
A preliminary version of this paper appears in the proceedings of the 37th International Cryptology Conference
(CRYPTO 2017), c© IACR 2017. This is the full version.

A Formal Treatment of Multi-key Channels

Felix Günther Sogol Mazaheri

Cryptoplexity, Technische Universität Darmstadt, Germany
guenther@cs.tu-darmstadt.de sogol.mazaheri@cryptoplexity.de

June 1, 2017

Abstract. Secure channel protocols protect data transmission over a network from being overheard
or tampered with. In the common abstraction, cryptographic models for channels involve a single
key for ensuring the central security notions of confidentiality and integrity. The currently developed
next version of the Transport Layer Security protocol, TLS 1.3, however introduces a key updating
mechanism in order to deploy a sequence of multiple, possibly independent encryption keys in its channel
sub-protocol. This design aims at achieving forward security, protecting prior communication after long-
term key corruption, as well as security of individual channel phases even if the key in other phases
is leaked (a property we denote as phase-key insulation). Neither of these security aspects has been
treated formally in the context of cryptographic channels so far, leading to a current lack of techniques
to evaluate such channel designs cryptographically.

We approach this gap by introducing the first formal model of multi-key channels, where sender and
receiver can update their shared secret key during the lifetime of the channel without interrupting the
communication. We present modular, game-based notions for confidentiality and integrity, integrating
forward security and phase-key insulation as two advanced security aspects. As we show, our frame-
work of notions on the lower end of its hierarchy naturally connects to the existing notions of stateful
encryption established for single-key channels. Like for classical channels, it further allows for gener-
ically composing chosen-ciphertext confidentiality from chosen-plaintext confidentiality and ciphertext
integrity. We instantiate the strongest security notions in our model with a construction based on au-
thenticated encryption with associated data and a pseudorandom function. Being comparatively close,
our construction additionally enables us to discuss the TLS 1.3 record protocol design.

1 Introduction
Secure channel protocols are at the heart of today’s communication infrastructure, protecting data in
transit in countless connections each day. Major examples include the Transport Layer Security (TLS)
protocol [DR08] securing the Web, the Secure Shell (SSH) protocol [YL06] enabling secure remote logins,
and the Internet Protocol Security (IPsec) protocol [KS05] protecting, e.g., tunneled network-to-network
connections.

1.1 Secure Cryptographic Channels

In the cryptographic realm, the established game-based abstraction of secure channels is that of state-
ful encryption, introduced by Bellare, Kohno, and Namprempre [BKN04]. Stateful encryption first of
all inherits the classical security requirements of (non-stateful) encryption: confidentiality and integrity.
Confidentiality of encryption, first formalized by Goldwasser and Micali [GM84], intuitively demands that

1

the content of transmitted messages remains secret. Integrity, in parts concurrently introduced by Katz
and Yung [KY01], Bellare and Rogaway [BR00], and Bellare and Namprempre [BN00], in contrast ensures
that an adversary cannot forge ciphertexts that, on decryption, lead to (meaningful) messages. In order
to provide secure communication through a sequence of messages, stateful encryption schemes go beyond
these standard requirements and moreover protect against reordering, dropping, and replays of messages
transmitted in a channel. On a constructive level, channels to this extend incorporate authenticated
encryption with associated data (AEAD) schemes [Rog02] as an essential cryptographic building block,
integrated with message-order and error handling.

Starting from and partially building upon the work by Bellare, Kohno, and Namprempre, various exten-
sions and adaptations of (game-based) channel models have been proposed. For example, Kohno, Palacio,
and Black [KPB03] define a hierarchy of channels with varying resilience against replays, reordering, or
message dropping. In order to capture potential padding of messages before encryption, Paterson, Risten-
part, and Shrimpton [PRS11] introduce the notion of length-hiding authenticated encryption. Motivated
by practical attacks due to implicit information leakage through different error messages or different tim-
ings of an error message, e.g., caused by either a MAC or a decryption failure, Boldyreva et al. [BDPS14]
discuss decryption algorithms that distinguish more than a single error message. They also study the
effects of multiple error messages on the generic relation between confidentiality and integrity established
earlier by Bellare and Namprempre [BN00]. In order to capture fragmented delivery of ciphertexts as it
arises in real-world attacks on secure channels (cf. [APW09]), Boldyreva et al. [BDPS12] and Albrecht
et al. [ADHP16] consider stateful encryption with ciphertext fragmentation. Going one step further, Fis-
chlin et al. [FGMP15] additionally study plaintext fragmentation to capture scenarios where channels
are required to process a stream of data. Finally, protocols in practice usually establish a bi-directional
communication channel, a setting whose security was recently studied by Marson and Poettering [MP17].

1.2 Multi-key Channels

In all cryptographic models of secure channels established so far, security originates from a single, sym-
metric key shared between the two endpoints of the channel. The upcoming version of the TLS protocol,
TLS 1.3 [Res17], whose specification is currently being developed, however deviates from this paradigm
and instead deploys a sequential series of multiple keys. The TLS 1.3 channel (the so-called record pro-
tocol) as usual begins with deriving an initial key for encryption and decryption of messages. As a novel
component, both parties are further able to trigger key updates, leading to a key switch according to a
pre-defined schedule while maintaining channel’s operation. One particular motivation for this approach
is that long-lived TLS connections may exhaust the cryptographic limits of some algorithms on how much
data can be safely encrypted under a single key (cf. [Res17, Section 5.5], [LP16]).

A more general, major reason for refreshing the key used in a secure channel and specifically TLS 1.3 is
forward security, a notion primarily known from and well-established in the context of key exchange proto-
cols [Gün90, DVOW92, CK01]. When using the same key throughout the lifetime of a channel, an attacker
that learns this key (e.g., through cryptanalysis or even temporary break-in into the system) immediately
compromises the confidentiality of previous and the integrity of future communication. In contrast, for-
ward security demands that even if key material is leaked at some point, previous communication remains
secure. Forward-secure symmetric encryption in the non-stateful setting is considered understood and
in particular can be built from forward-secure pseudorandom bit generator [BY03] or, more generally,
through re-keying [AB00]. In the context of secure channels, a formal treatment of forward security is
however lacking so far.

Beyond forward security, a second security property arises for secure channels (in particular in the
design of TLS 1.3) which we refer to as phase-key insulation. While forward security targets a full compro-
mise (and prior security), phase-key insulation is concerned with the temporary compromise of a channel

2

in the form of leaking the key used in a certain time period (phase), but not in others. Such temporary
compromise might, e.g., result from differing strengths of key material used to derive some of the phase
keys (as is the case for keys established in the TLS 1.3 key exchange [KW16, DFGS15, FG17]) or from
storing the currently active key in less secure memory for efficiency reasons. A secure channel with phase-
key insulation should then uphold confidentiality and integrity in uncompromised phases, even if the key
of prior or later phases is revealed. Moreover, security should be retained even if the attacker learned a
phase’s key while that phase was still active.

As we will see, phase-key insulation orthogonally complements the notion of forward security, which
is only concerned with a posteriori leakage of keys. Requiring it furthermore introduces new pitfalls in
the design of secure channels. For example, the initial draft design of the TLS 1.3 record protocol with
key updates enabled truncation attacks in non-compromised phases that would go unnoticed during the
further execution of the protocol, as Fournet and the miTLS [miT] team discovered [Fou15]. We hence
consider it being crucial to establish a formal understanding of channels using multiple keys, which is
lacking at this point, in order to allow thorough analyses of proposed protocols and means for evaluating
their provable security guarantees.

1.3 Our Contributions

In this work we initiate the study of channels that employ a sequence of multiple keys. To this end, we
introduce a formalization of such multi-key channels and set up an according framework of game-based
security notions. We then analyze the relations between our security notions as well as connections to the
established notions for stateful encryption and finally provide a generic construction of a provably secure
multi-key channel.

Following the game-based tradition in modeling channels, our formalism builds upon and extends that
of Bellare, Kohno, and Namprempre [BKN04] and Bellare and Yee [BY03]. More specifically, our notion
of multi-key channels augments that of regular stateful encryption in three aspects. Obviously, we first
of all consider a sequence of keys to be used for encryption and decryption. Secondly, switches between
these keys are initiated through a specific key-update algorithm which makes the channel proceed from
one phase to the next. Lastly, we separate two hierarchies of keys by additionally considering a level of
master secret keys which, also evolving over time, are used to derive the channel key for each phase. As we
will discuss, this carefully crafted syntax and key hierarchy in particular allows us to quite closely model
the key schedule of the TLS 1.3 record protocol draft [Res17].

We then define security of multi-key channels via a a framework of notions. Beyond capturing the clas-
sical requirements of confidentiality and integrity, our notions modularly integrate the advanced security
properties of forward security and phase-key insulation arising in the context of multi-key channels. The
core technical challenge here is to appropriately capture the desired security properties while excluding
trivial attacks in the stateful multi-key setting. We furthermore modularize the adversary’s capability to
proceed a channel to a next phase through key updates. Thereby, our framework elegantly also captures
the single-key variants of our security notions, i.e., the cases where a multi-key channel only operates in a
single phase.

Our single-key security notions enable us to provide a formal link to the established stateful-encryption
notions for regular channels. We show that analogous notions in both models are essentially equivalent
(modulo the differences in syntax) by providing natural, generic transforms between each pair of corre-
sponding confidentiality and integrity notions. Furthermore, we establish separations that give rise to
a hierarchy of our security notions and in particular establish forward security and phase-key insulation
as independent security properties. To complete the picture of relations, we also translate the classical
composition result for symmetric encryption by Bellare and Namprempre [BN00] to the setting of multi-
key channels, showing that chosen-plaintext confidentiality combined with ciphertext integrity implies the

3

msk0 msk1 msk2 msk3 msk4

corrupted
K0 K1 K2 K3 K4

revealed

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11m12 m13

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

Send Send Send Send Send

m1 m2 m3 m4 m5 m6 m7

Recv Recv Recv

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 1: Illustration of the behavior of a multi-key channel (cf. Definition 2.1). The beginning of a new phase t is indicated
by the derivation of a phase key Kt from the corresponding master secret key mskt. The phase key Kt is then used to send
and receive in-order messages resp. ciphertexts via algorithms Send and Recv in this phase.
In this example, the phase key K1 of phase 1 is revealed and the master secret key msk3 is corrupted. The affected phases 1
resp. 3 and following are marked in hatched-pattern red (with lines towards top right for the effects of the revealed K1 and
toward bottom right for the effects of the corrupted msk3). For security (cf. Section 3), a forward-secure and phase-key–
insulated multi-key channel is demanded to provide security in the non-affected phases 0 and 2, marked by non-hatched green
areas.

stronger chosen-ciphertext notion of confidentiality.
Finally, we instantiate our model by providing a construction of a multi-key channel from a nonce-based

authenticated encryption with associated data (AEAD) scheme and a pseudorandom function. To ensure
both forward security and phase-key insulation, we match suitable techniques established for forward-secure
key generation and for ensuring causal integrity. Leveraging our composition theorem, we then prove that
our construction meets our strongest confidentiality and integrity notions for multi-key channels. Coming
back to the initial motivation from real-world protocol design, we compare our construction with the draft
design of the TLS 1.3 record protocol.

1.4 Related Work

Beyond the preceding works on secure channels discussed earlier, there has been substantial work on mostly
the handshake but also the record protocol of the TLS 1.3 drafts; see Paterson and van der Merwe [PvdM16]
for an overview. Badertscher et al. [BMM+15] analyze an early draft of the TLS 1.3 record protocol without
key updates in the constructive cryptography setting. Bellare and Tackmann [BT16] analyze the multi-
user security of the AES-GCM as authenticated-encryption building block of TLS 1.3. Bhargavan et
al. [BBK17, BDLF+17] provide verified implementations of the TLS 1.3 record protocol.

Our notion of phase-key insulation is similar in spirit to, and hence borrows its name from, the notion
of key insulation introduced in the public-key setting [DKXY02, DKXY03] and also transferred to (non-
stateful) symmetric encryption [DLXY12]. Beyond treating (phase-)key insulation in the different context
of secure channels, our notion permits more fine-grained corruption of keys. It thereby enables studying
the interaction of forward secrecy and phase-key insulation in a single, modular framework.

4

2 Multi-key Channels
We begin with defining the syntax and correctness of multi-key channels, focusing on their functionality
in this section; we will treat their security in Section 3. In Figure 1 we exemplify the operations of a
multi-key channel and already hint at their expected security.

Like a regular, single-key channel (abstractly modeled as stateful encryption [BKN04]), a multi-key
channel is used by a sender to transform a sequence of messages m1,m2, . . . ∈ {0, 1}∗ into a corresponding
sequence of ciphertexts c1, c2, . . . ∈ {0, 1}∗ using a sending algorithm Send.1 The receiver then sequentially
uses a corresponding Recv algorithm on each transmitted ciphertext to recover the sent message sequence.

In addition to regular channels, both sender and receiver can decide to update their keys used for
sending and receiving, thereby switching to the next phase of the multi-key channel. In our model, we
consider a two-level hierarchy for key derivation. On the first level, the complete multi-key channel is
bootstrapped from a single, initial master secret key generated upon initialization of the channel. Master
secret keys are furthermore evolved when switching to the next phase, following a deterministic key schedule
to derive the master secret key mskt+1 for phase t + 1 from the master secret key mskt of the previous
phase. On the second level, the actual phase key Kt used in the channel for sending and receiving messages
in a phase t is derived (again deterministically) from that phase’s master secret key mskt.

