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Abstract. We study the security of symmetric encryption schemes in
settings with multiple users and realistic adversaries who can adaptively
corrupt encryption keys. To avoid confinement to any particular defini-
tional paradigm, we propose a general framework for multi-key security
definitions. By appropriate settings of the parameters of the framework,
we obtain multi-key variants of many of the existing single-key security
notions.
This framework is instrumental in establishing our main results. We show
that for all single-key secure encryption schemes satisfying a minimal
key uniqueness assumption and almost any instantiation of our general
multi-key security notion, any reasonable reduction from the multi-key
game to a standard single-key game necessarily incurs a linear loss in
the number of keys. We prove this result for all three classical single-key
security notions capturing confidentiality, authenticity and the combined
authenticated encryption notion.
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1 Introduction

In theory, most symmetric and public key cryptosystems are considered by de-
fault in a single-key setting, yet in reality cryptographic ecosystems provide an
abundance of keys—and hence targets—for an adversary to attack. Often one
can construct a reduction that shows that single-key security implies multi-key
security, but typically such a reduction is lossy: an adversary’s multi-key ad-
vantage is roughly bounded by the single-key advantage times the number of
keys n in the ecosystem. The ramifications of such a loss can be debated [16],
but undeniably in a concrete setting with perhaps 230 to 240 keys in circulation,
an actual loss of 30 to 40 bits of security would be considerable. Therefore the
natural question arises to what extent this loss in the reduction is inevitable.
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This inevitable loss of reductions from multi-key to single-key has previ-
ously been addressed by Bellare et al. [6] when introducing multi-key security
for public key schemes. Specifically, they provided a counterexample: namely a
pathological encryption scheme that has a small chance (about 1

n , where n is a
parameter) of leaking the key when used in a single-key environment. In a multi-
key scenario, where there are n key pairs, insecurity of the scheme is amplified
to the point where it becomes a constant. It follows that any generic reduction,
i.e. a reduction that works for any scheme, from the multi-key to single-key se-
curity must lose a factor of about n. A similar example can be concocted for
symmetric schemes to conclude that there cannot be a tight generic reduction
from a multi-key game to a single-key game for symmetric encryption, i.e. a
reduction that works for all encryption schemes, since the reduction will not
be tight when instantiated by the pathological scheme. However, this does not
rule out all reductions, since a tighter reduction could exist that exploits specific
features of a certain class of (non-pathological) schemes.

Consider a setting with a security notion G for primitives (e.g. pseudoran-
domness for blockciphers), a security notion H for constructions (e.g. ciphertext
integrity for authenticated encryption), and suppose we are given a specific con-
struction C[E ] building on any instantiation E of the primitive. A reduction R
would take adversary A against the H property of the construction and turn it
into one against the G property of the primitive. To be black-box, the reduction
R should not depend on A, but instead only use A’s input/output behaviour.
However, when considering black-box reductions, it turns out there are many
shades of black. Baecher et al. [4] presented a taxonomy of black-box reductions;
the shades of black emerge when considering whether R may depend on the con-
struction C and/or the primitive E or not. A fully black-box (BBB) reduction
works for all C and E , while partially black-box (NBN) reductions can depend
on the specific choice of C and E .

The pathological encryption schemes used as counterexamples are by nature
rather contrived and the one used by Bellare et al. is of dubious security even
in the single-key setting [6]. The counterexamples suffice to rule out tight BBB
reductions, but they do not rule out the existence of potentially large classes of
encryption schemes—perhaps practical ones, or even all secure ones—for which
a tight NBN reduction does exist. Clearly, such an NBN reduction could not be
generic, but instead would have to exploit some feature of the specific primitive
or construction under consideration. Even when the primitive is assumed ‘ideal’
as is common in symmetric cryptology, the relevant reductions typically still
depend on the details of the construction at hand, and are therefore not fully
(BBB) black-box. Concluding, for secure schemes the relation between single-key
and multi-key security is still largely unsettled.

Our Contribution. Focusing on authenticated encryption (AE) schemes, we
make two main contributions: a general multi-key security definition including
corruptions and lower-bounds on the tightness of black-box (NBN) reductions
from the multi-key security to the single-key security of AE schemes.
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General Security Definition. The first complication we face is the choice of se-
curity notions. As we recall in more detail in Sect. 2.1, there are many different
ways of defining single-key security for AE. For instance, confidentiality can be
expressed in several (not necessarily equivalent) ways, including left-or-right in-
distinguishability (LRIND) and ciphertexts being indistinguishable from random
strings (IND). Moreover there are different ways of treating nonces; each defines
a slightly different security notion.

When moving to a multi-key setting, the water becomes even more muddied,
especially when considering adaptive corruptions as we do. Adaptive corruptions
allow an adversary to learn some of the keys during the course of the multi-key
game; it models the real-life circumstance that not all keys will remain secret
and some will leak. In this setting, security can be formulated in (at least) two
ways: firstly using a hidden bit bi for each key Ki, with the adversary having to
guess the bit bi for a key Ki that has not been corrupted; and secondly, using a
single hidden bit b determining the ‘challenge’ oracles for all n keys (e.g. left or
right, real or random) with the adversary having to guess this bit b, under the
restriction that no single key gets both corrupted and challenged.

As we explain in the full version of the paper [31], these two approaches do
not appear to be tightly equivalent to each other. Furthermore, notions that used
to be equivalent in the single-key setting suddenly start drifting apart, something
previously observed in the multi-instance setting [8]. Again, this creates a bit of
a conundrum as to what is the ‘right’ multi-key security notion, where we want
to avoid a situation where we show that a reduction loss targeting one security
notion is inevitable, while leaving the door open for tight reductions targeting
another.

To avoid having to make a choice, we instead provide a general definition
for multi-key security game (Definition 7) that allows us to plug in the ‘flavour’
of AE security we desire, and of which the two approaches for dealing with
corruptions in a multi-key setting are special cases.

Lower Bounds on the Loss for Simple Reductions. Roughly speaking, we show
that for any member Gn of a large class of n-key security games that allow for
adaptive corruptions and for most AE schemes C[E ] built on a single-key secure
AE scheme E (including C[E ] = E), any black-box reduction from Gn for C[E ]
to a standard single-key security game H1 for E incurs a loss that is close to n.
By ‘black-box’, we mean at least NBN: the reduction must be black-box with
respect to the adversary against Gn but can depend on C and E .

Fig. 1 shows both the logic of our approach and the overall results. The main
idea is to first consider a very weak n-key security game, Kn, and show that
reductions from Kn to H1 are lossy. Then, for any n-key game Gn that tightly
implies Kn, the loss from Gn to H1 will have to match that from Kn to H1 (or a
contradiction would appear when composing the reduction from Kn to Gn with
that from Gn to H1). Our weak security notion Kn is a 1-out-of-n key recovery
game where the adversary first sees encryptions of fixed messages under all n
keys, then corrupts all but one key and must try to guess the uncorrupted key.
The choice for the three H1 notions AE–PAS, IND–PAS, and CTI–CPA is inspired
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Gn = GOAL–POWERX,n
C[E] Kn = KEYRECM,n

C[E]

H1 ∈ {AE–PASX,1
E , IND–PASX,1

E ,CTI–CPAX,1
E }

Lemma 12

Cor. 18 Thm. 15

Fig. 1. A roadmap of our results, showing that some reductions between the security
notions for authenticated encryption are necessarily lossy. A green arrow G → G′

indicates that there is a non-lossy reduction from G′ to G (so security in the sense
of G implies security in the sense of G′). A red arrow G → G′ indicates that all
reductions from G′ to G have a loss that is linear in n. Theorem 15 and Corollary 18
concern H1 = AE–PASX,1

E ; the other choices of H1 are treated in the full version of the
paper [31].

by their ubiquity in current AE literature (the naming convention is clarified in
Sect. 2.1).

To show for each choice of H1 that reductions from Kn for C[E ] to H1 for
E are lossy, we use three meta-reductions. Unlike using pathological schemes
as counterexamples, meta-reductions can easily deal with NBN reductions that
depend on the construction C and scheme E : a meta-reduction M simulates an
ideal adversary A against C[E ] for a reduction R and then uses R to break E [3,
14,19]. Then one finds the inevitable loss factor of R by bounding the advantage
ofM (in its interaction with R) by the advantage of the best possible adversary
against E . We remark that this technique is vacuous for insecure schemes E as
the resulting bound on the advantage of M is not meaningful.

More precisely, we show that for the three choices of H1, any black-box reduc-

tion running in time at most t from Kn for C[E ] to H1 for E must lose
(
1
n + ε

)−1
,

where ε is essentially the maximum advantage in H1 of an adversary running in
time n · t. These results hold provided that C[E ] is key-unique: given sufficient
plaintext–ciphertext pairs the key is always uniquely determined. For almost all
variants Gn of our general n-key security game, there is a tight reduction from
Kn to Gn (Lemma 12); combining this tight reduction with the unavoidable loss
from Kn to H1 shows that any black-box reduction from Gn to H1 is lossy.

In summary, we show that for almost any variant Gn of the general n-key

security game and for H1 ∈
{
AE–PASX,1

E , IND–PASX,1
E ,CTI–CPAX,1

E

}
, if E is

“secure” in the sense of H1 and C[E ] is key-unique, then any black-box reduction
from Gn to H1 with a “reasonable” runtime loses approximately n.

Related Work. The idea of using a weak auxiliary security game to prove
that reductions are lossy for more meaningful games was pioneered by Bader
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et al. for public key primitives [3]. Bader et al. considered as their H1 notion a
non-interactive assumption, whereas our H1 games are highly interactive. The
main obstacle here is that our meta-reduction needs to simulate an appropriate
environment towards n copies of the reduction, while having access only to
a single set of oracles for the considered single-key game. Thus we are forced
to devise an additional mechanism that allows the meta-reduction to simulate
responses to the oracle queries made by R and prove that R cannot distinguish
this simulation from the real oracles in its game.

