PUFs, a secure sketch can be used to
generate helper data s for a PUF response w during the
first key generation (sketching procedure). This helper
data can then be used to correct up to t errors in a
noisy PUF response w′ during the “recovery” phase. The
security guarantees state that the remaining min-entropy
in the PUF response w after revealing the helper data
s is at least m′ ≤ m. Hence, w is not guaranteed to
be uniformly distributed and revealing the helper data
reduces the guaranteed min-entropy such that it cannot
directly be used as a cryptographic key. The main purpose
of a Fuzzy Extractor is to extend the secure sketch to
generate a string r that is uniform and has full bit entropy
such that it can be be used as a cryptographic key. The
formal definition is as follows: [2]
Definition 2: An (m, l, t, δ)-fuzzy extractor over a met-

ric space (M, d) comprises a (randomized) extraction algo-
rithm Ext :M→ {0, 1}l×{0, 1}∗ and a recovery procedure
Rec such that:
1) (Security) For all random variables W over M

that satisfy H∞(W ) ≥ m, if 〈r,pub〉 ← Ext(W )
then SD(〈r,pub〉 , 〈Ul,pub〉) ≤ δ, where SD() is
the statistical difference as defined in [2] and Ul the
uniform distribution over l-bit strings.

2) (Error tolerance) For all pairs of points w,w′ ∈
M with d(w,w′) ≤ t, if 〈r,pub〉 ← Ext(w) then it is
the case that Rec(w′,pub) = r. Where d() denotes
the distance metric forM.

The aforementioned fuzzy extractor is only secure
against a passive attacker. I.e., it does not make any
guarantees about the security if the attacker can manip-
ulate the helper data pub. For this purpose robust fuzzy
extractors were proposed by Boyen et al. [2] that are
also secure against active attackers. These robust fuzzy
extractors are based on well-formed secure sketches which
are defined as follows: [2]
Definition 3: An (m,m′, t)-secure sketch (SS,Rec) is

said to be well-formed if it satisfies the condition of
Definition 1 except for the following modifications:
1) Rec may now return either an element in M or the

distinguished symbol ⊥.
2) For all w′ ∈ M and arbitrary s′, if

Rec(w′,pub′) 6= ⊥ then d(w′,Rec(w′,pub′)) ≤ t.
In other words, a secure sketch only guarantees that if
there are t or less errors, the errors will be corrected. It
does not say anything about what happens if there are
more than t errors. Correcting more than t errors does not
have any impact on security. In addition, t does not even
need to be a strict lower bound but can be relaxed, which
was formalized in [15] as relaxed notions of correctness.
A well-formed secure sketch on the other hand corrects
exactly up to t errors and responds with ⊥ if there are
more than t errors. One cannot simply relax this notion
and allow more than t errors to be corrected without
violating the assumptions in the proof. It is actually simple
to construct a well-formed secure sketch from any secure
sketch: For this, one only needs to compute t′ = d(w,w′).

If t′ > t return ⊥ else return w.
A robust sketch is resistant against helper data manip-

ulation attacks and is defined as follows: [2]
Definition 4: Given algorithms (SS,Rec) and random

variables W = {W0,W1, ...,Wn} over the metric space
(M, d), consider the following game between an adver-
sary A and a challenger: Let w (resp., wi) be the value
assumed by W0 (resp., Wi). The challenger computes
pub← SS(w0) and gives pub to A. Next, for i = 1, ..., n,
the adversary A outputs a “challenge” pubi 6= pub and is
given Rec(wi,pubi) in return. If there exists an i such that
Rec(wi,pubi) 6= ⊥ we say that the adversary succeeds and
this event is denoted by Succ.

We say that (SS,Rec) is an (m,m′′, n, ε, t)-robust sketch
over (M, d) if is is a well-formed (m,m′′, t)-secure sketch
and:

1) For all t-bounded distortion ensembles W with
H∞(W0) ≥ m and all adversaries A we have
Pr[Succ] ≤ ε.

2) The average min-entropy of W0, conditioned on the
entire view of A throughout the above game, is
at least m′′. Which implies that (SS,Rec) is an
(m,m′′, t)-secure sketch.

Similar to secure sketches, a robust sketch does not
necessarily produce a uniformly distributed string that can
be used as a cryptographic key. For this purpose robust
fuzzy extractors were defined as follows: [2]
Definition 5: Given algorithms (Ext,Rec) and random

variables W = {W0,W1, ...,Wn} over a metric space
(M, d), consider the following game between an adversary
A and a challenger: Let w0 (resp., wi) be the value
assumed by W0 (resp., Wi). The challenger computes
(r,pub) ← Ext(w0) and gives pub to A. Next, for
i = 1, .., n, the adversary A outputs pubi 6= pub and
is given Rec(wi,pubi) in return. If there exists an i such
that Rec(wi,pubi) 6= ⊥ we say the adversary succeeds
and this event is denoted by Succ. We say (Ext,Rec) is
an (m, l, n, ε, t, δ)-robust fuzzy extractor over (M, d) if the
following hold for all t-bounded distortion ensembles W
with H∞(W0) ≥ m:
• (Robustness) For all adversaries A, it holds that
Pr[Succ] ≤ ε.

• (Security) Let V iew denote the entire view of
A at the conclusion of the above game. Then,
SD(〈r, V iew〉 , 〈Ul, V iew〉) ≤ δ. SD() is again the
statistical difference as defined in [2] and Ul the
uniform distribution over l-bit strings.

• (Error-tolerance) For all w′ with d(w0,w′) ≤ t, we
have Rec(w′,pub) = r.

2.3 Robust fuzzy extractor constructions
After we have defined the various constructions we will
now take a look at how they can be realized. In this paper
we only look at constructions for the Hamming distance
metric since this is used in PUF-based key generation.
The main building block of all constructions is the secure
sketch. Two secure sketch constructions for the Hamming
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distance metric were proposed by Dodis et al. [1], the code-
offset and the syndrome construction.

