
Time-Memory Tradeoff Attacks on the MTP
Proof-of-Work Scheme?

Itai Dinur and Niv Nadler

Department of Computer Science, Ben-Gurion University, Israel

Abstract. Proof-of-work (PoW) schemes are cryptographic primitives
with numerous applications, and in particular, they play a crucial role in
maintaining consensus in cryptocurrency networks. Ideally, a cryptocur-
rency PoW scheme should have several desired properties, including ef-
ficient verification on one hand, and high memory consumption of the
prover’s algorithm on the other hand, making the scheme less attractive
for implementation on dedicated hardware.

At the USENIX Security Symposium 2016, Biryukov and Khovratovich
presented a new promising PoW scheme called MTP (Merkle Tree Proof)
that achieves essentially all desired PoW properties. As a result, MTP
has received substantial attention from the cryptocurrency community.
The scheme uses a Merkle hash tree construction over a large array
of blocks computed by a memory consuming (memory-hard) function.
Despite the fact that only a small fraction of the memory is verified by
the efficient verification algorithm, the designers claim that a cheating
prover that uses a small amount of memory will suffer from a significant
computational penalty.

In this paper, we devise a sub-linear computation-memory tradeoff at-
tack on MTP. We apply our attack to the concrete instance proposed by
the designers which uses the memory-hard function Argon2d and com-
putes a proof by allocating 2 gigabytes of memory. The attack computes
arbitrary malicious proofs using less than a megabyte of memory (about
1/3000 of the honest prover’s memory) at a relatively mild penalty of
170 in computation. This is more than 55,000 times faster than what is
claimed by the designers. The attack requires a one-time precomputation
step of complexity 264, but its online cost is only increased by a factor
which is less than 2 when spending 248 precomputation time.

The main idea of the attack is to exploit the fact that Argon2d accesses its
memory in a way which is determined by its previous computations. This
allows to inject a small fraction of carefully selected memory blocks that
manipulate Argon2d’s memory access patterns, significantly weakening
its memory-hardness.

Keywords: Cryptocurrency, proof-of-work, Merkle Tree Proof, memory-
hard function, Argon2, time-memory tradeoff, cryptanalysis.

? This research was supported in part by the Israeli Science Foundation through grant
No. 573/16 and by the Lynn and William Frankel Center for Computer Science.

1 Introduction

Proof-of-work (PoW) schemes were introduced by Dwork and Naor [9] as a com-
putational technique to combat junk mail, or more generally, to limit access to
a shared resource. The main idea is to require the user to compute a moderately
hard function in order to gain access to the resource, thus preventing excessive
use. Since their introduction, many PoW schemes have been proposed, and they
have recently become a very popular area of research with the rise of Bitcoin [14]
and cryptocurrencies in general.

In the cryptocurrency setting, PoWs play a major role in maintaining con-
sensus among cryptocurrency network nodes about the state of the distributed
blockchain ledger. The proofs are generated by miners, each proof computed over
a block of recent transactions. A new transaction block propagates through the
cryptocurrency network and its PoW is verified by the nodes which update their
local view of the blockchain accordingly.

Since verification is performed by every node in the network in order to check
that new transaction blocks are valid, slow (or resource consuming) verification
could expose the nodes to denial of service attacks, and in addition, increase the
risk of forks (inconsistent state among the nodes). Therefore, one of the most
important properties for a PoW scheme in the cryptocurrency setting is effi-
cient verification of proofs. At the same time, computing proofs should ideally
be as efficient (in terms of cost) on general CPUs as it is on custom designed
application-specific integrated circuits (ASICs). This is desirable to combat cen-
tralization, where the majority of mining is performed by centralized mining
ASIC rigs, as it is today for Bitcoin. Indeed, mining centralization in Bitcoin
is a direct result of Bitcoin’s SHA-256-based ASIC-friendly PoW scheme. This
concentration of power is considered by many as contradictory to Bitcoin’s phi-
losophy.

One of the main ideas to combat mining centralization is to use memory-
hard functions. Such functions require a large amount of memory to compute and
pose substantial computational penalties on algorithms that attempt to compute
them with less memory. The use of memory-hard functions aims to diminish the
advantage of ASICs over standard PCs, as memory-intensive operations are not
much more efficient on dedicated hardware compared to general CPUs. In this
context, we also mention the notion of a proof-of-space (formulated by Dziem-
bowski et al. in [10] and independently by Ateniese et al. in [3]) that offers similar
security guarantees as memory-hard functions in PoW schemes. The main con-
ceptual difference is that an honest prover in a proof-of-space scheme generally
does not have to perform a computational task (besides allocating some space),
whereas in a PoW scheme based on a memory-hard function, an honest prover is
required to execute some non-trivial computation besides memory allocation.1

In the cryptocurrency setting, the difficulty of this computation is fine-tuned

1 Additionally, the protocol between the prover and verifier in [10] was defined as inter-
active and hence unsuitable to cryptocurrencies (but this is a superficial restriction
that can be lifted).

2

to keep the rate at which new transaction blocks arrive on the network stable
(typically, every few minutes).

The most popular memory-hard function among cryptocurrencies (such as
Litecoin [11]) is scrypt [16]. However, despite its memory hardness, a noticeable
shortcoming of scrypt is that tuning it to use substantial memory does not
provide efficient verification. As a result, scrypt (as used by Litecoin) does not
consume substantial memory and thus has been shown to have a very efficient
hardware implementation [8].

Very recently, at the USENIX Security Symposium, 2016, Alex Biryukov and
Dmitry Khovratovich presented the MTP (Merkle Tree Proof) PoW scheme [7].
MTP is claimed to offer essentially all properties2 desired from a cryptocurrency
PoW scheme, including fast verification and ASIC-resistance. As a result, it has
received substantial attention from the cryptocurrency community.

MTP uses a design that combines a memory-hard function with a Merkle
hash tree [13]. This design resembles the one of [12] that also proposes to build
a Merkle hash tree on top of data computed by a memory-hard function (in
the form of a graph with high pebbling complexity). The MTP design is also
related to the proof-of-space scheme proposed in [10] (that uses an interactive
proof protocol).

The memory-hard function used by MTP (denoted by F) receives as an input
a seed I and computes an array of T blocks X[1], X[2], . . . , X[T] (for a parameter
T).3 Each block X[i] is generated using the internal compression function F of
F , which takes X[i− 1] and X[φ(i)] as inputs. The function φ(i) is an indexing
function (defined for F) that outputs a block index in the range [1, . . . , i).

The prover’s algorithm in MTP has two phases, where in the first phase it
computes X[1], . . . , X[T] using F from the input seed, and stores these blocks in
memory. In addition, it computes a Merkle hash tree with root Φ overX[1], . . . , X[T],
effectively committing to the array’s value. In the second phase, the algorithm
picks an arbitrary nonce N , and accesses L blocks (for a parameter L) of
X[1], . . . , X[T] at pseudo-random locations in a sequence X[i1], X[i2], . . . , X[iL].
In this sequence, each ij effectively depends on Φ,N and on the values of the
previous blocks in the sequence. Finally, a value YL (which depends on all blocks
in the sequence) is computed and tested against the difficulty level of the scheme
(YL needs to have d trailing zeros for a parameter d). Assuming the test passes
for some nonce N , then (Φ,N,Z) is a valid proof, where Z contains the openings
of 2L blocks {X[ij − 1], X[φ(ij)]}. An opening of a block X[i] is evidence that
it is a leaf in the Merkle hash tree at position i. Each opening contains internal
node values that allow to calculate the path from the block X[i] to the Merkle
hash tree root Φ.

2 We only mention here the few desired properties of PoW schemes which are relevant
for this paper. For a more comprehensive list, refer to [7].

3 Blocks in the array computed by F should not be confused with transaction blocks
in the blockchain.

3

Given a proof (Φ,N,Z), the verifier checks that the openings Z are valid
(namely, lead to Φ), reproduces all X[ij] = F (X[ij − 1], X[φ(ij)]), and verifies
that YL passes the difficulty filter.

Biryukov and Khovratovich proposed a concrete instantiation of MTP with
the memory-hard function Argon2 [6] (see Figure 1), the winner of the Password
Hashing Competition [15]. Argon2 has two variants, Argon2i and Argon2d, where
the first uses data-independent indexing while the latter uses data-dependent
indexing. In a function with data-dependent indexing, the indexing function
φ(i) depends on previously computed blocks, whereas in a function with data-
independent indexing it does not. The proposed MTP instantiation uses Argon2d
as F , where φ(i) depends on the value of the previously computed block X[i−1].
Argon2d was shown to offer somewhat better resistance to computation-memory
tradeoffs compared to Argon2i (refer to [6] for details).