Multi-key security was first considered in the public key setting [6], extending
the LRIND–CCA notion to a single-bit multi-key setting without corruptions. A
simple hybrid argument shows the loss of security is at most linear in the number
of keys; furthermore this loss is inevitable as demonstrated by a counterexample.
Relatedly, for many schemes a generic key recovery attack exists whose success
probability is linear in both time and the number of keys n [10, 11, 22]. For
schemes where this generic key recovery attack is actually the best attack (in
both the single-key and n-key games), this shows that security in the n-key
setting is indeed n times less than in the single-key setting. However, even for
very secure schemes it is unlikely that key recovery is the optimum strategy for
e.g. distinguishing genuine ciphertexts from random strings.

The danger of ignoring the loss in reductions between security notions is
by now widely understood [15, 16] and has served as motivation for work on
improved security analysis that avoid the loss of generic reductions. Recent re-
sults include multi-user security for Even–Mansour [34], AES-GCM with nonce
randomisation [9], double encryption [26], and block ciphers [44].

Tightness is better understood in the public key setting than in the symmetric
setting. There are, for instance, many constructions of (identity-based) public-
key encryption [6,13,17,24,28], digital signatures [1,12,27,32,33,42], key exchange
protocols [2], as well as several different types of lower bounds and impossibility
results [18,21,23,29,36]. We emphasise that, for signature schemes and public key
encryption schemes, ‘tightly secure’ means that the reduction from the scheme
to some complexity assumption does not incur a multiplicative loss equal to the
number of signing or encryption queries.

There exist several other previous works describing meta-reductions from
interactive problems, such as the one-more discrete logarithm (OMDL) prob-
lem [19,23,36,43]. However, all these works have in common that they consider
a significantly simpler setting, where the reduction is rewound a much smaller
number of times (typically only once), and with only a single oracle (the discrete
logarithm oracle).

2 Preliminaries

Notation. For any integer n ≥ 1 we use [n] to denote the set {1, . . . , n} and
for any i ∈ [n] we use [n \ i] to denote the set [n] \ {i}. For any finite set S we
write x←$S to indicate that x is drawn uniformly at random from S. In any
security experiment, if an adversary A has worst-case runtime t, then we say
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A is a t-adversary. When A is clear from the context, we write tA for its worst
case runtime. Since our security notions are concrete, rather than asymptotic (as
is standard for symmetric cryptography), we loosely use the term “secure” to
mean that, for all reasonable values of t, the advantage of any t-adversary in the
relevant security game is close to 0. Of course, what constitutes a “reasonable”
runtime depends on the model of computation and is beyond the scope of this
work.

2.1 Authenticated Encryption

Syntax. Both the syntax and security definitions for symmetric and then au-
thenticated encryption have evolved over the years. We will use the modern
perspective where encryption is deterministic and takes in not just a key and
a message, but also a nonce, which could be used to provide an explicit form
of randomization. Our syntax is summarised in Definition 1 and is a simplifica-
tion of that used for subtle authenticated encryption [5]. For simplicity, we omit
any associated data, though our later results could be extended to that setting;
moreover we are not interested in the ‘subtle’ aspect, where decryption might
‘leak’, e.g. unverified plaintext or multiple error symbols.

Definition 1 (Authenticated Encryption). An authenticated encryption
scheme is a pair of deterministic algorithms (E ,D) satisfying

E : K× N×M→ C

D : K× N× C→ M ∪ {⊥}

where K, M, N and C are subsets of {0, 1}∗ whose elements are called keys, mes-
sages, nonces and ciphertexts respectively. The unique failure symbol ⊥ indicates
that C was not a valid encryption under the key K with nonce N .

As is customary, we abbreviate E(K,N,M) by ENK (M) and D(K,N,C) by
DN

K(C) and assume throughout that all authenticated encryption schemes satify,
for all K ∈ K, N ∈ N,M ∈ M and all C ∈ C, the following three properties:

1. (correctness) DN
K

(
ENK (M)

)
= M ,

2. (tidiness) DN
K(C) 6= ⊥ ⇒ ENK

(
DN

K(C)
)

= C,
3. (length-regularity) |ENK (M)| = enclen(|M |) for some fixed function enclen.

Correctness and tidiness together imply that D is uniquely determined by E ,
allowing us to refer to the pair (E ,D) simply by E [35].

Single-Key Security Notions. An authenticated encryption scheme should
provide both confidentiality and authenticity. When defining an adversary’s ad-
vantage, we separate these orthogonal properties by looking at the IND–PAS
and CTI–CPA security games, while also considering their combination AE–PAS
in a single game [39]. Below we discuss these notions in more detail, however
we defer formal definitions of the relevant games and advantages to the next
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section, where they will be viewed as a special case of the multi-key games given
in Definition 7 (cf. Remark 9).

The notions IND–PAS, CTI–CPA and AE–PAS are commonly called IND–CPA,
for indistinguishability under chosen plaintext attack; INT–CTXT, for integrity
of ciphertexts; and AE, for authenticated encryption (respectively). However, we
adhere to the GOAL–POWER naming scheme [5]. It makes explicit that, in the
first case, the adversary’s goal is to distinguish between real ciphertexts and
random strings (IND, for indistinguishability) without access to any additional
oracles (PAS, for passive); in the second case, the adversary’s goal is to forge
a well-formed ciphertext (CTI, for ciphertext integrity) and has access to an
‘always-real’ encryption oracle (CPA, for chosen plaintext attack); and in the
third case, the adversary tries to either distinguish real ciphertexts from random
strings or forge a well-formed ciphertext (AE, for authenticated encryption),
without having access to any additional oracles (PAS). For the notions above,
we opted for minimal adversarial powers: it is often possible to trade queries to
additional oracles (such as a true encryption oracle) for queries to the challenge
oracle. We refer to Barwell et al. [5] for an overview of known relations between
various notions.

Nonce Usage Convention. All three of the games above have variants according
to how nonces may be used by the adversary in the game:

1. In the IV-based setting, denoted IV, the adversary is required to choose
nonces uniformly at random for each encryption query.

2. In the nonce-respecting setting, denoted NR, the adversary chooses nonces
adaptively for each encryption query, but may never use the same nonce in
more than one encryption query.

3. In the misuse-resistant setting, denoted MR, the adversary chooses nonces
adaptively for each encryption query and may use the same nonce in more
than one encryption query.

Remark 2. The customary definition for IV-based security lets the game select
the IVs [35]. We prefer the recent alternative [5] that provides the same in-
terface across the various notions by restricting the class of valid adversaries
in the IV-based setting to those who always provide uniformly random nonces
in encryption queries. (Note that there is no need to check the distribution of
nonces.) This gives a subtly stronger notion, as a reduction will no longer be able
to ‘program’ the IV, which it would be allowed to do in the classical definition
(cf. [20, 30]).

The results in this paper hold with the alternative, customary formulation
of IV-based encryption, with only cosmetic changes to the proof (to take into
account the changed interface).

Different Confidentiality Goals. Above we captured the confidentiality goal IND
as distinguishing between real ciphertexts and random strings of the appropriate
length. However, there are several competing notions to capture confidentiality,
all captured by considering a different challenge encryption oracle:
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– In left-or-right indistinguishability (LRIND) the challenge oracle is LR; on
input (M0,M1, N), this oracle returns ENK (Mb) (here b is the hidden bit that
the adversary must try to learn).

– In real-or-random indistinguishability the challenge oracle, on input (M,N),
returns either ENK (M) or ENK ($), where $ is a random string of the same length
as M .

– In pseudorandom-injection indistinguishability the challenge oracle, on input
(M,N), returns either ENK (M) or ρN (M), where ρ is a suitably sampled
family of random injections [25,39].

In the single-key setting, these four notions can be partitioned into two
groups of two each, namely left-or-right and real-or-random on the one hand and
IND and pseudorandom-injection indistinguishability on the other. Within each
group, the two notions can be considered equivalent, as an adversary against one
can be turned into an adversary against the other with the same resources and
a closely related advantage. Furthermore, security in the IND setting trivially
implies security in the LRIND setting, but not vice versa.

Summary. Thus, for each authenticated encryption scheme E , we potentially
obtain 5 × 4 = 20 security games (see Fig. 2) and for each we need to consider
three classes of adversary depending on nonce usage behaviour. However, for
single-key security, we will concentrate on nine notions only, namely GX,1

E , where

G ∈ {AE–PAS, IND–PAS,CTI–CPA},
X ∈ {IV,NR,MR}

and where the 1 in the superscript indicates that these are single-key security
games.

Remark 3. In this paper we use meta-reductions to analyse reductions from
multi-key games to single-key games for authenticated encryption. We show
that, for any AE scheme that is secure in a single-key sense, any reduction from
the multi-key game to the single-key game is lossy. We do not need to consider
equivalent single-key notions separately, as any scheme that is secure according
to one notion will be secure according to the other, and one can convert between
the single-key games without (significant) additional loss. From this perspec-
tive, we can leverage known equivalences as mentioned above. However, the set
{AE–PAS, IND–PAS,CTI–CPA} does not provide a comprehensive set of meta-
reduction results; for that we would have to consider for example LRIND–PAS
and IND–CCA as well (the full set would contain eight games). Nevertheless, our
results capture the single-key notions that are most commonly used.

2.2 Black-Box Reductions

Informally, a reduction R is an algorithm that transforms an adversary A in
some security game G into an adversary R(A) in a different security game G′.
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Enc – Dec AE

– LR Dec LRAE

Enc – – IND

– LR – LRIND

– – Dec CTI

—

CCA E D

CPA E –

CDA – D

PAS – –

Fig. 2. The oracles available to the adversary for each GOAL–POWER security notion.
Formal definitions of each oracle are given in Fig. 4. (Many thanks to Guy Barwell for
providing this diagram.)