2.3.1 Secure sketches for the Hamming distance metric
The code-offset construction [1] is based on the fuzzy
commitment proposed by Juels and Wattenberg [16] and
is defined as follows:
Definition 6: Code-offset construction: During sketch-

ing, choose a random codeword x ∈ C and compute the
helper data s = SS(w,x) = w⊕ x. For recovery, compute
x̄ = decode(w′ ⊕ s), where decode() denotes the decoding
procedure of the error-correction code C and w′ the po-
tentially noisy PUF response. Then w̄ = Rec(w′, s) = s⊕x̄
with w̄ == w if d(w′,w) ≤ t.
The syndrome construction requires the code C to be a
linear binary error-correction code and works as follows:
Definition 7: Syndrome construction: During sketching,

compute s = SS(w,x) = w · HT, where HT is the
transposed parity check matrix of the used linear error-
correction code C. For recovery, compute s′ = w′ · HT.
Determine ē = locate(s′ ⊕ s) by using the error-location
algorithm locate() of the code C. Then w̄ = Rec(w′, s) =
w′ ⊕ ē with w̄ = w if d(w′,w) ≤ t.
Both, the code-offset and the syndrome construction are

popular for PUF-based key generation.

2.3.2 Hash-based robust fuzzy extractor
Boyen et al. showed how robust fuzzy extractors can be
built using any well-formed secure sketch in conjunction
with a hash function. This construction, which we will
denote as hash-based construction in the remainder of the
paper is provably secure in the random oracle model [2].
This hash-based construction works as follows:
Definition 8: Assume we are given two hash functions

H1, H2 : {0, 1}∗ → {0, 1}l (in practice a single hash
function can be used by prepending a padding) and a well-
formed secure sketch (SS,Rec). The hash-based robust
fuzzy extractor (Ext,Rec) with (r,pub) = Ext(w) and
r̄ = Rec(w′,pub) works as follows:
• (r,pub) = Ext(w): Let s = SS(w). Output

pub = (s,H1(w, s)) and r = H2(w, s).
• r̄ = Rec(w′,pub): Parse pub as (s,h) and set

w̄ = Rec(w′, s). If d(w̄,w′) ≤ t and h̄ == H1(w̄, s)
then output r̄ = H2(w̄, s) else output r̄ = ⊥.

How the hash-based robust fuzzy extractor works in
conjunction with the code-offset construction is illustrated
in Figure 1. One great advantage of this construction is
that in this way any fuzzy extractor can be extended to
a robust fuzzy extractor. Hence, when discussing fuzzy
extractor constructions for PUF-based key generation it is
often noted that in case resistance against active attackers
is needed, the fuzzy extractor can easily be turned into
a robust fuzzy extractor. However, we want to point to
a detail that is often overlooked: In a fuzzy extractor
d(w̄,w′) ≤ t is only a correctness requirement, i.e., only
guarantees that the errors are corrected. It has nothing to
do with security and hence an engineer can simply ignore

Fig. 1: Illustration of the hash-based fuzzy extractor when
it is used in conjunction with the code-offset construct
for PUF-based key generation. On the left the extraction
phase and on the right the recovery phase is depicted.

this part without jeopardizing security. Indeed, Dodis et
al. formalized this as relaxed notion of correctness since
better error correction rates can be achieved with such
relaxed notations.

In a robust fuzzy extractor on the other hand
d(w̄,w′) ≤ t is a security requirement. If this inequality is
not satisfied the robust fuzzy extractor needs to return ⊥.
In other words, the robust fuzzy extractor requires a well-
formed secure sketch not because of a correctness require-
ment but because of a security requirement. Hence, this
aspect cannot be ignored without security implications.

2.3.3 Fuzzy extractors for PUF-based key generation
In this Subsection we will briefly discuss some of the
different fuzzy extractors that have been proposed in
conjunction with PUF-based key generation. In earlier
works BCH codes have been used [17], [18]. However,
the superior error correction capability of concatenated
codes were pointed out in the seminal work of Bösch et
al. from 2008 [6]. In particular, they proposed a simple
inner repetition code with an outer Reed-Muller or Golay
code. Concatenated codes with BCH codes in conjunction
with repetition codes have been used in the literature as
well [19]. In 2009 the idea to use soft-decision error cor-
rection was first introduced by Maes et al. in conjunction
with PUF-based error correction [9], [10]. The idea is to
collect additional information about the reliability of each
PUF response bit and add this as additional helper data
during the generation phase. During reconstruction, soft-
decision error correction codes can use this information to
considerably decrease the probability of a decoding error.
For this concatenated codes with soft-decision repetition
and Reed-Muller codes were proposed. One disadvantage
of this approach is that the soft-decision information needs
to be collected first, which might not always be trivial.
How to overcome this problem was presented in 2012
by van der Leest et al. [7] by using a hard-in soft-
out inner code (repetition decoder) in conjunction with
a soft-decision outer code (Reed-Muller or Golay code).
Compared to hard-decision decoding considerably better
error correction rates are achieved without the need to
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collect additional information during the generation phase.
The same hard-in soft-out decoding was also used in [8].
Similarly, the generalized concatenated code constructions
by Puchinger et al. [20] also uses hard-in soft-out decoding
of Reed-Muller codes.

3 Impossibility results for BCH codes
In order to show the feasibility of fuzzy extractors,
Dodis et al. showed that BCH codes can be used to
construct fuzzy extractors based on the code-offset and
syndrome construction [1]. Later work showed how every
fuzzy extractor can be turned into a robust fuzzy extrac-
tor [2] and hence at least in theory BCH codes can also
be used to build robust fuzzy extractors. In this section
we look at the problem from a more practical perspective
by investigating if the parameters of the security proof
can also be met for realistic error-correction rates as they
are needed for PUF-based key generation. A typical goal
in PUF-based key generation is to achieve a failure rate
of less than 10−6 or 10−9 during key generation with an
assumed worst-case PUF reliability of around 85%. This
is e.g. assumed in [6], [8], [9], [19], [20]. Note that in all
of these papers concatenated code constructions are used
that yield much better average error correction rates than
non-concatenated code. However, concatenated codes have
a significantly worse minimum error-correction capacity t
(see Section 3.3) and are therefore impractical for robust
fuzzy extractors that follow the security proof from [2]. We
therefore want to evaluate in this Section if these results
can also be achieved with a single BCH code as it was
proposed for robust fuzzy extractors by Boyen et al. [2].