Fig. 1. The MTP PoW Scheme

The concrete instantiation of MTP requires 2 gigabytes of memory and com-
putes a proof shorter than a megabyte. Moreover, its verification algorithm re-
quires only several hundreds of hash computations, and thus MTP provides effi-
cient verification. MTP is memory-hard, assuming that the underlying function
Argon2d is such. However, the combination of these two advantages comes at a

4

cost, since the verification algorithm only checks part of the memory computed
by the prover. This opens the door for a new type of attack on MTP, where
a cheating prover computes a malicious proof that passes the verification algo-
rithm, yet the computed block array contains some entries which are inconsistent
with the Argon2d compression function. More specifically, there exist indexes i
for which X[i] 6= F (X[i− 1], X[φ(i)]).

In the cryptocurrency setting, it is likely that malicious proofs will eventu-
ally be detected by fully validating nodes (which store the full blockchain) that
perform additional checks on new transaction blocks beyond running the sim-
ple verification algorithm. However, typically (as in Bitcoin) most nodes in the
network are SPV (Simple Payment Verification) clients that are interested in a
small number of particular transactions, and only execute the efficient verifica-
tion algorithm in order to check the validity of new transaction blocks. Hence
malicious proofs that propagate through the network may cause it to enter an
inconsistent state (namely, to fork) and result in denial of service, depending on
the rate at which they arrive. While the consequences of malicious proofs depend
on the specific cryptocurrency, it is important that they are not much easier to
generate (in terms of cost) than honest proofs, as otherwise, attackers will have
additional incentives to compute them. More specifically, it needs to be shown
that MTP is immune to cheating strategies.

Assume that a cheater computes a malicious proof that passes verification,
but is inconsistent with the internal Argon2d compression function F on some
fraction ε of the block array X[1], . . . , X[T]. Roughly speaking, the MTP design-
ers claim that for a large ε, the cheater cannot efficiently produce a consistent
sequence of blocksX[i1], X[i2], . . . , X[iL] of length L = 70. More precisely, since ε
is large, the cheater will pay a large computational penalty (of roughly (1−ε)−70)
in order to produce X[i1], X[i2], . . . , X[i70], where all blocks X[ij] are consistent
(X[ij] = F (X[ij − 1], X[φ(ij)])) and all pairs {X[ij − 1], X[φ(ij)]} have valid
openings leading to Φ. On the other hand, when ε is small, X[1], . . . , X[T] are al-
most always consistent with F , and hence the cheater has to allocate essentially
as much memory as an honest prover and there is no efficiency gain.

In this paper, we analyze the immunity of MTP against cheating strate-
gies. Our main result shows how to compute a malicious proof much more
efficiently than claimed by the designers, obtaining a sub-linear computation-
memory tradeoff algorithm for a surprisingly small amount of memory. In par-
ticular, when applied to the proposed MTP instance, our attack computes a
malicious proof using a fraction of about 1/3000 of the honest prover’s memory
(which is less than a megabyte), at a relatively mild penalty of about 173 in
computation complexity. On the other hand, according to the analysis of the au-
thors for our parameters, the cheater’s computation complexity should increase
by a significant factor of about 10 million. Hence our attack improves upon the
analysis of [7] by a factor of more than 55,000.

The metric which is used in [7] to evaluate the computational cost of im-
plementing an algorithm in ASICs is the time-area product. In this metric, the
algorithm’s memory requirements translate into area in hardware. Using the

5

time-area product metric, our attack costs less than the honest prover’s algo-
rithm by a multiplicative factor of 113, improving on the analysis of [7] (in
which the cheater’s algorithm is more expensive by a factor of 294) by more
than 33,000.

As noted above, the consequences of our attack on a cryptocurrency using
MTP with Argon2d are hard to predict. However, since a cheating miner has a
computational advantage of about 113 over honest miners, then such a miner can
potentially overwhelm the network with malicious proofs even when possessing
only a small fraction of the total computation power.

To explain the weakness of MTP, we view the computation of Argon2d as
a directed acyclic graph, whose vertices are Argon2d’s array blocks indexes and
a directed edge connects vertex j to i if j = i − 1 or j = φ(i) (namely, X[j]
is used in computing X[i]). After the prover commits to the hash values of the
graph vertices by computing the Merkle hash tree root, MTP challenges the
prover to compute hash values of randomly chosen vertices (namely random
block values). The goal of an attacker (a cheating prover) is to store only a
small fraction of the vertex hash values, but still answer the challenges quickly.
The ability to quickly answer random challenges on such a hash graph with
limited storage strongly depends on the graph’s structure. Indeed, Argon2d’s
graph seems to offer a very steep computation-memory tradeoff curve that forces
the attacker to spend significant computation when storing a small fraction of
the hash values. However, recall that since MTP does not challenge the prover
on all hash values of the graph nodes, an attacker can cheat and compute a
small fraction of inconsistent hash values (X[i] 6= F (X[i − 1], X[φ(i)])) with
substantial probability of not being caught. Moreover, since Argon2d uses data-
dependent indexing, then the structure of the graph depends on hash values of
its own vertices. Therefore, the attacker can exploit the inconsistent hash values
and compute a manipulated graph with a much weaker computation-memory
tradeoff curve compared to Argon2d.

The general outline of our attack is identical to the one considered by the
MTP designers, namely, we replace Argon2d with a function which is consis-
tent with its compression function on almost all blocks (thus using a small ε).
However, this highly consistent function can be computed with substantially
less memory compared to Argon2d at a modest sub-linear computation-memory
tradeoff. This is quite surprising, as it demonstrates that although computation-
memory tradeoffs for Argon2d are exponential, manipulating it in a small number
of places can drastically reduce its memory-hardness.

The attack works by injecting into Argon2d’s block array malicious control
blocks that exploit in the strong way the data dependency of the indexing func-
tion of Argon2d. Control blocks significantly weaken the memory-hardness of
(the slightly modified) Argon2d, allowing to compute it with a linear computation-
memory tradeoff. However, this approach does not seem to lead to sub-linear
computation-memory tradeoffs, which appear out of reach at first sight. Indeed,
consider a significantly weakened Argon2d variant, in which we completely elimi-
nate the indexing function component from the compression function and define

6

X[i] = F ′(X[i − 1]) instead (for some function F ′).4 If we store one out of t
blocks (for some positive integer t), then a random block falls at expected dis-
tance of (t−1)/2 from a stored one, and its computation requires (t−1)/2 com-
pression function calls on average. Therefore, the computation-memory product
is reduced by (t − 1)/2t ≈ 1/2, and we cannot do much better than a linear
computation-memory tradeoff even for a weak function. This simple argument
shows that storing full blocks is wasteful if we aim for sub-linear computation-
memory tradeoffs. To overcome this obstacle, we store a succinct representation
of each control block (which is much smaller than a standard block), and these
representations are essentially the only data kept in memory (besides a very
small fraction of full blocks).

The control blocks in our attack are computed during a one-time precom-
putation phase, after which proofs can be found for arbitrary inputs. The pre-
processing complexity is 264, which is challenging, yet feasible for an ambitious
attacker. We stress that the preprocessing phase is very easy to parallelize and
requires less than a megabyte of memory. Moreover, the online complexity of the
attack is not drastically reduced when using shorter precomputation. For exam-
ple, even if we spend a trivial amount of 248 computations during preprocessing,
our online attack costs less than the honest prover’s algorithm by a factor which
is larger than 60.

While the parameters of our attack are optimized for MTP when instantiated
with Argon2d, it is applicable to the MTP scheme when instantiated with any
memory-hard function that uses data-dependent indexing. The most natural way
to avoid the attack is to use a memory-hard function with data-independent
indexing (such as Argon2i). Such an instantiation of MTP resists our attack,
but interestingly, it still has some undesired properties that we discuss towards
the end of this paper.

The rest of this paper is organized as follows. We describe the egalitarian
computing framework of [7] in Section 2, while the description and previous
analysis of MTP is given in Section 3. An overview of our attack is given in
Section 4, its details are described in Section 5, while in Section 6 we analyze
the full attack. Finally, we describe extensions of the attack in Section 7, discuss
countermeasures in Section 8 and conclude the paper in Section 9.

2 Egalitarian Computing Framework [7]

In this section, we summarize the egalitarian computing framework, as described
in [7].

Given a function H, the goal of the attacker is to minimize the cost of com-
puting H on hardware (ASICs), while keeping its running time close to that
of a standard implementation (typically x86). On ASICs, the memory size M
translates into a certain area A and the running time T is determined by the

4 The graph structure of this weakened variant is a hash chain, as the graph structure
of scrypt [16].

7

length of the longest computational chain and memory latency.5 The cost of the
attacker in the framework is measured by the time-area product AT .

Given that the standard implementation of H consumes M units of memory,
the attacker aims to compute H using only αM memory for α < 1. Using a
computation-memory tradeoff algorithm specific to H, the attacker has to spend
C(α) times as much computation as the standard implementation and his total
running time increases by the factor D(α) (where C(α) may exceed D(α) since
the attacker can parallelize the computation).

