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Abstract. We derive a new formula for computing arbitrary odd-degree isogenies between
elliptic curves in Montgomery form. The formula lends itself to a simple and compact al-
gorithm that can efficiently compute any low odd-degree isogenies inside the supersingular
isogeny Diffie-Hellman (SIDH) key exchange protocol. Our implementation of this algorithm
shows that, beyond the commonly used 3-isogenies, there is a moderate degradation in rel-
ative performance of (2d + 1)-isogenies as d grows, but that larger values of d can now be
used in practical SIDH implementations.
We further show that the proposed algorithm can be used to compute both isogenies of
curves and evaluate isogenies at points, unifying the two main types of functions needed for
isogeny-based public-key cryptography. Together, these results open the door for practical
SIDH on a much wider class of curves, and allow for simplified SIDH implementations that
only need to call one general-purpose function inside the fundamental computation of the
large degree secret isogenies.
As an auxiliary contribution, we also give new explicit formulas for 3- and 4-isogenies, and
show that these give immediate speedups when substituted into pre-existing SIDH libraries.
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1 Introduction

Post-quantum key establishment. The existence of a quantum computer that is capable of
implementing Shor’s algorithm [36] at a large enough scale would have devastating consequences on
the current public-key cryptographic standards and thus on the current state of cybersecurity [32].
Subsequently, the field of post-quantum cryptography (PQC) [4] is rapidly growing as cryptogra-
phers look for public-key solutions that can resist large-scale quantum adversaries. Recently, the
USA’s National Institute of Standards and Technology (NIST) began a process to develop new
cryptographic standards and announced a call for PQC proposals with a deadline of November
30, 2017 [39].

Although the PQC community is currently examining alternatives to replace both traditional
key establishment and traditional digital signature algorithms, there is an argument for scrutinising
proposals in the former category with more haste than those in the latter. While digital signatures
only need to be quantum-secure at the moment a powerful enough quantum adversary is realised,
the realistic threat of long-term archival of sensitive data and a retroactive quantum break means
that, ideally, key establishment protocols will offer quantum resistance long before such a quantum
adversary exists [37].

Post-quantum key establishment proposals typically fall under one of three umbrellas:

(i) Code-based. Based on the McEliece cryptosystem [28] and its variants [28], modern proposals
include Bernstein, Chou and Schwabe’s McBits [5] and Misoczki et al.’s specialised MDPC-
McEliece [29,10].

(ii) Lattice-based. Proposals here began with Hoffstein, Pipher and Silverman’s standardised
NTRUEncrypt [20], and in more recent times have been based on either Regev’s learning with



errors (LWE) problem [34] or Lyubashevsky, Peikert and Regev’s ring variant (R-LWE) [27].
Peikert brought these problems to life in [33], and his protocols served as a basis for a number
of recent implementations, including Bos et al’s R-LWE key establishment software [7], Alkim
et al.’s R-LWE successor NewHope [1], and Bos et al.’s LWE key establishment software
Frodo [6].

(iii) Isogeny-based. Starting with the work of Couveignes [13] and with later work by Rostovsev
and Stolbunov [35,38], Jao and De Feo proposed and implemented supersingular isogeny
Diffie-Hellman (SIDH) key exchange [21]. In recent times a number of improvements and
optimisations of their SIDH protocol have been proposed and implemented [15,12,2,26,11].

To date there is no clear frontrunner among the post-quantum key establishment proposals.
In terms of functionality, all of the public implementations resulting from (i), (ii) and (iii) suffer
the same drawback of requiring modifications (e.g., the Fujisaka-Okamoto transformation [17]) to
achieve active security3. However, there are bandwidth versus performance trade-offs to consider
when examining the above proposals; while SIDH affords significantly smaller public keys than
its code- and lattice-based counterparts, the performance of the state-of-the-art SIDH software is
currently orders of magnitude slower than the state-of-the-art implementations mentioned in (i)
and (ii) above. The reason for this wide performance gap is that well-chosen code- and lattice-based
instantiations typically involve simple matrix/vector operations over special, and comparatively
tiny, implementation-friendly moduli that are either powers of 2 or very close to a power of 2.
On the other hand, in addition to SIDH inheriting several of the more complex operations from
traditional curve-based cryptography like scalar multiplications and pairings, it also involves a new
style of isogeny arithmetic and requires a new breed of significantly larger underlying finite fields.
Whereas classical elliptic curve cryptography affords implementers the flexibility to cherry-pick
the fastest underlying finite fields of sizes as small as 256 bits, most of the SIDH implementations
to date have required extension fields of over one thousand bits whose underlying characteristic are
of the form p = 2i3j − 1. Imposing this special form of prime restricts both the number of SIDH-
friendly fields available at a given security level and the number of field arithmetic optimisations
possible for hardcore implementers.

Our contributions. This paper presents a new algorithm for computing the fundamental oper-
ation in isogeny-based public-key cryptography, and in particular, within the SIDH protocol.

– Odd-degree Montgomery isogenies. We derive a new formula for odd-degree isogenies between
Montgomery curves – see Theorem 1. Compared to Vélu’s formulas for isogenies between
Weierstrass curves, this formula is elegant and simple, both to write down and to implement.
This formula immediately lends itself to a compact algorithm that computes arbitrary odd-
degree isogenies.

– Unifying the two isogeny operations. SIDH operations require isogeny computations to be ap-
plied to elliptic curves within the isogeny class and to the points that lie on those curves. These
two operations are typically different and require independent functions. For odd-degree iso-
genies, we show that both of these operations can be performed using the same core function
by exploiting the simple connection between 2-torsion points and the Montgomery curve co-
efficient. This streamlines SIDH code, and for isogenies of degree 5 and above, has the added
benefit of being significantly faster than performing the computations independently.

– Simplified algorithm. Together, the above two improvements culminate in a general-purpose
algorithm that can efficiently compute isogenies of any odd degree. Coupled with specialised
code for 2- and/or 4-isogenies, this allows arbitrary SIDH computations and gives rise to
new possibilities within the SIDH framework. Our implementation benchmarks show that
practitioners can lift the restriction of primes of the form p = 2i3j − 1 without paying a huge
performance penalty.

3 For (i), see [5, §6] and [23]; for (ii), see [33, §5.3], [16] and [22]; for (iii), see [19,22].



– Faster 3- and 4-isogenies. While the contributions mentioned above broaden the scope of
curves that can be considered SIDH-friendly, they do not give an immediate speedup to ex-
isting SIDH implementations because the pre-existing formulas for 3-isogenies are the special
case of Theorem 1. Nevertheless, as an auxiliary result, we give new dedicated 3- and 4-isogeny
algorithms that do give immediate speedups. When plugging these new algorithms into Mi-
crosoft’s recent v2.0 release of their SIDH library4, Alice and Bob’s key generations are both
sped up by a factor 1.18x, while their shared secret computations are both sped up by a factor
1.11x.

Although this paper is largely geared towards SIDH key exchange, we note that almost all
of the discussion applies analogously to other supersingular isogeny-based cryptographic schemes,
e.g., to the other schemes proposed by De Feo, Jao and Plût [15], and to the recent isogeny-based
signature scheme from Yoo et al. [41].

Organisation. We give the preliminaries in Section 2. We provide the new formula for odd-
degree Montgomery isogenies in Section 3 and discuss its connection to related works. We show
how the point and curve isogeny computations can be performed using the same function in
Section 4, before presenting the general-purpose odd-degree isogeny algorithm in Section 5. We
provide implementation benchmarks and conclude with some potential implications in Section 6.
The faster explicit formulas for 3- and 4-isogenies are presented in Appendix A.