3.1 Security bound for Boyen et al.’s hash-based ro-
bust fuzzy extractor construction
The robust fuzzy extractor proof from [2] provides a
formula to compute the success probability ε of an active
attacker. This equation allows the derivation of a security
bound which the binary [n, k, 2t + 1] BCH codes need to
fulfill in order to be provably secure when used in robust
fuzzy extractors.
Theorem 1: Security Bound:

A binary linear [n, k, 2t+1] code used in a robust sketch as
defined in [2] that does not fulfill the following bound does
not fulfill the corresponding security proof of Boyen et al.
:

k > 1 + log2(n) + log2

( t∑
i=0

(
n

i

))
(1)

Proof: From [2] Theorem 1 the success probability ε of
an attacker is defined with:2

ε = (4qH + 2n · V olMt ) · 2−m′
(2)

where qH denotes the number of times an attacker is
allowed to query the robust fuzzy extractor, V olMt denotes

2. We use the simplified lower bound of Theorem 1 [2] for the case
that the hash output length was chosen appropriately.

the volume of the error correction code andm′ the remain-
ing min-entropy after revealing the helper data. For binary
linear [n, k, 2t + 1] codes V olMt can be expressed as (see,
e.g., [4], Sec. III.e.):

V olMt =
t∑

i=0

(
n

i

)
For a secure sketch based on a [n, k, 2t+1] code the upper
bound of the min-entropy m′ can be written as m′ ≤ n−
(n− k) = k. Note that we are looking for an impossibility
result, i.e., we want to show that if the inequality does not
hold the construction does not fulfill the security proof
from [2]. We do not want to show that if the inequality
holds that the constriction is secure. Therefore we derive
a lower bound of the attacker’s success probability ε as
follows:

ε = (4qH + 2n · V olMt ) · 2−m′

ε ≥ 2n ·
t∑

i=0

(
n

i

)
· 2−k

log2(ε) ≥ log2

(
2n ·

t∑
i=0

(
n

i

)
· 2−k

)

log2(ε) ≥ 1 + log2(n) + log2

( t∑
i=0

(
n

i

))
−k

(3)

Since the success probability ε needs to be smaller than 1,
i.e., ε < 1, one can simply define a lower bound as:

log2(1) > log2(ε) ≥ 1 + log2(n) + log2

( t∑
i=0

(
n

i

))
−k

0 > 1 + log2(n) + log2

( t∑
i=0

(
n

i

))
−k

k > 1 + log2(n) + log2

( t∑
i=0

(
n

i

))
�

(4)

There are parameter choices for BCH codes that fulfill the
bound. However, in practice not only the security bound
has to hold but the resulting BCH code also needs to
achieve the required error correction rate. In particular,
usually the probability of a key generation failure Pfail in
a worst-case scenario should be below a defined threshold.
A simple but widely used error-model is that each PUF
response bit flips with the same probability 1 − p (i.e.,
a homogeneous noise model). Typical parameters found
in the literature are p ≈ 0.85 and Pfail around 10−6

to 10−9. Table 2 shows the minimum value for t for
[n, k, 2t + 1] BCH codes and different codeword sizes n
and reliability values p to achieve a failure rate of less
than Pfail < 10−6. In a way, the values in the table are a
“error-tolerance bound”, since only error-correcting codes
that can correct at least that many bit errors are reliable
enough for a robust fuzzy extractor.

Since we now have a security bound as well as a
bound on the minimum required error correction capacity
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n 63 127 255 511 1023 2047 4095 8191 16383 32767 65535
p =0.92 - 27 45 85 126 231 413 819 1483 2861 5579
p =0.93 - 27 42 85 115 205 367 686 1321 2517 4902
p =0.94 15 23 42 59 102 179 330 597 1170 2340 4681
p =0.95 15 21 42 53 87 153 292 506 955 1829 3545
p =0.96 13 21 29 45 74 127 227 415 793 1483 2863
p =0.97 11 21 25 37 60 101 178 325 599 1133 2184

TABLE 2: Lower bound of the required number of correctable errors t for different codeword sizes n and reliabilities p
to achieve a failure rate of less than 10−6.

we can verify whether or not building a secure robust
fuzzy extractor based on BCH codes is possible. For
this purpose we tested the security bound by using the
BCH parameters derived in Table 2 and computing the
corresponding ε value. In particular, we calculated the
bounded log2(ε) according to Equation (3) using Sage for
the [n, k, 2t+1] BCH codes that were closest to the values
listed in Table 2. The result can be found in Figure 2a.
As one can see, only for p > 0.94 the value is negative,
i.e., fulfills the security bound. For all other values with
p ≤ 0.94% the security proof provided in [2] does not hold.
Note that for PUF-based key generation much lower

reliabilities than 94% are needed (e.g. p = 85%) and
hence it is currently not possible to build a robust fuzzy
extractor with BCH codes for PUF-based key generation
that is provably secure according to the proof provided by
Boyen et al. [2].

3.2 Security bound for Dodis et al.’s robust fuzzy
extractor construction
The robust fuzzy extractor based on hash functions pro-
posed by Boyen et al. [2] is provably secure in the
random oracle model but not the general model. Therefore
a different construction was proposed by Dodis et al. that
is also provably secure in the general model [3]. However,
this provable security in the general model comes at the
cost of a significantly reduced efficiency in terms of security
parameters. In particular, it looses half of the min-entropy
m′. Therefore the security bound for this construction is
reduced to:

k

2 ≥ log
( t∑

i=0

(
n

i

))
+log

(
2
⌈

k

n− k
+ 2
⌉)
−1

2 (5)

Details of how this bound is derived can be found in the
Appendix. We again computed the ε value for the BCH
parameters provided in Table 2. The results can be found
in Figure 2b. In this case, even for reliability values of
p = 98% no BCH code exists that fulfills the security proof
of Dodis et al. [3].

3.3 Impact of concatenated codes on the security
bound
Before looking into concatenated codes, let us first con-
sider the case that a message m is split into l blocks of
size n and each block is decoded by a BCH code (or other
linear code). Assume a BCH code is used in which the
maximum as well as the minimum number of correctable

(a) hash-based construction

(b) standard model construction

Fig. 2: The upper bound of the success probability ε of an
attacker for a helper data manipulation attack against a)
the hash-based construction from [2] and b) the standard-
model construction from [3]. For each codeword size n and
PUF reliability value p the best BCH parameters were
chosen to compute ε. Note that a positive value means
that for the corresponding reliability and codeword sizes
the construction does not offer provable security against
helper data manipulation attacks.