Although Figure 1 depicts only a single key schedule with the phase keys forwarded to both the Send
and Recv algorithms of that phase, in a real execution of the channel, the key updates and derivations
are invoked independently on the sending and receiving side. For correct functionality, the key updates
need to be aligned in order to process sent and received ciphertexts under matching keys on both sides.
In practice, key updates may be either delivered alongside of the messages transmitted in a channel (and
hence potentially authenticated) or in an out-of-band manner, e.g., via a separate control channel, and with
their position in the channel’s ciphertext sequence not being explicitly authenticated.2 In our abstraction
of multi-key channels, we do not rely on the authenticity of the key-update signaling (in particular, we will
later allow adversaries to tamper with the timing of key updates) but leave it up to the channel to ensure
their correct position with respect to the transmitted ciphertexts.

We now define the syntax and correctness of multi-key channels capturing the given intuition.

Definition 2.1 (Syntax of multi-key channels). A multi-key channel Ch = (Init, Send,Recv,Update) with
associated sending and receiving state space SS resp. SR, master secret key spaceMSK, phase key space K,
error space E with E ∩ {0, 1}∗ = ∅, and maximum number maxmsg ∈ N ∪ {∞} of messages supported per
phase consists of four efficient algorithms defined as follows.

• Init(1λ) $−→ (msk0,K0, stS,0, stR,0). This probabilistic algorithm is composed of three algorithms:

– MasterKeyGen(1λ) $−→ msk0. On input security parameter 1λ, this probabilistic algorithm outputs
an initial master secret key msk0 ∈MSK.

– KeyDerive(msk)→ K. On input a master secret key msk, this deterministic algorithm outputs a
phase key K ∈ K. The initial phase key is derived as K0 ← KeyDerive(msk0).

– StateGen(1λ) → (stS,0, stR,0). On input 1λ, this deterministic algorithm outputs initial sending
and receiving states stS,0 ∈ SS resp. stR,0 ∈ SR.

• Send(stS,t,Kt,m) $−→ (st′S,t, c). On input of a sending state stS,t ∈ SS, a key Kt ∈ K, and a mes-
sage m ∈ {0, 1}∗, this (possibly) probabilistic algorithm outputs an updated state st′S,t ∈ SS and a
ciphertext (or error symbol) c ∈ {0, 1}∗ ∪ E.

1In order to make explicit that a secure multi-key channel might only provide integrity but no confidentiality, we choose
to make use of the more general terms “sending” and “receiving” instead of “encryption” and “decryption”.

2In the context of TLS 1.3, for example, both variants have been discussed. The current draft design [Res17] specifies that
key update notifications are transmitted (and authenticated) within the data channel.

5

• Recv(stR,t,Kt, c) → (st′R,t,m). On input of a receiving state stR,t ∈ SR, a key Kt ∈ K, and a
ciphertext c ∈ {0, 1}∗, this deterministic algorithm outputs an updated state st′R,t ∈ SR and a message
(or error symbol) m ∈ {0, 1}∗ ∪ E.

• Update(mskt, stS,t/stR,t)→ (mskt+1,Kt+1, stS,t+1/stR,t+1). This deterministic algorithm is composed
of the following two algorithms:

– MasterKeyUp(mskt)→ mskt+1. On input of a master secret key mskt ∈MSK, this deterministic
algorithm outputs a master secret key mskt+1 ∈MSK for the next phase.

– StateUp(stS,t/stR,t) → stS,t+1/stR,t+1. On input of a sending or receiving state stS,t ∈ SS
resp. stR,t ∈ SR, this deterministic algorithm derives the next phase’s state stS,t+1 ∈ SS, resp.
stR,t+1 ∈ SR.

It further employs the (same) deterministic algorithm KeyDerive as given for Init to derive an updated
phase key Kt+1 ∈ K as Kt+1 ← KeyDerive(mskt+1).

We call a channel with a deterministic Send algorithm a deterministic multi-key channel.

Shorthand notation. Given a sending state stS ∈ SS , a phase key K ∈ K, an integer ` ≥ 0, and a vector
of messages m = (m1, . . . ,m`) ∈ ({0, 1}∗)`, let (st′S , c) $←− Send(stS ,K,m) be shorthand for the sequential
execution (st1

S , c1) $←− Send(st0
S ,K,m1), . . . , (st`S , c`) $←− Send(st`−1

S ,K,m`) with c = (c1, . . . , c`), st0
S = stS ,

and st′S = st`S . For ` = 0 we define c to be the empty vector and the final state st`S = st′S to be the initial
state stS . We use an analogous notation for the Recv algorithm.

Correctness of multi-key channels intuitively guarantees that if at the receiver side the keys are updated
only after having received all messages sent in the previous phase, then the received messages are equal to
those sent in the entire communication.

Definition 2.2 (Correctness of multi-key channels). Let t ∈ N and (msk0,K0, stS,0, stR,0) $←− Init(1λ).
Let m0, . . . ,mt ∈ {0, 1}∗∗ be t + 1 vectors of messages of lengths |mi| ≤ maxmsg (for i ∈ {0, . . . , t}).
Let c0, . . . , ct ∈ {0, 1}∗∗ be the corresponding ciphertext vectors output by Send given that Update is invoked
between each sending of two subsequent message sequences, i.e., such that for k = 0, . . . , t, (st′S,k, ck) $←−
Send(stS,k,Kk,mk) and for k = 0, . . . , t− 1, (mskk+1,Kk+1, stS,k+1)← Update(mskk, st′S,k).

Now let m′0, . . . ,m′t ∈ {0, 1}∗∗ be the results of receiving these ciphertexts with likewise interleaved
Update invocations on the receiver’s side, i.e., for k = 0, . . . , t, let (st′R,k,m′k) ← Recv(stR,k,Kk, ck) and
for k = 0, . . . , t− 1, let (mskk+1,Kk+1, stR,k+1)← Update(mskk, st′R,k).

We say that a multi-key channel Ch is correct if for any choice of t, m0, . . . , mt, and all choices of
the randomness in the channel algorithm it holds that m0 = m′0, . . . , mt = m′t.

2.1 Syntax Rationale

The syntax of a cryptographic component defines its design space and also drives the security properties
it may achieve. Before we continue with defining security for multi-key channels, let us pause to provide
some rationale for our choices in the given syntax.

Probabilistic vs. deterministic Send. At first glance, the modeling of secure channels in form of state-
ful encryption [BKN04] may appear as merely a stateful variant of authenticated encryption. For authen-
ticated encryption (optionally with associated data), the established notion is a deterministic one [Rog02],
where encryption instead of fresh randomness takes a (unique) nonce. One major motivation for this

6

approach is that (good) randomness may be hard to obtain in practice, e.g., due to design flaws or im-
plementation bugs in random number generators, or limited system entropy available. Ideally, one hence
bootstraps an encryption scheme from a (short) random key and then only relies on a unique nonce (e.g.,
a counter) for message encryption.3

The same argument in principle applies to secure channels, yielding the question whether the Send
algorithm should be fixed as deterministic. As we will see next, our security model allows us to seamlessly
capture the desired security properties for channels with probabilistic and deterministic Send at the same
time. We hence decided to stay in line with previous formalizations of channels (including [BKN04, PRS11,
BDPS12, FGMP15]) and use the more generic syntax with (possibly) probabilistic Send. Nevertheless, we
deem a deterministic multi-key channel to be the more desirable variant in practice. Indeed, the generic
construction we provide in Section 4 is deterministic.

Inputs to key updates. We define updates of master secret and phase keys (via MasterKeyUp and
KeyDerive) to be deterministically derived from the initial master secret key msk0. They are hence neces-
sarily equivalent (in each phase) on the sender and receiver side.

A design alternative would be to also include the current state in the derivation, enabling keys to
be influenced by, e.g., the message history. We however decided to focus on deterministic updates from
msk0, for mainly two reasons (besides significantly reducing the security model’s complexity). First, this
approach captures the concept of separating key derivation from message sending, in particular if master
secrets are kept in more secure memory. Second, the syntax is compliant with both theoretical concepts
for forward-secret encryption [BY03] as well as the practical key schedule employed in TLS 1.3 [Res17].
Note that, still, channels can for example take the message history into account within the Send and Recv
algorithms.

3 Security Notions for Multi-key Channels
Classically, two security properties are expected from a secure channel. Confidentiality aims at protecting
the content of transported messages from being read by eavesdroppers or active adversaries on the network.
In contrast, integrity ensures that messages are received unmodified and in correct order, i.e., without
messages being reordered or intermediate messages being dropped. We take up these notions in the
context of multi-key channels and extend them to capture two more advanced security aspects arising in
this scenario which we denote as forward security and phase-key insulation.

Forward security, as established also in other settings, is concerned with the effects of leaking a channel’s
master secret key on prior communication. The notion aims at situations where all key material of a
communication partner becomes known to an attacker, e.g., through a break-in into a system or exfiltration
of secrets. Following common terminology, we demand that a forward-secure multi-key channel upholds
both confidentiality and integrity for messages sent in phases before corruption of a master secret key took
place, even if one endpoint of the channel is still processing data in these phases when the corruption
happens. Naturally, as the deterministic key schedule implies that the current and any future phase’s key
can be derived from a master secret key, we however cannot expect confidentiality or integrity for messages
sent from the point of corruption on.

Phase-key insulation in contrast captures the selective leakage of some phases’ keys while the master
secret key remains uncompromised. Such leakage may be due to cryptanalysis of some of these keys, partial
misuse of the key material, or temporary compromise. In particular, it reflects that the master secret key
of a channel may be stored in more secure memory (e.g., trusted hardware) while the current phase
key potentially resides in lesser secured memory for performance reasons. From a phase-key–insulated

3See the work originating from [RS06] on (nonce-misuse) resistance to non-unique nonces.

7

multi-key channel we demand, on a high level, that confidentiality and integrity in a certain phase is not
endangered by the leakage of keys in prior or later phases.

3.1 Confidentiality

The established way of modeling confidentiality for channels is by demanding that the encryptions of
two (left and right) sequences of messages are indistinguishable [GM84, BKN04]. Formally, an adversary
sequentially inputs pairs of messages m0, m1 of its choice to a sending oracle OSend and is given the
encryption cb of always either the first or the second message depending on an initially fixed, random
challenge bit b $←− {0, 1}. The adversary’s task is to finally determine b. Hence, the corresponding security
notion is established under the name of indistinguishability under chosen-plaintext attacks (IND-CPA). In
the stronger setting of chosen-ciphertext attacks (IND-CCA), the adversary is additionally given a receiving
oracle ORecv with the limitation that it may not query it on challenge ciphertexts, in a way to be defined
later.

In the multi-key setting however, the advanced security aspects of forward security and particularly
phase-key insulation render it impossible to use a single challenge bit throughout all phases. An adversary
that adaptively learns keys for some phases is immediately able to learn whether the left or the right
messages were encrypted in these phases. If this would be a fixed choice for all phases, the adversary could
also tell which messages were encrypted in all other phases. In our formalization of multi-key confidentiality
we hence deploy a separate challenge bit bi for each phase i, chosen independently at random. This allows
us to capture the expected insulation of phases against compromises in other phases and, ultimately, later
corruption.

We define confidentiality in a modular notion s-IND-kATK through the experiment Expts-IND-kATK
Ch,A given

in Figure 2. The experiment is parameterized with s, k, and ATK.

• The parameter s specifies the advanced security aspects captured in the notion and can be either
empty or take one of the values ki, fs, or fski. As expected, fs indicates that the notion ensures forward
security and ki denotes that the notion demands phase-key insulation; for fski both properties are
integrated. Forward security is modeled through allowing the adversary to corrupt the master secret
key at some point through a corruption oracle OCorrupt. When ensuring phase-key insulation, the
adversary is given a reveal oracle OReveal which allows it to selectively learn the keys of some phases.

• Via the parameter k, we capture both single-key (sk) and multi-key (mk) security notions in a single
experiment. To model the single-key setting, we simply drop the adversary’s capability to proceed
to a next phase via an OUpdate oracle, essentially restricting it to a single phase (and hence key).

• Finally, the parameter ATK distinguishes between chosen-plaintext (ATK = CPA) and chosen-
ciphertext (ATK = CCA) attacks. While the adversary always has access to a left-or-right encryption
oracle OLoR, the receiving oracle ORecv is only available for notions with CCA attacks.

The adversary finally has to output a phase t and a bit guess b and wins if the challenge bit used in phase t
by the left-or-right oracle OLoR is equal to b and the targeted challenge phase t is neither revealed nor
affected by corruption (i.e., t < tcorr , where tcorr is the corrupted phase, initialized to infinity).

In order to prevent trivial attacks, we have to restrict the output of adversarial queries to the receiving
oracle ORecv in the setting of chosen-ciphertext attacks. Obviously, if ORecv outputs the message decrypted
on input the unmodified challenge ciphertext sequence, the challenge bit used in OLoR would be immedi-
ately distinguishable. Still, as the Recv algorithm is stateful, we must allow the adversary to first make
this algorithm proceed to a certain, potentially vulnerable state, before mounting its attack. For this
purpose, we follow Bellare et al. [BKN04] in suppressing the output of the Recv algorithm as long as the

8

Expts-IND-kATK
Ch,A (1λ):

1 (msk0, K0, stS , stR) $←− Init(1λ)
2 tS ← 0, tR ← 0
3 b0

$←− {0, 1}
4 i0 ← 0, j0 ← 0
5 sync← 1
6 tcorr ← +∞
7 Rev ← ∅
8 (t, b) $←− A(1λ)OLoR(·,·),[ORecv(·)]ATK=CCA,[OUpdate(·)]k=mk,[OReveal(·,·)]s∈{ki,fski},[OCorrupt(·)]s∈{fs,fski}

9 if t > max(tS , tR) then
10 return 0
11 return ((bt = b) ∧ (t 6∈ Rev) ∧ (t < tcorr))

If A queries OLoR(m0, m1):
12 if |m0| 6= |m1| then
13 return
14 itS ← itS + 1
15 (stS , C[tS][itS]) $←− Send(stS , KtS , mbtS

)
16 if tR > tS and tS /∈ Rev then
17 sync← 0
18 return C[tS][itS]

If A queries ORecv(c):
19 jtR ← jtR + 1
20 (stR, m)← Recv(stR, KtR , c)
21 if (tR > tS or jtR > itR or c 6= C[tR][jtR])

and tR /∈ Rev then
22 sync← 0
23 if sync = 0 then
24 return m
25 else
26 return

If A queries OUpdate(role):
27 (msktrole+1, Ktrole+1, strole)← Update(msktrole , strole)
28 if role = R and tS ≥ tR and jtR < itR

and tR /∈ Rev then
29 sync← 0
30 trole ← trole + 1
31 stbegin

role,trole
← strole

32 if role = S then
33 btS

$←− {0, 1}

If A queries OReveal(t, role):
34 if t > trole then
35 return
36 Rev ← Rev ∪ {t}
37 return (stbegin

role,t, Kt)

If A queries OCorrupt(role):
38 if tcorr < +∞ then
39 return (stbegin

role,tcorr
, msktcorr)

40 tcorr ← trole
41 return (stbegin

role,trole
, msktrole)

Figure 2: Security experiment for confidentiality (sIND-kATK) of a multi-key channel Ch. An adversary A has only access to
an oracle [OX]c if the condition c is satisfied.