One hopes that, if the advantage AdvG(A) of A in G is high, then the advantage

AdvG
′
(R(A)) is also high. Here R breaks some scheme E , given an adversary

A that breaks a construction C[E ] that uses E . The construction C is typically
fixed, so the reduction R may depend on it (though to unclutter notation we
leave this dependency implicit). On the contrary, when discussing the reduction
R, E is crucially quantified over some class of schemes C.

Three properties of a reduction R are usually of interest: how the resources,
specifically run-time, of the resulting adversary R(A) relate to those of A; how
the reduction translates the success of A to that of R(A); and how ‘lossy’ this

translation is, i.e. how AdvG
′
(R(A)) compares to AdvG(A). The overall picture

for a reduction, especially its loss, strongly depends on the class C of schemes
considered.

Formally, we take into account both the translation S and the relation T in
runtime into account by considering the quotient of A and R(A)’s work factors,
themselves defined as the quotient of time over success probability (cf. [3]).

Definition 4. We say that R is a (S,T) reduction from G to G′ if for every tA-

adversary A against G, RA is an T(tA)-adversary against G′ and AdvG
′
(R(A)) =

S(AdvG(A)). Furthermore, the tightness of a reduction R relative to the class of
schemes C is defined as

sup
A,E

AdvG(A) · tR(A)

AdvG
′
(R(A)) · tA

= sup
A,E

T(tA) · AdvG(A)

tA · S(AdvG(A))

where the supremum is taken over all schemes E in C and all (valid) adversaries
A against E.

Remark 5. Our quantification over valid adversaries only is inspired by the AE
literature’s reliance on only considering adversaries satisfying certain behaviour
(e.g. to avoid trivial wins, or distinguish between IV, NR, and MR settings). In all
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cases, one can recast to a security game that incorporates checks and balances
to deal with arbitrary adversarial behaviour. This recasting is without loss of
generality as an adversary in this more general game will be ‘aware’ that it is
making a ‘bad’ query and this bad behaviour does not influence the state of the
game (cf. [7]). Of course, when determining S we do need to take into account
whether the reduction R preserves validity.

In this paper we are concerned with simple, black-box reductions: these are
reductions that have only black-box access to adversary A, and that run A
precisely once (without rewinding). For a (S,T) simple reduction R we have that
T(tA) = tA+tR, where tR is the time taken for whatever additional workR does.
Henceforth, we write tR for this quantity, whenever R is a simple reduction.

These reductions compose in the obvious way: if R1 is a simple (S1,T1)
reduction from G1 to G2 and R2 is a simple (S2,T2) reduction from G2 to G3,
then we can construct a simple (S3,T3) reduction R3 from G1 to G3, where
S3(ε) = S2(S1(ε)) and T3(t) = T2(T1(t)).

Bounding Tightness. Precisely evaluating the tightness of a reduction can be
difficult, yet to show that for schemes in C any simple reduction R loses at least
some factor L, it suffices to show that for any R there exists a scheme E ∈ C
and a valid adversary A such that

AdvG(A)

AdvG
′
(R(A))

≥ L. (1)

Indeed, the desired lower bound follows since, for simple reductions, T(tA) ≥ tA.
We briefly discuss two distinct techniques to establish a bound such as the

one above, in which the order of quantifiers is (∀R∃E∃A):

– Counterexample (∃E∀A∀R). Here, one shows that there exists a scheme E ∈
C such that for any adversaryA and any reductionR, inequality 1 is satisfied.
One drawback of such results is that they only imply the desired lowerbound
for a class of schemes C containing E ; tighter reductions might be possible
in the class C′ := C \ {E}. Moreover, if the counterexample scheme E is an
artificially insecure scheme (e.g. the one used by Bellare et al. [6]), then the
lowerbound might not hold within the class of secure schemes, which are
obviously of greater significance in practice.

– Meta-reduction Lowerbound (∀E∃A∀R). For any E ∈ C, this technique con-
structs an idealised adversary A with advantage 1 and then shows, via a
meta-reduction simulating A, that any simple reduction interacting with A
must have advantage at most L−1, yielding inequality 1. Thus we show that
the loss is a property of the reduction R, and not of the particular choice of
E ∈ C. The results in this paper, using the meta-reduction approach, hold
when C is any non-empty subset of the class of secure schemes that satisfy
the key uniqueness assumption. Since C could contain just one element E ,
our results show that even a reduction that is tailored to the specific details
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of E cannot be tight. On the other hand, our results are not directly compa-
rable to those of Bellare et al. [6], since the artificially insecure scheme used
in their counterexample does not belong to any class C we consider here.

Remark 6. An alternative definition of tightness might consider only ‘reason-
able’ adversaries A in the supremum, namely those for which tA is not too large.
Our meta-reduction approach would not work in this setting, since the idealised
adversary A we construct has an extremely large (and wholly unfeasible) run-
time as it performs an exhaustive search over all possible keys. Nevertheless,
reductions R that are black-box with respect to A have no way of ‘excluding’
such unrealistic adversaries and so we feel it is not reasonable to exclude them
in the definition of tightness. We remark that unrealistic adversaries are not
uncommon in the meta-reduction literature [3].

3 Multi-Key Security Notions

Multi-Key Security with Adaptive Corruptions. In the single-key case,
the challenge oracles depend on a single hidden bit b and it is the job of the
adversary to try and learn b. The straightforward generalization [6] to a multi-
key setting (with n keys) is to enrich all the oracles to include the index i ∈ [n]
of the key Ki that will then be used by the oracle. Thus the challenge oracles
for distinct keys will all depend on the same single hidden bit b.

However, in a realistic multi-key setting, an adversary might well learn some
of the keys. For instance, consider the situation where an attacker passively mon-
itors millions of TLS connections and adaptively implants malware on particular
endpoint devices in order to recover the session keys for those devices. We still
want security for those keys that have not been compromised; the question is
how to appropriately model multi-key security.

There are two natural approaches to model multi-key security games in the
presence of an adaptive corruption oracle Cor that, on input i ∈ [n], returns the
key Ki. The approaches differ in how they avoid trivial wins that occur when the
adversary corrupts a key that was used for a challenge query. In one approach,
the same bit is used for the challenge queries throughout, but the adversary is
prohibited from using the same index i for both a corruption and challenge query
(cf. [37]). In another approach, for each index i there is an independent hidden
bit bi to guess and the adversary has to specify for which uncorrupted index its
guess b′ is intended (cf. [8]).

As far as we are aware, these two approaches have not been formally com-
pared; moreover we could not easily establish a tight relationship between them.
However, as we show, both options lead to a reduction loss linear in n. To do so,
we will use a novel way of formalizing a multi-key security game with adaptive
corruptions that encompasses both options mentioned above.

In our generalised game (Definition 7) there are n independently, uniformly
sampled random bits b1, . . . , bn. Each challenge query from the adversary must
specify two indices, i, j ∈ [n], such that the response to the query depends on
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Experiment GOAL–POWERX,n
E (A):

K1, . . . ,Kn←$K
b1, . . . , bn←${0, 1}
(j, b′j)← AO
Return

(
b′j = bj

)

Fig. 3. The GOAL–POWERX,n
E games, where X ∈ {IV,NR,MR}, n ≥ 1, GOAL ∈

{AE, LRAE, IND, LRIND,CTI} and POWER ∈ {CCA,CPA,CDA,PAS}. The oracles O
available to the adversary always include the corruption oracle Cor; the other oracles
depend on GOAL and POWER, as indicated in Fig. 2.

key Ki and hidden bit bj . The two ‘natural’ multi-key games are special cases of
this general game: in the single-bit game the adversary is restricted to challenge
queries with j = 1, whereas in the multi-bit game only challenge queries with
i = j are allowed.

Our impossibility results hold regardless how the hidden bits are used: we
only require that for any i ∈ [n] there exists some j ∈ [n] such that the adversary
can make a challenge query corresponding to Ki and bj . In other words, our
impossibility results hold provided that the adversary can win the game by
‘attacking’ any of the n keys in the game, not just some subset of the keys.

Definition 7 (Security of AE). Let GOAL ∈ {AE, LRAE, IND, LRIND,CTI},
POWER ∈ {CCA,CPA,CDA,PAS}, X ∈ {IV,NR,MR} and n ≥ 1. Then for any
authenticated encryption scheme E and adversary A, the advantage of A against
E with respect to GOAL–POWERX,n is defined as

AdvGOAL–POWER,X,n
E (A) := 2 ·Pr

[
GOAL–POWERX,n

E (A) = 1
]
− 1 ,

where the experiment GOAL–POWERX,n
E (A) is defined in Fig. 3, with the oracles’

behaviour shown in Fig. 4 and their GOAL–POWER-dependent availability in
Fig. 2 (all games have access to Cor).

Whenever the experiment G = GOAL–POWERX,n
E (A) is clear from the con-

text, we write AdvG(A) for the advantage of A in experiment G.
The outline games are deliberately kept simple, but are trivial to win: if A

corrupts a key Ki and then issues a challenge query corresponding to Ki and
a hidden bit bj , then it is trivial for A to compute bj from the response to the
query; successfully ‘guessing’ bj does not represent a meaningful attack. In our
formal syntax, we say j is compromised iff there is some i ∈ [n] such that A has
issued a query Cor(i) and A has also issued some challenge query of the form
Enc(i, j,−,−), LR(i, j,−,−,−) or Dec(i, j,−,−). We disallow such trivial wins.