In order to obtain a running time of T · D(α) (despite having to perform

C(α) as much computation), the attacker has to place C(α)
D(α) additional cores on

chip. Therefore, the time-area product changes from AT to ATα where

ATα = A · (α+
βC(α)

D(α)
) · T ·D(α) = AT (αD(α) + βC(α)), (1)

and β is the fraction of the original memory occupied by a single computing
core. There is additional cost in case of significant communication between the
computing cores, but this cost is irrelevant to this paper, as our attack does not
use extensive communication.

A function is defined to be memory-hard if any algorithm that computes it
using M memory units has a computation-space tradeoff C(α) where C(·) is at
least a super-linear function of 1/α.

3 Description and Previous Analysis of MTP [7]

In this section, we provide a brief description of MTP and summarize its pre-
liminary analysis as given in its specification. For more details, refer to [7].

MTP uses as a building block a memory-hard function F that takes as input
a password P (which may be null in the cryptocurrency setting) and a salt
S. It fills T blocks of memory X[1], X[2], . . . , X[T] of a certain size, and then
may overwrite them several times. However, in MTP the function F does not
overwrite the memory.

Each block X[i] is generated using the internal compression function F of F ,
which takes X[i − 1] and X[φ(i)] as inputs, where φ(i) is an indexing function
(defined for F) that outputs a block index in the range [1, . . . , i).

Another building block used in MTP is a Merkle hash tree, which is described
in Appendix A. MTP is defined using global parameters T , L and d (difficulty
level) and a hash function H. We denote the output size of H in bytes by h.

The prover’s algorithm takes as input a challenge6 I. The output of the
algorithm is a proof (Φ,N,Z), as described below.

5 Note the distinction between computation complexity which is measured according
to the total size of the algorithm’s circuit and time complexity which is measured
according to the depth of the circuit. In this paper, both complexities are measured
in terms of basic function (compression function or hash function) invocations.

6 In the cryptocurrency setting, I depends on the hash value of the previous transac-
tion block in the blockchain and the transactions included in the current block.

8

1. Compute F(I) and store the T blocks X[1], X[2], . . . , X[T] in memory.
2. Compute the root Φ of the Merkle hash tree over the blocks
X[1], X[2], . . . , X[T].

3. Select nonce N .
4. Compute Y0 = H(Φ,N).
5. For 1 ≤ j ≤ L:

ij = Yj−1 (mod T);

Yj = H(Yj−1, X[ij]).

6. If YL has d trailing zeros, then output (Φ,N,Z) as the proof-of-work,
where Z contains the openings (defined in Appendix A) of 2L blocks
{X[ij − 1], X[φ(ij)]}. Otherwise, go to Step 3.

In the following, we refer to Step 5 as computing a chain of values. The
prover’s algorithm requires T blocks of memory (in addition to a small amount
of memory, required to compute the Merkle hash tree) and its running time is
about T + 2d · L. The generated proof size is dominated by Z and is slightly
more than 2L blocks in addition to 2L · log(T) · h bytes for the openings.

The verifier’s algorithm is given a proof (Φ,N,Z) as input and it outputs
‘Yes’ if the proof is valid, and otherwise ‘No’.

1. Verify all block openings Z using Φ.
2. Compute Y0 = H(Φ,N).
3. Compute from Z for 1 ≤ j ≤ L:

ij = Yj−1 (mod T);

X[ij] = F (X[ij − 1], X[φ(ij)]);

Yj = H(Yj−1, X[ij]).

4. If YL has d trailing zeros, output ‘Yes’, otherwise output ‘No’.

3.1 Previous Tradeoff analysis of MTP [7]

We summarize the previous tradeoff analysis of MTP, as described in its speci-
fication.

Denote by M the total amount of memory consumed by a standard imple-
mentation of the MTP prover’s algorithm. The analysis of [7] aims to deduce the
function C ′(·) for MTP, given the function C(·) for the underlying memory-hard
function F . This analysis is divided into several possible cheating strategies.

Memory savings: A memory-saving prover can use αM memory for α < 1.
In [7] it is asserted that the computation penalty of such a prover is increased
by C ′(α) = C(α) to C(α)(T + 2d · L).

9

Block modification: A cheater can compute a different function F̂ 6= F by com-
puting inconsistent intermediate blocks X[i] 6= F (X[i− 1], X[φ(i)]). If the frac-
tion of inconsistent blocks is ε, then the probability that only consistent blocks
are accessed in the second phase of the prover’s algorithm (namely, during the
L block computation starting from Φ) is

γ = (1− ε)L.

Thus, the authors of [7] conclude that the cheater’s time is increased by the
factor 1/γ.

Overall cheating penalties: A cheater can use both strategies above by stor-
ing only αT blocks and additionally allowing εT inconsistent blocks. According
to [7], it is possible to combine to results from the analysis strategies above and
conclude that the cheater makes at least

C(α+ ε)(T + 2d · L)

(1− ε)L
(2)

calls to the compression function F . This gives C ′(α+ε) = C(α+ε)
(1−ε)L for a cheating

prover.

Parallelism Both the honest prover and the cheater can parallelize the compu-
tation for different nonces N . According to [7], the latency D′(·) of the cheater’s
computation for MTP will be

D(α+ ε). (3)

3.2 Instantiation of MTP

Biryukov and Khovratovich propose to instantiate MTP with the memory-hard
function Argon2d [6] and the hash function Blake2 [4].

Argon2d uses a block size of 1 KB. Its T blocks are arranged in a matrix,
where in MTP it is of size 4×4. A row of a matrix is called a lane, while a column
is called a slice. Each of the 16 matrix entries is called a segment. Segments of
the same slice (column) are computed in parallel, and may not reference blocks
from each other. All other blocks can be referenced.

Below we describe the indexing function of Argon2d according to the 2-
dimensional matrix notation. However, throughout most of this paper, we will
index the memory of Argon2d as a single dimensional array for the sake of sim-
plicity, as done in the MTP algorithm specification (the translations of indexes
from the single to the 2-dimensional case and and vise-versa are straightforward).

The indexing function of Argon2d for a block with index [i][j] (where i ∈
{0, 1, 2, 3}, j ∈ {0, 1, . . . , T/4} refer to lane and block index in the lane, re-
spectively) is defined using the value of the previous block in the same lane
X[i][j − 1]. The value of the 32 least significant bits (LSBs) of this block is de-
noted by J1 ∈ {0, . . . , 232 − 1} and value of the next 32 bits is denoted by J2.

10

If block X[i][j] is in the first slice, then the lane (row) number of the indexing
function value (which is denoted by l) is set to the current lane index l = i.
Otherwise, the 2 LSBs of J2 determine l.

Next, we compute the value of φ, [l][z], using i, j and J1. The details of
this computation are not important for the rest of this paper and are given
in Appendix B for the sake of completeness. We only note that the index z
is computed using a simple function that defines a non-uniform distribution
(according to the randomness of J1) over a prefix of blocks in lane l, where more
weight is placed on the larger indexes (closer to j).

The parameters of MTP selected in [7] are T = 221 (hence the prover’s
algorithm requires 221 · 210 = 231 bytes of RAM, or 2 gigabytes) and L = 70.
The output of hash function Blake2 is truncated to 128 bits, and thus h = 16.
Note that the difficulty level d is determined by the application (typically a
cryptocurrency).

Previous Tradeoff Analysis for the MTP Instantiation The tradeoff anal-
ysis for the concrete instantiation above relies on the functions C(·) and D(·)
for Argon2d. Some values of these functions at specific points (taken from [6, 7])
are given here7 in Table 1.

α 1
2

1
3

1
4

1
5

1
6

1
7

C(α) 1.5 4 20.2 344 4660 218

D(α) 1.5 2.8 5.5 10.3 17 27

Table 1. Time and Computation Penalties for Argon2d

Relying on the generic MTP tradeoff analysis (summarized in Section 3.1),
the authors of [7] plug into Equation 1 the values of C ′(·) for MTP (given by
Equation 2) and D′(·) (given by Equation 3), obtaining

ATα = AT
αD(α+ ε) + βC(α+ ε)

(1− ε)L
. (4)

Based on this equation, it is shown that for the concrete instance described
above, the time-area product can be reduced by the factor of 12 at most, as-
suming that each Blake2b core occupies an equivalent of 216 bytes, namely
β = 216/231 = 2−15.

4 Overview of the Attack on MTP

In this section, we give a general overview of our improved tradeoff analysis for
MTP, while pointing our where the previous analysis of [7] fails.

7 These are the best known tradeoff parameters at the time of writing.

11

4.1 A Trivial Attack

We start by describing a trivial attack on MTP and a simple fix which avoids
this attack with very little overhead. The attack is based on the observation that
the verifier does not actually check that the proof corresponds to the particular
challenge I. As a result, a cheating prover can simply replay a proof for some old
challenge I ′ (generated for the same difficulty level d), and this proof would pass
verification for the current challenge I as well. Note that in the cryptocurrency
setting, storing the previously generated proofs does not prevent this attack,
since not all previously generated (valid) proofs are included in the blockchain,
or even reach all the nodes in the network.