9

adversary’s inputs to ORecv are in sync with the challenge ciphertext sequence output by OLoR. As soon as
synchronization is lost though, ORecv returns the output of the receiving algorithm Recv to the adversary.

Defining what it means to be in sync now becomes the crucial task in defining CCA security: we
want to make the security notion as strong as possible without allowing trivial attacks. Intuitively, ORecv
stays in sync (denoted by a flag sync = 1) and decryptions are suppressed as long as the adversary
forwards ciphertexts to ORecv that are obtained from OLoR in the same phase. So far, this is essentially a
transcription of the stateful encryption definition of CCA security (IND-sfCCA [BKN04]) to the multi-key
setting with multiple phases. When targeting forward security and phase-key insulation, we however also
need to consider how to define synchronization in phases where the adversary knows the key. Obviously,
in such phases we cannot demand that a channel can strictly distinguish adversarial encryptions from the
honest ciphertext sequence generated in OLoR as the adversary may simply replicate the latter’s behavior.
We accordingly do not consider synchronization to become lost in revealed phases. Still, we demand that
a secure channel notices modifications later in uncompromised phases. Moreover, it should even detect
truncations at the end of an uncompromised phase if the next phase’s key is revealed, latest when the
channel recovers from temporary compromise and enters the next, uncompromised phase.4 We hence,
additionally to the regular stateful encryption setting, define synchronization to be lost if the receiver
proceeds from an uncompromised phase to the next phase without having received all sent ciphertexts, or
if the sender issues a ciphertext in a phase when the receiver already proceeded to the next phase.

In the following we describe the functionality and purpose of the oracles in the multi-key confidentiality
experiment in Figure 2 in detail.

• The OLoR oracle can be queried with a pair of messages (m0,m1) of equal length. It responds with
the output of Send on message mbtS

, where btS is the challenge bit for the current sending phase tS .
If the receiver already proceeded to a later phase, the sent message cannot be received correctly
anymore. As long as the key of the sender’s phase is unrevealed, we hence declare synchronization to
be lost (setting sync ← 0). The restriction to uncompromised phases is necessary to prevent trivial
attacks where the adversary leverages the phase key to, e.g., make the receiver process more messages
than sent earlier to cover up the mismatch.

• The ORecv oracle can only be queried if ATK = CCA. On input a ciphertext c, ORecv computes the
corresponding messages obtained under Recv. In case the receiving oracle is ahead in phase, has
received more messages than sent, or c deviates from the corresponding sent ciphertext, synchro-
nization is lost (again, to ignore trivial forgeries, as long the receiver’s current phase is unrevealed).
Finally, if still in sync, ORecv suppresses the message output and returns an according flag to the
adversary A. Otherwise it provides A with the obtained message m.

• The OUpdate oracle is only available if k = mk. Using the oracle, the adversary can separately make
both the sender or receiver proceed to the next phase, updating their master secret, phase key, and
state. If the sender side is updated, a new challenge bit for the new phase is chosen at random.
Moreover, the experiment goes out of sync if the receiver side is updated too soon, i.e., without
having received all sent ciphertexts, and the receiver’s phase is not revealed.

• The OReveal oracle can be used by the adversary to obtain the key of any phase t (along with this
phase’s initial sender resp. receiver state) and is accessible if s ∈ {ki, fski}. Phase t is then added to
a set of revealed phases Rev.

4Recall that we consider key updates to be unauthenticated, possibly transmitted out-of-band.

10

• The OCorrupt oracle is provided if s ∈ {fs, fski}. Upon the first call, the adversary obtains for a
chosen role role the current phase’s master secret key and initial state. This phase is then recorded
as the phase of corruption tcorr for later comparison. If a corruption has already taken place (i.e.,
tcorr < +∞), the adversary can obtain the other role’s initial state in the corrupted phase via a
further OCorrupt call. For simplicity, we assume the state to be empty in phases not yet entered.
Observe that it suffices to consider a single point in time for corruption, as later master keys are
deterministically derived from the corrupted one.

Definition 3.1 (s-IND-kATK Security). Let Ch = (Init,Send,Recv,Update) be a multi-key channel and
experiment Expts-IND-kATK

Ch,A (1λ) for an adversary A be defined as in Figure 2.
The security experiment is parameterized in three directions: s, k, and ATK. The parameter s indicates

the advanced security aspects and can take one of the values ki (phase-key–insulated), fs (forward-secure),
fski (forward-secure and phase-key–insulated), or the empty string5 (plain / neither forward-secure nor
phase-key–insulated). The parameter k integrates both single-key (sk) and multi-key (mk) security notions
in a single experiment. Finally, the parameter ATK distinguishes between chosen-plaintext (ATK = CPA)
and chosen-ciphertext (ATK = CCA) security.

Within the experiment the adversary A always has access to a left-or-right sending oracle OLoR. More-
over, A has access to a receiving oracle ORecv if ATK = CCA, an update oracle OUpdate if k = mk, a
key-reveal oracle OReveal if s ∈ {ki, fski}, and finally a corruption oracle OCorrupt if s ∈ {fs, fski}.

We say that Ch provides indistinguishability under multi-key (resp. single-key) chosen-plaintext (resp.
chosen-ciphertext) attacks (s-IND-kCPA resp. s-IND-kCCA for k = mk resp. k = sk), potentially with
forward security (if s ∈ {fs, fski}) and/or phase-key insulation (if s ∈ {ki, fski}) if for all PPT adversaries
A the following advantage function is negligible in the security parameter:

Advs-IND-kATK
Ch,A (λ) := Pr

[
Expts-IND-kATK

Ch,A (1λ) = 1
]
− 1

2 .

Our generic confidentiality notion in Definition 3.1 captures as its weakest variant indistinguishability
under single-key chosen-plaintext attacks (IND-skCPA) and as its strongest variant indistinguishability un-
der multi-key chosen-ciphertext attacks with forward security and phase-key insulation (fski-IND-mkCCA).
We discuss the relations among these notions in more detail in Section 3.4.

3.2 Integrity

Integrity is traditionally defined in two flavors: integrity of plaintexts (INT-PTXT) and integrity of ci-
phertexts (INT-CTXT) [BN00], with according stateful-encryption analogs INT-sfPTXT [BSWW13] and
INT-sfCTXT [BKN04]. Integrity of plaintexts intuitively ensures that no adversary is able to make the
receiver output a valid message that differs from the previously sent (sequence of) messages. The stronger
notion of ciphertext integrity ensures that no adversary can make the receiver output any valid, even
recurring message by inputting a forged or modified ciphertext.

Similarly to confidentiality, we define a modular multi-key integrity notion s-INT-kATK, given through
the experiment Expts-INT-kATK

Ch,A in Figure 3. Again, the notion is parameterized to integrate forward security
and phase-key insulation (via s), the single- and multi-key setting (via k), as well as the two attack targets,
ATK = PTXT and ATK = CTXT. An adversary A against the experiment Expts-INT-kATK

Ch,A has access to a
sending oracle OSend (in contrast to confidentiality without left-or-right functionality), one of two receiving
oracles OATK

Recv depending on ATK, and—depending on the advanced security properties and key setting
captured—oracles OUpdate (without setting a new challenge bit), and OReveal and OCorrupt, identical to

5For legibility, we also drop the leading dash in a notion s-IND-kATK if s is the empty string and simply write IND-kATK
in this case.

11

Expts-INT-kATK
Ch,A (1λ):

1 (msk0, K0, stS , stR) $←− Init(1λ)
2 tS ← 0, tR ← 0
3 i0 ← 0, j0 ← 0
4 sync← 1
5 win← 0
6 tcorr ← +∞
7 Rev ← ∅
8 A(1λ)OSend(·),OATK

Recv(·),[OUpdate(·)]k=mk,[OReveal(·,·)]s∈{ki,fski},[OCorrupt(·)]s∈{fs,fski}

9 return win

If A queries OSend(m):
10 itS ← itS + 1
11 (stS , C[tS][itS]) $←− Send(stS , KtS , m)
12 M[tS][itS]← m
13 if tR > tS and tS /∈ Rev then
14 sync← 0
15 return C[tS][itS]

If A queries OPTXT
Recv (c):

16 jtR ← jtR + 1
17 (stR, m)← Recv(stR, KtR , c)
18 if m 6= M[tR][jtR] and m /∈ E and tR /∈ Rev

and tR < tcorr then
19 win← 1
20 return m

If A queries OCTXT
Recv (c):

21 jtR ← jtR + 1
22 (stR, m)← Recv(stR, KtR , c)
23 if (tR > tS or jtR > itR or c 6= C[tR][jtR])

and tR /∈ Rev then
24 sync← 0
25 if sync = 0 and m /∈ E and tR /∈ Rev and tR < tcorr then
26 win← 1
27 return m

If A queries OUpdate(role):
28 (msktrole+1, Ktrole+1, strole)← Update(msktrole , strole)
29 if role = R and tS ≥ tR and jtR < itR

and tR /∈ Rev then
30 sync← 0
31 trole ← trole + 1
32 stbegin

role,trole
← strole

If A queries OReveal(t, role):
33 if t > trole then
34 return
35 Rev ← Rev ∪ {t}
36 return (stbegin

role,t, Kt)

If A queries OCorrupt(role):
37 if tcorr < +∞ then
38 return (stbegin

role,tcorr
, msktcorr)

39 tcorr ← trole
40 return (stbegin

role,trole
, msktrole)

Figure 3: Security experiment for integrity (sINT-kATK) of a multi-key channel Ch. An adversary A has only access to an
oracle [OX]c if the condition c is satisfied.

12

those for confidentiality. In the integrity experiment, the adversary does not provide a particular challenge
output, but instead needs to trigger a winning flag win to be set within the experiment run.

Beyond the sending oracle OSend only taking and encrypting a single message, the major difference
to the confidentiality setting lies in the definition of the OATK

Recv oracle, which in particular comprises the
winning condition check. Depending on the attack target, the adversary has access to either the OPTXT

Recv or
the OCTXT

Recv variant of the receiving oracle. Both oracles first of all obtain a ciphertext c and provide the
adversary A with the decrypted message m output by Recv on that ciphertext. Beyond this, they differ
in assessing whether A has succeeded in breaking plaintext resp. ciphertext integrity (in which case they
set win← 1):

• The OPTXT
Recv oracle declares the adversary successful if the received message m differs from the corre-

sponding sent message in this phase and position, given that the current receiving phase is neither
revealed nor corrupted.

• The OCTXT
Recv in contrast for winning requires that, on input an out-of-sync ciphertext in a phase

neither revealed nor corrupted, Recv outputs a valid message m, i.e., m /∈ E is not an error message.
In the same way as for confidentiality, synchronization is considered to be lost on an ORecv oracle call
if the receiving oracle, in a non-revealed phase, is ahead of the sending oracle in phase or message
count, or if c deviates from the corresponding sent message. Furthermore, synchronization may be
lost by non-aligned key updates on both sides of the channel, captured in OSend and OUpdate as in
the confidentiality experiment (cf. Figure 2).

Definition 3.2 (s-INT-kATK Security). Let Ch = (Init, Send,Recv,Update) be a multi-key channel and
experiment Expts-INT-kATK

Ch,A (1λ) for an adversary A be defined as in Figure 3. The security experiment is
parameterized via s, k, and ATK. Parameters s and k are as for confidentiality in Definition 3.1. The
parameter ATK distinguishes between plaintext integrity (ATK = PTXT) and ciphertext integrity (ATK =
CTXT).

Within the experiment the adversary A has always access to a sending oracle OSend and a receiving
oracle OATK

Recv (the latter differs depending on ATK). Moreover, A has access to an update oracle OUpdate if
k = mk, a key-reveal oracle OReveal if s ∈ {ki, fski}, and finally a corruption oracle OCorrupt if s ∈ {fs, fski}.

We say that Ch provides multi-key (resp. single-key) integrity of plaintexts (resp. ciphertexts) (s-INT-
kPTXT resp. s-INT-kCTXT for k = mk resp. k = sk), potentially with forward security (if s ∈ {fs, fski})
and/or phase-key insulation (if s ∈ {ki, fski}) if for all PPT adversaries A the following advantage function
is negligible in the security parameter:

Advs-INT-kATK
Ch,A (λ) := Pr

[
Expts-INT-kATK

Ch,A (1λ) = 1
]
.