Remark 1 (Even degree isogenies). Since any separable isogeny can be written as a chain of prime
degree isogenies [18, Theorem 25.1.2], our claim of treating arbitrary degree isogenies on Mont-
gomery curves follows from the coupling of Theorem 1 (which covers isogenies of any odd degree)
with the prior treatment of 2-isogenies on Montgomery curves by De Feo, Jao and Plût [15]. It
is worth noting that a technicality arises in the treatment of 2-isogenies on Montgomery curves:
there is currently no known way of computing a 2-isogeny directly from a generic 2-torsion point
without extracting a square root to transform the image curve into Montgomery form. De Feo,
Jao and Plût overcome this obstruction by making use of a special 8-torsion point lying above
the 2-torsion point in the kernel, that which is already available for use in the SIDH framework.
In broader contexts, however, the preservation of the Montgomery form under general 2-isogenies
might become problematic; in these cases even powers of 2 can be treated by the application
of 4-isogenies which do not need to compute square roots in order to preserve the Montgomery
form [15]. In Remark 4 we discuss the related work of Moody and Shumow [31] on the (twisted)
Edwards model [31]; in their case the 2-isogeny formula also requires a square root computation
to preserve the Edwards form. Although Vélu’s formulas for 2-isogenies between short Weierstrass
curves do not require square root computations, we believe it worthwhile to pose the open ques-
tion of finding efficient 2-isogenies that preserve either of the faster Montgomery and/or twisted
Edwards models (on input of a generic 2-torsion point).

2 Preliminaries

Montgomery curves. Unless stated otherwise, all elliptic curves E/K in this paper are assumed
to be written in Montgomery form [30]

E/K : by2 = x3 + ax2 + x.

Herein will be dealing with the group of K-rational points on E, denoted E(K), which is the set
of solutions (x, y) ∈ K × K to the above equation, furnished with a point at infinity, OE . This
point looks different under different projective embeddings of E. The usual embedding into P2

via x = X/Z and y = Y/Z gives OE = (0 : 1 : 0), but the proof of Theorem 1 makes use of the
alternative embedding into P(1, 2, 1) via x = X/Z and y = Y/Z2, under which OE = (1 : 0 : 0).
The inverse of a point (x, y) is (x,−y), and the number of points in E(K) is always divisible by 4.

4 See https://github.com/Microsoft/PQCrypto-SIDH

https://github.com/Microsoft/PQCrypto-SIDH


Let P = (xP , yP ) and Q = (xQ, yQ) be such that xP 6= xQ. Then the coordinates of these
points and the x-coordinates their sum P +Q and difference P −Q are related by Montgomery’s
group law identities [30, p. 261]

xP+Q(xP − xQ)2xPxQ = b(xP yQ − xQyP )2, and

xP−Q(xP − xQ)2xPxQ = b(xP yQ + xQyP )2. (1)

Montgomery multiplies these equations to produce his celebrated differential arithmetic formu-
las [30, p. 262]

xP+QxP−Q = (xPxQ − 1)2/(xP − xQ)2, and

x[2]P = (x2P − 1)2/(4xP (x2P + axP + 1)). (2)

Assuming the usual embedding of E into P2, then following [30], we use x throughout to denote
the subsequent projection of points into P1 that drops the Y -coordinate, i.e.,

x : E \ {OE} → P1, (X : Y : Z) 7→ (X : Z).

Applying this to (2) gives Montgomery’s two algorithms for differential arithmetic in P1, i.e.,

xDBL : (x(P ), a) 7→ x([2]P ), and

xADD : (x(P ),x(Q),x(P −Q)) 7→ x(P +Q). (3)

If ` is odd, then the `-th division polynomial of an elliptic curve E/K can be written as ψ`(x) ∈
K[x], and this vanishes precisely at the nontrivial `-torsion points, i.e., the points P such that
[`]P = OE . The first two nontrivial odd division polynomials on the Montgomery curve E/K : by2 =
x3 + ax2 + x are

ψ3(x) = 3x4 + 4ax3 + 6x2 − 1, (4)

ψ5(x) = 5x12 + 20ax11 + (16a2 + 62)x10 + 80ax9 − 105x8 − 360ax7

− 60(5 + 4a2)x6 − 16a(23 + 4a2)x5 − 5(25 + 32a2)x4 − 140ax3 − 50x2 + 1.

SIDH. Let p = f · nAnB ± 1 be a large prime where gcd(nA, nB) = 1 and f is a small cofactor.
SIDH [21] works in the isogeny class of supersingular elliptic curves over Fp2 , all of which have
cardinality p∓ 1 = (f ·nAnB)2. Let E be a public starting curve in this isogeny class. To generate
her public key, Alice chooses a secret subgroup GA of order nA on E and computes her public key
as E/GA. Likewise, Bob chooses a secret subgroup GB of order nB and computes his public key
as E/GB . The shared secret is then E/〈GA, GB〉, and so long as computing this from E, E/GA
and E/GB is hard, this offers an alternative instantiation of the Diffie-Hellman protocol [14]. The
key to the SIDH construction is ensuring that both parties exchange enough information to allow
the mutual computation of E/〈GA, GB〉, while still hiding their secret keys.

To achieve this, Jao and De Feo [21] propose that the public keys also contain the images of
certain public points under the isogenies defined by their secret subgroups. If φA : E → E/GA is
the secret isogeny corresponding to the subgroup GA, then Alice not only sends Bob the curve
E/GA, but also the image of φA on two points PB and QB that generate the set of subgroups
chosen by Bob, i.e., Alice’s public key is PKA = (E/GA , φA(PB) , φA(QB)). Similarly, if PA
and QA form a basis for the set of subgroups chosen by Alice, then Bob’s public key is PKB =
(E/GB , φB(PA) , φB(QA)). In this way Alice’s key generation amounts to randomly choosing two
secret integers uA, vA ∈ ZnA

, computing GA = 〈[uA]PA+[vA]QA〉, and upon receipt of Bob’s public
key, she can then compute E/〈GA, GB〉 = (E/GB)/〈[uA]φB(PA) + [vA]φB(QA)〉. Bob proceeds
analogously, and both parties compute the shared secret as the j-invariant of E/〈GA, GB〉.

In order for SIDH to be secure, nA and nB must be exponentially large so that Alice and Bob
have an exponentially large keyspace. On the other hand, in order for SIDH to be practical, the
computation of the nA- and nB-isogenies must be manageable. To achieve this, Jao and De Feo



propose that nA = `eAA and nB = `eBB for `A and `B small; in this way there are `eA−1A (`A+1) secret
cyclic subgroups of order nA for Alice to choose from, and her secret isogeny computations can
be performed as the composition of eA low-degree `A-isogenies (the analogous statement applies
to Bob). In all of the SIDH implementations to date [15,12,2,26,11], `A = 2 and `B = 3, and
Alice computes her 2eA -isogeny as a composition of 2- and/or 4-isogenies (see [15,12]), while Bob
computes his 3eB -isogeny as a composition of 3-isogenies. One consequence of this paper is to
facilitate practical `e-isogenies where ` ≥ 5.

Following [21, Figure 2], one way to compute an `e cyclic isogeny φ on the curve E0 is to start
with a point P0 of order `e, compute the point [`e−1]P0 of order `, then use Vélu’s formulas [40]
to compute the `-isogeny φ0 : E0 → E1 with ker(φ0) = 〈[`e−1]P0〉, and evaluate it at P0 to
give φ0(P0) = P1 ∈ E1. Note that pushing P0 through the `-isogeny reduces the order of its
image point, P1, by a factor of ` on E1. This process is then repeated at each new iteration by
first computing the order ` point [`e−1−i]Pi, then the `-isogeny φi : Ei → Ei+1, and finally the
computation of the new point Pi+1 = φi(Pi); this is done until i = e − 1 and we have the final
curve Ee = φe−1 ◦ · · · ◦ φ0(E0) = φ(E0).

In their extended article, De Feo, Jao and Plût [15] detailed a much faster approach towards
the computation described above. Roughly speaking, they achieve large speedups by storing in-
termediate multiples of the Pi at each step and evaluating φi at these multiples in such a way
that length of the scalar multiplication to find an order-` point on Ei+1 is reduced. They aim to
minimise the overall cost of the `e-isogeny computation by comparing the costs of point multi-
plications and isogeny computations and studying the optimisation problem in a combinatorial
context – see [15, §4.2.2].

Following [12], in order to thwart simple timing attacks [24], the fastest way to compute SIDH
operations in a constant-time fashion is to (i) perform point operations on the projective line P1

associated to Montgomery’s x-coordinate, i.e., using the map x above, and (ii) to also perform
isogeny operations projectively in P1 by ignoring the b coefficient (in the same way the Y -coordinate
is ignored in the point arithmetic). The reasoning here is that the j-invariant (i.e., the isomorphism
class) of the Montgomery curve E/K : by2 = x3 + ax2 + x is j(E) = 256(a2 − 3)3/(a2 − 4), which
is independent of b, as is the differential arithmetic arising from (3). All of the formulas and
algorithms we describe in the remainder of this paper fit into this same framework.