Relatedly, we follow the AE literature in disallowing certain combinations of
queries that lead to trivial wins (prohibited queries), or that are inconsistent with
the nonce notion under consideration. Without loss of generality, we also disallow
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Oracle Enc(i, j,M,N): Oracle E(i,M,N):

if bj = 0, C ← ENKi
(M) return ENKi

(M)

else C←${0, 1}enclen(|M|)
return C

Oracle LR(i, j,M0,M1, N): Oracle D(i, C,N):

C ← ENKi

(
Mbj

)
return DN

Ki
(C)

return C

Oracle Dec(i, j, C,N): Oracle Cor(i):

if bj = 0, M ← DN
Ki

(C) return Ki

else M ← ⊥
return M

Fig. 4. Oracles for the GOAL–POWERX,n
E security games. Without loss of generality,

we assume that all oracles return  if the input arguments do not belong to the relevant
sets. For example, the E oracle will return  on any input (i,M,N) that is not a member
of [n]×M× N.

queries where the response from the oracle can be computed by the adversary
directly without making the query, e.g. using correctness (pointless queries). The
relevant—and standard—definitions are given in the appendix. Combining the
various restrictions leads to the notion of valid adversaries (cf. Remark 5), as
summarised in Definition 8 below.

Definition 8 (Valid Adversaries). An adversary against GOAL–POWERX,n
E

is valid iff:

1. it does not output
(
j, b′j

)
where j was compromised;

2. it does not make pointless or prohibited queries;

3. it uses nonces correctly with respect to X.

Remark 9 (Recovering the Single-Key Security Notions). Setting n = 1 in Def-
inition 7 yields formal definitions of the single-key security games for authenti-
cated encryption, albeit with a more complicated interface than one is used to:
the specification of i and j becomes redundant, as does the corruption oracle for
valid adversaries. Indeed, to simplify notation in the case n = 1, we often omit
i and j from the queries made, refer to the hidden bit b1 as b, and only expect
a simple guess b′ by an adversary.

Relations among Multi-Key Notions. We discuss the relations between
different single-user and multi-user security notions in the full version of the
paper [31].
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Experiment KEYRECM,n
E (A):

K1, . . . ,Kn←$K
for i in 1, . . . , n,

for j in 1, . . . , l,
Ni,j←$N

Ci,j ← E
Ni,j

Ki
(Mj)

(i∗, st)← A1

(
(Ci,j , Ni,j)i∈[n],j∈[l]

)
K∗ ← A2

(
(Ki)i∈[n\i∗] , st

)
Return (Ki∗ = K∗)

Fig. 5. Key recovery game with n keys and the hard-coded messages M1, . . . ,Ml.
Without loss of generality, we separate the adversary A into two components A1 and
A2.

Key Recovery Notions. For our meta-reduction, we use an auxiliary, key
recovery game KEYRECM ,n

E (Definition 10). Here there are n unknown keys and
the adversary is provided with encryptions under each of the keys of the hard-
coded (and hence known) messages M ∈ Ml, using known, yet random, nonces.
Then the adversary provides an index i∗ ∈ [n], learns the n− 1 keys (Ki)i∈[n\i∗]
and tries to guess the uncorrupted key.

Definition 10. For any integers n, ` ≥ 1, messages M = (M1, . . . ,M`) ∈ M`,
AE scheme E and any adversary A = (A1,A2), the advantage of A against

KEYRECM ,n
E is defined as

AdvKEYREC,M ,n
E (A) := Pr

[
KEYRECM ,n

E (A) = 1
]
,

where the experiment KEYRECM ,n
E (A) is given in Fig. 5.

Of course, it might be the case that it is impossible to win the key recovery
game with certainty, since there could be more than one key that ‘matches’ the
messages, nonces and ciphertexts. For our tightness results, we need to assume
that there is some reasonably small l and some messages M1, . . . ,Ml such that
the key recovery game corresponding to M1, . . . ,Ml can be won with certainty;
we call this the key uniqueness property; its definition is below.

Definition 11. Let E be an authenticated encryption scheme. Suppose there is
some integer l ≥ 1 and certain messages M1, . . . ,Ml ∈ M such that,for all keys
K ∈ K and all nonces N1, . . . , Nl ∈ N,{

K ′ ∈ K : ENi

K′ (Mi) = ENi

K (Mi) for all i ∈ 1, . . . , l
}

= {K}.

Then we say E is M -key-unique, where M = (M1, . . . ,Ml) ∈ Ml. This means
that encryptions of M1, . . . ,Ml under the same key uniquely determine the key,
regardless of the nonces used.
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As mentioned above, KEYRECM ,n
E corresponds to a very weak notion of se-

curity. In the following Lemma, we prove that this weak notion of security is
implied, with only a small loss, by many of the more reasonable n-key security
notions given in Definition 7. For succinctness we present the reduction in a com-
pact way, but split the analysis in different cases (depending on the adversary
goal and on the requirements to respect uniqueness or not).

Lemma 12. Let GOAL ∈ {AE, LRAE, IND, LRIND,CTI}, POWER ∈ {CCA,CPA}
and suppose E is M -key-unique. Then there exists an (S,T) simple reduction

from KEYRECM ,n
E to GOAL–POWERX,n

E with T(tA) = tA + (l + mGOAL)tE and
S(εA) = δX · δGOAL · εA, where mIND = m ≥ 1, an arbitrary integer; mGOAL = 1
if GOAL 6= IND; tE is a bound on the runtime of a single encryption with E;

δX =

{
1− nl(l−1)+mGOAL(mGOAL+2l−1)

2|N| , if X = NR

1, if X 6= NR

and

δGOAL =

{
1− 1

2m , if GOAL = IND

1, if GOAL 6= IND.

Note that δX and δGOAL are both close to 1: m can be set arbitrarily large and,
for useful encryption schemes, the nonce space N is very large.

Remark 13. We are unable to show a corresponding result for POWER = CDA
or POWER = PAS. This is because we need the ‘always real’ encryption oracle E
to simulate the environment of A in the key recovery game. As a consequence,
looking forward, our lower bounds for tightness of simple reductions hold only
for n-key games with such an oracle. Nevertheless, we feel it is natural to give
the n-key adversary access to the E oracle so that, for example, the adversary
can use queries to this oracle to determine which keys to corrupt and which to
challenge.

Proof. We construct RA that runs the key recovery adversary A to obtain the
key used by the challenge oracle(s) and then uses it to guess the hidden bit b1.
Therefore RA will return (1, b′1) and wins if b′1 = b1.

For each i ∈ [n] and j ∈ [l], RA samples Ni,j←$N and then queries the
encryption oracle E on input (i,Mj , Ni,j), receiving Ci,j (unless RA has made
this query before, since this is a pointless query, in which case it just sets Ci,j

to be the response from the last time the query was made). Then RA passes
(Ci,j , Ni,j)i∈[n],j∈[l] to the key recovery adversary A.

When A returns an index i∗, RA queries Cor on each i ∈ [n \ i∗] and passes
(Ki)i∈[n\i∗] to A.

When A returns a key K∗, RA checks if ENi∗,j
K∗ (Mj) = Ci∗,j for each j ∈ [l]. If

not, then A has been unsuccessful, so RA samples a random bit b′1←${0, 1} and
returns (1, b′1). If the tests all succeed, then by M -key-uniqueness, K∗ = Ki∗ .
Then RA does the following:
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– If GOAL = IND, for i = 1, 2, . . . ,m (for some “large” m),RA chooses random
M∗i ←$M and N∗i ←$N such that M∗i 6= Mj for all j ∈ [l]. Then RA queries
Enc on input (i∗, 1,M∗i , N

∗
i ), receiving C∗i . If for all i = 1, 2, . . . ,m it holds

that EN
∗
i

K∗ (M∗i ) = C∗ then RA returns (1, 0). Else, RA returns (1, 1).
– If GOAL = LRIND, RA chooses random M∗0 ,M

∗
1 ←$M and N∗←$N such

that |M∗0 | = |M∗1 |, M∗0 6= Mj and M∗1 6= Mj for all j ∈ [l]. Then RA
queries LR on input (i∗, 1,M∗0 ,M

∗
1 , N

∗), receiving C∗. If EN∗K∗ (M∗0 ) = C∗,
RA returns (1, 0). Else, RA returns (1, 1).

– If GOAL ∈ {AE, LRAE,CTI}, RA chooses random M∗←$M and N∗←$N
such that M∗ 6= Mj for all j ∈ [l]. Then RA computes C∗ ← EN∗K∗ (M∗) and
queries Dec on input (i∗, 1, C∗, N∗), receiving M . If M 6= ⊥, RA returns
(1, 0). Else, RA returns (1, 1).

For GOAL ∈ {LRIND,AE, LRAE,CTI}, the adversary RA returns (1, b) with
b = b1 whenever the adversary A against key recovery is successful.

For GOAL ∈ {IND}, the adversaryRA always returns the correct bit if b1 = 1.
It also returns the correct bit b1 = 0, provided that the random ciphertexts
(C∗i )i∈[m] that oracle Enc returns do not all collide with the true ciphertexts

EN
∗
i

K∗ (M∗i ). This collision event occurs with probability at most 1
2m .

In other words, for GOAL ∈ {IND, LRIND,AE, LRAE,CTI}, R succeeds when-
ever A succeds if b1 = 0, while, if b1 = 1, then R succeeds with the same
probability that A succeds multiplied by δGOAL, where δGOAL = 1 for GOAL ∈
{LRIND,AE, LRAE,CTI} and δGOAL =

(
1− 1

2m

)
for GOAL = IND.

Whenever A does not recover K∗, RA guesses correctly with probability 1
2 .