In order to avoid this simple attack, we can add to the proof the opening
of the first block X[1]. The verifier would then compute X[1] directly from the
challenge and check this additional opening with little added cost.

In the following, we assume that this simple countermeasure is implemented
and focus on attacks which are less trivial and more difficult to counter.

4.2 Weaknesses of MTP

We describe two related weaknesses of MTP that will be exploited in our at-
tack. These weaknesses are not specific to the use of Argon2d in MTP, and
apply to MTP when instantiated with essentially any function F that uses data-
dependent indexing.

1. A cheating prover is allowed to modify blocks so that they are inconsistent
with the compression function F . Thus, the cheater may compute a function
which is completely different than F . When the compression function F uses
data-dependent indexing (such as in Argon2d), the cheater can inject (po-
tentially very few) inconsistent blocks that influence its indexing function,
weakening the computation-memory tradeoff resistance of (the modified)
F , which we denote by F̂ . We conclude that it is non-trivial to relate the
memory-hardness of F to the memory-hardness of its potentially modified
variant F̂ computed by the cheater to obtain a proof for MTP. More specif-
ically, the main flaw in the analysis of [7] is in equations 2 and 3, where the
tradeoff functions C(·) and D(·) for F are used to compute the overall cheat-
ing penalties. However, the (potentially much weaker) tradeoff functions for
F̂ should have been used instead.

2. The cheater can use preprocessing (which is independent of a challenge I) to
speed up the online computation that begins once a challenge I is received.
At first sight, it may not be clear how the cheater can benefit from prepro-
cessing, as the function F has to be applied online to a challenge I whose
value cannot be predicted in advance, and computations of F with different
pseudo-random challenges are generally unrelated (especially when F uses
data-dependent indexing). However, recall that the cheater can manipulate
the function F and compute a different function F̂ both in preprocessing
and online. In our attack, we show how to carefully choose F̂ such that the

12

preprocessing computation is made independent of the online challenge I,
but nevertheless reduces the online complexity of computing a valid proof
for MTP on arbitrary challenges.

4.3 General Description of the Attack

In this section, we show how to exploit the first weakness described above in
order to obtain an efficient computation-memory tradeoff for MTP. The at-
tack is mostly independent of the specification of the compression function F
of Argon2d, but makes use of its data-dependent indexing function φ(i), which
depends on X[i − 1]. Hence, the algorithm of the attack should be adjusted
when applied to MTP instantiated with F that has a different data-dependent
indexing function.

The main idea of the attack is to compute a function F̂ that has weaker
computation-memory tradeoff resistance compared to F , yet the number of con-
sistent blocks in F̂ (with respect to the compression function F of F) remains
relatively high.

The computation of an arbitrary block X[i+1] depends on X[i] and X[φ(i+
1)], where for Argon2d φ(i + 1) depends on X[i]. Each one of these two blocks
depends on two other previous blocks and so forth. If we store only a small
fraction α of the T blocks, then computing X[i+ 1] will require computing the
hash labels (block values) for a graph of blocks with in-degree 2 of size C(α),
which seems to be exponential in 1/α as shown in Table 1. However, if we
allow some inconsistent blocks, we can store a small subset of blocks (denoted
by S) in memory and manipulate φ(i + 1) by changing the value of X[i] such
that X[φ(i + 1)] ∈ S. Proceeding the same way, we manipulate all blocks at
even indexes so that for each such block, its successor is computed using the
manipulated block and another block in S (stored in memory). Unfortunately,
this strategy leads to a large fraction of inconsistent blocks ε ≈ 1/2, and results in
a major penalty in the second phase of the proof computation, which is roughly8

1/(1− ε)L, as described in Section 3.1.
To obtain a more efficient attack we extend the above approach by looking

at X[i + 2] and noticing that X[φ(i + 2)] depends on X[i + 1], which in turn,
depends on X[i]. Therefore, we can try to compute a value for X[i] such that
both conditions X[φ(i+ 1)] ∈ S and X[φ(i+ 2)] ∈ S are satisfied. This strategy
reduces the fraction of inconsistent blocks to ε ≈ 1/3, which is smaller than
1/2, but still results in a significant penalty in the second phase of the proof
computation.

Generalizing the above idea further, let t be a small integer (our concrete
attack uses t = 20). We partition the T computed blocks into about T/t consec-
utive intervals of size t (for the sake of simplicity we assume that t divides T).
The first block X[i] in each interval satisfies i ≡ 0 (mod t) and we write it as
i = s · t for a positive s < T/t. Such blocks are called control blocks and they

8 The proposed instance of MTP uses L = 70, and hence the penalty is about 1/(1−
ε)L ≈ 270.

13

serve two purposes simultaneously: first, they will be the only blocks stored in
memory (up to small modifications described later), and hence they make up
the set S. Consequently, a control block with index s serves as a “target” for
array blocks which belong to intervals with indexes larger than s, thus allowing
to recompute them using little memory. Second, besides serving as a target for
array blocks in later intervals, each control block ensures that the large hash
label graph for each of the blocks in its own interval collapses from expected
exponential size in 1/α to a linear size. Next, we describe how this is achieved.

Control block X[s · t] is computed such that all t− 1 conditions

X[φ(s · t+ 1)] ∈ Ss, X[φ(s · t+ 2)] ∈ Ss, . . . , X[φ(s · t+ t− 1)] ∈ Ss

are satisfied (see Figure 2), where Ss contains all the previously computed control
blocks (namely, Ss = {X[s′ ·t]|0 ≤ s′ ≤ s}). We slightly relax the t−1 conditions
above for s and ` ∈ {1, 2, . . . , t− 1} as follows

X[φ(s · t+ `)] ∈ Ss ∪ {X[s · t+ 1], . . . , X[s · t+ `− 1]}. (5)

In other words, we allow φ(s ·t+`) to fall into the range of indexes s ·t+1, . . . , s ·
t+`−1 (as computing X[s·t+`] requires computing earlier blocks in the interval
anyway, this relaxation does not increase the complexity of computing X[s·t+`]).

Fig. 2. Satisfying 4 Conditions for t = 5

For an integer s and ` ∈ {1, 2, . . . , t− 1}, we have

X[s · t+ `] = F (X[s · t+ `− 1], X[φ(s · t+ `)])

= F (F (X[s · t+ `− 2], X[φ(s · t+ `− 1)]), X[φ(s · t+ `)]) = . . .

= F (F (. . . F (X[s · t], X[φ(s · t+ 1)]), . . . , X[φ(s · t+ `− 1)]), X[φ(s · t+ `)]).

(6)

Given that the conditions of Equation 5 are satisfied for any s and `, then all
the above ` + 1 blocks are stored in memory (or fall into the same interval as
X[s·t+`]). Therefore, computing X[s·t+`] given only the values of control blocks
with indexes 1, 2, . . . , s is performed using at most ` calls to the compression

14

function F as claimed (starting from X[s · t+ 1] = F (X[s · t], X[φ(s · t+ 1)]) and
proceeding according to Equation 6).

The full attack has two phases that correspond to the two phases of the
honest prover’s algorithm. In the first phase, we compute the control blocks in
their natural order and simultaneously compute the Merkle hash tree over all the
blocks X[1], X[2], . . . , X[T]. Since the blocks are computed in their natural order,
the root Φ of the Merkle hash tree can be computed on-the-fly while keeping in
memory the roots of at most log(T) sub-trees, and joining them (using the hash
function H) whenever possible. Overall, the memory complexity of this phase
is dominated by the storage of T/t control blocks. Note that only the control
blocks are inconsistent with F and hence ε = 1/t. In the second phase of the
attack, we pick arbitrary values for the nonce N and hope to find a valid proof
such that the L blocks in the chain (involved in the computation of Y1, . . . , YL)
do not fall onto the inconsistent control blocks (and YL has d trailing zeros as
required from a valid proof).

5 Details of the Attack

We now describe our basic attack in detail and then extend and optimize it in
various ways.

The First Phase We fix a parameter t > 3, whose value will be specified
later. The input to the first phase of the attack is the challenge I. The output of
this phase is an array of control blocks CB (containing the values of about T/t
control blocks) and the Merkle hash tree root Φ. In order to comply with the
additional restriction imposed by the trivial attack of Section 4.1 (which binds
the proof to I), we also compute the first t− 1 blocks honestly and return them.
As t will be very small compared to T (e.g., t = 20), this tweak has negligible
additional cost in memory. For the sake of simplicity, we omit the details of the
Merkle hash tree computation, which it is straightforward and has negligible
cost.

1. Compute the first t − 1 blocks X[1], . . . , X[t − 1] honestly using the
compression function F , and store them in memory.