3 Coordinate maps for odd-degree Montgomery isogenies

At the heart of this paper is the coordinate maps in Equation (6) of Theorem 1 below. Although
we are mostly concerned with the SIDH-specific applications to come in the following sections,
we believe that the simplicity and usability of the formula may be of interest outside the realm
of SIDH, so we leave the underlying field unspecified and state the isogeny formula in full. We
follow the theorem with a discussion of how it was derived and of the related work of Moody and
Shumow [31].

Theorem 1. Let P ∈ E(K̄) be a point of order ` = 2d+1 on the Montgomery curve E/K : By2 =

x3 +Ax2 + x and write σ =
∑d
i=1(1/x[i]P − x[i]P ) and π =

∏d
i=1 x[i]P . The Montgomery curve

E′/K : B′y2 = x3 +A′x2 + x

with

A′ = (6σ +A) · π2 and B′ = B · π2 (5)

is the codomain of the normalised `-isogeny φ : E → E′ with ker(φ) = 〈P 〉, which is defined by the
coordinate maps

φ : (x, y) 7→ (φx(x), y · φ′x(x)),

where

φx(x) = x ·
d∏
i=1

(
x · x[i]P − 1

x− x[i]P

)2

. (6)



Proof. We show that (i) φ is a rational map from E to E′; (ii) φ is regular at all points and
is therefore a morphism; (iii) φ(OE) = OE′ so that φ is an isogeny; (iv) ker(φ) = 〈P 〉; (v) is
normalised.

For (i), we follow [31] and use (6) to derive A′ and B′ by first observing that φ maps the rational
point (0, 0) ∈ E to (0, 0) ∈ E′ and then writing G(x, y) = B′(y · φ′x(x))2 − (φx(x)3 + A′φ′x(x)2 +
φ′x(x)). The non-singularity of the point (0, 0) on E′ implies that G(x, y) has a simple zero at (0, 0).

Now, write u(x) =
∏d
i=1(x · x[i]P − 1) and v(x) =

∏d
i=1(x− x[i]P ) so that φx(x) = x · u(x)2/v(x)2.

It follows that

v(x)6 ·G(x, y) = (B′/B)(x3 +Ax2 + x) ·
(
v(x)3 · φ′x(x)

)2
−
(
(x · u(x)2)3 +A′(x · u(x)2)2v(x)2 + x · u(x)2v(x)4

)
,

where

v(x)3 · φ′x(x) = u(x)2 · v(x) + 2x · u(x) · [v(x)u′(x)− u(x)v′(x)]

with

u′(x) =

d∑
i=1

∏
j 6=i

xi(xxj − 1) and v′(x) =

d∑
i=1

∏
j 6=i

(x− xj). (7)

Since v(0) = (−1)dπ, which cannot be 0, it follows that the right hand side of (7) (which has
no constant term) has a simple zero when x = 0, and thus that G(x, y) must be identically zero.
Writing v(x)6G(x, y) = c1x + c2x

2 + O(x3) yields c1 = (B′π2 − Bπ4)/B and thus B′ = B · π2.
Making this substitution yields c2 = π2(Aπ2−A′−6σπ2) and hence A′ = (6σ+A) ·π2 as claimed.
By construction, we have now established that φ is a rational map from E to E′.

For (ii), φ is clearly regular at all points not in 〈P 〉. The points Q = (xQ, yQ) in 〈P 〉 of
order `, which all have yQ 6= 0, are mapped to the projective point in P2 equivalent to (v(xQ)3 ·
φx(xQ) : v(xQ)3yQ · φ′x(xQ) : v(xQ)3) ∼ (0 : 1 : 0), since v(xQ) = 0 but from (7) we have v(xQ)3 ·
φ′(xQ) = −2u(xQ)2v′(xQ) 6= 0. To show that φ is regular at OE , we project E and E′ into
P(1, 2, 1) to represent points as (X : Y : Z), where x = X/Z and y = Y/Z2. Here OE = (1 : 0 : 0),
and on substitution into (6) and (7) we see that φ(OE) = OE′ = (1 : 0 : 0), which proves (iii).
Furthermore, for (iv), the 2d points Q = (xQ, yQ) of order ` in 〈P 〉 give v(xQ) = 0, which
shows that 〈P 〉 ∈ ker(φ); conversely, if Q ∈ ker(φ), then xQ = x[i]P for some i ∈ {1, . . . , d}, so
Q ∈ {[i]P, [`− i]P} and thus Q ∈ 〈P 〉, which gives ker(φ) = 〈P 〉.

Finally, for (v), φ is normalised if the pullback of the invariant differential on E′ is equal to
the invariant differential on E. The invariant differential on E is ωE = dx/2y, while from (6)
the invariant differential on E′ is ωE′ = dφx(x)/2yφ′x(x). The result is immediate since dφx(x) =
xdφ′x(x). ut

Remark 2. Write 〈P 〉∗ = 〈P 〉 \ {OE}. An alternative way to state the coordinate maps in (6) is

φ(Q) =

xQ · ∏
T∈〈P 〉∗

xQ+T , yQ ·
∏

T∈〈P 〉∗

xT · yQ+T

yT

 , (8)

where the connection between (6) and (8) can be drawn via (1) and (2) and the symmetries
x[i]P = x[`−i]P and y[i]P = −y[`−i]P inside the order-` subgroup generated by P .

The simplicity of Equation (6), in comparison to Vélu’s formulas [40] on general Weierstrass
curves, lies in the fact that it factors neatly across the different multiples of P . This lends itself
to the simple algorithm we describe in Section 5.

We now turn to describing how the coordinate maps in (6) were derived. It should be first
remarked that, given a point of odd order, Vélu’s formulas compute coordinate maps that take
points on the general Weierstrass curve

W : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6



to the isogenous curve

W ′ : y2 + a1xy + a3y = x3 + a2x
2 + a′4x+ a′6.

Observe that only the coefficients a4 and a6 change under the isogeny, which is why the formulas
preserve short Weierstrass form in the case where a1 = a3 = a2 = 0. In our case, however, Vélu’s
formulas do not preserve the Montgomery model: we start with a1 = a3 = a6 = 0, a2 = a and
a4 = 1, and while Vélu’s formulas preserve a2 = a, they output a′6 6= 0 and a′4 6= 1. In general,
the generic transformation of such a curve into Montgomery form requires the computation of a
square root, which is why De Feo, Jao and Plût [15, Eq. (16)] describe a different transformation
that exploits the special 2-torsion point common to all Montgomery curves, as it moves through
odd-degree isogenies where its order is preserved5. They used this transformation to derive the
Montgomery 3-isogeny [15, Eq. (17)], which is the special case of ell = 3 in Theorem 1.

We followed the same recipe as De Feo, Jao and Plût [15] in the case of ` = 5 and ` = 7 to
see the pattern in (6). We applied Vélu’s formulas to a starting Montgomery curve to produce a
Weierstrass curve, then applied the transformation in [15, Eq. (16)] to transform the isogenous
curve into Montgomery form. At this point the coordinate maps still appeared to be cumbersome,
and it took us a number of attempted computer algebra simplifications to arrive at (6).

In particular, applying the above recipe will, in general, mean that the coordinate maps still
involve the Montgomery curve constant a. In the case of 3-isogenies, eliminating the curve constant
is easy, since the 3-division polynomial ψ3(x) = 3x4 +4ax3 +6x2−1 can be used to replace a with
the x-coordinate of the 3-torsion point. However, in the case of ` ≥ 5, the `-division polynomials
cannot be used to eliminate a in the same way; observe that higher powers of a appear in (4).