Putting it all together we get the following:

Pr
[
GOAL–POWERX,n

E (RA) = 1
]

= Pr
[
KEYRECM ,n

E (A) = 1
]
·
(

1− 1− δGOAL

2

)
+

1

2
·
(

1− Pr
[
KEYRECM ,n

E (A) = 1
])

= Pr
[
KEYRECM ,n

E (A) = 1
]
·
(

1

2
− 1− δGOAL

2

)
+

1

2
,

from which we obtain

AdvGOAL–POWER,X,n
E (RA) = 2

(
Pr
[
GOAL–POWERX,n

E (RA) = 1
]
− 1

2

)
= δGOAL · Pr

[
KEYRECM ,n

E (A) = 1
]

= δGOAL · AdvKEYREC,M ,n
E (A)

= δGOAL · εA.

Ignoring the time taken for random sampling, the runtime of RA is precisely
the runtime of A, plus the time taken for additional encryptions using K∗: if
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GOAL = IND, there are l+m additional encryptions and, if GOAL 6= IND, there
are l + 1 additional encryptions. It follows that

tRA = tA + (l +mGOAL)tE ,

where mIND = m and mGOAL = 1 for GOAL 6= IND.
Moreover, RA, doesn’t compromise b1 and makes no pointless or prohibited

queries: no queries are repeated, the messages used to generate the challenge
queries do not appear in any of the previous encryption queries under key Ki∗

and, in the LRIND case, the challenge messages are of equal length. It follows
that RA is a valid adversary against GOAL–POWERX,n

E for X ∈ {IV,MR}, since
nonces are always chosen uniformly at random.

If X = NR, RA might not be a valid adversary, since the randomly chosen
nonces might accidentally collide. So we modify RA to abort and output a
random bit whenever there is a collision among the l randomly chosen nonces
(Ni,j)j∈[l] for each i ∈ [n \ i∗], or among the l+mGOAL randomly chosen nonces

for encryptions under Ki∗ : the l+m nonces (Ni∗,j)j∈[l] and (N∗i )i∈[m], if GOAL =

IND, and the l + 1 nonces (Ni∗,j)j∈[l] and N∗, if GOAL 6= IND. Then RA is a

valid adversary and its advantage is εA multiplied by the probability that no
such nonce collisions happen. By a simple union bound the probability of a

collision among the l randomly chosen nonces (Ni,j)j∈[l] is at most l(l−1)
2|N| for

each i ∈ [n\ i∗] and the probability of a collision among the l+mGOAL randomly

chosen nonces for i∗ is at most (l+mGOAL)(l+mGOAL−1)
2|N| . Thus the probability of a

collision among the nonces for any of the n keys is at most

(n− 1)
l(l − 1)

2|N|
+
l +mGOAL(l +mGOAL − 1)

2|N|

=
nl(l − 1) +mGOAL (mGOAL + 2l − 1)

2|N|
= 1− δNR.

Thus the advantage of RA is εRA ≥ δNR · δGOAL · εA, as desired.
ut

Remark 14. In the proof, we assumed that the adversary is allowed to associate
the bit b1 with any of the n keys K1, . . . ,Kn. While this is permitted according
to our definition of the GOAL–POWERn,X

E game, in fact the result holds for more
restrictive games: we only require that for all i ∈ [n] there exists some j ∈ [n]
such that the adversary can associate the bit bj with the key Ki. In this case,
RA uses the recovered key K∗ from A to determine the value of any hidden bit
bj that can be associated with Ki∗ .

4 Multi-Key to Single-Key Reductions are Lossy

In this section we present our main results: any simple black-box reduction from
multi-key security (in its many definitional variants) to single-key security loses
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a linear factor in the number of keys. Two remarks are in order. First, we show
the lower bound for reductions from the security of an arbitrary construction of
an (authenticated) encryption scheme C[E ] to that of E (and in particular for
the case where C[E ] = E). This more general setting encompasses interesting
cases, e.g. where C[E ] is double encryption with E , i.e.

C[E ]
(N1,N2)
(K1,K2)

(M) = EN2

K2

(
EN1

K1
(M)

)
,

which has been shown to have desirable multi-key properties [26]. Furthermore,
showing the separation for C[E ] and E also suggests how to circumvent the lower
bound for the loss that we provide. Our lower bound requires that C[E ] satisfies
key-uniqueness. It may therefore be possible to start from a secure single-key
security that satisfies key-uniqueness, and show a tight reduction from multi-
key security of a variant C[E ] of E , provided that C[E ] somehow avoids key
uniqueness.

We consider separately reductions between different security flavours (au-
thenticated encryption, privacy, integrity). For each case in turn, we proceed in
two steps. First, we establish that if E is a (single-key) secure encryption scheme
and C[E ] is a key-unique encryption scheme, then all simple reductions from the
multi-key key recovery game for C[E ] to the single-key security game for E are
lossy. Since by Lemma 12 there is a tight reduction from multi-key key recovery
to multi-key security, it is an immediate corollary that there is no tight reduction
from the multi-key security of C[E ] to the single-key security of E .

An interesting remark is that the bound on the inherent loss of simple re-
ductions depends on the security of the scheme E : the more secure the scheme,
the tighter the bound. While our bound is therefore not meaningful for insecure
schemes, this case is of little interest in practice.

Authenticated Encryption. We give the formal results for the case of authenti-
cated encryption below.

Theorem 15. Let E and C[E ] be AE schemes such that C[E ] is M -key-unique
for some M ∈ Ml. Then, for X ∈ {IV,NR,MR}, any simple reduction R from

KEYRECM ,n
C[E] to AE–PASX,1

E loses at least
(
1
n + 2ε

)−1
, where ε is the maximum

advantage for a valid adversary against AE–PASX,1
E running in time at most

ntR + 2l(n − 1)tC[E] (where tC[E] is an upper-bound on the runtime of a single
encryption with C[E ]).

We sketch the proof before giving its details below. The crucial idea, follow-
ing [3], is to construct a meta-reduction M that rewinds the reduction R in

order to simulate its interaction with an ideal adversary A against KEYRECM ,n
C[E] .

If the simulation works correctly, then the output of R can be used by M to
win the AE–PASX,1

E game with probability εR. Then the (single-key) security of
E yields an upper-bound on the success probability of M, i.e. an upper-bound
on εR.
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We view R as a collection of three algorithms, R = (R1,R2,R3). The first,

R1, makes oracle queries in the AE–PASX,1
E game, then produces the ciphertexts

and nonces that A expects to receive in the KEYRECM ,n
C[E] game. The second,

R2, receives an index i∗ from A and the state st1 of the previous algorithm, R1.
Then R2 makes oracle queries and eventually produces the vector of keys that A
expects to receive in the KEYRECM ,n

C[E] game. Finally, R3 receives a guessed key

K∗ from A and the state st2 of R2. Then R3 makes oracle queries and outputs
a guessed bit b′.
M only rewinds R2:M executes R2 on each of the n possible indices i∗ that

could be returned by A and each R2 then returns a set of keys. Then M uses
the keys returned by one execution of R2 to construct the input to a different
execution of R3, i.e. st2 given to R3 will not be from the same execution of R2

used to construct the ‘guessed’ key K∗.
The main obstacle in arguing that the above strategy works is thatM needs

to break AE–PASX,1
E , which is an interactive assumption. This is in contrast to

the meta-reductions from [3], which are designed to violate a non-interactive
complexity assumption. In our case, M needs to simulate an appropriate envi-
ronment towards multiple copies of R, each of which may make oracle queries,
yet M has access to a single set of oracles for the AE–PASX,1

E game. It is not
obvious thatM can simply forward queries from all copies of R to these oracles,
since queries across different invocations of R may interfere with one-another
and render M invalid. The key observation is that we can leverage the single-
key security of E : instead of forwarding queries, M simply simulates the Enc
and Dec oracles by sampling random ciphertexts and returning ⊥, respectively.
We argue, based on the security of E , that R cannot distinguish this simulation
from the real oracles in its game.

Proof. For ease of notation, let K, M, N and C be the sets of keys, messages,
nonces and ciphertexts, respectively, for the construction C[E ] (even though they
may differ from the corresponding sets for E , but we shall not need to refer to
those in the proof).

Consider the following (inefficient) adversary A = (A1,A2) in the game

KEYRECM ,n
C[E] . On input

(Ci,j , Ni,j)i∈[n],j∈[l] ,

A1 first checks that each Ci,j ∈ C and each Ni,j ∈ N. If this check fails, then A1

aborts (by outputting a random index i∗ ∈ [n] and recording an abort message
in the state stA for A2, triggering the latter to output ⊥). If the check succeeds,
then A1 chooses i∗ ∈ [n] uniformly at random, sets

stA ←
(
i∗, (Ci,j , Ni,j)i∈[n],j∈[l]

)
and outputs (i∗, stA). On input

(
(Ki)i∈[n\i∗] , stA

)
, A2 checks that Ki is valid

for each i ∈ [n \ i∗], that is:

1. Ki ∈ K
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Enc

Dec

M
b′

R1

(Ci,j , Ni,j)

st1

forwarded

R1
2

st1

(K1
r )r 6=1

st12

faked

· · · Ri∗
2

st1

(Ki∗
r )r 6=i∗
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∗
2

forwarded

· · · Rn
2

st1

(Kn
r )r 6=n

stn2
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R3

sti
∗
2

K∗ b

forwarded

Fig. 6. An overview of the meta-reduction M, which rewinds a reduction R =
(R1,R2,R3). The inputs to each component of the reduction R are shown in teal,
while the outputs are shown in blue. Some oracle queries from R are forwarded to
the oracles in the game played by M and the responses sent back, while other oracle
queries from R are faked by M.

2. For each j ∈ [l], C[E ]
Ni,j

Ki
(Mj) = Ci,j .