Remark. Note that the advanced properties of forward security and phase-key insulation are only rea-
sonable to consider in the multi-key setting (k = mk). Indeed, for the single-key setting (k = sk), the plain,
fs, ki, and fski flavors of each notion collapse to being equivalent. For this, observe that an adversary in the
single-key setting, lacking access to the OUpdate oracle, is restricted to the initial phase tS = tR = 0. At the
same time, in order to win in this phase (by outputting a confidentiality guess resp. breaking integrity), it
must neither reveal nor corrupt either of the parties. Hence, it effectively cannot make use of the OReveal
and OCorrupt queries, rendering both non-effective. Consequently, we can focus on only the plain version of
our single-key security notions.

13

3.3 Modeling Rationale

As for the definition of syntax, there are choices to make when defining security for multi-key channels.
Before further studying the relations among the confidentiality and integrity notions just set up, let us
hence provide some rationale for aspects of our security model.

LoR vs. IND$. In our confidentiality experiment, the adversary is challenged to (be unable to) dis-
tinguish encryptions of left-or-right (LoR) messages. In the stateless authenticated-encryption setting
particularly for AEAD schemes [Rog02], the established notion for defining confidentiality instead is the
stronger indistinguishability from random strings (IND$) [RBBK01].6

It might seem natural to adopt the strong IND$ confidentiality for channels from its common building
block AEAD. On second thought, however, this notion turns out to be inappropriate for secure chan-
nels. While AEAD is an invaluable building block, a channel is a higher-layer object in a more com-
plex setting, aiming not only at confidentiality and integrity, but also at replay and reordering protec-
tion [BKN04, KPB03] as well as further aspects such as data processing [BDPS12, FGMP15]. For this
purpose, channel protocols regularly include header information like length or content type fields within
the output ciphertexts, rendering them clearly distinguishable from random strings. In our security defini-
tion, we hence stick to the left-or-right indistinguishability notion rightfully established through previous
channel models including [BKN04, PRS11, BDPS12, FGMP15].

Multiple challenge bits. As pointed out earlier, using a single challenge bit across all phases in the
confidentiality experiment is infeasible: an adaptive Reveal query for some phase would in this case also
disclose the challenge phase’s (same) bit. We hence deploy multiple, independent challenge bits for each
phase.

Alternative options would be to employ a single challenge bit in one phase and provide regular (non–
LoR) encryption oracles for all other phases, or to have the adversary choose whether to compromise a
phase at its beginning. We however deem these approaches not only more complex, but most importantly
less adaptive, as they prevent the adversary from retrospectively choosing (non-)challenge phases.

3.4 Relations Between Multi- and Single-key Notions

The modularity of our notions for multi-key confidentiality and integrity, parameterized by forward security
and phase-key insulation, leads to a set of notions of varying strength. In the following, we establish that
forward security and phase-key insulation are orthogonal properties; expectedly both adding to the strength
of a security notion. Furthermore, we show that without forward security and phase-key insulation the
single-key security notions of our framework are essentially equivalent to the respective established stateful
encryption notions: we give generic, pure syntactical transforms to translate secure single-key schemes
between the two realms. Figure 4 illustrates the relations we establish.

3.4.1 Trivial implications

First of all, let us observe the trivial implications between the security notions of our framework, indicated
by solid arrows in Figure 4. Those implications arise by restricting the access to one (or multiple) oracles in
the security experiments: a notion with access to a certain oracle immediately implies an otherwise identical

6A third variant, real-or-random (RoR) indistinguishability is equivalent to LoR indistinguishability [BDJR97]. See also
Barwell et al. [BPS15] for an (historical) overview of the security notions established for authenticated encryption.

14

fski-I-mkATK

fs-I-mkATK ki-I-mkATK

I-mkATK

I-skATKI-sfATK

AEAD + PRF

Chfs Chki

Chplain Chplain
Chfs

Chki

Chmk-0

sfEncsk

Chsf
[Chsf](I,ATK)=(IND,CPA)

ChAEAD

Figure 4: Illustration of the relations between different flavors of confidentiality and integrity in our multi-key and single-key
settings as well as for stateful encryption [BKN04]. The variables I and ATK are placeholders for confidentiality notions
(I = IND with ATK = CPA/CCA) and integrity notions (I = INT with ATK = PTXT/CTXT).
Rounded rectangles indicate multi-key (solid-line, green), single-key (dashed-line, blue), or stateful-encryption notions (dotted-
line, purple); regular (orange) rectangles indicate building blocks. Solid arrows indicate trivial implications (through omission
of oracles in the respective experiment). Dashed, stroke-out arrows indicate separations and dotted arrows generic transforms
we establish, both provided in Section 3.4. The dash-dotted arrow indicates the generic construction we provide in Section 4.
Labels on arrows refer to the respective construction providing the implication, separation, or transform. For constructions X
in brackets [X]c, the relation only holds between notions for which the condition c is satisfied.

notion without this oracle access. For instance, a fski-IND-mkCPA-secure channel is also ki-IND-mkCPA-
secure, since if no adversary can distinguish left-or-right ciphertexts when being able to corrupt the master
secret key, then doing so does not become easier when corruption is not a possibility.

3.4.2 Separations

We discuss the separations between notions possibly providing forward security and phase-key insulation
starting from a multi-key channel that provides both properties at the example of indistinguishability
under chosen-plaintext attacks. The cases of integrity and indistinguishability under chosen-ciphertext
attacks are analogous. More precisely, let Chfski := (Initfski, Sendfski,Recvfski,Updatefski) be a multi-key
channel which provides fski-IND-mkCPA security. Recall that master secret and phase keys are computed
using two deterministic sub-algorithms MasterKeyUpfski and KeyDerivefski, respectively.

Now we construct a new channel Chfs which differs from Chfski only in its key derivation algorithm,
which we replace by the identity function, i.e., we define KeyDerivefs(mski) := mski for all phases i ∈ N.
As MasterKeyUp remains unmodified, Chfs inherits the forward security of Chfski. Furthermore, observe
that a revealed phase key (equal to the master secret key Ki = mski) can be iteratively used to compute
the next master secret keys mski+1 = MasterKeyUpfs(mski) and therefore also the next phase keys Ki+1 =
KeyDerivefs(mski+1). As a result, Chfs has dependent phase keys and hence only provides fs-IND-mkCPA
security, but not fski-IND-mkCPA security, separating the two notions.

Next we build a channel Chki from Chfski which has a master secret key spaceMSKki =MSK∗fski and
updates its master secret keys using a function MasterKeyUpki(mski) := (mski,MasterKeyUpfski(mski[i])),
where msk0 = (MasterKeyGenfski(1λ)). In other words, Chki keeps a copy of all master secret keys generated

15

so far in the current master secret key, and uses the last entry to derive the next master secret key. The
phase keys are then derived from the last master secret key entry, i.e., we define KeyDeriveki(mski) :=
KeyDerivefski(mski[i]). While Chki provides the phase-key insulation of Chfski, forward security is lost. On
corruption in any phase, all previous master secret keys are leaked, allowing an adversary to derive any
previous phase key. Therefore Chki only provides ki-IND-mkCPA security, but not fski-IND-mkCPA security.

Combining the two modifications above leads to a channel Chplain which only satisfies plain IND-mkCPA
security, but neither ki-IND-mkCPA nor fs-IND-mkCPA security.

Finally, we consider the separation between the single-key notions and their corresponding multi-
key notions, both without forward security and phase-key insulation. Again, we only discuss the no-
tions IND-skCPA and IND-mkCPA as an example; the other cases follow identically. We build from an
IND-skCPA secure single-key channel Chsk a multi-key channel Chmk-0 which uses the single-key channel’s
key for the initial phase both as master secret and phase key. As the master secret key for the second
and all following phases it then uses the zero-string, i.e., MasterKeyUpmk(mski) := 0λ. Clearly the security
is not preserved by Chmk-0 in any phase other than the initial one, in which it behaves exactly like Chsk.
Hence, Chmk-0 is IND-skCPA-secure, but not IND-mkCPA-secure.

3.4.3 Generic Transforms Between Stateful Encryption and Multi-key Channels

To complete the picture, we finally study the relations between the established notions for secure channels,
stateful authenticated encryption, and our notion of multi-key channels.

For this purpose, let us first briefly recall the notation for stateful encryption schemes as introduced
by Bellare, Kohno, and Namprempre [BKN04]. A stateful encryption scheme sfEnc = (KGen,Enc,Dec)
consists of the following three efficient algorithms. The randomized key generation algorithm KGen(1λ) $−→
(K, stE, stD) outputs a key K ∈ K and initial encryption and decryption states stE, stD. The randomized,
stateful encryption algorithm Enc(stE,K,m) $−→ (stE

′, c) takes state, key, and a message m and outputs an
updated state and ciphertext c. The deterministic, stateful decryption algorithm Dec(stD,K, c) $−→ (stD

′,m)
conversely maps state, key, and a ciphertext to an updated state and either a message or special error
symbol ⊥.

Clearly, stateful encryption does not aim at achieving the advanced security properties we consider
in this work, forward security and phase-key insulation. In the comparison, we hence focus on the plain
confidentiality and integrity notions, i.e., IND-kATK and INT-kATK (for both k ∈ {mk, sk} and vari-
ants ATK ∈ {CPA,CCA} resp. ATK ∈ {PTXT,CTXT}) in our framework as well as the stateful-encryption
notions IND-sfCPA resp. IND-sfCCA and INT-sfPTXT resp. INT-sfCTXT.

The relations we establish are twofold. First, our single-key security notions which allow an adversary
to access a multi-key channel only in its initial phase are indeed equivalent in strength to the corresponding
stateful-encryption notions, beyond syntactical differences. For this, consider the following natural and
generic transforms for constructing a multi-key channel Chsf from any stateful encryption scheme sfEnc
and, conversely, a stateful encryption scheme sfEncsk from any multi-key channel with single-entry error
space E = {⊥}.

• Chsf(Initsf ,Sendsf ,Recvsf ,Updatesf).
For initialization, derive (K, stE, stD) $←− KGen(1λ) and set msk0 = K0 = K, stS,0 = stE, and stR,0 =
stD. For sending and receiving, use Enc and Dec as direct replacements. Finally, the Update algorithm
does nothing; i.e., StateUp, MasterKeyUp, and KeyDerive are defined to be the identity function.

• sfEncsk(KGensk,Encsk,Decsk).
For key generation, derive (msk0,K0, stS,0, stR,0) $←− Init(1λ) and set K = msk0, stE = stS,0, and
stD = stR,0. Encryption and decryption is directly replaced by Send resp. Recv.

16

Careful inspection of the single-key (k = sk) notions in our framework and those defined for stateful
encryption [BKN04, BSWW13]7 readily establishes that each two corresponding notions (i.e., I-skATK
and I-sfATK for same I and ATK) are preserved by the generic transforms given above. That is, if
the underlying stateful encryption scheme sfEnc achieves, e.g., IND-sfCCA security then the transformed
multi-key channel Chsf satisfies the corresponding IND-skCCA notion.

Finally, and perhaps surprisingly at first glance, our generic transform Chsf of a stateful encryption
scheme into a multi-key channel also achieves (plain) multi-key IND-mkCPA security. The reason for this
is that the degenerated Update algorithm does not alter the key which hence also makes the OSend oracle
not alter its behavior across different phases. On the other hand, the message resp. ciphertext vectors M
resp. C in the ORecv oracle can be easily set out-of-sync by invoking Update at different positions in
the ciphertext sequence on the sender and receiver side. As a result, an adversary can make challenge
ciphertexts to be considered as valid forgery in a “different” phase (in the multi-key integrity game) or
force challenge messages to be output by ORecv (in the IND-mkCCA game). Hence, Chsf achieves neither
IND-mkCCA nor INT-mkPTXT or INT-mkCTXT security.

3.5 Generic Composition

We round up the discussion of our framework of multi-key security notions by lifting the classical compo-
sition theorem by Bellare and Namprempre [BN00] for symmetric encryption, namely that IND-CPA and
INT-CTXT security imply IND-CCA security, to the setting of multi-key channels. As noted by Boldyreva
et al. [BDPS14], this result is not directly applicable in settings where the decryption algorithm may
output multiple, distinguishable errors, an observation that also applies to our setting. Boldyreva et al.
re-establish composition in the multiple-error setting by requiring that with overwhelming probability an
adversary is only able to produce a single error (a notion they call error invariance). Here, we instead
make use of the more versatile approach introduced as error predictability in the context of stream-based
channels by Fischlin et al. [FGMP15]. Error predictability roughly requires that there exists an efficient
predictor algorithm Pred that, given the ciphertexts sent and received so far, can with overwhelming prob-
ability predict the error message caused by receiving a certain next ciphertext (if that ciphertext produces
at all an error).

In comparison, error predictability is a milder assumption than error invariance [BDPS14] as it allows
for channels outputting multiple distinguishable and non-negligible errors. For stateless authenticated
encryption, Barwell et al. [BPS15] considered the alternative notion of error simulatability in which error
leakage is simulated under an independent key. Their notion seems incomparable to error predictability
in the stateful setting, where the history of ciphertexts needs to be taken into account and it is less clear
how to define an independent receiver’s internal state.

We translate the notion of error predictability to the multi-key setting, parameterized as s-kERR-PRE
with forward security and phase-key insulation, and in a single- and multi-key variant. This enables
us to show the following composition result: for any advanced security property s ∈ {ε, fs, ki, fski} and
key setting k ∈ {sk,mk}, if a multi-key channel provides the according notion of ciphertext integrity
(s-INT-kCTXT), chosen-plaintext confidentiality (s-IND-kCPA), and error predictability (s-kERR-PRE),
then it also provides chosen-ciphertext confidentiality (s-IND-kCCA).

We formalize the parameterized, multi-key version of error predictability, s-kERR-PRE, in Definition 3.3
below through the experiment Expts-kERR-PRE

Ch,A in Figure 5. An adversary wins against this experiment if it
can ever cause the Recv algorithm to output an error message that differs from the output of the predictor
algorithm. Meanwhile, when forward security or phase-key insulation is demanded, the adversary is even
allowed to corrupt the master secret key resp. reveal phase keys at will.