To eliminate a when ` = 5 and ` = 7, we made use of circular relations involving the x-only
doubling map

[2]x : xP 7→ x[2]P =
(x2P − 1)2

4xP (x2P + axP + 1)
, (9)

which is well-defined and exception-free on odd-order subgroups. For example, when P is a point
of order ` = 5, we obtain the d = 2 relations

x[2]P = [2]x(xP ) and xP = [2]x(x[2]P ),

and when P is a point of order ` = 7, we obtain the d = 3 relations

x[2]P = [2]x(xP ), x[3]P = [2]x(x[2]P ), and xP = [2]x(x[3]P ),

by exploiting that x[3]P = x−[3]P = x[4]P and xP = x−P = x[6]P . In both cases, we rearranged (9)
to make a the subject of each of the relations and took the average of the d equations to eliminate
a in such a way that the substitution was symmetric in the x-coordinates of the d points of order
`. Furthermore, in both cases, the factorisation that paved the way to (6) was the result of trying
several different lexicographical orderings of the variables and expressions to be eliminated under
the above relations.

Remark 3. We point out that having one circular chain of relations like those exploited above
does not hold in general. It always breaks down when ` is composite, and regularly breaks down
when ` is prime. For example, when ` = 17, we get two circular relations of length 4: one between
the x-coordinates xP , x[2]P , x[4]P , and x[8]P , and another between x[3]P , x[5]P , x[6]P , x[7]P . To
eliminate a in this case we could presumably write a as the 4-way average in both cases, then take
the average of those two equations. Fortunately the pattern in (6) became visible at ` = 7 before
we needed to do this.

Remark 4. To our knowledge, the work of Moody and Shumow [31] is the only prior work to
investigate arbitrary degree isogenies on non-Weierstrass models. They managed to successfully

5 The nature of this observation is what we further exploit in the next section.



derive general isogenies on both (twisted) Edwards curves [31, Theorem 3] and on Huff curves [31,
Theorem 5] without passing back and forth to Vélu’s formulas on Weierstrass models. Given the
‘uniform-variable’ formulas in [31, §4.4], we could have presumably arrived at (6) by exploiting
the birational equivalence between twisted Edwards and Montgomery curves [3, Theorem 3.2].
In particular, there is a simple relationship between the twisted Edwards y-coordinate and the
Montgomery x-coordinate, and subsequently, there are Edwards y-only analogues of Montgomery’s
x-only differential arithmetic that offer favourable trade-offs in certain ECC scenarios6. However,
our experiments seemed to suggest that these trade-offs evaporate in SIDH when the curve con-
stants are treated projectively. Nevertheless, given the similarities between the y-only isogeny
formula in [31, Theorem 4] and our Theorem 1, it could be that there are savings to be gained in
a twisted Edwards version of SIDH, or perhaps in some sort of hybrid that passes back and forth
between the two models – see [9]. We leave this investigation open, pointing out that the sorts of
trade-offs discussed in [9] can become especially favourable in SIDH, due to the large field sizes
and the nature of arithmetic in quadratic extension fields.

We conclude this section by pointing out that (in our case) it is a simple exercise to transform
Equation (6) into an analogue that, rather than writing the isogeny map in terms of the coordinates
of the torsion points á la Vélu, instead writes it in terms of the coefficients of the polynomial
defining the kernel subgroup á la Kohel [25, §2.4]. While a Kohel-style formulation of our formula
is arguably more natural from a mathematical perspective, the way it is factored and written in (6)
is more natural from an algorithmic perspective.

4 Computing the isogenous curve using the 2-torsion

Let φ : E 7→ E′ be the isogeny of Montgomery curves in Theorem 1 and let Q ∈ E be any point
where Q 6∈ ker(φ). All supersingular isogeny-based cryptosystems, and in particular all known im-
plementations of SIDH [15,12,2,26,11], require separate functions for computing isogenous curves,
i.e., iso curve : E 7→ φ(E), and for evaluating the isogeny at points, i.e., iso point : Q 7→ φ(Q).
In this brief section we show that these two functions can be unified in the computation of odd-
degree isogenies. The idea is to exploit the correspondence between the 2-torsion points and
the curve-twist isomorphism class, and to replace calls to the iso curve function with calls to
iso point on the input of 2-torsion points. Pushing 2-torsion points through an odd-degree isogeny
preserves their order on the image curve, and so the correspondence between 2-torsion points and
the isogenous curves they lie on remains an invariant throughout the SIDH algorithm.

On the Montgomery curve E/K : y2 = x3 +ax2 +x, the three affine points of order 2 in E(K̄)
are

P0 = (0, 0), Pα = (α, 0), and P1/α = (1/α, 0),

where a = −(α2 + 1)/α. Note that the full 2-torsion is K-rational if x2 + ax + 1 is reducible in
K[x], i.e., if α ∈ K; this is typically the case in SIDH and is therefore assumed in this section.

Under the x map from Section 2, the 2-torsion points are then

x(P0) = (0 : 1), x(Pα) = (Xα : Zα), and x(P1/α) = (Zα : Xα),

and in P1 we now have

(a : 1) = (X2
α + Z2

α : −XαZα). (10)

Observe that for the isogeny φ described in Theorem 1, the point P0 = (0, 0) ∈ E is mapped to
the point φ(P0) = (0, 0) ∈ E′. Since E′ is a Montgomery curve and 2-torsion points preserve their
order under odd isogenies, it must be that

x(φ(P0)) = (0 : 1), x(φ(Pα)) = (X ′α : Z ′α), and x(φ(P1/α)) = (Z ′α : X ′α),

6 See http://hyperelliptic.org/EFD/g1p/auto-edwards-yz.html
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so that the relation in (10) between 2-torsion coordinates the curve coefficient holds on the new
curve.

Rather than thinking of the Montgomery curve as being represented by the coefficient (a : 1) =
(A : C), we can (without loss of generality) think of it as being represented by the 2-torsion
point (Xα : Zα). A close inspection of Theorem 1 reveals that, for values of d greater than 3,
computing the isogenous curve via (5) becomes increasingly more expensive than passing a 2-
torsion point through (6). In these cases a function for computing (5) is no longer needed. If,
during the current iteration, the curve constant (A : C) is needed for point operations (e.g., the
multiplication-by-` map), then we can recover A using (10) at a cost7 of 2S + 5a. In fact, the
general multiplication-by-` routine is the Montgomery ladder [30] that calls xDBL as a subroutine,
and (in SIDH) xDBL makes use of the constant (a− 2 : 4) = ((A− 2C)/4 : C). Parsing directly to
this format is slightly faster than parsing to (A : C), since from (10) we have ((A− 2C)/4 : C) =
((Xα + Zα)2 : (Xα − Zα)2 − (Xα + Zα)2), which can be computed in 2S + 3a.

Although parsing from α to (a : 1) = (1 + α2 : − α)) is trivial, parsing in the other direction
requires a square root computation in general. We never have to do this, however, since (i) during
key generation, the starting curve is fixed and so the corresponding 2-torsion point(s) can be
thought of as system parameters8, and (ii) for the subsequent shared secret computations, we
can happily replace a with α as the description of the supersingular curve in the (compressed or
uncompressed) public key9. In the next section we use the notation a from alpha to represent the
function that performs this cheap parsing.

Remark 5. If P and Q 6= ±P are two points on the Montgomery curve E/K : by2 = x3 + ax2 +x,
then the curve constant a relates to their x-coordinates and the x-coordinate of their difference
via [12, Remark 4]

a =
(1− xPxQ − xPxQ−P − xQxQ−P )2

4xPxQxQ−P
− xP − xQ − xQ−P . (11)

Thus, if we ever have 3 points on an isogenous curve whose coefficient has not been computed,
we can use the projective version of the above equation to recover (a : 1) = (A : C) from x(P ),
x(Q) and x(Q−P ). Since the cost of computing the isogenous curve using the 2-torsion technique
grows as the degree of the isogeny grows, while the cost of computing the isogenous curve via (11)
is fixed, there will obviously be a crossover point when taking advantage of three available points
becomes faster. Based on the cost of computing one `-isogeny presented in the next section, and
on the projective version of (11) costing 8M + 5S + 11a, it will be faster to use the above after
d ≥ 2. Following [12], we note that there is always 3 such x-coordinates that can be exploited
during key generation, namely the 3 x-coordinates whose image under the isogeny forms (part of)
the public key. During the shared secret computation, however, there will not always be 3 points
available at each stage. Thus, we recommend that unless d is very large (so that the performance
benefits of using (11) over an additional isogeny evaluation will be visible), it is most simple to
stick to the 2-torsion approach in this section through the SIDH algorithm.