errors within one code word is t. If we concatenate l
codeword blocks, the maximum number of correctable
errors is t · l while the minimum number of correctable
errors is still only t since t+ 1 errors in a single block will
result in a decoding failure. Hence, for more than t errors
the robust fuzzy extractor needs to output ⊥, which makes
it completely impractical. Otherwise, such a construction
would not be in line with the security proofs of Boyen et
al. [2] and Dodis et al. [3].
A very important error correction concept in practice

are concatenated codes. Nearly all PUF-based key genera-
tion proposals use concatenated codes, which first encode
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the message with an inner code and then again with an
outer code. In many cases the inner codes is a simple
repetition code while the outer code is more complex.
The main idea is that while the minimum number of
correctable errors is much smaller than using a single large
code the average error correction capability is considerably
higher. In practice, this average number of correctable
errors is what really matters to determine the failure
probability Pfail for PUF-based key generation. But since
t is defined by the minimum number of correctable errors
and not the average number, this makes it impossible to
use concatenated codes in well-formed secure sketches. For
example, in [19] a [7,1,7] repetition code concatenated with
a [318,174,35] BCH was used. The repetition code can
correct 3 errors in a 7-bit codeword and the BCH code can
correct up to 17 errors in a 318-bit codeword. The concate-
nated code has a codeword length of n = 318 · 7 = 2, 226.
The minimum number of bit errors for a decoding error
to occur is 18 · 4 = 72. On the other hand, the maximum
number of errors such that a codeword can still be decoded
correctly is 17 · 7 + 301 · 3 = 1, 022. When used in a
well-formed secure sketch as required for the robust fuzzy
extractor constructions from [2] and [3], the number of
correctable errors would have to be set to t=72. Hence
such a construction would be impractical and considerably
worse than non-concatenated codes.

From an engineering perspective it is tempting to ignore
the well-formed requirement of the proof and to set t
to the average number of correctable errors. While this
violates the proof, such a construction might still be
secure considering that no attack on such a construction
is known. This scenario is discussed in great detail in the
next section.

4 Helper data manipulation attack
In this section the general attack strategy for the new
helper data manipulation attacks is described before some
specific attacks against specific error correction strategies
and implementations are introduced in the next Section.

4.1 Attack model
Recently, Delvaux et al. [14] introduced a helper data
manipulation attack on a soft-decision error-correction
strategy, in which modified helper data is sent to the
PUF device and the attacker observed if a decoding failure
occurred. With each query the attacker learns information
about the PUF response and can eventually reconstruct
the entire response in a divide-and-conquer like fashion.

In this paper we consider that instead of a fuzzy extrac-
tor a RFE-like construct (see Figure 1) is used. The RFE-
like construct prevents such helper data manipulation
attacks as described above, since the key recovery always
fails if the attacker does not transmit a valid hash value
h. And without knowing the reconstructed PUF response
w̄ the attacker cannot compute a valid hash value ha for
a modified helper data sa.

The new attack strategy is therefore not to try to learn
the original PUF response w, but instead to try to set the
reconstructed PUF response w̄ to a value known by the
attacker. This in turn enables the attacker to compute a
valid hash value ha. Note that this also means that the
reconstructed key r̄ is known by the attacker but not the
same as the original key. Hence, the attacker does not learn
the original key r with such an attack. Whether or not
this is a reasonable attack goal depends on the application
the key is used for. For example, imaging that the PUF
key is used to encrypt an externally stored bitstream.
In the helper data manipulation attack from [14], the
attacker would have learned the encryption key of the
bitstream. This would allow the attacker to both decrypt
the original bitstream as well as supply the device with
its own bitstream. In our helper data manipulation attack
scenario on the other hand the attacker would be able to
supply a different bitstream to the device but would not
be able to decrypt the original bitstream.

Other scenarios in which setting the key is a legitimate
attack goal is if the key is used for access control to the
device. In this case it is sufficient for the attacker to set a
new key without learning the old key as the main goal is
to get access to the device. If on the other hand the goal is
to create a software clone of a PUF device, e.g. because it
is used as a anti-counterfeiting mechanisms, setting a key
is not enough. In this case the original key is needed

However, the presented helper data manipulation at-
tacks can also be extended from only setting a key to
additionally recover the original key. When and how this
can be achieved is briefly discussed in Section 4.3. But the
focus of this paper is only to set the key to defeat the
security goal of a robust fuzzy extractor. The attacker’s
capability can be summarized as follows:
• Attacker’s goal:

– Make the PUF device reconstruct a key r̄a that
is known to the attacker (but which is different
from the original key r).

• Attacker’s capabilities:
– The attacker has read and write access to the

helper data (s and h)
– The attacker can verify if the predicted r̄a has

been reconstructed by the PUF device

4.2 New attack strategy
The main idea behind the new helper data manipulation
attack is to send modified helper data sa to the PUF device
such that during the recover phase the PUF device will de-
code to a specific known codeword x̄a = decode(w′ ⊕ sa)
with a very high probability independent of the PUF
response w′. This in turn means that the PUF device will
recover a PUF response w̄a = s̄a ⊕ x̄a which the attacker
can predict with a high probability. The attacker can then
compute a valid hash value ha = H1(sa, w̄a). If the attack
succeeded the PUF device and the attacker then share a
common key r̄a = H2(sa, w̄a).
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TABLE 3: General description of the new helper data manipulation attack on an RFE-like construct.

Attacker PUF device

Given: helper data s, with s = x⊕w Given: noisy PUF function, PUF() = w⊕ e

Choose attack vector ea such that
x̄a = decode(ci ⊕ ea), ∀ci ∈ Ca
with Ca ⊆ C and |Ca| maximized
sa = s⊕ ea

w̄a = sa ⊕ x̄a

ha = H1(sa, w̄a)
ra = H2(sa, w̄a)

sa,ha−−−−−−−→
w′ = PUF() = w⊕ e
x′ = w′ ⊕ sa

= (w⊕ e)⊕ (w⊕ x⊕ ea) = x⊕ e⊕ ea

x̄ = decode(x′) = decode(x⊕ e⊕ ea)
w̄ = sa ⊕ x̄
h̄ = H1(sa, w̄)
IF h̄==ha set r̄ = H2(sa, w̄)
ElSE set r̄ = ⊥

r̄←−−−

IF r̄==⊥ repeat attack
ELSE success and ra == r̄ and w̄a == w̄

The entire attack is depicted in Table 3. The crucial
point in the attack is whether the attacker is able to
modify the helper data s in a way that during the error-
correction phase the PUF device will decode towards the
attacker’s prediction x̄a with a high probability. Whether
or not this is possible strongly depends on i) the used
error-correction code and ii) the implementation of the
error-correction decoding. In the next chapter we will show
some concrete attacks on implementations of different
error-correction codes that have been proposed in the
context of PUF based key storage.