2. Initialize the control block array CB[1, . . . , (T/t)− 1]. For each interval
s ∈ {1, . . . , (T/t)− 1}:
(a) Initialize the 32 LSBs J1 of the current control block value X[s · t]

and the 2 LSBs of J2 such that φ(s · t + 1) = (s − 1) · t according
to the algorithm of Equation 10 (in Appendix B). This ensures the
condition of Equation 5 (for ` = 1), as the next block in the interval
X[s · t+1] is computed using the previous control block X[(s−1) · t]
(which is stored in CB[s− 1]).

(b) Ensure that the remaining t−2 conditions of Equation 5 hold using
exhaustive search on the control block value X[s · t]. Namely, for
values of k = 0, 1, . . . let X[s · t] = J1 +J2 ·232 +k ·264, and perform:

15

i. For ` ∈ {1, . . . , t− 2}, compute

X[s · t+ `] = F (X[s · t+ `− 1], X[φ(s · t+ `)]),

where X[φ(s·t+`)]) is stored in memory or previously computed
in the interval (as the condition of Equation 5 for the current
value of ` was previously assured to hold).
Using J1, J2 for X[s ·t+`], compute φ(s ·t+`+1) and verify the
condition of Equation 5 for `+1. If the condition does not hold,
choose the next control block value by returning to Step 2.(b).
Otherwise, increment ` and continue. Once all t− 1 conditions
of Equation 5 hold, continue to the next step.

ii. Store the current X[s·t] value in CB[s], update the Merkle hash
tree computation accordingly, and increment s by returning to
Step 2.

3. Return the control block array CB, the first t−1 blocksX[1], . . . , X[t−1]
and the Merkle hash tree root Φ.

Computational complexity analysis: The computational complexity is dominated
by Step 2 which computes about T/t control blocks, all of which satisfy the t−1
conditions of Equation 5. The first condition is enforced by Step 2.(a). Note
the finding J1, J2 is trivial (as Equation 10 in Appendix B is very simple) and
this value is not changed in Step 2.(b) as the value of X[s · t] is incremented by
multiples of 264.9

Next, we estimate the complexity of Step 2.(b), which depends on the ex-
pected number of values of k that we have to try before all remaining t − 2
conditions are satisfied. If the indexing function φ used in Argon2d was uniform
over the previous indexes, then the probability for an arbitrary condition for s, `
in Equation 5 to be satisfied10 would be slightly larger than 1/t. The reason is
that at any point in the computation, we store a fraction of (at least) 1/t of
the blocks computed in the previous intervals, and moreover, we allow φ of each
index to land in the current interval.

However, as noted in Section 3.2, the indexing function of Argon2d in nonuni-
form and places more probability weight on larger indexes. Nevertheless, the
probability of satisfying an arbitrary condition s, ` remains at least 1/t. This
can be easily shown by considering all previous intervals shifted by one (whose
index values modulo t are [1, 2, . . . , t− 1, 0]). The last block in each such shifted
interval is a control block stored in memory and its probability weight is at least
as large as the average weight of the interval (the sum of weights divided by t).
Since we also allow φ of each index to land in the current interval, the probability
of satisfying an arbitrary condition for s, ` is indeed at least 1/t.

9 Since only the 2 LSBs of J2 determine the lane l, we could also increment X[s · t] by
multiples of 234.

10 The probability is taken over the choice of J1, J2 in X[s · t + ` − 1], which we can
assume to be uniform, given that the compression function F is pseudo-random.

16

From the analysis above (based on randomness assumptions on the compres-
sion function F), we conclude that the probability that all t − 2 conditions in
Step 2.(b) are satisfied for an arbitrary value of k is at least (1/t)t−2. Hence
we expect to try at most tt−2 such values in this step. For each value of k, the
expected number of compression function evaluations is about 1 + 1/t+ (1/t)2 +
. . .+(1/t)t−2, which is very close to 1 for the values of t ≈ 20 we consider in this
paper. We conclude that the expected complexity of Step 2.(b) is about tt−2,
and the complexity of the algorithm is about

T/t · tt−2 = T · tt−3. (7)

In Appendix C, we show how to reduce this complexity by a (small) factor
of about 8t/(t+ 8) by exploiting the specific Argon2d compression function.

Memory complexity analysis: The efficiency of the attack in the time-area prod-
uct metric crucially depends on reducing the required storage. The memory
complexity of the first phase is dominated by storing T/t control blocks. To
save memory, instead of storing each full control block, we simply store the cor-
responding value of k computed in Step 2.(b). We then easily reconstruct the
control block value when we access it in the second phase of the attack. Since
we expect to try tt−2 values of k, we require about (t− 2) log(t) bits of storage
on average per control block. However, we use static allocation of addresses in
an array, and some blocks will require more storage than the average.

To overcome this problem, we allocate a small additional allowance of b bits
per control block. The probability that these additional bits will not suffice
to store k (i.e., we do not find an appropriate k after exhausting all tt−2 · 2b

possible values) is about e2
−b

. In our concrete analysis we use b = 5, which gives
a negligible probability of about e−32 that the storage for a single block does
not suffice.

We conclude that the total memory complexity of the attack in bits is about

T/t · (b+ (t− 2) log(t)). (8)

The Second Phase The input to the second phase of the attack is the output
of the first phase, namely, an array of control blocks CB, the Merkle hash tree
root Φ and the first t − 1 blocks X[1], . . . , X[t − 1]. Its output is a valid (yet
malicious) proof (Φ,N,Z). The algorithm tries different values for the nonce N
until the corresponding chain of values does not access the control blocks (which
are the only inconsistent blocks we have) and the last value computed in the
chain YL has d trailing zeroes.

1. For nonce values N = 0, 1, . . .
(a) Compute Y0 = H(Φ,N).
(b) For 1 ≤ j ≤ L:

i. Compute ij = Yj−1 (mod T). Let ij = s · t+ `, where s · t is the
index of the control block in the interval of ij . If ` = 0 (namely,

17

ij is an index of an inconsistent control block), increment N by
returning to Step 1. Otherwise, continue.

ii. Compute X[ij] = X[s · t+ `], as specified in Equation 6.
iii. Compute Yj = H(Yj−1, X[ij]) and increment j by going back

to Step 1.(b).
(c) If YL has d trailing zeros, then output (Φ,N,Z) as the proof-of-

work, where Z is the opening of 2L blocks {X[ij − 1], X[φ(ij)]}.
Otherwise, select another value for N by returning to Step 1.

Computational complexity analysis: To calculate the expected computational
complexity, note that we have to compute about 2d full chains of length L
in Step 1.(b) until some YL has d trailing zeros. Since ε = 1/t, an arbitrary
chain extends to length L with probability (1−1/t)L, and we expect to compute
2d ·(1−1/t)−L chains in total. As the average length of a chain is t, the algorithm
computes an expected number of 2d · t · (1− 1/t)−L blocks X[ij].

11 The cost of
computing X[ij] for ij = s · t + ` is at most `, where the expected value of ` is
t/2. This gives a total expected complexity of

2d · t2/2 · (1− 1/t)−L. (9)

Memory complexity analysis: The memory complexity remains similar to the
previous phase.

5.1 Balancing the Phases

The complexity analysis above shows that there is a tradeoff between the two
phases of the attack: larger values of t decrease the value of (1−1/t)−L which is
the dominant factor in Equation 9 (for L = 70), and hence reduce the complexity
of the second phase. At the same time, larger values of t increase the complexity
of the first phase (given by Equation 7).

Besides the choice of t, another way to balance the phases is to reconsider
the condition X[φ(s · t+ `)] ∈ Ss in Equation 5. This condition is equivalent to
φ(s · t+ `) ≡ 0 (mod t). Assume we relax this condition (for all values of s, but
for a specific value of ` > 0) to

φ(s · t+ `) ∈ {0, 1 . . . ,m` − 1} (mod t)

for some 2 ≤ m` < `. This increases the probability of satisfying the condi-
tion from about 1/t to m`/t, reducing the expected complexity of phase 1 by a
multiplicative factor of m`. On the other hand, computing X[s · t + `] requires
computing X[φ(s · t + `)], which may no longer be stored in memory. This in-
creases the average number of compression function evaluations (units) required
to compute X[s · t + `] by an additive factor of (m` − 1)/2 (since φ(s · t + `) is

11 This computation shows that the analysis of the block modification cheating strategy
(given in Section 3.1) is slightly inaccurate, since it does not take into consideration
the fact that the expected chain length computed by the cheater is shorter than L.

18

expected to land in the middle of the allowed interval of m` blocks modulo t).
Moreover, the computation of all values X[s · t+ `+ 1], . . . , X[s · t+ t− 1] also
requires X[s · t+ `] and hence the average computation complexity increases by
(m` − 1)/2 units for these as well. Overall, the expected computation of a block
increases by an additive factor of ((m` − 1)/2 · (t − `))/t. Therefore, it is more
efficient to use this approach for large values of ` (which are close to the end of
each interval).