5 A general-purpose algorithm for arbitrary odd-degree isogenies

We now turn to deriving an optimised algorithm for arbitrary odd-degree isogeny evaluation based
on Theorem 1. Since we are working exclusively within the P1 framework under the map x, the

7 As usual, we use M, S, a and I to denote the costs of multiplications, squarings, additions/subtractions
and inversions in the field Fp2 .

8 All public implementations of SIDH currently take the starting curve to be E/Fp2 : y2 = x3 + x, where
Fp2 = Fp(i) with i2 + 1. In these scenarios the starting 2-torsion point can be defined by setting α = i.

9 We note that the uncompressed keys in the SIDH library associated with [12] do not send the curve
constant a explicitly, so would require modest modifications to take advantage of this 2-torsion tech-
nique. The compressed key format from the subsequent work in [11] does send a in the public key so
has immediately compatibility.



only equation we need to recall is (6), which we rewrite as

φx(x) = x ·

(
d∏
i=1

(
x · x[i]P − 1

x− x[i]P

))2

.

We begin working this into an algorithm by first projectivising into P1, writing (Xi : Zi) =
(x[i]P : 1) for i = 1 . . . d, (X : Z) = (x : 1) for the indeterminate coordinate where the isogeny
is evaluated, and (X ′ : Z ′) = x(φ(x, y)) for the result. Then

X ′ = X ·
( d∏
i=1

(X ·Xi − Zi · Z)
)2
, and

Z ′ = Z ·
( d∏
i=1

(X · Zi −Xi · Z)
)2

At first glance it appears that computing the pairs (X ·Xi−Zi ·Z) and (X ·Zi−Xi ·Z) will cost
4M + 2a each, but following Montgomery [30], we can achieve this in 2M + 6a by rewriting the
above as

X ′ = X ·
( d∏
i=1

[
(X − Z)(Xi + Zi) + (X + Z)(Xi − Zi)

])2
, and

Z ′ = Z ·
( d∏
i=1

[
(X − Z)(Xi + Zi)− (X + Z)(Xi − Zi)

])2
. (12)

Observe that when d > 1 the values of X−Z and X+Z can be reused across the d expressions in
both of the products above. Furthermore, the isogeny φ is usually going to be evaluated at multiple
points of the form (X : Z), and this will always be the case if the 2-torsion technique from the
previous section is employed. Thus, suppose the isogeny is to be evaluated at the n elements
(X1 : Z1), . . . , (Xn : Zn), where we use boldface to distinguish these points and the coordinates
of the i-th multiples of the kernel generator P . We note at once that the values of (Xi + Zi) and
(Xi − Zi) can now also be reused across the n elements evaluated by the isogeny. This mutual
recycling across both sets of points suggests a simple subroutine that merely computes the sum
and difference of these pairwise products as in (12): we dub this routine CrissCross and present
it in Algorithm 1 for completeness.

Algorithm 1: CrissCross: K4 → K2.

Input: (α, β, γ, δ) ∈ K4

Output: (αδ + βγ, αδ − βγ) ∈ K2

Cost: 2M + 2a.
1 (t1, t2)← (α · δ, β · γ) // 2M
2 return (t1 + t2, t1 − t2) // 2a

Now, on input of the kernel generator x(P ) = (X1 : Z1), the first step of the main algorithm
will be to generate the d − 1 additional elements x([i]P ) = (Xi : Zi). This subroutine is called
KernelPoints and we present it in Algorithm 2. Since it must start with a call to xDBL10, we also
need to input the modified curve constant (Â : Ĉ) = (a− 2 : 4).

10 For many values of d (see Remark 3), all of the kernel elements can be generated by repeated calls to
xDBL, which is slightly cheaper than xADD in our context. However, for the sake of general applicability,
we make repeated calls to xADD after the initial xDBL in KernelPoints.



Algorithm 2: KernelPoints: P1 × P1 → (P1)d.

Input: (X1 : Z1) = x(P ) ∈ P1 and (Â : Ĉ) = (a− 2 : 4) ∈ P1

Output: ((X1 : Z1), . . . , (Xd : Zd)) = (x(P ),x([2]P ), . . . ,x([d]P )) ∈ (P1)d

Cost: 4(d− 1)M + 2(d− 1)S + 2(3d− 4)a.
1 if d ≥ 2 then (X2 : Z2)← xDBL((X1 : Z1), a) // 4M+2S+4a
2 for i = 3 to d do
3 (Xi : Zi)← xADD((Xi−1 : Zi−1), (X1 : Z1), (Xi−2 : Zi−2)) // 4M+2S+6a
4 end
5 return ((X1 : Z1), . . . , (Xd : Zd))

Looking back at (12), we can see that once the (Xi : Zi) have been computed for i = 1, . . . , d,
they can immediately be overwritten by their sum and difference pairs through assigning (X̂i, Ẑi)←
(Xi + Zi, Xi − Zi) in preparation for CrissCross. Based on (12), we now present an algorithm
for evaluating a single isogeny that takes as input the modified set of kernel point coordinates:
OddIsogeny is given in Algorithm 3.

Algorithm 3: OddIsogeny: (K2)d × P1 → P1.

Input: ((X̂1, Ẑ1), . . . , (X̂d, Ẑd)) and (X : Z) ∈ P1

Output: (X ′ : Z′) ∈ P1 corresponding to x(φ(Q)) where x(Q) = (X : Z)
Cost: 4dM + 2S + 2(d+ 1)a.

1 (X̂, Ẑ)← (X + Z,X − Z) // 2a

2 (X ′, Z′)← CrissCross(X̂1, Ẑ1, X̂, Ẑ) // Algorithm 1

3 for i = 2 to d do

4 (t0, t1)← CrissCross(X̂i, Ẑi, X̂, Ẑ) // Algorithm 1

5 (X ′, Z′)← (t0 ·X ′, t1 · Z′) // 2M

6 end
7 (X ′, Z′)← (X · (X ′)2, Z · (Z′)2) // 2M+2S
8 return (X ′ : Z′)

We are now in a position to present Algorithm 4, dubbed SimultaneousOddIsogeny, which
is the main algorithm. It takes as input x(P ) = (X1 : Z1) ∈ P1 and (Â : Ĉ) = (a − 2 : 4),
which correspond to a point P of order ` on E/K : by2 = x3 + ax2 + x, as well as an n-tuple
(x(Q1), . . .x(Qn)) = ((X1 : Z1), . . . , (Xn : Zn)) ∈ (P1)n where the Qi ∈ E are such that Q 6∈ 〈P 〉.
The output is an n-tuple corresponding to (x(φ(Q1)), . . .x(φ(Qn))) ∈ (P1)n, where ker(φ) = 〈P 〉.

Algorithm 4: SimultaneousOddIsogeny: P1 × P1 × (P1)n → (P1)n.

Input: (X1 : Z1) ∈ P1, (Â : Ĉ) ∈ P1, and ((X1 : Z1), . . . , (Xn : Zn)) ∈ (P1)n

Output: ((X′1 : Z′1), . . . , (X′n : Z′n)) ∈ (P1)n

Cost: 4(d(n+ 1)− 1)M + 2(n+ d− 1)S + 2((d+ 1)n+ (3d− 4))a.
1 ((X1 : Z1), . . . , (Xd : Zd))← KernelPoints((X1 : Z1), (Â, Ĉ)) // Algorithm 2

2 ((X̂1, Ẑ1), . . . , (X̂d, Ẑd))← ((X1 + Z1, X1 − Z1), . . . , (Xd + Zd, Xd − Zd)) // 2da
3 for j = 1 to n do

4 (X′j : Z′j)← OddIsogeny((X̂1, Ẑ1), . . . , (X̂d, Ẑd)), (Xj : Zj)) // Algorithm 3

5 end
6 return ((X′1 : Z′1), . . . , (X′n : Z′n))



Simplified odd-degree isogenies in SIDH. Together with an algorithm for computing the
multiplication-by-` map, Algorithm 4 is essentially all that is needed to compute an odd `e-degree
isogeny in the context of SIDH. Regardless of which high-level strategy is used to compute the
`e-isogeny (i.e., whether it be the multiplication-based approach [21, Figure 2] or the optimal
strategy [15, §4.2.2]), Algorithm 4 will be called e times to compute e isogenies of degree `. In
Algorithm 5 we show how SimultaneousOddIsogeny is to be used in conjunction with the simple
conversion function a from alpha from Section 4 and the Montgomery ladder for computing the
multiplication-by-` map. We assume the use of the function LADDER as discussed in Section 4,
where the Montgomery coefficient a is passed in projectively as (Â : Ĉ) = (a− 2: 4); i.e.,

LADDER : P1 × P1 × Z→ P1, (x(P ), (Â : Ĉ), `z) 7→ x([`z]P ). (13)

For ease of exposition, we adopt the multiplication-based approach [21, Figure 2] for computing
the degree `e-isogeny, but note that the way in which the proposed algorithms are called in
Lines 4–6 of Algorithm 5 is analogous if the optimal strategy mentioned above is used; the only
difference worth mentioning is that the length of the list of the (X′i : Z′i) passed in and out of
SimultaneousOddIsogeny on Line 6 can change when it is called within the code executing the
optimal strategy.

