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Abstract. Barak et al. (CRYPTO’11) initiated the study of so called
square-friendly applications which offer good security for keys with en-
tropy deficiency (weak keys), for this reason being important for key
derivation. The state of the art of security bounds was established by
Dodis and Yu (TCC’13), by modelling ”weak” keys as distributions of
high collision entropy. In this paper we answer the question what is the
minimum requirement on weak keys to be ”good” for these applications.
The answer gives an elegant operational meaning to the notion of smooth
collision entropy. Namely, smooth collision entropy is both sufficient and
necessary (with essentially the same entropy parameters) to guarantee
the security of square-friendly applications under weak keys. This char-
acterization is a consequence of constrained optimization techniques.
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1 Introduction

1.1 Square-friendly applications

Most cryptographic objects require randomness for seeding, salting or derivation
of secure keys. Since ideal randomness is hardly accessible, one has to retrieve
it from imperfect sources (such as biometrics or other noisy data). As a result,
the random bit string passed to a cryptographic application (which we refer to
as key without loss of generality) is not truly random, but may have bias or
entropy deficiency. If this bias or deficiency is small enough, one might hope
to achieve security comparable as with the perfectly random key. The security
of cryptographic applications is formally defined by quantifying the advantage
that an attacker (with certain computational resources) may achieve, averaged
over the distribution of the key. Therefore, to understand the impact of weak
randomness on the security, one needs to compare the theoretical security under
the uniform distribution U over {0, 1}m

εideal = Er←UAdv
A(r)

with the real security under the actual key distribution R over {0, 1}m

εreal = Er←RAdv
A(r),

? The paper is available at eprint.
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where by AdvA(r) we denote A’s advantage conditioned on the key being r.
From a technical point of view, the problem boils down to comparing the

expected advantage under the uniform distribution and under the weak key R.
As observed by Barak et al. [BDKPP+11], and made more explicit by Dodis and
Yu [DY13], real and ideal security can be related by the following inequality

εreal 6 εideal +

√
Var

[
AdvA(U)

]
·
√

2d − 1 (1)

where d is the gap between the collision entropy of R and the (full) entropy of U
(referred to as deficiency). In general, the advantage is trivially bounded by 1.
As a consequence we can get εreal ≈ εideal if d ≈ ε2ideal1. Retrieving an m-bit key
with defficiency that small is possible by the use of randomness extractors [IZ89],
however they require at least m+ 2 log(1/εideal) bits of entropy in the source (as
shown by the so called RT-bound [RT00]). This essentially means the loss of
L ≈ 2 log(1/εideal) bits of entropy2, as the necessary entropy exceeds the key
length by L. This loss may be a serious problem in settings where available
entropy is limited, e.g. in the case of biometric sources.

Fortunately, for a broad class of cryptographic applications the variance term
can be shown to be much smaller. In particular, if we know that

Var

[
AdvA(U)

]
6 σ (2)

for some σ � 1, then from Equation (1) we obtain

εreal 6 εideal +
√
σ ·
√

2d − 1 (3)

and thus εreal ≈ εideal when d ≈ ε2ideal
σ , which reduces the entropy loss (in the

use of an extractor) to L ≈ 2 log(1/εideal)− log(1/σ). Moreover, with the use of

randomness condensers one can achieve security εreal ≈ εideal +O
(√

2dσ
)

from

any source having m−d bits of entropy3. For σ � 1 and appropriate d this gives
meaningful security with entropy smaller than the key length.

Cryptographic applications where there exists a non-trivial bound on σ in
are called square-friendly applications. Concrete examples include stateless cho-
sen plaintext attack (CPA) secure encryption or weak pseudo-random func-
tions [DY13]. Specifically, for these cases σ = O(εideal) and the entropy loss
for extraction reduces to L ≈ log(1/εideal) (by half) whereas condensing gives
meaningful results for deficiency d < log(1/εideal).

Since entropy is generaly a limited and precious resource, square-friendly
applications are of special importance to key derivation, as they allow for better

1 We have
√

2d − 1 =
√
O(d) = O(

√
d) if d = O(1). If Var

[
AdvA(U)

]
then the formula

gives εreal = εideal +O(
√
d) and hence εreal = Θ(εideal) when d = O(ε2ideal).

2 Matched by the extractor built from universal hash families [ILL89]
3 Seeded condensers get an m-bit string of entropy m − d out of a source of entropy
m− d+O(1). This can be achieved with highly-independent hash families [DPW14]
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tradeoffs between entropy and security [BDKPP+11; YS13]. They also allow
for improving (provable) security of schemes utilizing square-friendly objects as
building blocks, such as leakage-resilient stream ciphers [YS13; JP14].