7As a technical side-remark, we here consider a slight variant of stateful integrity where the adversary in the decryption
oracle is given the decrypted message instead of only a bit telling whether decryption resulted in an error or not.

17

Expts-kERR-PRE
Ch,Pred,A (1λ):

1 (msk0, K0, stS , stR) $←− Init(1λ)
2 tS ← 0, tR ← 0
3 i0 ← 0, j0 ← 0
4 A(1λ)OSend(·),ORecv(·),[OUpdate(·)]k=mk,[OReveal(·,·)]s∈{ki,fski},[OCorrupt(·)]s∈{fs,fski}

5 return win

If A queries OSend(m):
6 itS ← itS + 1
7 (stS , CS [tS][itS]) $←− Send(stS , KtS , m)
8 return CS [tS][itS]

If A queries ORecv(c):
9 jtR ← jtR + 1

10 (stR, m)← Recv(stR, KtR , c)
11 if m ∈ E and m 6= Pred(CS , CR, c) then
12 win← 1
13 CR[tR][jtR]← c
14 return m to A

If A queries OUpdate(role):
15 (msktrole+1, Ktrole+1, strole)← Update(msktrole , strole)
16 trole ← trole + 1
17 stbegin

role,trole
← strole

If A queries OReveal(t, role):
18 if t > trole then
19 return
20 return (stbegin

role,t, Kt)

If A queries OCorrupt(role):
21 return (stbegin

role,trole
, msktrole)

Figure 5: Security experiment for error predictability (s-kERR-PRE) with respect to error predictor Pred of a multi-key
channel Ch. An adversary A has only access to an oracle [OX]c if the condition c is satisfied.

Definition 3.3 (Error predictability of multi-key channels (s-kERR-PRE)). Let Ch = (Init,Send,Recv,
Update) be a multi-key channel with error space E, advanced security aspects s ∈ {ε, fs, ki, fski} and key
setting k ∈ {sk,mk}. We say that Ch provides error predictability (s-kERR-PRE) with respect to an efficient
probabilistic algorithm Pred : {0, 1}∗∗×{0, 1}∗∗×{0, 1}∗ $−→ E, called the error predictor, if, for every PPT
adversary A playing in the experiment s-kERR-PRE defined in Figure 5 against channel Ch, the following
advantage function is negligible:

Advs-kERR-PRE
Ch,Pred,A (λ) := Pr

[
Expts-kERR-PRE

Ch,Pred,A (1λ) = 1
]
.

We are now ready to state our generic composition theorem for the setting of multi-key channels.

Theorem 3.4 (s-INT-kCTXT∧ s-IND-kCPA∧ s-kERR-PRE =⇒ s-IND-kCCA). Let Ch = (Init,Send,Recv,
Update) be a correct multi-key channel with error space E. If Ch provides indistinguishability under chosen-
plaintext attacks, integrity of ciphertexts, and error predictability (wrt. some predictor Pred) with advanced
security aspects s ∈ {ε, fs, ki, fski} for a key setting k ∈ {sk,mk}, then it also provides indistinguishability
under chosen-ciphertext attacks for s and k. Formally, for every efficient s-IND-kCCA adversary A there
exist an efficient s-INT-kCTXT adversary B1, s-kERR-PRE adversary B2, and s-IND-kCPA adversary B3
such that

Advs-IND-kCCA
Ch,A ≤ Advs-INT-kCTXT

Ch,B1 + Advs-kERR-PRE
Ch,Pred,B2 + Advs-IND-kCPA

Ch,B3 .

Proof. By means of intermediate games E0
A, E1

A, and E2
A we transition from the s-IND-kCCA experiment

to the s-IND-kCPA experiment in three steps, while bounding the probability differences between each two
games with advantage of a specific adversary.

Let E0
A be the experiment s-IND-kCCA defined in Figure 2 against adversary A. Let badI be the event

that OCTXT
Recv on input a ciphertext outputs a valid message m /∈ E while the receiving phase is neither

revealed nor affected by corruption, i.e., tR /∈ Rev and tR < tcorr . We define a new experiment E1
A which

differs from E0
A, in that within ORecv it checks for the bad event before Line 24 and, if badI is triggered,

18

replaces m with the output of Pred(CS ,CR, c) where CS = C and CR are the vectors of messages sent
resp. received prior to the oracle call. By definition, E1

A and E0
A behave equally from A’s perspective,

unless badI occurs. Using, e.g., Pr[E0
A] as a shorthand notation for Pr[E0

A(1λ) = 1], we have:

Advs-IND-kCCA
Ch,A = Pr[E0

A]− 1
2 = Pr[E0

A]− Pr[E1
A] + Pr[E1

A]− 1
2 ≤ Pr[badI] + Pr[E1

A]− 1
2 .

We show next how to build from any adversary A that triggers badI an adversary B1 that breaks
the s-INT-kCTXT security of Ch. Adversary B1 keeps an index i initialized to 0 and picks a bit b0 uniformly
at random. It then simulates the s-IND-kCCA experiment for A, answering its queries as follows. If A
queries equal-length messages (m0,m1) to OLoR then B1 queries mbi to its oracle OSend and forwards the
answer to A. Similarly B1 forwards every receiving query c to its oracle OCTXT

Recv and obtains a response m.
Depending on the sync flag, B1 either forwards m to A if sync = 0 or responds with if sync = 1. If A
queries S to OUpdate, the adversary B1 invokes its own OUpdate oracle on S and additionally increases i
by one as well as chooses a bit bi uniformly at random. Finally, if A queries R to OUpdate, or queries the
oracles OReveal or OCorrupt, then B1 simply relays the queries to its own corresponding oracles and forwards
their answer to A. When A halts, so does B1.

Observe that, by definition of the experiments, the sync flag in the simulated s-IND-kCCA experiment
for A and in B1’s s-INT-kCTXT experiment coincide. Moreover, if the event badI in Line 24 is triggered,
i.e., if sync = 0 and m 6∈ E in an uncompromised phase, then the winning flag is set in the s-INT-kCTXT
for B1. Hence, the probability of badI being triggered is upper bounded by B1’s advantage:

Advs-INT-kCTXT
Ch,B1 ≥ Pr[badI].

So far we can bound the advantage of A in the s-IND-kCCA experiment as follows:

Advs-IND-kCCA
Ch,A ≤ Pr[badI] + Pr[E1

A]− 1
2 ≤ Advs-INT-kCTXT

Ch,B1 + Pr[E1
A]− 1

2 .

Observe that in game E1
A, the adversary in case of the badI event only obtains the error predictor

output, but no actual messages anymore. We now consider a game E2
A by modifying E1

A as follows. If the
receiving oracle of E2

A is in a non-compromised phase, it always uses a predictor Pred instead of Recv to
produce the outputs (i.e., also if m ∈ E). More precisely, we modify ORecv by replacing the check for badI
before Line 24 with a check only for tR 6∈ Rev ∧ tR ≥ tcorr , again followed by a line m← Pred(CS ,CR, c).
Let badE be the event that the output of Pred differs from an error output of Recv in game E1

A in such
a non-compromised phase. Then E1

A and E2
A behave equally as long as badE does not occur. Hence we

obtain a new bound
∣∣Pr[E1

A]− Pr[E2
A]
∣∣ ≤ Pr[badE].

We show now how to build from an adversary A that triggers badE an adversary B2 that breaks
the s-kERR-PRE property of Ch (wrt. error predictor Pred). Adversary B2 keeps an index i initialized to 0
and picks a bit b0 uniformly at random. It then simulates the game E2

A for A by answering A’s queries
using its oracles, analogous to the above adversary B1. When A triggers badE in E1

A, by definition of badE
it will be due to a deviation of an error output by Recv from the output of the Pred algorithm, thus leading
to B2 winning in the s-kERR-PRE experiment. Hence we obtain Advs-kERR-PRE

Ch,B2 ≥ Pr[badE], which allows
us to bound the advantage of A as follows:

Pr[E1
A] = Pr[E1

A]− Pr[E2
A] + Pr[E2

A] ≤ Advs-kERR-PRE
Ch,Pred,B2 + Pr[E2

A].

In the last step we show that with the events badI and badE being excluded in E2
A, an adversary B3 as

defined in Figure 6 against the game s-IND-kCPA can simulate the game E2
A by answering queries to ORecv

on its own. To this end, it invokes the predictor Pred whenever the receiving phase is uncompromised
and returns its output. Otherwise, for a revealed or corrupted phase, it uses the genuine phase key to
compute the output of Recv itself. Observe that, as invocations of the OReveal or OCorrupt query that led

19

DA(1λ)OLoR(·,·),[OUpdate(·)]k=mk,[OReveal(·,·)]s∈{ki,fski},[OCorrupt(·)]s∈{fs,fski} :
1 (stS , stR)← StateGen(1λ)
2 tS ← 0, tR ← 0
3 i0 ← 0, j0 ← 0
4 sync← 1
5 tcorr ← +∞
6 Rev ← ∅
7 (t, b) $←− A(1λ)O

∗
LoR(·,·),O∗Recv(·),[O∗Update(·)]k=mk,[O∗Reveal(·,·)]s∈{ki,fski},[O

∗
Corrupt(·)]s∈{fs,fski}

8 if t > max(tS , tR) then
9 return 0

10 return ((bt = b) ∧ (t 6∈ Rev) ∧ (t < tcorr))

If A queries O∗LoR(m0, m1):
11 if |m0| 6= |m1| then
12 return
13 itS ← itS + 1
14 CS [tS][itS]← OLoR(m0, m1)
15 if tR > tS and tS /∈ Rev then
16 sync← 0
17 return CS [tS][itS] to A

If A queries O∗Update(role):
18 OUpdate(role)
19 if role = R and tS ≥ tR and jtR < itR

and tR /∈ Rev then
20 sync← 0
21 trole ← trole + 1

If A queries O∗Reveal(t, role):
22 if t ≤ trole
23 Rev ← Rev ∪ {t}
24 return OReveal(t, role)

If A queries O∗Corrupt(role):
25 if tcorr = +∞ then
26 tcorr ← trole
27 return OCorrupt(role)

If A queries O∗Recv(c):
28 jtR ← jtR + 1
29 if (tR > tS or jtR > itR or c 6= CS [tR][jtR])

and tR /∈ Rev then
30 sync← 0
31 if sync = 0 then
32 if tR 6∈ Rev and tR < tcorr then
33 e← Pred(CS , CR, c)
34 CR[tR][jtR]← c
35 return e
36 else if tR ∈ Rev then
37 (stbegin

R,tR
, KtR)← OReveal(tR, R)

38 else
39 (stbegin

R,tR
, msktR)← OCorrupt(R)

40 KtR ← KeyDerive(msktR)
41 (st′R, m)← Recv(stbegin

R,tR
, KtR , CR[tR])

42 (st′′R, m)← Recv(st′R, KtR , c)
43 CR[tR][jtR]← c
44 return m
45 else
46 return

Figure 6: Simulation of E2
A by the s-IND-kCPA adversary B3 in the proof of Theorem 3.4.

20

to a phase being compromised are relayed through B3, B3 in particular knows the phase key of revealed
phases and can compute those following a corruption using the obtained compromised master secret key to
derive the according phase key via invoking MasterKeyUp and KeyDerive. Furthermore, these queries yield
the initial state of compromised phases, allowing B3 to proceed the Recv algorithm to any position in the
received ciphertext sequence in that phase. All other queries of A to OLoR, OUpdate, OReveal, and OCorrupt
are relayed by B3 to its corresponding oracles in the s-IND-kCPA experiment. When A stops and outputs
a guess (t, b), B3 stops outputting the same guess.

We observe that B3 provides a correct simulation of E2
A for A. Moreover, a valid guess of A also

makes B3 win in the s-IND-kCPA experiment. Therefore we obtain the following bound for B3’s advantage:

Pr[E2
A]− 1

2 ≤ Advs-IND-kCPA
Ch,B3 .

This concludes the proof; combining the intermediate advantage bounds yields the overall bound stated
in the theorem.

4 AEAD-based Construction of a Multi-key Channel
In this section we generically construct a (deterministic) multi-key channel ChAEAD from on a nonce-based
AEAD scheme AEAD and a pseudorandom function f . We then prove that our construction provides the
strongest security notions for both confidentiality and integrity in our model, namely indistinguishability
under multi-key chosen-ciphertext attacks and multi-key integrity of ciphertexts, both with forward security
and phase-key insulation (fski-IND-mkCCA and fski-INT-mkCTXT).

Our generic construction ChAEAD = (Init,Send,Recv,Update) is defined via the algorithms given in
Figure 7. It uses a nonce-based AEAD scheme AEAD = (Enc,Dec) with key space K = {0, 1}λ, message
and ciphertext space {0, 1}∗, nonce space {0, 1}n, associated data space {0, 1}∗, and an error symbol ⊥.
Furthermore, it employs a pseudorandom function f : {0, 1}λ×{0, 1} → {0, 1}λ. The deterministic AEAD
encryption algorithm maps a key K ∈ {0, 1}λ (which we write in subscript), a nonce N ∈ {0, 1}n, an
associated data value ad ∈ {0, 1}∗, and a messagem ∈ {0, 1}∗ to a ciphertext c ∈ {0, 1}∗. The deterministic
decryption algorithm conversely maps a key, nonce, associated data value, and ciphertext to either a
message or the error symbol ⊥.

Our construction supports a maximum number of maxmsg = 2n messages per phase, where n is the
AEAD nonce length. The master-secret-key and phase-key space in our construction are equal to the
AEAD and PRF key space,MSK = K = {0, 1}λ. The error space {⊥,⊥′} consists of the error symbol ⊥
of the AEAD scheme and a second symbol ⊥′ indicating exceedance of maxmsg. The sending and receiving
state space is SS = SR = N × N∗ × {0, 1}, encoding a message sequence number, a list of the message
counts in all previous phases, and a failure flag indicating a previously occurred error.