For example, for t = 20 we can set m19 = 2, reducing the expected complexity
of phase 1 by a multiplicative factor of m19 = 2, while the expected computation
of a block increases by an additive factor of ((m`− 1)/2 · (t− `))/t = 1/2 · (20−
19)/20 = 1/40. If we set m18 = 2, the expected complexity of phase 1 is also
reduced by a multiplicative factor of m18 = 2, while the expected computation
of a block increases by a larger additive factor of ((m` − 1)/2 · (t − `))/t =
1/2 · (20− 18)/20 = 2/40.

Our optimized attack will use this method by relaxing the conditions for
several indexes `, . . . , t − 1 at the end of each interval (see Figure 3), assigning
them respective values of m`,m`+1, . . . ,mt−1 (allowing their index functions to
land in a larger prefix of a previous interval). To simplify the analysis, we will
make sure that all m`,m`+1, . . . ,mt−1 are smaller than ` (which avoids more
complex recursions). In total, the expected complexity of phase 1 is reduced by
a multiplicative factor of

t−1∏
j=`

mj ,

while the expected computation complexity of a block in phase 2 increases by
an additive factor of

1/2t ·
t−1∑
j=`

(mj − 1)(t− j).

Fig. 3. Relaxing Equation 5 by Setting m3 = m4 = 2 for t = 5

We note that there is also a computational penalty on phase 1 of the attack
due to the additional complexity required for calculating a block when exhaus-
tively searching for control blocks. However, in our attack we make sure that

19

there is a penalty only on several blocks at the end of each interval which are
rarely computed compared to the other blocks.12 In total, the overall penalty on
phase 1 is negligible for the parameters we choose.

5.2 Using Preprocessing

Although we can select interesting parameters for the attack described above, it
is still generally impractical in the standard cryptocurrency setting. The reason
for this is that the tradeoff between the two phases forces us to spend considerable
time on phase 1 in order to obtain a reasonable overall computation complexity.
However, the probability of producing a valid proof in phase 1 is zero, implying
that the attack is not a progress-free algorithm. As a result, the malicious prover
(miner) has to spend significant computation on phase 1 for a certain challenge
I with no chance of finding a valid proof in this phase. Once a new proof arrives
on the network (which typically occurs every few minutes), this computational
effort is lost.

To solve this problem, we modify the algorithm so that the first phase can be
performed during preprocessing with no dependency on the challenge.13 This is
achieved by partitioning the Argon2d block array into two parts, where the first
part is relatively small and will be computed honestly online using the actual
challenge I. The second part contains most blocks in the block array, and we
force it to be independent of the first part of the block array and the challenge.
In other words, we disconnect the second part from the first, which allows us to
perform the heavy control block computation during preprocessing. Details are
given below.

We choose a small fraction δ � 1/t and leave the first δT blocks in each of
the 4 lanes (rows) of Argon2d with an undetermined value during preprocessing
(their value will only be determined online). In order to compute the remaining
control blocks during preprocessing with no additional cost, we have to maintain
the property that at all stages, each condition given by Equation 5 (for indexes
s, `) holds with probability of at least 1/t. To achieve this, we set the δT/(t− 1)
blocks that follow the δT prefix in each lane to some fixed value. We change
the conditions given by Equation 5 by allowing X[φ(s · t + `)] to land on the
fixed-value blocks, but do not allow them to land on the undetermined prefix in
each lane.

Thus, we start computing the control blocks in phase 1 from index (1+1/(t−
1)) · δT in each lane. As we cannot compute the root of the full Merkle hash tree
in preprocessing, we compute the roots of all the subtrees of the known blocks
and pass them to the online phase. Since there are 4 lanes, the number of such

12 Moreover, computing the blocks in their natural order in phase 1 is more efficient
(on average) than computing an average block, as by the time we compute block
X[i] we have already computed its predecessor X[i− 1].

13 This modification can be easily combined with the method of balancing the phases
described above, but we describe each one of them separately for the sake of sim-
plicity.

20

roots is at most 4 log(T), and they consume negligible memory (which can be
reused once the Merkle hash tree computation in phase 2 is finished). Overall,
the complexity of phase 1 when performed in preprocessing remains roughly the
same.

During the online phase, we receive the challenge I, compute the first δT
blocks in each lane honestly and finish the Merkle hash tree computation. We
then execute phase 2 of the attack. Assuming that the prefix of size δT is suffi-
ciently small, the memory complexity of the attack will be roughly as in Equa-
tion 8. The fraction of inconsistent blocks remains (at most) ε = 1/t, hence the
computation complexity remains unchanged.

6 Analysis of the Full Attack

In this section, we analyze the full attack. Our goal is to optimize the time-area
product ratio for the attack between the honest and malicious provers according
to Equation 1. While the previous sections analyzed the attack phases as a
function of the parameters in symbolic form in order to maintain generality, we
choose to perform the most of the analysis in this section in numerical form.
The reason for this choice is that the symbolic expressions that can be derived
in this section are rather complex and do not seem to provide additional insight
into the attack. Hence, we favor readability over generality.

It is not obvious how to treat the preprocessing phase in the framework of
Section 2. On one hand, a one-time precomputation should not be taken into
account in Equation 1. On the other hand, a very long preprocessing phase will
render the attack impractical. Our compromise is to set a hard limit on the
complexity of the preprocessing phase and then optimize the online phase with
respect to the framework of Section 2.

Before choosing concrete parameters for the attack in order to optimize the
time-area product, we argue informally that it achieves a sub-linear computation-
memory tradeoff for a wide range of parameters: recall that the online phase has
complexity of 2d · t2/2 · (1−1/t)−L. Allowing for a sufficiently long preprocessing
phase, we can choose t < L sufficiently large such that the term (1 − 1/t)−L

is small and the complexity becomes roughly 2d · t2 < 2d · L · t. This is about
t times larger than honest prover’s complexity (which is more than 2d · L).
In terms of memory, recall that we store a succinct representation of a 1/t
fraction of all blocks, whereas the honest prover stores all of them. Consequently,
the computation-memory product of the attacker is reduced by a factor which
is proportional to c/b, where c is the memory occupied by our succinct block
representation and b is the memory occupied by a full block. Namely, the attack
achieves a sub-linear computation-memory tradeoff depending on the ratio c/b.
Next, we show how to actually obtain such a tradeoff by choosing concrete
parameters and applying the optimizations described in the previous section.

We begin by setting a hard limit of 264 for the preprocessing phase. We
believe that this is a reasonable complexity, as it is feasible for a motivated
attacker, but does not require exceptional computing power that is available

21

only to very resourceful attackers. This feasibility assertion is based on the fact
that the preprocessing phase can be easily parallelized (exhaustive search for
each control block can be performed in parallel) and requires a small amount of
memory (as we show later, it requires less than one megabyte).

We now reconsider the preprocessing complexity of T · tt−3 given by Equa-
tion 7 (without using the balancing technique of Section 5.1). This complexity
can be slightly reduced by a factor of 8t/(t+8), as shown in Appendix C. Setting
T = 221 as fixed by the MTP instance, we conclude that we can use t = 14,
which keeps the preprocessing complexity below the hard limit of 264. However,
these parameters do not give the optimal time-area ratio, as they do not use
the balancing technique. To optimize the attack, we wrote a computer program
that finds the best parameters for the balancing technique of Section 5.1 for a
given value of t, limiting the values of all m` to powers of 2 for simplicity. We
then searched for the best value of t exhaustively. Next, we describe the optimal
parameters.

6.1 Concrete parameters

We use the balancing technique for t = 20 by setting m8,m11, . . . ,m19 to the
respective values of 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8. These values reduce the com-
plexity of preprocessing by a multiplicative factor of

∏19
j=8mj = 228 (from

T · tt−3 · (t + 8)/8t = 221 · 2017 · 28/160 < 292 to less than 264). We also
note that these values will increase the expected computation complexity of
a block in phase 2 by an additive factor of 1/2t ·

∑19
j=8(mj − 1)(t − j) =

1/40 · (1 · 12 + 3 · (11 + 10 + 9 + 8 + 7 + 6) + 7 · (5 + 4 + 3 + 2 + 1)) = 6.75.

Memory complexity: The memory complexity of the honest prover’s algorithm
is T blocks, and specifically for the MTP instance we have T = 221 blocks
which consume 234 bits. According to Equation 8, the memory complexity of
the attack is T/t · (b + (t − 2) log(t)) bits. However, this is changed by setting
m8, . . . ,m19 as above, since computing a block in phase 1 now requires about
2018 · 2−28 < 250 computations (and 50 + b bits of storage on average). Using
this value, and setting T = 221, b = 5 (as specified in Section 5) and t = 20,
we obtain a total memory complexity of 221/20 · (50 + 5) ≈ 222.45 bits, which is
less than a megabyte. Hence, the ratio between the memory complexities of the
honest and the malicious provers is

α ≈ 222.45−34 = 2−11.55 ≈ 1/3000.