4.3 Extending attack to extract original key
Depending on the applications and used error-correction
codes it might be possible to not only set the key but
to also recover the key. In practice often not a single
long code is used for the codeword x but instead the
the codeword x actually consists of l smaller codewords
that are concatenated together. This is actually true for
all the codes we consider in our attack section. In this
case an attacker can perform a helper data manipulation
attack that tries to set the codeword x̄ for l− 1 codeword
blocks but leaves one untouched. For the helper data
manipulation attack to succeed the attacker then guesses
the unmodified codeword and tests the guess using the
appropriate w̄a to compute the hash ha. If the unmodified
code word has k bit of entropy, the attacker has in average
to guess k/2 times till he succeeds and can proceed to the
next codeword block. This way the attacker could learn
the entire original codeword x and hence also the original
PUF response w = x ⊕ s and key r at the costs of an
increased attack complexity of l · k/2.
Note that this strategy also works if only a fuzzy

extractor (as opposed of a RFE-like fuzzy extractor) as
long as the attack can verify if the recovered key is the

one he assumed it is. This greatly increases the practical
relevance of the attacks discussed in the next section.

5 Example attacks
In this Section several attacks on popular error-correction
codes for PUF based key generation are shown. In par-
ticular, several decoding strategies for Reed-Muller codes
are attacked as well as soft-decision and even-numbered
repetition decoding.

One of the most popular error-correction codes for PUF-
based key generation are Reed-Muller codes, which are for
example used in [6], [7], [9], [10], [20]. In the following
we will show that different implementation strategies for
Reed-Muller codes exists that can be attacked using the
new helper data manipulation attack. For a successful
attack we need to find an error pattern ea such that the de-
coding algorithm decodes the codeword x′⊕ea to the same
codeword x̄a for most codewords x′. There are several
possible decoding strategies for Reed-Muller codes. We
consider three popular decoding strategies: soft- and hard-
decision maximum-likelihood decoding (SDML, ML), soft-
decision Generalized Multiple Concatenated codes (GMC)
decoding, and classic Reed decoding based on majority
logic vote.

5.1 Attacking SDML decoding
The idea of SDML decoding is very simple. During decod-
ing all possible codewords are generated and the Hamming
distance between the received codeword and all codewords
is computed. The codeword with the smallest Hamming
distance is then chosen as the decoded codeword. The
key observation for our attack on SDML decoding is
that for some error vectors ea several codewords have
the same minimal Hamming distance. In this case always
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the first or last tested codeword will be chosen in most
implementations3.

5.1.1 The noise free case
To provide a concrete example, let us look at a [16,5,8]
Reed-Muller code which contain 2k = 25 = 32 different 16-
bit codewords xi. Let us denote the codeword x0 as the
codeword consisting of all-zeros x0 = [0, .., 0], and x1 =
[1, .., 1] the codeword consisting of all-ones. If we add the
following error vector ea = [0110101011000000] to xi then:

HD(x0,xi ⊕ ea) = 6 or HD(x1,xi ⊕ ea) = 6

and HD(xj ,xi ⊕ ea) = {6, 10} ∀ i, j ≥ 2

In this case, depending on the codeword xi, the maximum-
likelihood decoding always decodes to either x0 or x1 for
attack vector ea. In particular, there are 16 codewords xi
such x0 = decode(xi ⊕ ea) and 16 codewords xi such that
x1 = decode(xi ⊕ ea). Hence, by manipulating the helper
data with error vector ea, only one bit of entropy remains
from the original 5 bits of entropy in the noise-free case.

For their PUF design, van der Leest et al. proposed
to use 35 blocks of a concatenated code construction
consisting of a hard-in soft-out [7,1,7] repetition code as
an inner code and a [16,5,8] Reed-Muller code with SDML
decoding as an outer code to derive a 175-bit secret. Let
us first consider the noise free case. In order to defeat
the RFE-like construction, the attacker has to correctly
guess 35 blocks, i.e. predict 35 times the decoded codeword
x̄a correctly to be able to compute the correct hash h̄a

and key r̄a. After the helper data manipulation one bit of
entropy is left per block and a resulting entropy and min-
entropy of 35 all codeword blocks. One way to interpret
the min-entropy is that the success probability for the
most likely decoded codeword x̄a is 2−35. But it should
be noted that testing a key requires the attacker to send a
manipulated helper data to the PUF device. Even for an
entropy of 35 the attack would be quite hard to execute in
practice since the PUF would be needed to be challenge
around 235. But please also note that a full bit-entropy of
the PUF is assumed which in practice might be reduced
e.g. due to bias.

5.1.2 Impact of noise on the attack
In practice the PUF response w′ will be noisy and hence
a legitimate question is how well the attack works in the
presence of noise. To evaluate this question we performed
following analysis. In a first step 100,000 random binary
response strings are generated in MATLAB and the cor-
responding helper data for the code-offset construction
and the error correction code are computed. Then each
response is flipped with probability 1 − p to simulate
noise (i.e. we use the simple homogeneous noise model in
which each response bit has the same failure probability).
The helper data is manipulated according to the attack

3. It is also possible to choose a random codeword instead, in
which case the attack would not work. However, this is typically more
difficult to implement especially for hardware implementation.

reliability min-entropy entropy min-entropy
(per codeword) (per codeword) (per 175 bits)

soft-decision
100% 1.0 1.0 35.0
99% 2.0 3.6 69.6
98% 2.8 4.5 98.2
97% 3.4 4.8 118.5
96% 3.8 4.9 130.8
95% 4.0 4.9 138.8

hard-decision
100% 1.0 1.0 35.0
95% 1.0 1.0 35.0
90% 1.0 1.2 36.4
85% 1.2 1.8 41.1
80% 1.5 2.7 51.8

Without attack
– 5 5 175

TABLE 4: Top: Overview of helper data manipulation
attacks on a hard-in soft-out [7,1,7] repetition code in
conjunction with a [16,5,8] Reed-Muller code using soft-
decision SDML decoding. Bottom: hard-decision ML de-
coding of a concatenated [7,1,7] repetition code with a
[16,5,8] Reed-Muller code

strategy. The noisy responses and the modified helper data
are passed to the Rec algorithm and the decoded responses
are stored. Based on this analysis the probability that
a decoding to a certain response w̄i occurs is computed
which in turn allows us to compute the min-entropy and
entropy of the recovered response w̄ in the presence of
the attack. One thing to consider is that to estimate the
required error-correction capacity of a code the worst-case
PUF reliability under environmental conditions is used.
But during an attack the environmental conditions can be
kept constant to reduce the noise to a minimum. Therefore
the reliability during an attack is considerably higher
than the worst-case reliability used to select the code. For
SRAM PUFs for example, reliability values around 96-98%
are not uncommon when the environmental conditions are
kept constant while their worst case reliably can be easily
10% worse [21].