If this check fails, then A2 outputs ⊥. If the check succeeds, then A2 uses exhaus-

tive search to find some K∗ ∈ K such that C[E ]
Ni∗,j
K∗ (Mj) = Ci∗,j for each j ∈ [l].

Since C[E ] is M -key-unique, either K∗ exists and is unique, or the ciphertexts
Ci∗,j were not all encryptions of the messages Mj with the nonces Ni∗,j under
the same key. So if A2 does not find a K∗ with this property, it outputs ⊥.
Otherwise it outputs K∗.

It is clear that the advantage of A is εA = 1 since, in the real KEYRECM ,n
C[E]

game, all the checks performed by A will succeed and K∗ is uniquely defined.
We construct a meta-reduction M that simulates the environment of R in

its interaction with this ideal adversary A. ThenM will use the output of R to
play the AE–PASX,1

E game. In what follows, we describeM in detail. A diagram
showing the overall structure of the interaction between M and R is given in
Fig. 6.

First, K∗ is initialised to ⊥. Then,M uses its oracles to simulate the oracles
used by R1 by simply forwarding the queries from R1 and the responses from
the oracles, until R1 returns(

(Ci,j , Ni,j)i∈[n],j∈[l] , st1

)
.

Then M checks that each Ci,j ∈ C and each Ni,j ∈ N. If this check fails, M
‘aborts’ just as A would. That is,M runsR2 on input (i, st1) for a random index

i∗ ∈ [n], forwarding oracle queries and responses, receives
(

(Ki)i∈[n\i∗] , st2

)
from R2, runs R3 on input (⊥, st2), receives a bit b′ and outputs this in its
game. If, on the other hand, the check succeeds, then M chooses i∗ uniformly
at random from [n] and does the following for each i ∈ [n]:

1. M runs R2 on input (i, st1), which we call Ri
2 for ease of readability.
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2. When Ri
2 makes oracle queries:

(a) If i = i∗, M uses its oracles to honestly answer all oracle queries; for-
warding the queries to its oracles and then forwarding the replies to
Ri∗

2 .
(b) If i 6= i∗, M simulates the ‘fake’ oracles, i.e. the oracles Enc and Dec in

the case b = 1. Concretely, when Ri
2 makes an encryption query (M,N),

M samples C←${0, 1}enclen(|M |) and returns this toRi
2.3 WhenRi

2 makes
a decryption query (C,N), M returns ⊥ to Ri

2.

3. When Ri
2 outputs

((
Ki

r

)
r∈[n\i] , st

i
2

)
, if i 6= i∗ thenM checks if Ki

i∗ is valid,

i.e.
(a) Ki

i∗ ∈ K,

(b) For each j ∈ [l], C[E ]
Ni∗,j
Ki

i∗
(Mj) = Ci∗,j .

If Ki
i∗ is valid, then K∗ ← Ki

i∗ . By M -key-uniqueness, Ki
i∗ is the only key

with this property.

At the end of these runs of R2, if Ri∗

2 did not provide a full set of valid keys,
i.e. Ki∗

r is not valid for some r ∈ [n \ i∗], then M sets K∗ ← ⊥ (mirroring the
check performed by A2).

If Ri∗

2 did provide a full set of valid keys, but K∗ = ⊥, (so none of the
Ri

2, i 6= i∗ provided a valid key Ki
i∗), M aborts the simulation and returns a

random bit. We call this event BAD.
Otherwise, M runs R3 on input

(
K∗, sti

∗

2

)
, forwarding oracle queries from

R3 to its oracles and sending back the responses.
When R3 outputs a bit b′, M returns this bit in its game.
Now we consider the resources of M and its advantage in the AE–PASX,1

E
game.
M performs n runs of (part of) R and carries out 2(n− 1)l encryptions with

C[E ] (checking validity of Ki
i∗ for each i 6= i∗ and checking validity of Ki∗

r for
each r 6= i∗), so if we ignore the time taken for random sampling and checking
set membership, the runtime of M is at most ntR + 2l(n − 1)tC[E]. Moreover,
M makes at most qR oracle queries, since it only forwards the queries from R1,
Ri∗

2 and R3.

Now consider the advantage εM of M in AE–PASX,1
E . From the definition

of a simple reduction, R must be a valid adversary in AE–PASX,1
E whenever A

is a valid adversary in KEYRECM ,n
C[E] . But all adversaries are automatically valid

in KEYRECM ,n
C[E] , so R must always be a valid adversary against AE–PASX,1

E .

Now the oracle queries M makes are exactly the same queries as
(
R1,Ri∗

2 ,R3

)
makes in the same game. Since R is a valid adversary, this shows that M does
not make pointless or prohibited queries and uses nonces correctly with respect
to X. Therefore M is a valid adversary against AE–PASX,1

E and so εM ≤ ε.
Note that for R1,Ri∗

2 and R3,M answers the oracle queries honestly with its
own oracles. Therefore M correctly simulates the view of

(
R1,Ri∗

2 ,R3

)
in the

game AE–PASX,1
E . However,M might not correctly simulate the responses from

3 Of course, here enclen refers to the lengths of ciphertexts from E , not C[E ].
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A. Indeed, to correctly simulate A, M requires that some Ri
2, i 6= i∗ provides a

valid key Ki
i∗ , but the oracle queries from Ri

2, i 6= i∗ are not handled honestly.
The imperfect simulation of the view of Ri

2 might make it less likely to provide a
valid key Ki

i∗ . We will therefore need to show that the change in behaviour of the
Ri

2 due to the imperfect simulation is small. The intuition for this claim is that
if Ri

2 could distinguish between the honest and the simulated oracles (having
only received an index i from the key-recovery adversary A, not a key), then one

can use (R1,Ri
2) directly, without A, to win the single-key game AE–PASX,1

E .

Consider the three possible scenarios:

1. Ri∗

2 did not provide a full set of valid keys.

2. Ri∗

2 did provide a full set of valid keys and, for some i 6= i∗, Ri
2 provided a

valid key Ki
i∗ .

3. Ri∗

2 did provide a full set of valid keys, but, for each i 6= i∗, Ri
2 did not

provide a valid key Ki
i∗ .

In the first case, both M and A submit ⊥ to R3 as their ‘key’, so the
simulation is correct. In the second case, bothM and A submit a key K∗ to R3

that satisfies C[E ]
Ni∗,j
K∗ (Mj) = Ci∗,j for all j ∈ [l], and K∗ is the only key with

this property by the M -key-uniqueness of C[E ]. So the simulation is correct in
this case too.

The third case is the event BAD and is where the simulation fails. By con-
struction M aborts the simulation if BAD occurs and outputs a random bit.
Given that BAD does not occur, the view of

(
R1,Ri∗

2 ,R3

)
in its interaction

with A and the AE–PASX,1
E oracles is identical to its view in its interaction with

M and M returns the bit b′ returned by R3. This shows that

Pr
[
AE–PASX,1

E (R) = 1
]

= Pr
[
AE–PASX,1

E (M) = 1 | ¬BAD
]
.

Write WX(M) (‘Win’) for the event AE–PASX,1
E (M) = 1. Then, as M out-

puts a random bit if BAD occurs, we have Pr
[
WX(M) | BAD

]
= 1

2 and it follows
that:

Pr
[
WX(M)

]
= Pr

[
WX(M) ∩ ¬BAD

]
+ Pr

[
WX(M) ∩ BAD

]
= Pr

[
WX(M) | ¬BAD

]
(1− Pr [BAD]) + Pr

[
WX(M) | BAD

]
Pr [BAD]

= Pr
[
WX(M) | ¬BAD

]
− Pr [BAD]

(
Pr
[
WX(M) | ¬BAD

]
− 1

2

)
.
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Then,

AdvAE–PAS,X,1
E (M) = 2

(
Pr
[
WX(M)

]
− 1

2

)
= 2

[
Pr
[
WX(M) | ¬BAD

]
− Pr [BAD]

(
Pr
[
WX(M) | ¬BAD

]
− 1

2

)
− 1

2

]
= 2

(
Pr
[
WX(M) | ¬BAD

]
− 1

2

)
− Pr [BAD] · 2

(
Pr
[
WX(M) | ¬BAD

]
− 1

2

)
= (1− Pr [BAD])AdvAE–PAS,X,1

E (R) .

It follows that:

AdvAE–PAS,X,1
E (M) ≥ AdvAE–PAS,X,1

E (R)− Pr [BAD] .

To complete the proof we bound the probability of BAD (see the next lemma)
by Pr [BAD] ≤ 1

n + ε.
We therefore get that

ε ≥ εM ≥ εR − Pr [BAD] ≥ εR −
1

n
− ε.

So, εR ≤ ( 1
n + 2ε). Since εA = 1, we get that

εA
εR
≥
(

1

n
+ 2ε

)−1
,

as required to show that R loses
(
1
n + 2ε

)−1
. ut

Lemma 16.

Pr [BAD] ≤ 1

n
+ ε.

Proof. Consider a meta-reductionM′ in the AE–PASX,1
E game that executes R1

and each Ri
2, i ∈ [n] exactly as M does, but without treating Ri∗

2 differently.
That is, encryption and decryption queries from Ri∗

2 are ‘faked’ in the same
way as for the other Ri

2, i 6= i∗. Such an M′ could have chosen i∗←$[n] after
executing each Ri

2, simply by storing all the keys output by each Ri
2, and then,

once i∗ had been chosen, checking if Ri∗

2 returned a full set of valid keys and if
each Ki

i∗ was valid for i 6= i∗.
Note that the probability of BAD occuring for M′ does not depend on

whether i∗ was chosen at the start of executing the Ri
2, or at the end, since

M′ runs each Ri
2 in the same way. Moreover, after executing each Ri

2, there can
be at most one j ∈ [n] such that Rj

2 returned a full set of valid keys but for
each i 6= j, Ri

2 did not provide a full set of valid keys. Therefore there can be
at most one j ∈ [n] such that Rj

2 returned a full set of valid keys but for each
i 6= j, Ri

2 did not provide a valid key Ki
j . Since i∗ was sampled uniformly from

[n], the probability that i∗ has the latter property, i.e. that BAD occurs forM′,
is at most 1

n .
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Now we compare the probability that BAD occurs for the two meta-reductions
M and M′. Let BADM = BAD and let BADM′ be the event that BAD occurs
in the game played by M′.