On a high level, ChAEAD derives master secret and phase keys via the (domain-separated) PRF f , an
established technique ensuring forward security and separation of the keys derived; see, e.g., [BY03]. For
encryption, it ensures reorder protection via a sequence number used as nonce. It further authenticates the
number of messages seen in previous phases via the associated data field, borrowing established concepts
from distributed computing to ensure causality.8 In detail, our construction operates as follows.

• The Init algorithm uses StateGen to initialize the sending and receiving states as tuples contain-
ing a message sequence number seqno = 0, a list of the number of messages sent in all previous
phases prevnos = (), and a failure flag fail = 0. Via MasterKeyGen, the Init algorithm then samples

8Note that, for a more efficient construction, one can get similar authenticity guarantees by storing a chained hash value
of the number of messages received in previous phases using a collision-resistant hash function. For the sake of simplicity we
omit this hash-chain optimization here and focus on demonstrating the feasibility of our security notions.

21

Init(1λ):
1 (stS,0, stR,0)← StateGen(1λ)
2 msk0

$←− MasterKeyGen(1λ)
3 K0 ← KeyDerive(msk0)
4 return (msk0, K0, stS,0, stR,0)

Send(stS , K, m):
5 parse stS as (seqno, prevnos, fail)
6 if seqno = maxmsg or fail = 1 then
7 fail← 1
8 stS ← (seqno, prevnos, fail)
9 return (stS ,⊥′)

10 seqno← seqno + 1
11 c← EncK(seqno, prevnos, m)
12 stS ← (seqno, prevnos)
13 return (stS , c)

Recv(stR, K, c):
14 parse stR as (seqno, prevnos, fail)
15 if fail = 1 then
16 return (stR,⊥)
17 seqno← seqno + 1
18 m← DecK(seqno, prevnos, c)
19 if m = ⊥ then
20 fail← 1
21 stR ← (seqno, prevnos, fail)
22 return (stR, m)

StateGen(1λ):
23 stS,0 = (0, (), 0)
24 stR,0 = (0, (), 0)
25 return (stS,0, stR,0)

MasterKeyGen(1λ):
26 msk0

$←− {0, 1}λ
27 return msk0

KeyDerive(msk):
28 return f(msk, 1)

Update(msk, st):
29 msk← MasterKeyUp(msk)
30 K← KeyDerive(msk)
31 st← StateUp(st)
32 return (msk, K, st)

StateUp(st):
33 parse st as (seqno, prevnos, fail)
34 st← (0, (prevnos, seqno), fail)
35 return st

MasterKeyUp(msk):
36 return f(msk, 0)

Figure 7: Our generic construction of a deterministic multi-key channel ChAEAD = (Init, Send, Recv, Update) based on a nonce-
based authenticated encryption with associated data scheme AEAD = (Enc, Dec) and a pseudorandom function f : {0, 1}λ ×
{0, 1} → {0, 1}λ.

an initial master secret key msk0
$←− {0, 1}λ uniformly at random. Finally it derives the initial phase

key K0 ← f(msk0, 1) via KeyDerive as the output of the PRF f keyed with the initial master secret
key and on input 1.

• The Send algorithm immediately outputs an error ⊥′ in case the maximum number maxmsg = 2n of
messages has been reached in this or a prior call (indicated by fail = 1). Otherwise, it increases the
message sequence number in its state by one. It then invokes the deterministic AEAD encryption
algorithm on the message m to obtain the ciphertext c. Here, the sequence number is used as the
nonce N = seqno and the previous phases’ message count as the associated data ad = prevnos. The
output of Send is the new state and the ciphertext c.

• The Recv algorithm immediately outputs an error ⊥ in case the failure flag has been set (fail = 1) in
an earlier invocation, indicating that a previous AEAD decryption algorithm has failed. Otherwise
it increases the message sequence number contained in the receiving state by one. It then uses the
nonce N = seqno and associated data prevnos in the AEAD decryption algorithm on the ciphertext
c to obtain m. In case the decryption fails and m = ⊥, the failure flag is set to 1. The output of
Recv is the new state and the message (or error) m.

• The Update algorithm uses StateUp to reset the new message sequence number to 0, and appends
the previous message sequence number to the list of previous phases’ message counts, i.e., prevnos←

22

(prevnos, seqno). Then it invokes MasterKeyUp to derive a new master secret key as the output of f
keyed with the previous master secret key and on input 0. Finally, it uses KeyDerive to compute a
new phase key from the new master secret key.

Correctness. Correctness of our ChAEAD construction follows immediately from correctness of the un-
derlying AEAD scheme. In particular, observe that both receiver and sender compute their master secret
and phase keys via the same, deterministic key schedule. Moreover, whenever both sides process the same
number—not exceeding maxmsg—of messages per phase (as is a precondition in the correctness defini-
tion), they will also use the same associated data values for encryption and decryption, thus rendering the
receiver to derive the correct messages as required.

Remark. At first glance, it might seem counter-intuitive that the sequence number in our ChAEAD
construction is reset to 0 at the start of a new phase. Would it not be more natural to have the sequence
number running over all phases in order to ensure at the start of a phase that all messages of the previous
phase were received, and to prevent reordering of messages across phases?

As surfaced by Fournet and the miTLS [miT] team in the discussion around TLS 1.3 [Fou15], this
approach would however enable truncation attacks if the leakage of phase keys is considered in the security
definition, as we do for phase-key insulation.9 If sequence numbers are continued, an adversary holding
the key of some phase t can truncate a prefix of the messages (with sequence numbers i, . . . , i + j) in
phase t + 1 by providing the receiver with j + 1 self-generated messages at the end of t. Dropping the
first j + 1 messages in phase t + 1, the receiver’s sequence number matches again the one of the sender
(for message i+ j + 1), so the truncation would go unnoticed. Resetting the sequence numbers to 0 when
switching phases prevents this attack, though additional care needs to be taken to prevent suffix truncation
at the end of a phase. In our construction, we ensure the latter through authenticating the number of
messages sent in all previous phases. We note that this mechanism would even allow to not reset the
sequence number, but we decided to keep the reset in order to stay closer to the channel design of TLS 1.3
(cf. the discussion in Section 4.2).

4.1 Security Analysis

We now show that our generic ChAEAD construction achieves the strongest multi-key security notions for
confidentiality and integrity, namely forward-secure and phase-key–insulated indistinguishability under
multi-key chosen-ciphertext attacks (fski-IND-mkCCA) and integrity of ciphertexts (fski-INT-mkCTXT).
For proving the former notion we proceed via first showing the corresponding CPA confidentiality variant
as well as that our construction provides error predictability (for multiple keys and with forward security
and phase-key insulation), and then leverage our generic composition theorem (Theorem 3.4). Our results
hold under the assumption that the underlying nonce-based AEAD scheme AEAD provides confidentiality
in the sense of IND-CPA security and integrity in terms of AUTH security as defined by Rogaway [Rog02]10,
as well as that the employed pseudorandom function f meets the standard notion of PRF security.

We begin with the proof of multi-key chosen-plaintext confidentiality with forward security and phase-
key insulation.

Theorem 4.1 (ChAEAD is fski-IND-mkCPA-secure). The ChAEAD construction from Figure 7 provides
forward-secure and phase-key–insulated indistinguishability under multi-key chosen-plaintext attacks

9In our framework, the weakest integrity property broken through this attack is phase-key–insulated integrity of plaintexts
(ki-INT-mkPTXT).

10While Rogaway defines confidentiality via the stronger IND$-CPA notion, it suffices for our result that AEAD provides
regular indistinguishability of encryptions.

23

(fski-IND-mkCPA) if the employed authenticated encryption with associated data scheme AEAD provides
indistinguishability under chosen-plaintext attacks (IND-CPA) and the employed pseudorandom function f
is PRF-secure.

Formally, for every efficient fski-IND-mkCPA adversary A against ChAEAD there exists efficient algo-
rithms B1 and B2 such that

Advfski-IND-mkCPA
ChAEAD,A (λ) ≤ nt ·

(
nt · AdvPRF

f,B1(λ) + AdvIND-CPA
AEAD,B2(λ)

)
,

where nt = max(tS , tR) + 1 is the maximum number of phases active in the fski-IND-mkCPA experiment.

Proof. Our proof proceeds in three steps. First, we guess the phase t that the adversary A will pick as
its challenge phase (out of the at most nt active phases in the experiment). Aborting in case of a wrong
guess induces a loss in the advantage of A by at most a factor of nt. Denoting with Efski-IND-mkCPA,t

A the
resulting experiment we hence have that

Advfski-IND-mkCPA
ChAEAD,A (λ) ≤ nt · Advfski-IND-mkCPA,t

ChAEAD,A (λ).

From now on, we can assume that A will issue its guess for the challenge phase t which we furthermore
know in advance.

In the second step, we gradually replace with independent random values all derived master secret
keys up to (including) mskt+1 of phase t + 1 as well as the phase keys derived up to (including) Kt
of phase t. Let Efski-IND-mkCPA,t,$i

A denote the Efski-IND-mkCPA,t
A experiment with the modification that the

master secret keys in phases 0 to i as well as the phase keys in phases 0 to i−1 are chosen independently at
random as msk0, . . . ,mski,K0, . . . ,Ki−1

$←− {0, 1}λ. In particular, the Efski-IND-mkCPA,t,$0
A experiment equals

Efski-IND-mkCPA,t
A where only the initial master secret key msk0 is randomly chosen (as defined by ChAEAD).

Furthermore, Efski-IND-mkCPA,t,$t+1
A denotes an experiment where all master secret keys up to (including)

mskt+1 (of phase t+1) and all phase keys up to (including) Kt (of phase t) are chosen uniformly at random;
i.e., in particular the key Kt of the challenge phase t picked by A.

We now bound the advantage difference between two games Efski-IND-mkCPA,t,$i
A and Efski-IND-mkCPA,t,$i+1

A
(for some i ∈ {0, . . . , t}) by the advantage of an algorithm B1 against the PRF security of f . When
simulating the fski-IND-mkCPA experiment for A, algorithm B1 picks an index i ∈ {0, . . . , t} at random
and follows the experiment and construction description, but samples all master secret keys mskj for
j ≤ i and all phase keys Kj for j ≤ i − 1 uniformly at random from {0, 1}λ. In the moment B1 is
supposed to derive mski+1 ← f(mski, 1) or Ki ← f(mski, 0), it queries the values 1 resp. 0 to its PRF
oracle. For all following master secret and phase keys, B1 follows the ChAEAD and derives them via f as
specified. When A stops and outputs its guess b, B1 also stops and outputs 1 if the guess was correct
(i.e., b = bt) and 0 otherwise. Denote by Bi1 the reduction B1 picking index i. Observe that Bi1 correctly
simulates experiment Efski-IND-mkCPA,t,$i

A for A in case its PRF oracle computes the real PRF f ; otherwise
it simulates Efski-IND-mkCPA,t,$i+1

A as the (random-function) PRF oracle outputs two independent random
values on inputs 1 and 0. Furthermore, any difference in A’s output behavior between the two experiments
translates into a difference in Bi1’s output in the PRF security game. Hence, we can bound the former as∣∣∣Advfski-IND-mkCPA,t,$i

ChAEAD,A (λ)− Advfski-IND-mkCPA,t,$i+1
ChAEAD,A (λ)

∣∣∣ ≤ AdvPRF
f,Bi1

(λ).

Via a hybrid argument, we can therefore infer that the advantage difference introduced when switching
from Efski-IND-mkCPA,t

A = Efski-IND-mkCPA,t,$0
A to Efski-IND-mkCPA,t,$t+1

A is bounded as follows (keeping in mind
that t+ 1 ≤ nt):

Advfski-IND-mkCPA,t
ChAEAD,A (λ) ≤ nt · AdvPRF

f,B1(λ) + Advfski-IND-mkCPA,t,$t+1
ChAEAD,A (λ).

24

In the third and last step, we argue that the advantage of adversary A in the game Efski-IND-mkCPA,t,$t+1
A

can be bounded by the IND-CPA security of the employed AEAD scheme. Consider the following reduc-
tion B2. To simulate Efski-IND-mkCPA,t,$t+1

A for A, algorithm B2 carries out all steps in the experiment and
construction algorithms on its own, except for parts of the operations in the sending oracle OSend in phase t.
(Recall that, as we are proving CPA security, there is no receiving oracle available to A.) Particularly,
B2 picks all challenge bits bi except for i = t on its own at random. In phase t (that is, starting from
the t-th call and up to the t + 1-th call of the OUpdate oracle on input role = S), B2 does not pick bt
and also does not perform the EncKt operation within the Send algorithm of ChAEAD on its own. Instead
of computing c ← EncKt(seqno, prevnos,mbt) itself, it queries the encryption oracle of its IND-CPA game
on N = seqno and ad = prevnos together with m0 and m1 (as provided by A to OSend) and uses the result
as ciphertext value c. Note that B2 never exceeds the nonce space of the AEAD scheme as Send ensures
that seqno ≤ maxmsg. Finally, when the adversary A outputs its guess b for phase t, B2 also outputs b as
its own guess.