The top of Table 4 shows the results for the attack on
the SDML construction from [7] while the bottom shows
the same attack for hard-decision maximum likelihood
decoding as proposed in [6]. The attack on soft-decision
decoding quickly becomes very difficult to perform in
the presence of noise. Even with a reliability of 99% the
min-entropy within a 175-bit block is only reduced to
69.6. However, when hard-decision maximum likelihood
decoding is used, the attack is very resistant to noise. This
is due to the fact that the inner repetition code corrects
most of the noise. In this case the min-entropy of a 175-
bit block is only slightly increased from 35 to 36.4 for a
reduction of the PUF reliability to 90%. This shows that
helper data manipulation attacks are not restricted to soft-
decision decoding and hard-decision decoding can actually
be easier to attack in some cases.
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reliability min-entropy entropy min-entropy
(per codeword) (per codeword) (per 175 bits)

100% 0 0 0
99% 0.4 2.2 14.4
98% 0.9 3.7 31.3
97% 1.4 4.5 49.2
96% 1.9 5.0 66.6
95% 2.4 5.2 82.7

Without attack
– 5 5 175

TABLE 5: Overview of helper data manipulation attacks
on a hard-in soft-out [7,1,7] repetition code in conjunction
with a [16,5,8] Reed-Muller code using soft-decision GMC
decoding.

5.2 Attacking GMC decoding
Another popular decoding algorithm for Reed-Muller
codes is the Generalized Multiple Concatenated code
(GMC) decoding [22]. It is e.g. used in [10] and [20] in
conjunction with PUF-based key generation. The main
idea of this soft-decision decoding algorithm is to treat the
Reed-Muller code as a concatenation of multiple smaller
codes and recursively decode these codes. The smallest
code that is decoded is simply a repetition code, which
has a very low decoding complexity. The algorithm can
be used as a soft-decision decoder and with some slight
modifications also supports erasures. We implemented the
GMC decoding in MATLAB as a target implementation.
Again, the [16,5,8] Reed-Muller code was used and an error
pattern for a helper data manipulation attack was found
by simply testing all 216 possible error pattern. It turned
out that the helper data manipulation attack on our GMC
decoding implementation is actually more powerful than
the one on SDML decoding.

For the noise-free case, our GMC implementation al-
ways decodes to the same codeword when supplied with
following error vector ea = [0000001011001010], i.e.:

x0 = decode(xi ⊕ ea) ∀xi ∈ C

Hence, the resulting entropy is zero, since always x0
is decoded. The attack complexity for a [7,1,7] hard-in
soft-out repetition code as an inner code in conjunction
with the tested soft-decision GMC [16, 5, 8] Reed-Muller
implementation for different error rates is summarized in
Table 5. For a noise level of 98% the attack complexity
is quite reasonable and hence the attack can be consid-
ered practical. However, for larger noise levels the attack
complexity increases significantly.

5.3 Attacking Reed decoding
Another decoding algorithm considered in this paper is
the classic hard-decision Reed decoding based on major-
ity logic. For this purpose we took a publicly available
MATLAB implementation of a Reed-Muller majority logic
decoding and again searched for an error vector suitable
for a helper data manipulation attack. The attack vector
we found was actually better than for the SDML decoding
but slightly worse than GMC decoding. For error vector

reliability min-entropy entropy min-entropy
(per codeword) (per codeword) (per 175 bits)

100% 0.2 0.5 6.8
95% 0.2 0.6 6.8
90% 0.2 0.7 7.4
85% 0.3 1.3 11.0

Without attack
– 5 5 175

TABLE 6: Results of helper data manipulation attacks
on a hard-decision [7, 1, 7] repetition code in conjunction
with a [16, 5, 8] Reed-Muller code using classic majority
decoding.

ea = [1001011000000000] the implementation we used
decoded to the all-zero codeword x0 for 28 of the 32
codewords xi. The four codewords that did not decode
to x0 decoded to the bit vector consisting of all zeros
besides the least significant bit which was a one. Hence,
in the noise-free case a min-entropy of 28/32 = 0.2 is
achieved per block. However, when considering noise the
helper data manipulation attack on classic hard-decision
Reed decoding actually exhibits the best performance
amongst all considered concatenated codes. This is once
again due to the fact that the inner repetition code corrects
most of the noise. If we use a [7,1,7] repetition code in
conjunction with a [16, 5, 8] Reed-Muller code even with a
PUF reliability of only 85% the attack complexity is in the
order of 211. The results of our attack on the concatenated
construction can be found in Table 6.

For comparison, Figure 3 shows the development of the
min-entropy of this attack when only a single Reed-Muller
code is being used. Without the inner repetition coding,
the attack would be considerably more difficult in a noisy
environment.

Fig. 3: The resulting entropy and min-entropy for a helper
data manipulation attack on a [16,5,8] Reed-Muller code
with classic Reed decoding based on majority logic. Note
that the information content of a [16, 5, 8] Reed-Muller
code is 5 bits, i.e., without the attack the entropy and
min-entropy would be 5.

5.4 Attacks on soft-decision and even-numbered rep-
etition codes
Maes et al. were the first to propose soft-decision decoding
for PUFs in 2009 [9]. They proposed to derive a reliability
value for each PUF bit by querying the PUF multiple times
during the setup phase. This reliability vector p is then
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stored and provided as additional helper data to a soft-
decision error correction code. Hence, in their scheme a
second helper data string p is provided to the PUF device
in addition to the helper data s.
Such a soft-decision error-correction code was used by

Delvaux et al. [14] to demonstrate their helper data ma-
nipulation attack on a fuzzy extractor like construct(the
soft-decision helper data algorithm [9] is not a fuzzy
extractor as no bound on the min-entropy loss is provided).
The attack is based on the fact that if the probability
p is set to exactly 0.5, then the corresponding bit will
essentially be ignored during the soft-decision decoding.
The authors showed a divide-and-conquer manipulation
attack using SDML decoding of a simple [7, 4, 3] code
as an example. The idea is to set pi = 0.5 for some
bits and observe if a decoding failure occurs. With each
error pattern the attacker recovers information about the
codeword until only one possible codeword remains. This
attack idea is illustrated in Figure 4 [14].