Consider the hidden bit b in the game played by M and M′. If b = 1, then
the views of R1 and each Ri

2 are identically distributed in their interactions
with M and M′ (since Ri∗

2 receives ‘fake’ responses to its queries, regardless of
whether the meta-reduction forwards them to its own oracles or simulates the
responses.) It follows that Pr [BADM′ | b = 1] = Pr [BADM | b = 1] .

Then

Pr [BAD] = Pr [BADM]− Pr [BADM′ ] + Pr [BADM′ ]

≤ Pr [BADM]− Pr [BADM′ ] +
1

n

=
1

2
(Pr [BADM | b = 0]− Pr [BADM′ | b = 0]) +

1

n
.

Now we construct an adversary B that simulates the environment of R1 and
the Ri

2 in their interaction with either M or M′, depending on the hidden bit
b′ in the game played by B. If BAD occurs, B will output 0. Otherwise B will
output 1.

Consider B in the AE–CCAX,1
E game. That is, B has access to the usual

challenge oracles Enc and Dec, but can also query the ‘always real’ oracles E
and D (provided it does not make pointless or prohibited queries). But if B has
significant advantage in this game, then there is another adversary, with the
same resources as B, that has significant advantage against AE–PASX,1

E :

Lemma 17. Suppose A is a valid adversary against AE–CCAX,1
E , where X ∈

{IV,NR,MR}. Then

AdvAE–CCA,X,1
E (A) ≤ 2ε,

where ε is the maximum advantage of a valid adversary against AE–PASX,1
E that

runs in the same time as A and makes the same number of oracle queries as A.

The proof of Lemma 17 is in the full version of the paper [31]. We remark that
a similar statement can be easily derived by combining results from an existing
work [5]. However, this approach only shows that the advantage in AE–CCAX,1

E
is at most four times the maximum advantage in AE–PASX,1

E , whereas proving
the statement directly gives a tighter bound.

Now we describe the adversary B in the AE–CCAX,1
E game. First, B runs R1,

but all queries are forwarded to the genuine oracles E and D. Then B carries out
the same checks as M (or M′) and, if the checks succeed, B samples i∗←$[n]
and, for each i ∈ [n], B runs R2 on input (i, st1).

When Ri
2 makes oracle queries:

1. If i = i∗, B uses its challenge oracles Enc and Dec to honestly answer all
oracle queries; forwarding the queries to its oracles and then forwarding the
replies to Ri∗

2 .
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2. If i 6= i∗, B simulates the ‘fake’ oracles, i.e. the oracles Enc and Dec with
b = 1, just as M (or M′) does.

Finally, B checks if BAD has occured. If so B outputs 0. Otherwise, B outputs
1.

Let b′ be the hidden bit in the game played by B. So the oracle queries from
R1 will always be ‘real’ (as they are forM andM′, given that b = 0), the oracle
queries from Ri

2 for i 6= i∗ will always be ‘fake’ (as they are forM andM′) and,
depending on b′, the oracle queries from Ri∗

2 will be real (like M, given that
b = 0), or fake (likeM′). It follows that Pr [0← B | b′ = 0] = Pr [BADM | b = 0]
and Pr [0← B | b′ = 1] = Pr [BADM′ | b = 0]. Now,

Pr
[
AE–CCAX,1

E (B) = 1
]

=
1

2
(Pr [0← B | b′ = 0] + Pr [1← B | b′ = 1])

=
1

2
(Pr [0← B | b′ = 0]− Pr [0← B | b′ = 1]) +

1

2

and so

AdvAE–CCA,X,1
E (B) = 2

(
Pr
[
AE–CCAX,1

E (B) = 1
]
− 1

2

)
= Pr [0← B | b′ = 0]− Pr [0← B | b′ = 1]

= Pr [BADM | b = 0]− Pr [BADM′ | b = 0]

≥ 2

(
Pr [BAD]− 1

n

)
.

Like M (or M′), B performs n runs of (part of) R and carries out 2(n− 1)l
encryptions to check if BAD has occured. So the runtime of B is at most ntR +
2l(n − 1)tC[E]. Moreover B makes at most qR oracle queries (only forwarding

queries from R1 and Ri∗

2 ).

Consider AdvAE–CCA,X,1
E (B). Firstly, note that B uses nonces correctly with re-

spect to X, since any query to Enc or E is a query made to Enc by
(
R1,Ri∗

2 ,R3

)
and R is a valid adversary against AE–PASX,1

E . Also, B will not make pointless
queries:

– A repeated query to E or D by B would be a repeated query to Enc or Dec
from R1, which is a pointless or prohibited query in the game played by R.

– A repeated query to Dec by B would be a repeated query to Dec from Ri∗

2 ,
which is a pointless query in the game played by R.

– A query D(C,N) by B, where C was the response to a query E(M,N),
would be a query Dec(C,N) from R1, where C was the response to a query
Enc(M,N), which is a prohibited query in the game played by R.

– A query E(M,N) by B, where M 6= ⊥ was the response to a query D(C,N),
would be a query Enc(M,N) from R1, where M 6= ⊥ was the response to a
query Dec(C,N), which is a pointless query in the game played by R.

– Finally, suppose B makes a query E(M,N) or Enc(M,N), where M 6= ⊥
was the response to a query Dec(C,N). The query Dec(C,N) from B would
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correspond to a query Dec(C,N) from Ri∗

2 and so the subsequent encryption
query would correspond to a query Enc(M,N) from Ri∗

2 . But as M 6= ⊥ this
is a pointless query for R.

Moreover, B will not make prohibited queries:

– A repeated query to Enc by B would be a repeated query to Enc from Ri∗

2 ,
which is a prohibited query in the game played by R.

– Suppose B makes two queries of the form Enc(M,N) and E(M,N). Each of
these queries would correspond to the same query Enc(M,N) from R, which
is prohibited in the game played by R.

– A query D(C,N) from B, where C was the response to a query Enc(M,N),
is impossible since B only queries Enc and Dec after querying E and D.

– A query Dec(C,N) from B, where C was the response to a query E(M,N) or
Enc(M,N), would correspond to a query Dec(C,N) from Ri∗

2 , where C was
the response to a query Enc(M,N) from R1 or Ri∗

2 , which is a prohibited
query in the game played by R.

– A query Enc(M,N) from B, where M 6= ⊥ was the response to a query
D(C,N), would correspond to a query Enc(M,N) from Ri∗

2 , where M 6= ⊥
was the response to a query Dec(C,N) from R1, which is a pointless query
in the game played by R.

It follows that B is a valid adversary against AdvAE–CCA,X,1
E (B). Then, by

Lemma 17, we have

2

(
Pr [BAD]− 1

n

)
≤ AdvAE–CCA,X,1

E (B) ≤ 2ε,

from which the result follows. ut

Theorem 15 establishes that reductions from KEYRECM ,n
C[E] to AE–PASX,1

E

are lossy. By Lemma 12, there exists a tight reduction from KEYRECM ,n
C[E] to

GOAL–POWERX′,n
C[E] (for POWER ∈ {CCA,CPA}); it immediately follows that

reductions from GOAL–POWERX′,n
C[E] to AE–PASX,1

E must be lossy (for POWER ∈
{CCA,CPA}). We formalise this intuition in the following corollary:

Corollary 18. Let E and C[E ] be AE schemes such that C[E ] is M -key-unique
for some M ∈ Ml. Then for GOAL ∈ {AE, LRAE, IND, LRIND,CTI}, POWER ∈
{CCA,CPA}, X,X ′ ∈ {IV,NR,MR} and n > 1, all simple reductions from

GOAL–POWERX′,n
C[E] to AE–PASX,1

E must lose

L = δGOAL · δX′ ·
(

1

n
+ 2ε

)−1
,

where δGOAL and δX′ are as in Lemma 12 and ε is as given in Theorem 15.
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We emphasise that the ‘nonce use’ parameters X ′, X ∈ {IV,NR,MR} can
differ between the n-key game and the single key game. While it is natural
to consider X ′ = X we prefer to state the result in full generality and show
that a very large class of reductions are necessarily lossy. Note that multi-
key games for POWER ∈ {PAS,CDA} are not known to be (tightly) equiv-
alent to those where POWER ∈ {CCA,CPA} (see the full version of the pa-
per [31]). It therefore remains an open problem to obtain tightness lowerbounds
for POWER ∈ {PAS,CDA}.

Proof. Recall from Lemma 12 the (S,T)-simple reduction from KEYRECM ,n
E

to GOAL–POWERX,n
E , where S(εA) = δX · δGOAL · εA and T(tA) = tA + (l +

mGOAL)tE . Relabelling, we obtain a (S′,T′)-simple reduction from KEYRECM ,n
C[E]

to GOAL–POWERX′,n
C[E] , where S′(εA) = δX′ · δGOAL · εA and T′(tA) = tA + (l +

mGOAL)tC[E], which we call R.
We argue by contradiction. Suppose there is a simple reduction R′ from

GOAL–POWERX′,n
C[E] to AE–PASX,1

E such that, for all valid adversaries B against

AE–PASX,n
E , εR′ > L−1εB.

Then we can form a simple reduction R′′ from KEYRECM ,n
C[E] to AE–PASX,1

E :

for any adversary A against KEYRECM ,n
C[E] , running R with A provides a valid

adversary B against GOAL–POWERX′,n
C[E] for R′ to turn into a valid adversary

against AE–PASX,1
E .