Algorithm 5: SIDH Isogeny: P1 × Z2 × P1 × (P1)k → P1 × (P1)k.

Input: x(P ) = (X1 : Z1) ∈ P1, and (`, e) ∈ Z2, where |〈P 〉| = `e on E.
(α : 1) ∈ P1, where ord((α, 0)) = 2 on E and α 6= 0.
(x(Q1), . . .x(Qk)) = ((X1 : Z1), . . . , (Xk : Zk)) ∈ (P1)k, where Qi ∈ E and Q 6∈ 〈P 〉.

Output: (Xα′ : Zα′) ∈ P1, where ord((Xα′/Zα′ , 0)) = 2 on φ(E′) for ker(φ) = 〈P 〉 and Xα′ 6= 0.
(x(φ(Q1)), . . .x(φ(Qk))) = ((X′1 : Z′1), . . . , (X′k : Z′k)) ∈ (P1)k

1 ((Xα′ : Zα′), (X
′
1 : Z′1), . . . , (X′k : Z′k))← ((α : 1), (X1 : Z1), . . . , (Xk : Zk)) // Initialise

2 (XR : ZR)← (X1 : Z1) // Initialise

3 for z = e− 1 downto 0 do

4 (Â : Ĉ)← a from alpha((Xα′ : Zα′)) // See Section 4

5 (XS : ZS)← LADDER((XR : ZR), (Â : Ĉ), `z) // See Equation (13)
6 ((XR : ZR), (Xα′ : Zα′), (X

′
1 : Z′1), . . . , (X′k : Z′k))← // Algorithm 4

SimultaneousOddIsogeny((XS : ZS), (Â : Ĉ), ((XR : ZR), (Xα′ : Zα′), (X
′
1 : Z′1), . . . , (X′k : Z′k)))

7 end
8 return (Xα′ : Zα′), ((X

′
1 : Z′1), . . . , (X′n : Z′n))

In the notation of Section 2, let E/Fp2 : y2 = x(x−α)(x− 1/α) be the public starting curve in
the SIDH protocol. For public key generation, Alice would compute her secret kernel generator as
RA = [uA]PA + [vA]QA of order `eAA (see [15, Algorithm 1]), and with Bob’s public basis PB and
QB , she can then compute her public key by calling Algorithm 5 as(
(Xα,A : Zα,A), ((x(φA(PB)),x(φA(QB)),x(φA(QB − PB)))

)
= SIDH Isogeny

(
x(RA), (`A, eA), (α : 1), (x(PB),x(QB),x(QB − PB))

)
,

where ker(φA) = 〈RA〉, and where x(QB−PB) is included as an input to avoid sign ambiguities in
the subsequent shared secret computations – see [12]. Alice would normalise each of these elements,
i.e., convert them all from P1(Fp2) into Fp2 via a simultaneous inversion [30], then send them to
Bob. Writing αA = Xα,A/Zα,A, Bob can then compute x(SB) = x ([uB ]φA(PB) + [vB ]φA(QB)),
and compute the shared secret by calling Algorithm 5 as

(Xα,AB : Zα,AB) = SIDH Isogeny
(
x(SB), (`B , eB), (αA : 1)

)
,



before computing the j-invariant of the Montgomery curve whose coefficient is the output of the
function a from alpha((Xα,AB : Zα,AB)). Note that, during the shared secret computation, the
(P1)k input to SIDH Isogeny is empty, i.e., has k = 0.

We note that the operation counts presented in Algorithms 2-4 do not apply to the special case
of d = 1. Although Algorithm 4 still performs the 3-isogeny computations in the same number of
operations as the dedicated formulas in Appendix A, the claimed operation counts only hold if
KernelPoints is called, which is not the case for 3-isogenies (where no additional kernel elements
are required).

We conclude this section with a remark on a more compact version of Algorithm 4.

Remark 6 (A low-storage version). The description of the general odd-degree isogeny function
in Algorithm 4 aims to minimise the total number of field operations needed for an `-isogeny
computation and its evaluation at an arbitrary number of points. However, the recycling of the
additions computed in (12) requires us to generate the entire list of d kernel elements before
entering the loop that repeatedly calls Algorithm 3. If d is large, the space required to store d
elements in Fp2 might become infeasible, especially given the size of the fields used in real-world
SIDH implementations. Moreover, this recycling only saves Fp2 additions, and our benchmarking
of the SIDH v2.0 software accompanying [12] in the following section revealed that their software
has 1M ≈ 20a, which means the above recycling will only have a minor benefit on the overall
performance. Thus, a more streamlined version of Algorithm 4 would simply compute one of the
elements x([i]P ) = (Xi : Zi) at a time and absorb its contribution to (12) immediately before
replacing calling xADD to replace it by x([i + 1]P ) = (Xi+1 : Zi+1), and so on, with no need for
Algorithm 2. Since the required storage would then remain fixed as d increases, this would give
a much more compact algorithm for larger d, both in its description and in terms of the storage
required to implement it.

6 Implementation results and implications

In this section we provide benchmarks for SimultaneousOddIsogeny, i.e., the general odd-degree
isogeny function in Algorithm 4. We stress that we are not aiming to outperform the relative
performance of the 3- and 4-isogenies, by pointing out that the relative performance of odd `-
isogenies decreases as ` grows larger. The point of this paper is to broaden the class of curves
for which SIDH is practical in all of the relevant aspects, i.e., memory requirements, code size,
simplicity of the implementation, as well as efficiency. Nevertheless, there are scenarios where
larger odd-degree isogenies could be preferred over the low degree ones, as we will discuss later in
this section.

Table 1 presents benchmarks for the evaluation of isogenies of degree ` ∈ {3, 5, . . . , 15} at
n ∈ {1, 2, 5, 8} input points. These timings were obtained by wrapping Algorithm 4 around the
SIDH v2.0 software11 accompanying [12,11]; this software uses the supersingular isogeny class
containing the curve E/Fp2 : y2 = x3 + x where p = 2372 · 3239 − 1, where all curves in the class
have cardinality (2372 · 3239)2. We note that this curve does not have Fp2-rational points of order `
for odd ` > 3, but this is immaterial; the timings for Algorithm 4 would be exactly the same when
working with a curve with rational `-torsion over the same field. We benchmarked in this way in
order to get a fair comparison of the cost of different values of ` and n when the field arithmetic
stays fixed at a size that is relevant to real-world SIDH implementations. We discuss the influence
of needing rational `-torsion on the field arithmetic later in this section. The reason we chose to
benchmark n ∈ {1, 2, 5, 8} is based on the average number of isogeny evaluations for both Alice
and Bob at each step of the SIDH v2.0 software that uses the optimal tree traversal (see Section 2
or [15, §4.2.2]) in the main loop: Alice and Bob use roughly 7.15 and 7.70 evaluations of every 4-
and 3-isogeny (respectively) during key generation, and this would include one more evaluation if
our 2-torsion technique from Section 4 was employed (hence n = 8), and they use 4.15 and 4.70
respective isogeny evaluations per step during the shared secret phase (hence n = 5). We also

11 See https://github.com/Microsoft/PQCrypto-SIDH
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include n = 1 to benchmark the cost of a single isogeny evaluation and n = 2 assuming a single
isogeny evaluation is included alongside the 2-torsion technique from Section 4; this is to view
the relative performance of the simple SIDH loop in Algorithm 5 that computes evaluates each
isogeny at one point during the main loop.

d ` n = 1 n = 2 n = 5 n = 8

1 3 9,780 19,420 48,270 76,930

2 5 26,450 43,420 93,400 143,670

3 7 43,310 67,490 139,280 219,270

4 9 60,170 91,390 184,480 277,700

5 11 77,000 115,490 230,070 344,220

6 13 93,710 139,370 275,170 411,800

7 15 110,510 163,480 320,460 477,980

Table 1. Cycle counts for SimultaneousOddIsogeny for different values of ` and n. Timing benchmarks
were taken on an Intel Core i7-6500U Skylake processor running Ubuntu 14.04.5 LTS with TurboBoost
disabled and all cores but one are switched-off. To obtain the executables, we used GNU-gcc version 4.8.4
with the -O2 flag set and GNU assembler version 2.24.