Observe first of all that B2 correctly simulates Efski-IND-mkCPA,t,$t+1
A for A. For simulating the sending

oracle OSend, B2 holds the keys Kt′ for all phases t′ 6= t itself and can hence execute the Send algo-
rithm as specified. In the OUpdate oracle, B2 simply derives master secret and phase keys as specified
for Efski-IND-mkCPA,t,$t+1

A , i.e., it chooses them independently at random up to mskt+1 resp. Kt and derives
all further keys through f . As t is the challenge phase for which A outputs its guess, we furthermore
know that (a successful adversary) A will neither issue an OReveal query on t nor an OCorrupt query such
that tcorr < t + 1. In particular, the phase keys Kt′ (for t 6= t′) as well as a potentially corrupted master
secret key mskt′ (for t′ > t) that A obtains in this way are completely independent of the phase key in
phase t. It is hence sound that B2 does not employ a self-chosen random key Kt in this challenge phase
but implicitly sets Kt to the random key chosen in the IND-CPA game for the AEAD scheme. Moreover,
by invoking its IND-CPA encryption oracle within the representation of the Send algorithm in phase t, B2
also implicitly sets the challenge bit bt in that phase to the one in the IND-CPA game. Outputting the
same bit as A thus makes B2 correctly determine the IND-CPA challenge bit if A correctly guesses bt and
hence

Advfski-IND-mkCPA,t,$t+1
ChAEAD,A (λ) ≤ AdvIND-CPA

AEAD,B2(λ).

This concludes the proof. Combining the intermediate advantage bounds yields the overall bound.

We now turn to the multi-key integrity of ciphertexts with forward security and phase-key insulation
of ChAEAD.

Theorem 4.2 (ChAEAD is fski-INT-mkCTXT-secure). The ChAEAD construction from Figure 7 provides
forward-secure and phase-key–insulated multi-key integrity of ciphertexts (fski-INT-mkCTXT) if the em-
ployed authenticated encryption with associated data scheme AEAD provides authenticity (AUTH) and the
employed pseudorandom function f is PRF-secure.

Formally, for every efficient fski-INT-mkCTXT adversary A against ChAEAD there exists efficient algo-
rithms B1 and B2 such that

Advfski-INT-mkCTXT
ChAEAD,A (λ) ≤ nt ·

(
nt · AdvPRF

f,B1(λ) + AdvAUTH
AEAD,B2(λ)

)
,

where nt = max(tS , tR) + 1 is the maximum number of phases active in the fski-INT-mkCTXT experiment.

Proof. The first two steps of this proof follow closely those of the proof of fski-IND-mkCPA security
of ChAEAD (cf. Theorem 4.1). We first guess a “challenge” phase t (among the total nt number of phases)
and abort on an incorrect guess. Recall that in the integrity experiment (cf. Figure 3) the adversary A
provides no output; in particular it does not have to commit on a challenge phase like in the confidential-
ity experiment. Nevertheless, in this proof we define the challenge phase t for the experiment to be the

25

value tR in the moment when, in the ORecv oracle, within the condition check in Line 25 of the experiment
for the first time the conditions sync = 0, tR /∈ Rev, and tR < tcorr all evaluate to true. In the following, we
refer to this moment as the “challenge moment,” to the corresponding ORecv oracle call as the “challenge
oracle call,” and to the input ciphertext c in this call as the “challenge ciphertext.”

Second, we follow the same hybrid step as in the proof of Theorem 4.1 to replace the master secret
and phase keys up to mskt+1 and Kt with independent random values. Combined with the first step and
using the same notation as in the confidentiality proof, this yields the following bound:

Advfski-INT-mkCTXT
ChAEAD,A (λ) ≤ nt ·

(
nt · AdvPRF

f,B1(λ) + Advfski-INT-mkCTXT,t,$t+1
ChAEAD,A (λ)

)
.

For the final step, it remains to show thatA’s advantage in the modified experiment Efski-INT-mkCTXT,t,$t+1
A

can be bounded by the advantage of a reduction B2 to the AUTH security of AEAD. To this extent, first of
all observe that the construction ChAEAD (cf. Figure 7) will reject (and output ⊥ on) any further ciphertext
received after, within Recv, the AEAD decryption algorithm Dec output the error symbol ⊥ for the first
time. Hence in particular if the adversary A does not make the winning flag win set to 1 in the challenge
moment, it cannot win the game anymore later. We can therefore deduce that a successful adversary
will win in the challenge moment, i.e., the fourth condition in Line 25, m /∈ E also evaluates to true, i.e.,
m 6= ⊥.

Our reduction B2 to the authenticity (AUTH) of the AEAD scheme proceeds as follows. In the begin-
ning, B2 picks all phase keys up to including Kt−1 as well as the master secret key mskt+1 uniformly at
random on its own. Algorithm B2 then simulates the Efski-INT-mkCTXT,t,$t+1

A for A by performing operations
for all phases except phase t itself using the chosen keys. In the challenge phase t, B2, instead of com-
puting EncKt and DecKt on its own, it uses its encryption and decryption oracles in the AUTH game to
perform these operations during sending and receiving. Note that, due to the definition of the challenge
phase t, t /∈ Rev and t < tcorr . Hence, A does not ask Reveal(t, role) nor does it corrupt a master secret
key for a phase t′ ≤ t. Therefore, B2 also does not have to be able to respond to those queries. At last,
B2 follows the OUpdate specification to, if necessary, derive master secret key mskt+2 and following as well
as phase keys Kt+1 and following. In the moment B2 would set the winning flag win← 1 during an oracle
call ORecv(c) of A for some ciphertext c in its simulation, it stops and outputs c along with the nonce and
associated data as used in the ORecv oracle as its forgery in the AUTH game. Overall, B2 provides a sound
simulation of Efski-INT-mkCTXT,t,$t+1

A for A.
We finally have to argue that B2 wins in the AUTH game if A does in Efski-INT-mkCTXT,t,$t+1

A . For this
purpose, we separately consider the case that synchronization was lost (sync ← 0) in the same ORecv call
that leads to the challenge moment, and the case that it was lost earlier. In the first case, synchronization
loss requires one of the following conditions to be true in Line 23:

• tR > tS (the receiver’s phase tR is ahead of the sender’s phase tS in the challenge moment).
In this case, we are ensured that the challenge ciphertext c cannot have been the output of the
AUTH encryption oracle, as no such call was made yet. Hence, c output by B2 is a valid forgery and
makes B2 win as m 6= ⊥.

• jtR > itR (the receiver obtained more ciphertexts in phase tR as have been sent).
In this case, the AUTH encryption oracle was not called on sequence number seqno = jtR (i.e., the
output nonce N = seqno is fresh), so again c is a valid forgery making B2 win.

• c 6= C[tR][jtR] (the received and sent ciphertexts mismatch).
Due to the ciphertext mismatch, the output of the AUTH encryption oracle for sequence num-
ber seqno = jtR (as nonce N) must have been different from c. The latter hence again is a valid
forgery that qualifies B2 for winning.

26

We now treat the case that synchronization was lost before the challenge oracle call to ORecv. There
are three positions in the integrity experiment where synchronization can be lost (cf. Figure 3) which we
consider separately:

• Line 13 in OSend: As tR > tS , we know that through this OSend call the sending counter will stay
ahead of the receiving counter for the current sender’s phase tS throughout the experiment (i.e.,
itS > jtS). Otherwise, we would have received at least one additional ciphertext c beyond the sent
ciphertexts in phase tS . As tS /∈ Rev and tS < tcorr , this would have triggered synchronization to be
lost in the according ORecv call processing this ciphertext c (and hence the current call would not be
the one where synchronization is lost).
Therefore, the associated data field used in the ORecv oracle when processing the challenge ciphertext
will necessarily contain a different ciphertext count for tS as the one used when encrypting the
corresponding ciphertext on the sender’s side. The associated data used in ORecv was hence never
sent to the AUTH encryption oracle and hence c (along with this associated data) output by B2
constitutes a valid forgery.

• Line 23 in ORecv: If synchronization is lost in Line 23 without this oracle call being the challenge
call, the condition in Line 23 must evaluate to true while the condition in Line 25 for this call must
evaluate to false. Careful inspection shows that this necessitates that m ∈ E , i.e., m = ⊥ in this
call. As discussed above, the construction ChAEAD will only output further error messages ⊥ after
the first error is output, leaving A with no chance to win from this point on. Hence, we can deduce
that, for a successful adversary, synchronization is not lost in Line 23 of an ORecv call earlier than
the challenge one.

• Line 29 in OUpdate: A synchronization loss in this line means the receiver cannot have obtained all
sent ciphertexts in phase tR. Note moreover that ORecv cannot be called in phase tR anymore, as the
receiver’s phase is increased immediately after Line 29 in the OUpdate call. It will hence use a different
ciphertext count for this phase in the associated data field for all follow-up received ciphertexts. As
in the argument for Line 13, there will in particular be no AUTH encryption oracle call made with
the associated data used to encrypt the challenge ciphertext c, making the latter (output by B2) a
valid forgery.

In summary, if A wins in Line 25 in the challenge moment (which is the only moment it can win at
all), the corresponding challenge ciphertext c along with the nonce and associated data field used in the
challenge oracle ORecv constitutes a valid forgery in the AUTH game, which B2 outputs. Hence,

Advfski-INT-mkCTXT,t,$t+1
ChAEAD,A (λ) ≤ AdvAUTH

AEAD,B2(λ),

concluding the proof.

Finally, we show that our ChAEAD provides multi-key error predictability with forward security and
phase-key insulation (fski-mkERR-PRE).

Theorem 4.3 (ChAEAD provides fski-mkERR-PRE). The ChAEAD construction from Figure 7 provides
forward-secure and phase-key–insulated multi-key error predictability (fski-mkERR-PRE) wrt. the error pre-
dictor Pred given in the proof.

Formally, for every efficient fski-mkERR-PRE adversary A against ChAEAD,

Advfski-mkERR-PRE
ChAEAD,Pred,A (λ) = 0.

27

Proof. Consider the error predictor Pred which always output the AEAD error symbol ⊥.
In order for A to win the error predictability experiment fski-mkERR-PRE (cf. Figure 5, Line 11), it

must make the Recv algorithm output an error message (m ∈ E) which differs from the predictor’s output
(m 6= Pred(CS ,CR, c)). However, by construction the only error symbol ChAEAD ever outputs in Recv is ⊥,
hence the given predictor will never differ from error messages of ChAEAD and hence A cannot win.

As ChAEAD provides security in the senses of fski-IND-mkCPA,fski-INT-mkCTXT, and fski-mkERR-PRE,
we can finally leverage our generic composition result from Theorem 3.4 to conclude that it also achieves
strong confidentiality in the sense of fski-IND-mkCCA.

Corollary 4.4 (ChAEAD is fski-IND-mkCCA-secure). The ChAEAD construction from Figure 7 provides
forward-secure and phase-key–insulated indistinguishability under multi-key chosen-ciphertext attacks
(fski-IND-mkCCA) if the employed authenticated encryption with associated data scheme AEAD provides
indistinguishability under chosen-plaintext attacks (IND-CPA) as well as authenticity (AUTH) and the em-
ployed pseudorandom function f is PRF-secure.

4.2 Comparison to the TLS 1.3 Record Protocol

Our notion of multi-key channels is particularly inspired by the ongoing developments of the upcoming
Transport Layer Security (TLS) protocol version 1.3 [Res17]. It is hence insightful to compare our generic
construction with the design of the TLS 1.3 record protocol (cf. [Res17, Section 5]).

First of all note that, in contrast to previous TLS versions, TLS 1.3 mandates the use of AEAD
schemes as encryption and authentication mechanisms for the record protocol. It follows the basic secure-
channel design principle to include a sequence number for protecting against reordering attacks; as in
our construction. Both in TLS 1.3 and our construction, the sequence number enters the AEAD’s nonce
field and is reset to 0 at the start of each new phase. Also identically to our construction, the TLS 1.3
record protocol keys are derived via a deterministic key schedule in which, starting from an initial master
secret key (denoted client/server_traffic_secret_0 in TLS 1.3) the current phase’s key as well as
the next phase’s master secret key are derived via independent applications of a pseudorandom function
(TLS 1.3 uses HMAC [BCK96, KBC97] for this purpose). Beyond enabling key switches to allow secure
encryption of large amounts of data, the TLS 1.3 design in particular names forward security (combined
with insulation of phase keys) as a security goal [Res17, Appendix E.2]. In this sense, our generic ChAEAD
construction is comparatively close to the internal channel design of the TLS 1.3 record protocol in both
techniques and security goals.

Still, there are some notable differences between the two designs, both in technical details as well as in
the practically achieved security and its underlying assumptions. On the technical side, the TLS 1.3 record
protocol additionally includes a content-type field in ciphertexts to enable multiplexing of messages from
multiple sources. Furthermore, TLS 1.3 does not explicitly authenticate the numbers of seen ciphertexts
in previous phases (as our construction does via the prevnos field), but instead relies on the authenticated
transmission of key update messages. To be precise, key update messages are encoded as a specific
control (“post-handshake”) message and sent within the data channel. Thereby associated with a sequence
number, they serve as an authenticated “end-of-phase indicator” that allows the record protocol to infer in
unrevealed phases that all messages in a phase have been correctly received when the key update message
arrives.

In contrast, our model does not rely on the authenticity of key updates but captures more generic
settings where key update notifications may be send out-of-band and without being authenticated. Our
construction hence cannot rely on key updates as indicators that a phase was gracefully completed, but
instead needs to leverage the next uncompromised phase to detect truncations in an earlier phase. Nev-
ertheless, our generic ChAEAD scheme serves as proof-of-concept construction that strong confidentiality

28

and integrity can be achieved in the multi-key setting with forward security and phase-key insulation even
with unauthenticated, out-of-band key updates.

5 Conclusions and Future Work
In this work we initiate the study of multi-key channels, providing a game-based formalization, a framework
of security notions and their relations, as well as a provably secure construction based on authenticated
encryption with associated data and a pseudorandom function. Motivated by the channel design of the
upcoming version 1.3 of the Transport Layer Security (TLS) protocol involving key updates and thus
multiple keys, our work casts a formal light on the design criteria for multi-key channels and their achievable
security guarantees.