Computation complexity: Recall that the computation complexity of the honest
MTP prover’s algorithm is T + 2d ·L > 2d ·L. For the MTP instance considered,
we have L = 70 giving a complexity of at least 2d · 70.

The computation complexity of phase 2 according to Equation 9 is 2d · t2/2 ·
(1− 1/t)−L. Taking into account the balancing technique, the average computa-
tion complexity per block increases by an additive factor of 6.75 (from t/2 = 10
to 16.75). For L = 70 and t = 20, we obtain 2d · 16.75 · 20 · 36.25 ≈ 2d · 12144.

22

Hence, the ratio between the computation complexities of the honest and the
malicious provers is

C(α) ≈ (2d · 12144)/(2d · 70) ≈ 173.

Time-area product ratio: In terms of the time-area product ratio for the attack,
according to Equation 1 we should evaluate αD(α) + βC(α), where β = 2−15

for MTP. If we do not use any parallelism, then the total running time ratio is
D(α) = C(α) and we have

αD(α) + βC(α) = C(α)(α+ β) ≈ 173(1/3000 + 2−15) ≈ 1/15.9.

In other words, the time-area product of the malicious prover is reduced by an
approximate factor of 15.9.

To compute D(α) when using parallelism, observe that the circuit depth of
the attack is increased by an expected factor of at most (t+1)/2 = 10.5 compared
to the honest prover’s algorithm.14 This is because the expected circuit depth
of computing an arbitrary block X[ij] in the chain is (t − 1)/2 and computing
the corresponding Yj requires an additional hash function invocation (chains
computed with different nonce values do not increase the circuit depth). We
have

αD(α) + βC(α) ≈ 1/3000 · 10.5 + 2−15 · 173 < 1/113.

Consequently, the time-area product of the malicious prover is reduced by an
approximate factor of 113.

6.2 Comparison with the Analysis of [7]

Plugging the parameter values of our attack α ≈ 1/3000 and ε = 1/20 into
Equation 2 (using Table 1), we obtain that the computational penalty should
increase according to the MTP designers by a factor of more than

C(α+ ε) · (1− ε)−L = C(1/3000 + 1/20) · (19/20)−70 ≈
25.2 · C(1/19) > 25.2 · C(1/7) = 25.2+18 = 223.2,

which is about 10 million. This is more than 55,000 times as much as the 173
computational penalty we obtain. Using the actual value of C(1/19) (instead of
C(1/7)) would give a larger improvement factor.15

In terms of time-area product, our improvement ratio of 113 (or even the
ratio of 15.9, obtained without exploiting parallelism) contradicts the claims of
the MTP designers that the time-area product can be reduced by a factor of 12

14 If we consider the initial computation of Argon2d by the honest prover, then D(α)
can be even smaller.

15 We do not have a concrete value of C(1/19) for Argon2d, but based on the very fast
growth of this function, the actual value of C(1/19) should be significantly larger
than C(1/7) = 218. Hence we expect our actual improvement ratio to be much larger
than 55,000.

23

at most. Moreover, plugging our parameters into Equation 4 (using Table 1), we
obtain a value which is more than

βC(α+ ε) · (1− ε)−L > 2−15 · 223.2 = 28.2.

In other words, for our set of parameters, the time-area product of the attacker
should increase by a factor of more than 294 according to [7]. As we actually
reduce the time-area product by 113, we improve this analysis by a multiplicative
factor which is more than 33,000. Once again, using the actual value of C(1/19)
(instead of C(1/7)) would give a larger improvement factor.

7 Extensions of the Attack

There are several possible extensions of the attack. In this section, we briefly
mention two of them.

First, a natural question is how the attack behaves when changing the pre-
processing complexity hard limit. Interestingly, the time-area product ratio (be-
tween the honest and malicious provers) does not drastically change when the
preprocessing complexity varies in the region between 248 and 280. For example,
if we set the preprocessing complexity to a trivial value of 248, the time-area
product ratio is still more than 60 in favor of the attacker.

Next, note that in order to detect inconsistency in the malicious proof, a ver-
ifier should (in addition to running the standard verification algorithm) compute
Argon2d until the first block of the proof which in inconsistent with the Argon2d
compression function. Detecting this inconsistency already involves non-trivial
computation and memory. Furthermore, it is possible to further increase the
amount of resources required for detection at the cost of increasing the amount
of resources (namely, memory, time, or both) required for the attack.

More specifically, recall from Section 5.2 that we set a parameter δ which
controls the number of prefix blocks that are computed honestly. So far, we
assumed that δ � 1/t, and thus this prefix can be neglected. However, we can
set δ to a non-negligible value in order to force the verifier to compute more
blocks to detect inconsistency. Obviously, this increases the memory complexity
of the attack, but we can trade some of the memory for computation by storing
only an α fraction of the prefix. As as result, we pay a computational penalty
based on α according to Table 1 for these blocks. The total expected additional
penalty for computing a block is multiplied by δ (since it only involves the prefix
blocks).

8 Countermeasures

In this section, we discuss possible countermeasures for the attack.
We first consider simple ad-hoc countermeasures which try to detect some

“non-random” properties of the proof. For example, one may observe that many
blocks in the proof depend on control blocks which have a small value and occur

24

at indexes which have the same offset modulo some number t > 1. However,
such countermeasures are very easy to defeat. For example, we can start the
exhaustive search for each control block from a pseudo-random value which
depends on its index (and is not stored in memory). To eliminate the property
that all control blocks have the same value modulo some number t > 1, we
can use variable alignment of the blocks (e.g., by introducing a slightly shorter
interval every 100 intervals). This may change the cost of the attack, as we need
to keep track of the control block indexes, but all the additional work can be
made negligible with appropriate choice of parameters.

Next, we consider other countermeasure options which adjust the parameters
of MTP. For example, we can increase the value of L. This will definitely increase
the complexity of the attack, but it will also increase the complexity of the
verifier’s (and honest prover’s) algorithm. Overall, such countermeasures do not
seem reasonable, as they do not eliminate the main properties of MTP which
make the attack possible and they introduce additional overhead for the honest
players.

Finally, the most reasonable countermeasure is to instantiate MTP with a
memory-hard function that uses data-independent indexing (such as Argon2i).
This may enable computation-memory tradeoff algorithms which are somewhat
more efficient (for details regarding Argon2i, refer to [1, 2, 6]), but it completely
resists the basic form of our attack. In the following, we call such an instantiation
data-independent MTP in short.

It is natural to ask whether the analysis given by Equation 4 holds (even
heuristically) for data-independent MTP. The answer to this question is negative
and we demonstrate this by the following example: assume that two blocksX1, Y1
are computed as X1 = F (X2, X3), Y1 = F (Y2, Y3) and moreover, Y3 = X3 (they
point to the same array index). Then, the attacker can set Y2 = X2, resulting
in Y1 = X1. Altogether, the attacker introduced a single inconsistent block Y2,
but the result is that the two blocks Y1, Y2 do not have to be stored. This is
inconsistent with Equation 4, since α is not directly reduced (the attacker can
still compute all blocks with the honest prover’s complexity), but the memory
complexity is reduced by a factor of 2ε for a fraction of ε inconsistent blocks.

Overall, the above property does not immediately lead to a very efficient at-
tack, but it seems undesirable in general. To avoid this self-similarity property, it
is possible to use a different compression function Fi for each index i (essentially,
setting i to be another input to F), as in the HAIFA mode-of-iteration construc-
tion for hash functions [5]. However, this tweak may still not be sufficient when
using a compression function which is not collision resistent. In particular, if
X1 = F1(X2, X3), Y1 = F2(Y2, Y3), the attacker may try to find a value for Y2
such that X1 = Y1 (even if Y3 6= X3), resulting in a similar property as above.
When basing the functions Fi on Argon2’s F , finding such collisions may be very
simple, as it is trivial to find collisions in its compression function (which was
not designed to resist to such attacks).

It may also be possible to exploit preprocessing in computing malicious proofs
for data-independent MTP. Although it is unlikely that we can split the block

25

array into completely independent parts (as in the case of Argon2d), we can
make the first part (which depends on the online challenge) sufficiently small
such that only a small fraction of blocks in the second part depend on it directly.
This allows to compute most of the block array during preprocessing in a way
that is highly consistent with the Argon2 compression function.

From the discussion above, we conclude that the analysis of data-independent
MTP is non-trivial and we leave it to future work.

9 Conclusion

In this paper, we described a new cryptanalytic computation-memory trade-
off for MTP when instantiated with a memory-hard function that uses data-
dependent indexing. When applied to the instance proposed by Biryukov and
Khovratovich, our attack reduces the cost of a malicious prover’s algorithm by
a factor of 113 compared to the honest prover’s algorithm. Finally, while data-
independent MTP avoids the basic form of our attack, it may still be susceptible
to its extensions and we leave its concrete instantiation and analysis to future
work.