Table 1 shows a natural increase in latency as ` grows. A single 5-isogeny evaluation costs
around 2.71x that of a single 3-isogeny, and the cost of a 15-isogeny evaluation is around 11.40x
that of a 3-isogeny. Due to the multiple isogeny evaluations sharing computations performed on the
kernel elements (see Section 5), naturally these ratios become slightly more favourable for larger `
as n increases: the evaluation of a 5-isogeny (resp. 15-isogeny) at n = 8 points costs around 2.03x
(resp. 7.18x) the same number of 3-isogeny evaluations. These numbers are depicted graphically
on the left of Figure 1, and the approximate relative slowdown of using `-isogenies within the
SIDH framework is depicted on the right. An analogous version of Figure 1 for ` up to ` = 301 is
given in Figure 2. In both figures the cycle counts have been divided by n in order to give a cost
per isogeny evaluation.

Fig. 1. Average cycle counts for SimultaneousOddIsogeny for different values of ` and n. Timing bench-
marks were taken on an Intel Core i7-6500U Skylake processor running Ubuntu 14.04.5 LTS with Turbo-
Boost disabled and all cores but one are switched-off. To obtain the executables, we used GNU-gcc version
4.8.4 with the -O2 flag set and GNU assembler version 2.24. Raw cycle counts per isogeny evaluation are
given on the left, while on the right they are scaled by the factor log(3)/(log(`) ·C3), where C3 is the cost
of a 3-isogeny, in order to approximate the relative factor slowdown within the SIDH framework.

The right graphs in Figures 1 and 2 aim to depict the relative factor slowdowns of comput-
ing an `e isogeny versus a 3e3 isogeny assuming that `e ≈ 3e3 . However, we must note that a
more accurate depiction of the relative slowdown in the SIDH framework would incorporate the



Fig. 2. Average cycle counts for SimultaneousOddIsogeny for different values of ` and n. Timing bench-
marks were taken on an Intel Core i7-6500U Skylake processor running Ubuntu 14.04.5 LTS with Turbo-
Boost disabled and all cores but one are switched-off. To obtain the executables, we used GNU-gcc version
4.8.4 with the -O2 flag set and GNU assembler version 2.24. Raw cycle counts per isogeny evaluation are
given on the left, while on the right they are scaled by the factor log(3)/(log(`) ·C3), where C3 is the cost
of a 3-isogeny, in order to approximate the relative factor slowdown within the SIDH framework.

relative costs of the multiplication-by-` functions, since these are called almost as frequently as
the `-isogeny functions in an optimised implementation (and significantly more times than the
`-isogeny functions in the simple SIDH loop – see [12, §6]). To that end, we point out that the
relative slowdown of using `-isogenies would be much less than these graphs depict (as ` increases),
under the assumption that the Montgomery ladder is called to compute x(P ) 7→ x([`]P ). Table 2
and Figure 3 exhibit the obvious trend in LADDER’s performance as ` increases: unlike the lin-
ear increase in `-isogeny latencies, the performance of ladder is asymptotically logarithmic, being
(roughly) fixed by the value dlog2(`)e. In any case, we make the obvious comment that a practi-
cally meaningful representation of the performance trade-offs for different values of ` can only be
obtained by benchmarking similarly optimised implementations in all cases. As we discuss below,
such implementations might call for vastly different styles of field arithmetic, so we leave this open
for future work.

operation ladder optimized

[2](X : Z) - 9,608

[3](X : Z) 28,954 18,622

[5](X : Z) 48,603 27,346

[7](X : Z) 49,086 36,110

[9](X : Z) 67,610 -

[11](X : Z) 68,429 -

[13](X : Z) 68,125 -

[15](X : Z) 68,848 -

[17](X : Z) 86,717 -

Table 2. Cycle counts for [`](X : Z) on Montgomery Ladder with projective inputs: (X : Z) and
(A24 : C24). Timing benchmarks were taken on an Intel Core i7-6500U Skylake processor running Ubuntu
14.04.5 LTS with TurboBoost disabled and all cores but one are switched-off. To obtain the executables,
we used GNU-gcc version 4.8.4 with the -O2 flag set and GNU assembler version 2.24. For the fixed odd
low degrees of ` ∈ {3, 5, 7}, we also present the cycle counts of our own optimised, dedicated algorithms
for computing the multiplication-by-` maps, since this might be of interest for future implementers; see
Appendix A for justification.



Fig. 3. Cycle counts chart for [`](X : Z) using Montgomery ladder with projective inputs: (X : Z) and
(A24 : C24). Timing benchmarks were taken on an Intel Core i7-6500U Skylake processor running Ubuntu
14.04.5 LTS with TurboBoost disabled and all cores but one are switched-off. To obtain the executables,
we used GNU-gcc version 4.8.4 with the -O2 flag set and GNU assembler version 2.24.

Implications. At a first glance, Table 1 and Figures 1 and 2 seem to suggest that, unless faster
isogenies of degree ` ≥ 5 are found, such higher degree isogenies will not find any meaningful real-
world application. However, the ability to compute arbitrary degree isogenies in SIDH already
opens up some interesting possibilities as we now discuss.

Firstly, recent work by Bos and Friedberger [8] studied SIDH-friendly primes of the form
p = 2irj − 1, where r can be any small prime. They investigated a number of different arithmetic
techniques, and interestingly, when implementing arithmetic over the field with p = 23723329 − 1
above, found that arithmetic over a comparably sized field p = 23911988 − 1 was actually signifi-
cantly faster [8, Table 3]. The more severe slowdown of 19-isogenies versus 3-isogenies means that,
overall, the performance of 3-isogenies will still be preferred. However, in real-world applications
like the transport layer security (TLS) protocol, it is typically one side of the protocol (i.e., the
server, who is processing many SIDH instances) where performance is the bottleneck, while the
performance of a single SIDH instance on the client side is ultimately a non-issue. In such a situ-
ation, we could envision affording the server the luxury of the faster prime p = 23911988 − 1 and
the faster 4-isogenies in order to get the best of both worlds, while the client could put up with
the 19-isogenies and not be noticibly hampered by the increased latency on their side.

Another possibility opened up by Algorithm 4 is the abandonment of even-degree isogenies
on either side of the protocol, in the name of implementation simplicity. For example, SIDH
implementations using primes of the form12 p = 4·3i5j−1 could be implemented using Algorithm 4
for isogenous curve and point operations on both sides. This would make for a much simpler and
more compact code-base, and could be an attractive option if the relatively modest slowdown from
4- to 5-isogenies (and the possible slowdown of the new shaped primes) is justifiable.

Finally, we leave it as an option question to see whether primes not of the form p = f ·2i3j −1
can be found where arithmetic is fast enough to justify isogenies of ` ≥ 5. It could be even be
possible to find fast primes where p± 1 is smooth but contains many small, unique prime factors,
and where isogeny walks on either or both sides of the protocol involve isogenies of different
degrees. Of course, the security implications of such a choice are also left as open.
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a fair comparison of the general `-isogeny algorithm and more optimised formulas for the currently
used 3- and 4-isogenies. A complete list of the improved operations are presented in Table 3 and
the cycle counts are compared in Table 4; all of the associated explicit formulas are presented
thereafter. We plugged these formulas into the SIDH v2.0 library from [12] and Table 5 gives the
overall improvements of each stage of the SIDH key exchange protocol.