Fig. 4: Soft-decision manipulation attack for a [7,4,3] code
with SDML decoding, taken from [14]. It is assumed that
the first codeword is selected in case of a likelihood tie.

While the divide-and-conquer approach is very efficient
for fuzzy extractors, the RFE-like construction prevents
this type of helper data manipulation attack as it will
always return a decoding failure unless a valid hash h̄a

is supplied. However, applying the new attack strategy
is straight forward for such a soft-decision decoding al-
gorithm. As also observed in [14], by setting all values
to pa = (0.5, .., 0.5) in repetition codes, the codeword
corresponding to 1 is equally likely than the codeword
corresponding to 0. In this case the decoder will decode
always to either 1 or 0 depending on the implementation4.
Hence, by setting pa = (0.5, .., 0.5) for all codeword bits,
the response bits are all decoded to either 0 or 1.

4. Note that just like the previous attacks this attack strongly
depends on the implementation.

reliability min-entropy entropy min-entropy
(per codeword) (per codeword) (per 132 bits)

100% 0 0 0
99% 1.2 3.8 12.9
98% 2.0 6.1 22.4
97% 2.8 7.6 30.5
96% 3.4 8.7 37.9
95% 4.1 9.4 44.9

Without attack
– 12 12 132

TABLE 7: Result of a helper data manipulation attack on
a [8,1,8] hard-in soft-out repetition code as an outer code
and a [24,12,8] Golay code with a soft-decision Hackett
decoder for different noise levels.

Of great practical relevance is also that the same attack
works on even-numbered repetition codes which have been
proposed as a hard-in soft out outer code e.g. in [7]. The
principle of a hard-in soft-out repetition code is fairly sim-
ple. The output is the Hamming weight of the codeword
divided by the length of the codeword. The resulting value
is basically the probability that the corresponding message
bit is a 1. Three different constructions have been proposed
in [7] based on repetition codes in conjunction with either
Reed-Muller or Golay codes. Two of the proposals use an
even numbered repetition code including a [8, 1, 8] hard-
in soft-out repetition code with a [24, 12, 8] soft-decision
Golay code. If we flip half of the bits in an [8,1,8] repetition
code, then a 0 and a 1 are equally likely and we basically
get pi = 0.5 and the corresponding bit is decoded to either
always 0 or always 1 in most implementation for the noise
free case. Hence, by flipping half of the bits of the helper
data the attacker forces the decoded codeword x̄a to be
the all zero codeword. Note that for an uneven numbered
repetition code, such a helper data manipulation attack is
not possible.

5.4.1 Impact of noise
Of course, in the presence of noise the decoder might
decode to a different codeword depending on which bits
are noisy. To get a feeling how well such an attack would
work in practice, we simulated the attack for several error
rates and the [8,1,8] repetition code in conjunction with a
[24,12,8] Golay code and a soft-decision Hackett decoder.
In [7] 11 blocks of the concatenated code construction are
used to generate a key with an entropy of 132 bit. Table 7
shows the result of the noise analysis based on the same
experimental setup as discussed before.

As one can see, if the PUF reliability is very high, e.g.
99%, the attack is very practical with a min-entropy per
codeword of 1.2 and a min-entropy for 132 bits of 12.9. One
way to interpret the min-entropy for 132 bits is that the
success probability of a helper data manipulation attack is
2−12.9 when the attacker chooses the most likely codeword
to compute h1. Hence, the min-entropy can be viewed
as the attack complexity at least in case that the noise
is identically and independently distributed (which is not
necessarily true in practice, see [14]). For smaller reliability
values such as 95% the attacks become quite difficult to
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perform in practice with a min-entropy of roughly 44.9.

6 Discussion
So far we have mainly presented negative results, i.e.,
showed that it is currently not possible to build a robust
fuzzy extractor that fulfills the security proof and that
several practical error correction constructions are attack-
able. However, by no means does that mean that building
a provably secure fuzzy extractor is in general impossible.
What we need are new proofs and constructs.

6.1 Outlook: Secure decoding strategies
Looking forward, what is needed is a provably secure ro-
bust fuzzy extractor that works with efficient concatenated
code constructions to achieve the required error correction
rates. As a starting point the hash-based construction
seems to be very promising since it has considerably better
performance than the construction for the general model
proposed in [3]. The helper data manipulation attacks
discussed in Section 4 show that these attacks strongly
depend on the used error correction code as well as the
decoding strategy an its implementation. But by no means
do our results show that any error correction code or
any implementation could be attacked using helper data
manipulation attacks! In particular, some error correction
codes have a very interesting property that makes them
secure against the helper data manipulation attacks from
Section 4. The most common decoding strategy of a BCH
code is syndrome decoding which works as follows: Assume
that a noisy codeword x′ = x ⊕ e with x ∈ C and
some noise vector e has been received. In the first step
a syndrome s′ is computed with s′ = x′ ·HT . Then from
this syndrome an error location polynomial ē is computed
ē = locate(s′). If e ≤ t then e = ē and x = x′ ⊕ ē. What
is important for us is that there are decoding strategies
for BCH codes based on syndrome decoding for which
the following equation holds for all codewords xi of the
[n, k, 2t+ 1] code C:

ēj = locate
(
(xi ⊕ ej) ·HT)

∀ xi ∈ C, ∀ ej ∈ {0, 1}n and ēj ∈ {0, 1}n
(6)

In other words, the error polynomial ēj is independent of
the codeword xi and only depends on the error polynomial
ej . While it is possible to flip specific bits of the decoded
codeword x̄ with a helper data manipulation attack, it is
not possible to set specific bits. The attacker can no longer
predict x̄ with an increased probability and can therefore
also not compute a hash value h̄a which the PUF device
will accept as valid. Hence, the helper data manipulation
attacks presented in this paper do not work any longer if
a concatenated code construction is used in the RFE-like
construction for which Equation (6) holds.