References

1. J. Alwen and J. Blocki. Efficiently Computing Data-Independent Memory-Hard
Functions. In M. Robshaw and J. Katz, editors, Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in
Computer Science, pages 241–271. Springer, 2016.

2. J. Alwen and J. Blocki. Towards Practical Attacks on Argon2i and Balloon Hash-
ing. IACR Cryptology ePrint Archive, 2016:759, 2016. Presented at the IEEE
European Symposium on Security and Privacy, 2017.

3. G. Ateniese, I. Bonacina, A. Faonio, and N. Galesi. Proofs of Space: When Space Is
of the Essence. In M. Abdalla and R. D. Prisco, editors, Security and Cryptography
for Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September
3-5, 2014. Proceedings, volume 8642 of Lecture Notes in Computer Science, pages
538–557. Springer, 2014.

4. J. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. BLAKE2: Simpler,
Smaller, Fast as MD5. In M. J. J. Jr., M. E. Locasto, P. Mohassel, and R. Safavi-
Naini, editors, Applied Cryptography and Network Security - 11th International
Conference, ACNS 2013, Banff, AB, Canada, June 25-28, 2013. Proceedings, vol-
ume 7954 of Lecture Notes in Computer Science, pages 119–135. Springer, 2013.

5. E. Biham and O. Dunkelman. A Framework for Iterative Hash Functions - HAIFA.
IACR Cryptology ePrint Archive, 2007, 2007. http://eprint.iacr.org/2007/278.

6. A. Biryukov, D. Dinu, and D. Khovratovich. Argon2: New Generation of Memory-
Hard Functions for Password Hashing and Other Applications. In IEEE Euro-
pean Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,
March 21-24, 2016, pages 292–302. IEEE, 2016.

7. A. Biryukov and D. Khovratovich. Egalitarian Computing. In T. Holz and S. Sav-
age, editors, 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, August 10-12, 2016., pages 315–326. USENIX Association, 2016.

26

8. A. N. J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and Cryptocur-
rency Technologies: A Comprehensive Introduction. Princeton University Press,
Princeton, NJ, USA, 2016.

9. C. Dwork and M. Naor. Pricing via Processing or Combatting Junk Mail. In
E. F. Brickell, editor, Advances in Cryptology - CRYPTO ’92, 12th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 16-20,
1992, Proceedings, volume 740 of Lecture Notes in Computer Science, pages 139–
147. Springer, 1992.

10. S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak. Proofs of Space. In
R. Gennaro and M. Robshaw, editors, Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part II, volume 9216 of Lecture Notes in Computer Science,
pages 585–605. Springer, 2015.

11. C. Lee. Litecoin. https://litecoin.org/, 2011.
12. M. Mahmoody, T. Moran, and S. P. Vadhan. Publicly verifiable proofs of sequential

work. In R. D. Kleinberg, editor, Innovations in Theoretical Computer Science,
ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 373–388. ACM, 2013.

13. R. C. Merkle. A Digital Signature Based on a Conventional Encryption Function.
In C. Pomerance, editor, Advances in Cryptology - CRYPTO ’87, A Conference
on the Theory and Applications of Cryptographic Techniques, Santa Barbara, Cal-
ifornia, USA, August 16-20, 1987, Proceedings, volume 293 of Lecture Notes in
Computer Science, pages 369–378. Springer, 1987.

14. S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf, 2009.

15. Password Hashing Competition. https://password-hashing.net/, 2015.
16. C. Percival. Stronger Key Derivation via Sequential Memory-Hard Functions.

http://www.tarsnap.com/scrypt/scrypt.pdf, 2009.

A Merkle Hash Trees

Merkle hash tree is a data structure proposed by Ralph Merkle in order to create
digital signatures using symmetric cryptography primitives [13]. However, it has
found many additional applications since its introduction.

The value of every non-leaf node in a Merkle hash tree is computed by hashing
the concatenated values of its children nodes. An opening of a data block Xi is
a proof that H(Xi) is indeed a leaf in the tree contained in the tree at index i.
The opening includes Xi itself and the values of the siblings of H(Xi)’s path to
the root, which are sufficient to compute the full path. For example, the opening
of X3 in the tree of Figure 4 contains (besides the value of X3) the values of
H(X4) and H(H(X1), H(X2)).

Assuming that the hash function H is collision resistant, the Merkle hash
tree construction guarantees that it is computationally hard to open a block in
more than one way.

B The Indexing Function of Argon2d

Recall from Section 3.2 that given indexes i, j of a block [i][j], we first compute
J1, J2 and determine the lane of the referenced block, denoted by l. Next, we

27

Fig. 4. Merkle Hash Tree

show how to compute the block index z within the lane. First, we determine the
set of indexes that can be referenced given [i][j] (denoted by R) according to
the following rules:

1. If l is the current lane, then R includes all previous blocks computed in this
lane, excluding [i][j − 1].

2. If l is not the current lane, then R includes all blocks in the segments whose
computation is finished in lane l. If [i][j] is the first block of a segment, then
the last block from R is excluded.

The size of R is denoted by |R|. The value of J1 determines the block index
within this lane by computing (over the integers)

x = (J1)2/232;

y = (|R| · x)/232;

z = |R| − 1− y.
(10)

The value of φ is [l][z]. Note that φ for [i][j] defines a non-uniform distribution
over the indexes of R, where more weight is placed on the larger indexes closer
to j.

C Optimizing Phase 1 for Argon2d

In this appendix, we exploit the Argon2d compression function to optimize phase
1 of the attack (described in Section 5) by a factor of about 8t/(t + 8). We
start with a high-level description of the Argon2d compression function, which
is sufficient to understand the optimization (more details can be found in [6]).

The compression function F takes as input 2 blocks of 1024 bytes, denoted
by X and Y , and outputs the single block G(X ⊕ Y) ⊕ X ⊕ Y , where G is

28

a permutation on 1024 bytes. The permutation G views the 1024 input bytes
as an 8 × 8 matrix A, where each entry is of size 16 bytes. It applies a 128-
byte permutation P once to all 8 rows of the matrix and once to all 8 columns
(altogether P is applied 16 times in G). The permutation P is the round-function
of Blake2 [4], but we do not exploit its specification in the attack. In total, the
main effort in computing F is in the 16 applications of the permutation P .

We now show how to reduce the expected number of invocations of P in
phase 1 of the attack. Recall that in phase 1 we set the 64 LSBs of the control
block to some fixed value (ensuring that φ(s · t+ 1) = (s− 1) · t). We then do an
exhaustive search on the remaining bits to find a value such that all the following
blocks in the current interval (with indexes 2, 3, . . . , t− 1 inside the interval) are
also computed using previous control blocks.

The expected complexity of verifying that a control block value satisfies the
constraints is about 1 + 1/t + (1/t)2 + . . . + (1/t)t−2, where the first term (1)
in the sum stands for the first F computation (that takes as input the current
control block X[s · t] and the previous one X[(s− 1) · t]). Note that X[(s− 1) · t]
never changes during the exhaustive search, while X[s · t] changes, but this
change is limited to a single 16-byte entry16 in the 8× 8 matrix A (whose value
is X[s · t] ⊕ X[(s − 1) · t]) at the input of G. Therefore, 7 out of 8 rows of A
never change during this computation and their value after the application of
P can be computed once, stored in memory, and reused. Moreover, in order to
verify the next condition (namely, compute φ(s · t + 2) of the next block), we
only need to compute the 64 LSBs of the output of F . Hence, after computing
P on the rows, we compute P on the first column, verify the condition, and
only if it is satisfied we continue (otherwise, we change X[s · t] and recompute
F (X[s ·t]⊕X[(s−1) ·t])). The probability that the condition will not be satisfied
is (t− 1)/t, implying that we need to apply P only twice, equivalent to 2/16 =
1/8 full F invocations. With probability 1/t we continue by first finishing the
computation of F (X[s · t]⊕X[(s− 1) · t]) on the remaining 7 columns. We start
computing the next invocation of F (X[s · t+ 1], X[φ(s · t+ 1)]) by applying P to
the 8 rows of A, and once more to the first column, giving the 64 output LSBs
that allow to compute φ(s · t + 2). Once again, we continue only if φ(s · t + 2)
satisfies the condition of Equation 5. Thus, with probability 1/t, we compute
7 + 8 + 1 = 16 additional P invocations, equivalent to a single F invocation.

In total, the expected complexity of verifying a single value of the control
block in the exhaustive search is optimized to 1/8 · (t− 1)/t+ 1/t+ 1/t2 + . . . <
1/8+1/t invocations of F . Therefore, the total complexity of phase 1 is optimized
by a factor of about 8t/(t+ 8).

We note that additional optimizations are possible by exploiting differential
properties of P . However, we do not mention such optimizations here as they
are more complex and do not seem to lead to a significant advantage.

16 We iterate through the 64 MSBs of the first matrix entry (the 64 LSBs are fixed)
and the total computation per control block is significantly lower than 264. Hence,
we do not overflow the first matrix entry.

29