Table 3. Operation counts comparison for common elliptic curve and isogeny functions within existing
SIDH implementations.

xTPL 3 iso point 3 iso curve 4 iso point 4 iso curve

CLN2016 8M+4S+8a 6M+2S+2a 3M+3S+8a 9M+1S+6a 5S+7a

This work 9M+2S+17a 4M+2S+4a 2M+3S+14a 6M+2S+6a 4S+4a

7M+5S+11a

Table 4. Cycle counts comparison for common elliptic curve and isogeny functions within existing SIDH
implementations. Timing benchmarks were taken on an Intel Core i7-6500U Skylake processor running
Ubuntu 14.04.5 LTS with TurboBoost disabled and all cores but one are switched-off. To obtain the
executables, we used GNU-gcc version 4.8.4 with the -O2 flag set and GNU assembler version 2.24.

operation CLN2016 this work speed-up

xTPL 19,226 18,622 1.032x

3 iso curve 9,264 8,202 1.129x

3 iso point 12,901 9,581 1.346x

4 iso curve 6,276 5,095 1.232x

4 iso point 17,432 13,545 1.287x

Table 5. Cycle counts for Ephemeral isogeny-based key exchange. Timing benchmarks were taken on
an Intel Core i7-6500U Skylake processor running Ubuntu 14.04.5 LTS with TurboBoost disabled and all
cores but one are switched-off. To obtain the executables, we used GNU-gcc version 4.8.4 with the -O2

flag set and GNU assembler version 2.24.

operation CLN2016 this work speed-up

Alice’s key generation 39,043,000 33,266,000 1.174x

Bob’s key generation 44,289,000 37,430,000 1.183x

Alice’s shared key computation 36,716,000 33,240,000 1.105x

Bob’s shared key computation 42,576,000 38,046,000 1.120x

The 3 iso curve operation

(A′24 : C ′24) =
(
(X3 + Z3)(Z3 − 3X3)3 : 16X3Z

3
3

)



takes 2M+3S+14a and produces the common subexpressions K1 = X3 − Z3 and K2 = X3 + Z3.
The justification of the claimed operation count is as follows:

K1 = X3 − Z3, R1 = K2
1 , K2 = X3 + Z3, R2 = K2

2 , R3 = R2 +R1, R4 = K1 +K2, R4 = R2
4,

R4 = R4 − R3, R3 = R4 + R2, R4 = R4 + R1, R5 = R1 + R4, R5 = 2R5, R5 = R5 + R2,
A′24 = R5 ·R3, R5 = R2 +R3, R5 = 2R5, R5 = R5 +R1, R5 = R5 ·R4, C′24 = R5 −A′24.

The 4 iso curve operation

(A′24 : C ′24) =
(
X4

4 − Z4
4 : Z4

4

)
takes 4S+4a and produces the common subexpressions K1 = 4Z2

4 , K2 = X4 − Z4, and K3 =
X4 + Z4. The justification of the claimed operation count is as follows:

K1 = Z2
4 , R1 = X2

4 , R1 = R2
1, C′24 = K2

1 , A′24 = R1 − C′24, K1 = 4K1, K2 = X4 − Z4,
K3 = X4 + Z4.

The 4 iso point operation

(X ′ : Z ′) =
(
X
(
2X4Z4Z − (X2

4 + Z2
4 )X

)
(X4X − Z4Z)2 :

Z
(
2X4Z4X − (X2

4 + Z2
4 )Z

)
(Z4X −X4Z)2

)
takes 6M+2S+6a and benefits from the common subexpressions K1 = 4Z2

4 , K2 = X4 − Z4, and
K3 = X4 + Z4 generated by 4 iso curve. The justification of the claimed operation count is as
follows:

R2 = X + Z, R3 = R2 · K2, R4 = X − Z, R1 = R4 · K3, R2 = R4 · R2, R4 = R1 + R3,
R4 = R2

4, R3 = R1−R3, R3 = R2
3, R2 = K1 ·R2, R1 = R4 +R2, R2 = R3−R2, X ′ = R4 ·R1,

Z′ = R3 ·R2.

The xTPL operation

[3](X : Z) =
(
X(16A24XZ

3 − C24(X − 3Z)(X + Z)3)2 :

Z(16A24X
3Z + C24(3X − Z)(X + Z)3)2

)
takes 9M + 2S + 16a assuming that K1 = A24 + C24 is cached. The justification of the claimed
operation count is as follows:

R1 = X − Z, R2 = R2
1, R3 = X + Z, R4 = R2

3, R5 = R4 +R2, R6 = R2 −R4, R7 = R4 · C1,
R8 = R2 · A24, R4 = R8 + R7, R2 = R7 − R8, R4 = R4 · R6, R5 = R2 · R5, R2 = R2 · R6,
R2 = 2R2, R6 = R4 + R5, R5 = R4 − R5, R4 = R6 + R2, R6 = R6 − R2, R4 = R4 · R6,
R6 = R2 · R5, R6 = 2R6, R5 = R4 − R6, R4 = R4 + R6, R2 = R4 · R3, R1 = R1 · R5,
Xout = R2 +R1, Zout = R2 −R1.

Alternatively, the xTPL operation takes 7M + 5S + 10a assuming that K1 = A24 +C24 is cached.
The justification of the claimed operation count is as follows:

R1 = X − Z, R3 = R2
1, R2 = X + Z, R4 = R2

2, R5 = R2 + R1, R1 = R2 − R1, R2 = R2
5,

R2 = R2 − R4, R2 = R2 − R3, R6 = R4 ·K1, R4 = R6 · R4, R7 = R3 · A24, R3 = R3 · R7,
R4 = R3 − R4, R3 = R6 − R7, R2 = R3 · R2, R3 = R4 + R2, R3 = R2

3, Xout = R3 · R5,
R2 = R4 −R2, R2 = R2

2, Zout = R2 ·R1.

The dedicated explicit formulas for the multiplication-by-5 map referred to in Table 2 take
(Xout : Zout) = x([5]P ), where x(P ) = (X : Z), and are as below. The cost is 11M+6S+14a,
assuming that K1 = A24 + C24 is cached.

R1 = X − Z, R2 = R2
1, R3 = X + Z, R4 = R2

3, R5 = R4 + R2, R1 = R1 + R3, R1 = R2
1,

R3 = R1 − R5, R2 = R2 · A24, R4 = K1 · R4, R4 = R4 − R2, R5 = R4 · R5, R2 = R2
3,

R1 = R2 · C24, R2 = R1/4, R2 = R5 − R2, R5 = R4 · R3, R3 = R2 + R5, R4 = R2 − R5,
R3 = R3 · R4, R4 = R2 · R3, R1 = R1 · R2, R1 = R1 + R3, R3 = R1 · R5, R2 = R4 + R3,
R2 = R2

2, Xout = R2 ·X1, R1 = R4 −R3, R1 = R2
1, Zout = R1 · Z1.



The dedicated explicit formulas for the multiplication-by-7 map referred to in Table 2 take
(Xout : Zout) = x([7]P ), where x(P ) = (X : Z), and are as below. The cost is 14M+9S+18a,
assuming that K1 = A24 + C24 is cached.

R1 = X − Z, R3 = R2
1, R2 = X + Z, R4 = R2

2, R1 = R1 + R2, R1 = R2
1, R1 = R1 − R4,

R2 = R1 − R3, R1 = K1 · R4, R4 = R1 · R4, R5 = R3 · A24, R1 = R1 − R5, R3 = R3 · R5,
R3 = R4 − R3, R4 = R2 · R1, R1 = R2

3, R5 = R2
4, R4 = R3 + R4, R4 = R2

4, R2 = R2
2,

R2 = R2 · R3, R3 = R1 − R5, R1 = R1 + R5, R4 = R1 − R4, R1 = R1 · R3, R3 = 2R3,
R2 = R2 · C24, R5 = R2 · R5, R5 = R5 + R1, R1 = R3 + R2, R3 = R3 · R5, R2 = R1 + R2,
R2 = R2 ·R1, R1 = 2R3, R2 = R4 ·R2, R3 = R1+R2, R3 = R2

3, Xout = X1 ·R3, R3 = R1−R2,
R3 = R2

3, Zout = Z1 ·R3.
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