It therefore seems that it should be possible to build
secure robust fuzzy extractors if the used error correction
codes fulfills Equation (6). However, note that we only
presented a security argument. Proving this in a more
formal setting would be very interesting since this would

enable us to use a relaxed notion of correctness for robust
fuzzy extractors similar as it has been proposed for fuzzy
extractors in [15]. This would allow the use of efficient
concatenated code constructions and possibly even soft-
decision decoding. But it is important to note that this
way not a specific error-correction code construct can be
shown to be provably secure. Instead only specific error
correction strategies could be proven to be secure. In
other words, using a BCH code does not guarantee that
the implemented decoding strategy indeed fulfills Equa-
tion (6). To give an example, consider an [n, k, 2t+1] BCH
code with a small k. The typical decoding strategy for a
BCH code is syndrome decoding. But for codes with a
small k, maximum-likelihood decoding can be used as well
and might be very efficient, especially in hardware imple-
mentations. However, for maximum-likelihood decoding
Equation (6) does not hold and helper data manipulation
attacks are possible (see the attack in Section 5.1).

Another important but difficult aspect is the remaining
min-entropy for concatenated codes if the PUF response
w does not have full bit entropy. While there is a clear
higher bound of the entropy loss in fuzzy extractors [1],
using this bound makes building fuzzy extractors very
challenging [23]. In [8], [24] a more in-depth discussion
regarding this aspect is presented, including a considering
tighter bound than the one assumed in [23]. In how far the
presented attacks can be improved by incorporating such
reductions in the PUF response entropy is an interesting
research question.

6.2 Random oracle model vs general model
From a practical perspective, the first robust fuzzy ex-
tractor proposal by Boyen et al. [2] based on hash
functions is very compelling since it only requires a hash
function which needs to be implemented for the fuzzy
extractor anyway. Furthermore, it is very straightforward
and easy to implement and to understand. The fact that
it is “only” secure in the random oracle model is not
seen as a big problem from a practical perspective. To
put it bluntly, hardware security engineers have much
bigger problems than the assumptions in the random
oracle model. For example, in practice it is impossible to
determine the exact entropy within a PUF or a biometric
reading. The best we can do is perform measurements and
simulations and approximate the entropy based on some
assumptions. However, this will never be hundred percent
accurate and proofing the assumptions made about the
entropy is impossible. Therefore sacrificing nearly half of
the entropy so that the system is also provably secure
in the standard model does not really make sense from
a practical perspective. As a result the construction by
Dodis et al. [3] that is provably secure in the general
model has basically been ignored by the PUF community.
It should also be noted that the problem of robust fuzzy
extractors in general has been largely neglected by the
PUF community. Usually, the need of security against an
active attacker is acknowledged but this is usually only



13

followed by the remark that in this case hash-based robust
fuzzy extractor construction should be used. However, it
appears that the details of the proofs and definitions of
the robust fuzzy extractor have not been really considered.
Therefore, the fact that it is actually not possible to extend
the popular fuzzy extractor constructions to robust fuzzy
extractors has not been discussed.

From a theoretical perspective, the construction that is
secure in the general model is more compelling since it
has less assumptions. The construction for the standard
model therefore has gained much more attention in theory
oriented papers [5], [4]. However, the fact that the small
error correction rate of robust fuzzy extractors is actually
the most limiting factor for a provable as well as practical
robust fuzzy extractor has not been identified. Coming
up with a provably secure robust fuzzy extractor with a
relaxed notion of correctness (i.e., based on a non well-
formed secure sketch) would have a big practical impact,
even if it is proven in a weaker security model than the
random oracle model or general model.

7 Conclusion
This work shows that i) currently no robust fuzzy ex-
tractor construction exists that fulfills the security proof
while also achieving the required error correction rates for
PUF based key generation and ii) many implementations
of decoding algorithms for error correction codes used
in PUF-based key generation schemes are susceptible to
helper data manipulation attacks even when used in a
hash-based construction. Hence, our results show that the
problem of building robust fuzzy extractors is actually
not solved yet. Our attack on the widely used Reed-
Muller decoding shows that there is a great need to build
robust fuzzy extractors that are secure against helper data
manipulation attacks. While this paper mainly presented
negative results and attacks, this by no means mean that
building secure robust fuzzy extractors is a lost cause:
By considering specific decoding strategies it seems that
it should be possible to build both (provably) secure
and practical robust fuzzy extractor. However, for this a
combined effort of both practitioners as well as theorist is
needed.
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Appendix

Security bound for the general construction from Dodis et
al.

Theorem 2: Security Bound for the general construct
from Dodis et al. [4] :
A binary linear [n, k, 2t+ 1] code used in a robust sketch
as defined in [4] that does not fulfill the following bound is
not provably secure according to the proof provided in [4]:

k

2 ≥ log
( t∑

i=1

(
n

i

))
+log

(
2
⌈

k

n− k
+ 2
⌉)
−1 (7)

Proof: Our Theorem is based on Theorem 3 from [4].
In [4] slightly different notions are used than in this paper
and the paper from Boyen [2]. In particular the new notion
of pre- and post-application robustness is introduced. We
will not discuss these definitions and refer the interested
reader to [4]. A few variables used in Theorem 3 [4] can
be confusing since we use them differently in this paper
and therefore we marked variables from Theorem 3 [4]
that have a different meaning in this paper with a tilde.
Furthermore, V olMt is denoted in [4] with B. In Theorem
3 from [4] it is stated that for any ε, δ satisfying

l ≤ 2m−n−k̃−2max
{
log(V olMt ) + log

(
2
⌈
n− k̃
k̃

+ 2
⌉)

+log
(

1
δ̃

)
, 2log

(
1
ε̃

)}
(8)

(Gen,Rec) is an (m, l, t, ε̃)- fuzzy extractor forM with pre-
application robustness δ̃. The pre-application robustness is
basically the chance that an active attacker can perform
a helper data manipulation attack while ε̃ is the success
probability of a passive attacker. Hence, ε = δ̃ as we
denoted the attack probability of an active attacker with
ε in this paper. For a linear [n, k, 2t − 1] code k̃ = n − k
and the maximum possible entropy m is m = n. The
variable l is the length of the resulting key in bits. We are
again interested in an impossibility result that shows that
codes not fulfilling the bound cannot be secure (but again
fulfilling the bound does not necessarily mean the robust
fuzzy extractor is secure). One can bound the attackers
success probability ε with:

l ≤ 2m− n− k̃ − 2(log(V olMt ) + log

)
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⌈
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)
) + 2

⌉
+ log

)
(1
ε

)
)

l
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n

i

))
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⌉)

+log(ε)

log(ε) ≥ log
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i
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−k2 −

l

2
(9)

Since l ≥ 1 and ε ≤ 1 we can define the following bound

that needs to be fulfilled:

log(1) ≥ log(ε) ≥ log
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