By construction, the advantage εR′′ of R′′ is equal to the advantage of R′
with access to an adversary with advantage εR, i.e. εR′′ > L−1εR. Since εR ≥
δX′ · δGOAL · εA for all adversaries A against KEYRECM ,n

C[E] , we have

εR′′ > L−1 · δX′ · δGOAL · εA =

(
1

n
+ 2ε

)
εA.

But this is a contradiction since, by Theorem 15, for any simple reduc-
tion R′′ from KEYRECM ,n

C[E] to AE–PASX,1
E , there exists an adversary A against

KEYRECM ,n
C[E] such that

εR′′ ≤
(

1

n
+ 2ε

)
εA.

Thus for any simple reduction R′ from GOAL–POWERX′,n
C[E] to AE–PASX,1

E there

exists a valid adversary B against GOAL–POWERX′,n
C[E] such that εR′ ≤ L−1εB,

i.e. R′ loses L.
ut

Privacy and Integrity. The above results hold for notions of authenticated en-
cryption schemes. It is natural to ask whether the loss for simple reductions

from GOAL–POWERX′,n
C[E] to AE–PASX,1

E is an artefact of considering the two or-

thogonal single-key security properties of secrecy and authenticity at the same
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time. Perhaps it is possible to circumvent the loss when looking at these prop-
erties separately, e.g. there could there be non-lossy simple reductions from

GOAL–POWERX′,n
C[E] to IND–PASX,1

E and from GOAL–POWERX′,n
C[E] to CTI–CPAX,1

E .

We show that this is not the case.
We proceed as for the authenticated encryption case. For privacy and in-

tegrity, in turn, we show that reductions from multi-key key recovery to single-
key security are inherently lossy; the lower bound then follows by Lemma 12.
We give the details in the full version of the paper [31].

Other Single-Key Security Notions. Given the results above concerning reduc-
tions from multi-key AE security notions to the single-key notions AE–PAS,
IND–PAS and CTI–CPA, one can obtain analogous results for equivalent or weaker
single key notions, such as where ciphertexts being indistinguishable from ran-
dom strings (IND, AE) is replaced by (weaker) left-or-right indistinguishability
(LRIND, LRAE). The idea is that if there were a tight reduction from an n-key
game to single-key LRAE–PAS, say, then this reduction could be combined with
the tight reduction from LRAE–PAS to AE–PAS to obtain a tight reduction from
the n-key game to AE–PAS that contradicts Corollary 18. However, “tight” is
defined here with respect to a number of parameters including, crucially, ε: the
maximum advantage in the AE–PAS game. If ε is close to 1, then so is the “loss”.
In other words, the tightness lowerbounds that one can prove using our existing
results for strictly weaker single-key security notions are only meaningful for
schemes that are secure according to the stronger notions. This leaves open the
possibility that tight multi-key to single-key reductions exist for schemes that
achieve the weaker single-key security notions, but not the stronger ones. More-
over, our meta-reduction techniques cannot be directly applied to left-or-right
indistinguishability, since the meta-reduction cannot correctly simulate left-or-
right encryption queries during the rewinding phase without making its own
(possibly prohibited) oracle queries (unlike for IND when the meta-reduction
simply samples random strings of the appropriate length).

Public Key Encryption. It should be possible to adapt our existing techniques
to the public key setting. Let LRIND–CPA be the standard game in which the
adversary is given the public key and can query a left-or-right encryption oracle.
Note that the honest encryption oracle is omitted as it is rendered superfluous
by the public key. Since public key encryption is typically randomised rather
than nonce-based, repeated left-or-right encryption queries are not prohibited,
so a meta-reductionM can use its own left-or-right challenge oracle to correctly
simulate left-or-right queries from the reduction R during the rewinding phase,
withoutM becoming an invalid adversary. However, if R can also make decryp-
tion queries, then simulating these queries during the rewinding phase might
force M to be invalid (such as if one instance of R attempts to decrypt the
output of the left-or-right encryption oracle sent to an earlier instance of R).
In summary, it should be possible to show reductions from multi-key games to
single-key LRIND–CPA are lossy for public key encryption schemes secure ac-
cording to LRIND–CPA, but to show an analogous result for LRIND–CCA one
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needs to additionally assume that ciphertexts are indistinguishable from ran-
dom strings (which is a rather strong assumption in the public key setting). We
leave formally proving these claims for future work.

5 Conclusion

We have presented a general family of multi-key security definitions for authen-
ticated encryption, where the adversary can adaptively corrupt keys. We have
shown, for a very large class of authenticated encryption schemes, for most mem-
bers of our family of definitions and for widely-accepted single-key security def-
initions, that any black-box reduction from the n-key security of an encryption
scheme to its single-key security will incur a loss close to n.

For practitioners who set security parameters based on provable guarantees,
this shows that security reductions have an inherent shortcoming. Since keys are
sampled independently, the corruption of one key should not affect the security
of another, yet it is impossible in many cases to prove that security does not
degrade from the single-key setting to the n-key setting. It appears that the loss
of n is an unfortunate, unavoidable artefact of the proof.

We have shown that the loss of reductions is inevitable for multi-key defini-
tions where the adversary has access to an honest encryption oracle. We therefore
left open the possibility that for security notions without such an oracle, tight re-
ductions may be found. Furthermore, our impossibility results apply to schemes
where ciphertexts are indistinguishable from random strings. It may be possible
that tight reductions exist for schemes that achieve weaker forms of confiden-
tiality, such as left-or-right indistinguishability. Historically, the community has
tended to opt for stronger and stronger security notions, but perhaps a slightly
weaker single-key notion would be preferred if it tightly implied a meaningful
multi-key notion. Finally, it was pointed out by an anonymous reviewer that, in
practice, the number of keys an adversary can corrupt is likely to be much smaller
than the number of keys in use; it might be possible to find tighter multi-key
to single-key reductions for multi-key games where the adversary can corrupt
at most qc keys (with qc << n). We leave these interesting open questions for
future work.
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anonymous TCC reviewers for their constructive comments on our paper.

Appendix Valid Adversarial Behaviour for AE Games

Pointless and Prohibited Queries. Since encryption is deterministic, the response
to certain oracle queries can be predicted in advance. Therefore the adversary
learns nothing from these queries; we call them pointless. Without loss of gener-
ality we assume that valid adversaries do not make such queries. The following
queries are pointless:
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– Repeat a query to any oracle other than Enc(the Enc oracle sometimes
samples random ciphertexts, but all other oracles are deterministic).

– Make a query D(i, C,N), where C was the response to a query E(i,M,N)
(since the response will be M , by correctness).

– Make a query E(i,M,N), where M 6= ⊥ was the response to a query
D(i, C,N) (since the response will be C, by tidiness).

– Make a query E(i,M,N) or Enc(i, j,M,N), where a query Dec(i, j, C,N)
was made with response M 6= ⊥ (since the response M 6= ⊥ reveals bj = 0
and ENKi

(M) = C by tidiness).

Some other queries lead to hidden bits being trivial to recover (without having
to corrupt a key); we call these queries prohibited, since valid adversaries are not
permitted to make them. The following queries are prohibited:

– Repeat a query Enc(i, j,M,N) (if the response to both queries is the same,
then with very high probability bj = 0 and otherwise bj = 1).

– Make a query of the form LR(i, j,M0,M1, N) with |M0| 6= |M1| (since the
length of the ciphertext reveals the length of the plaintext, trivially revealing
which of M0 or M1 was encrypted).

– Make two queries of the form LR(i, j,M0,M1, N), LR(i, j,M ′0,M
′
1, N) such

that Mb = M ′b and M1−b 6= M ′1−b for some b ∈ {0, 1} (if the response to both
queries is the same, then bj = b by correctness, and otherwise bj = 1− b).

– Make two queries of the form Enc(i, j,M,N) and E(i,M,N), in any order
(which trivially reveals bj).

– Make two queries of the form LR(i, j,M0,M1, N) and E(i,Mb, N), in any
order, for some b ∈ {0, 1} (which trivially reveals bj).

– Make a queryD(i, C,N), where C was the response to a query Enc(i, j,M,N)
or LR(i, j,M0,M1, N) (which trivially reveals bj , by correctness).

– Make a query Dec(i, j, C,N), where a query E(i,M,N), Enc(i, j,M,N) or
LR(i, j,M0,M1, N) was previously made with response C (which trivially
reveals bj , by correctness).

– Make a query Enc(i, j,M,N), LR(i, j,M,M1, N) or LR(i, j,M0,M,N),
where M 6= ⊥ was the response to a query D(i, C,N) (which trivially reveals
bj , by tidiness).

It is not necessary to prohibit queries being forwarded between the Enc and LR
oracles, since we do not consider games where both these challenge oracles are
present.

Correct Nonce Use. The parameter X ∈ {IV,NR,MR} determines how the ad-
versary may use nonces in encryption queries. We say A uses nonces correctly
with respect to X if the following statements hold:

– If X = IV, then for each query of the form E(−,−, N), Enc(−,−,−, N), or
LR(−,−,−,−, N), N is sampled uniformly at random from N.

– If X = NR, then each nonce appears in at most one encryption query under
the same key. That is, for each i ∈ [n], each nonce N appears in at most one
query of the form Enc(i,−,−, N), LR(i,−,−,−, N) or E(i,−, N).

– If X = MR, then nonces may chosen be arbitrarily and repeated in different
queries (modulo the pointless and prohibited queries specified above).



Multi-Key AE: Reductions are Lossy 31

References

1. Abdalla, M., Fouque, P.A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval and Johansson [38], pp.
572–590

2. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (Mar 2015)
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