Being a first step towards the understanding of, in particular, real-world designs of multi-key channels,
our work also gives rise to further research questions. A natural next step is to analyze the exact security
guarantees achieved by the multi-key TLS 1.3 record protocol. In this context, a question of independent
interest lies in analyzing the trade-offs between relying on authenticated key updates versus not authen-
ticating them, both with respect to the security properties achievable as well as potential functional and
efficiency impacts. In a different direction, Fischlin et al. [FGMP15] observed that TLS and other channels
deviate on the API level from the classical cryptographic abstraction of channels by providing a stream-
ing interface rather than an atomic-message interface. Hence, their notion of stream-based channels is a
natural candidate to blend with our multi-key notions in order to investigate the interplay of discrete key
updates with a non-discrete stream of message data. Finally, it would be interesting to extend the notion of
multi-key channels to capture more complex, non-deterministic key schedules, e.g., those employed in secure
messaging protocols like Signal [Sig] aiming at extended security properties [CCG16, CGCD+17, BCJ+17].

Acknowledgments
We thank Giorgia Azzurra Marson for helpful discussions in the early phase of this work. We furthermore
thank the anonymous reviewers of EUROCRYPT 2017 and CRYPTO 2017 for their valuable comments.
This work has been funded by the DFG as part of projects P2, S4 within the CRC 1119 CROSSING.

References
[AB00] Michel Abdalla and Mihir Bellare. Increasing the lifetime of a key: a comparative analysis

of the security of re-keying techniques. In Tatsuaki Okamoto, editor, Advances in Cryptology
– ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 546–559,
Kyoto, Japan, December 3–7, 2000. Springer, Heidelberg, Germany. (Cited on page 2.)

[ADHP16] Martin R. Albrecht, Jean Paul Degabriele, Torben Brandt Hansen, and Kenneth G. Paterson.
A surfeit of SSH cipher suites. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16: 23rd Conference on Computer
and Communications Security, pages 1480–1491, Vienna, Austria, October 24–28, 2016. ACM
Press. (Cited on page 2.)

[APW09] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext recovery attacks
against SSH. In 2009 IEEE Symposium on Security and Privacy, pages 16–26, Oakland, CA,
USA, May 17–20, 2009. IEEE Computer Society Press. (Cited on page 2.)

29

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models and reference
implementations for the TLS 1.3 standard candidate. In 2017 IEEE Symposium on Security
and Privacy (S&P 2017), pages 483–503. IEEE, May 2017. (Cited on page 4.)

[BCJ+17] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs.
Ratcheted encryption and key exchange: The security of messaging. In CRYPTO 2017,
LNCS. Springer, Heidelberg, Germany, August 2017. (Cited on page 29.)

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message au-
thentication. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume 1109
of Lecture Notes in Computer Science, pages 1–15, Santa Barbara, CA, USA, August 18–22,
1996. Springer, Heidelberg, Germany. (Cited on page 28.)

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security treatment
of symmetric encryption. In 38th Annual Symposium on Foundations of Computer Science,
pages 394–403, Miami Beach, Florida, October 19–22, 1997. IEEE Computer Society Press.
(Cited on page 14.)

[BDLF+17] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss,
Jianyang Pan, Jonathan Protzenko, Aseem Rastogi, Nikhil Swamy, Santiago Zanella-
Béguelin, and Jean Karim Zinzindohoué. Implementing and proving the TLS 1.3 record
layer. In 2017 IEEE Symposium on Security and Privacy (S&P 2017), 2017. (Cited on page 4.)

[BDPS12] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn Stam. Secu-
rity of symmetric encryption in the presence of ciphertext fragmentation. In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237
of Lecture Notes in Computer Science, pages 682–699, Cambridge, UK, April 15–19, 2012.
Springer, Heidelberg, Germany. (Cited on pages 2, 7, and 14.)

[BDPS14] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn Stam. On
symmetric encryption with distinguishable decryption failures. In Shiho Moriai, editor, Fast
Software Encryption – FSE 2013, volume 8424 of Lecture Notes in Computer Science, pages
367–390, Singapore, March 11–13, 2014. Springer, Heidelberg, Germany. (Cited on pages 2
and 17.)

[BKN04] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and provably re-
pairing the SSH authenticated encryption scheme: A case study of the encode-then-encrypt-
and-MAC paradigm. ACM Trans. Inf. Syst. Secur., 7(2):206–241, 2004. (Cited on pages 1, 3, 5,
6, 7, 8, 10, 11, 14, 15, 16, and 17.)

[BMM+15] Christian Badertscher, Christian Matt, Ueli Maurer, Phillip Rogaway, and Björn Tackmann.
Augmented secure channels and the goal of the TLS 1.3 record layer. In Man Ho Au and
Atsuko Miyaji, editors, ProvSec 2015: 9th International Conference on Provable Security,
volume 9451 of Lecture Notes in Computer Science, pages 85–104, Kanazawa, Japan, Novem-
ber 24–26, 2015. Springer, Heidelberg, Germany. (Cited on page 4.)

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor,
Advances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer
Science, pages 531–545, Kyoto, Japan, December 3–7, 2000. Springer, Heidelberg, Germany.
(Cited on pages 2, 3, 11, and 17.)

30

[BPS15] Guy Barwell, Daniel Page, and Martijn Stam. Rogue decryption failures: Reconciling AE
robustness notions. In Jens Groth, editor, 15th IMA International Conference on Cryptogra-
phy and Coding, volume 9496 of Lecture Notes in Computer Science, pages 94–111, Oxford,
UK, December 15–17, 2015. Springer, Heidelberg, Germany. (Cited on pages 14 and 17.)

[BR00] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. In Tatsuaki Okamoto, editor, Advances
in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
317–330, Kyoto, Japan, December 3–7, 2000. Springer, Heidelberg, Germany. (Cited on page 2.)

[BSWW13] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson. An analysis of
the EMV channel establishment protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung, editors, ACM CCS 13: 20th Conference on Computer and Communications Security,
pages 373–386, Berlin, Germany, November 4–8, 2013. ACM Press. (Cited on pages 11 and 17.)

[BT16] Mihir Bellare and Björn Tackmann. The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryp-
tology – CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Computer Science, pages
247–276, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.
(Cited on page 4.)

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. In Marc
Joye, editor, Topics in Cryptology – CT-RSA 2003, volume 2612 of Lecture Notes in Com-
puter Science, pages 1–18, San Francisco, CA, USA, April 13–17, 2003. Springer, Heidelberg,
Germany. (Cited on pages 2, 3, 7, and 21.)

[CCG16] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. On Post-compromise Security.
In IEEE 29th Computer Security Foundations Symposium (CSF 2016), pages 164–178, 2016.
(Cited on page 29.)

[CGCD+17] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila. A
formal security analysis of the Signal messaging protocol. In 2017 IEEE European Symposium
on Security and Privacy (EuroS&P 2017). IEEE, April 2017. (Cited on page 29.)

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology – EURO-
CRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 453–474, Innsbruck,
Austria, May 6–10, 2001. Springer, Heidelberg, Germany. (Cited on page 2.)

[DFGS15] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic
analysis of the TLS 1.3 handshake protocol candidates. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel:, editors, ACM CCS 15: 22nd Conference on Computer and Commu-
nications Security, pages 1197–1210, Denver, CO, USA, October 12–16, 2015. ACM Press.
(Cited on page 3.)

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public key
cryptosystems. In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002,
volume 2332 of Lecture Notes in Computer Science, pages 65–82, Amsterdam, The Nether-
lands, April 28 – May 2, 2002. Springer, Heidelberg, Germany. (Cited on page 4.)

31

[DKXY03] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Strong key-insulated signature
schemes. In Yvo Desmedt, editor, PKC 2003: 6th International Workshop on Theory and
Practice in Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science,
pages 130–144, Miami, FL, USA, January 6–8, 2003. Springer, Heidelberg, Germany. (Cited
on page 4.)

[DLXY12] Yevgeniy Dodis, Weiliang Luo, Shouhuai Xu, and Moti Yung. Key-insulated symmetric key
cryptography and mitigating attacks against cryptographic cloud software. In Heung Youl
Youm and Yoojae Won, editors, ASIACCS 12: 7th ACM Symposium on Information, Com-
puter and Communications Security, pages 57–58, Seoul, Korea, May 2–4, 2012. ACM Press.
(Cited on page 4.)

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176. (Cited on page 1.)

[DVOW92] Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. Authentication and au-
thenticated key exchanges. Designs, Codes and Cryptography, 2(2):107–125, 1992. (Cited on
page 2.)

[FG17] Marc Fischlin and Felix Günther. Replay attacks on zero round-trip time: The case of the
TLS 1.3 handshake candidates. In 2017 IEEE European Symposium on Security and Privacy.
IEEE, April 2017. (Cited on page 3.)

[FGMP15] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Paterson. Data is a
stream: Security of stream-based channels. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 545–564, Santa Barbara, CA, USA, August 16–20, 2015. Springer,
Heidelberg, Germany. (Cited on pages 2, 7, 14, 17, and 29.)

[Fou15] Cédric Fournet. Re: [TLS] [tls13-spec] resetting the sequence number to zero
for each record key. (#379). https://mailarchive.ietf.org/arch/msg/tls/
extoO9ETJLnEm3MRDTO23x70DFM, December 2015. (Cited on pages 3 and 23.)

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984. (Cited on pages 1 and 8.)

[Gün90] Christoph G. Günther. An identity-based key-exchange protocol. In Jean-Jacques Quisquater
and Joos Vandewalle, editors, Advances in Cryptology – EUROCRYPT’89, volume 434 of
Lecture Notes in Computer Science, pages 29–37, Houthalen, Belgium, April 10–13, 1990.
Springer, Heidelberg, Germany. (Cited on page 2.)

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentica-
tion. RFC 2104 (Informational), February 1997. Updated by RFC 6151. (Cited on page 28.)

[KPB03] Tadayoshi Kohno, Adriana Palacio, and John Black. Building secure cryptographic trans-
forms, or how to encrypt and MAC. Cryptology ePrint Archive, Report 2003/177, 2003.
http://eprint.iacr.org/2003/177. (Cited on pages 2 and 14.)

[KS05] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301 (Proposed
Standard), December 2005. Updated by RFC 6040. (Cited on page 1.)

[KW16] Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and TLS 1.3. In 2016 IEEE European
Symposium on Security and Privacy, pages 81–96. IEEE, March 2016. (Cited on page 3.)

32

https://mailarchive.ietf.org/arch/msg/tls/extoO9ETJLnEm3MRDTO23x70DFM
https://mailarchive.ietf.org/arch/msg/tls/extoO9ETJLnEm3MRDTO23x70DFM
http://eprint.iacr.org/2003/177

[KY01] Jonathan Katz and Moti Yung. Unforgeable encryption and chosen ciphertext secure modes
of operation. In Bruce Schneier, editor, Fast Software Encryption – FSE 2000, volume 1978
of Lecture Notes in Computer Science, pages 284–299, New York, NY, USA, April 10–12,
2001. Springer, Heidelberg, Germany. (Cited on page 2.)

[LP16] A. Luykx and K. Paterson. Limits on authenticated encryption use in TLS. http://www.
isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf, 2016. (Cited on page 2.)

[miT] miTLS: A Verified Reference Implementation of TLS. http://mitls.org/. (Cited on pages 3
and 23.)

[MP17] Giorgia Azzurra Marson and Bertram Poettering. Security notions for bidirectional channels.
IACR Transactions on Symmetric Cryptology, 2017(1):405–426, 2017. (Cited on page 2.)

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does matter:
Attacks and proofs for the TLS record protocol. In Dong Hoon Lee and Xiaoyun Wang,
editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Com-
puter Science, pages 372–389, Seoul, South Korea, December 4–8, 2011. Springer, Heidelberg,
Germany. (Cited on pages 2, 7, and 14.)

[PvdM16] Kenneth G. Paterson and Thyla van der Merwe. Reactive and proactive standardisation of
TLS. In Lidong Chen, David McGrew, and Chris Mitchell, editors, SSR 2016, volume 10074
of Lecture Notes in Computer Science, pages 160–186. Springer, December 2016. (Cited on
page 4.)

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-cipher mode of
operation for efficient authenticated encryption. In ACM CCS 01: 8th Conference on Com-
puter and Communications Security, pages 196–205, Philadelphia, PA, USA, November 5–8,
2001. ACM Press. (Cited on page 14.)

[Res17] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-tls-tls13-20.
https://tools.ietf.org/html/draft-ietf-tls-tls13-20, April 2017. (Cited on pages 2, 3,
5, 7, and 28.)

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri,
editor, ACM CCS 02: 9th Conference on Computer and Communications Security, pages
98–107, Washington D.C., USA, November 18–22, 2002. ACM Press. (Cited on pages 2, 6, 14,
and 23.)

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap
problem. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume
4004 of Lecture Notes in Computer Science, pages 373–390, St. Petersburg, Russia, May 28 –
June 1, 2006. Springer, Heidelberg, Germany. (Cited on page 7.)

[Sig] Signal protocol: Advanced cryptographic ratcheting. https://whispersystems.org/blog/
advanced-ratcheting/. (Cited on page 29.)

[YL06] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC 4251 (Pro-
posed Standard), January 2006. (Cited on page 1.)

33

http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf
http://mitls.org/
https://tools.ietf.org/html/draft-ietf-tls-tls13-20
https://whispersystems.org/blog/advanced-ratcheting/
https://whispersystems.org/blog/advanced-ratcheting/

	Introduction
	Secure Cryptographic Channels
	Multi-key Channels
	Our Contributions
	Related Work

	Multi-key Channels
	Syntax Rationale

	Security Notions for Multi-key Channels
	Confidentiality
	Integrity
	Modeling Rationale
	Relations Between Multi- and Single-key Notions
	Trivial implications
	Separations
	Generic Transforms Between Stateful Encryption and Multi-key Channels

	Generic Composition

	AEAD-based Construction of a Multi-key Channel
	Security Analysis
	Comparison to the TLS 1.3 Record Protocol

	Conclusions and Future Work