1.2 Problem statement

The original motivation for studying square-friendly applications was saving en-
tropy [BDKPP+11; DY13]. In this paper we keep exploring this research direc-
tion, asking a more fundamental question

Q: What key distributions R guarantee a given security level (of ε)?

The previous works [BDKPP+11; DY13] require keys to be of sufficiently high
entropy, where the entropy notion is collision entropy (less restrictive than min-
entropy). While this assumption may work well in theory, classical entropy no-
tions are not robust against even small biases that may easily occur when eval-
uating entropy in practice - and hence may not capture the security properties
accurately. For example, entropy estimation requires addressing statistical er-
rrors [TBKM16] which lower the estimated entropy. Bias may be also introduced
by measurements or other noise processes, resulting similarly in underestimation
(hence a waste) of entropy. To illustrate this with a concrete example, consider a
random variable R that takes a fixed value x0 with probability ε and is uniform
over m bits with probability 1− ε. While R is practically indistinguishable from
the uniform distribution for small ε (say ε ≈ 2−80) and thus equally good from a
cryptographic point of view, it has only log(1/ε)� m bits of min-entropy. Thus,
motivated by the idea of saving entropy, we restate our problem as

Q’: what’s the weakest entropy in R to guarantee security of ε?

A similar problem was studied in the context of randomness extraction, and the
so called smooth min-entropy was introduced [RW05] as the notion that optimally
characterize the number of extractable uniform bits. Smooth entropy essentially
removes small bias before evaluating the number of entropy bits. In this paper, we
use a conceptually similar notion to optimally characterize security in the context
of key derivation. It turns out that for our setting (square-friendly applications),
the optimal entropy notion is the smoothed version of collision entropy.

1.3 Results and techniques

The optimal entropy notion is smooth collision entropy We start by observing
that the entropy notion used to define d in Equation (1) can be relaxed to

smooth collision entropy. Namely we get εreal 6 εideal +O
(√

σ ·
√

2d − 1
)

when

R is only ε-close (in total variation) to a distribution of entropy deficiency d, for
ε = O(

√
σ ·
√

2d − 1). Since the square-root term typically dominates εideal, this
bound is comparable to the one in Equation (3). While this observation is easy,
our main contribution is the proof of the converse part. Recall that an application
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is said to be σ-square-secure against an attacker A when E

(
AdvA(r)

)2
6 σ,

which in particular implies Equation (2) (see Section 2 for formal definitions).
The main result of this paper is the following theorem

Theorem (Optimal keys for square-friendly applications). Then the fol-
lowing holds

(a) Smooth collision-entropy is sufficient: Suppose that an m-bit distribution
R is O(ε)-close to a distribution with collision entropy deficiency d, where
2d−1 = O

(
σε−2

)
. Then for any application P and attacker A against whom

P is σ-square secure, the application P is εideal +O(ε) secure under R.
(b) Smooth collision-entropy is necessary: Suppose that for a key distribution R,

for every application P and attacker A such that P is σ-square secure against
A, the application P is εideal + ε-secure under R. Then R is O(ε)-close to a
distribution with collision entropy deficiency d, where 2d − 1 = O

(
σε−2

)
.

The proof if the easy part (a) appears in Section 3.1. We prove the non-trivial
part (b) in Section 3.3; its proof is based on a more general result about compar-
ing keys for square-friendly applications, which we discuss in the next paragraph.

We note that this theorem gives an operational meaning to smooth collision
entropy. Formally, ε-smooth collision entropy is defined as the maximum entropy
of a distribution within distance ε (see Section 2). Thus, the condition on R can
be expressed as ”R has |R| − d bits of O(ε)-smooth collision entropy”. In view
of the above theorem, smooth collision entropy is both necessary and sufficient
for a key to be ”good” for square-friendly applications, with essentially no gap
between quantitative parameters in both statements. To our knowledge, this is
the first such functional characterization for smooth collision entropy.

Characterizing equally secure keys In order to prove our main result (the neces-
sary part), we solve a more general problem of characterizing keys that provide
comparably security for square-friendly applications. Intuitively, if two key dis-
tributions X,Y provide a similar level of security, their shapes should be related
by a small perturbation in probability mass. Our result below provides a quan-
titative and optimal characterization of this sort (note the characterization is
somewhat more complicated that one might expect).

Theorem (Characterizing keys with similar security). Suppose that for
two key distributions X,Y over m bits, some number ε > 0 and every pair (P,A)
such that P is σ-square secure against A, the security εX under the key X and
the security εY under the key Y satisfy

εY 6 εX + ε.

Then there exists a distribution Z such that

(a) Y and Z are O(ε)-close in the `1 distance

(b) Z and X are O(2−
m
2 σ−

1
2 ε)-close in the `2 distance
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Conversely, for Z, P and A as above we have εY 6 εX +O(ε).

This theorem follows from results proved in Section 3.2. We illustrate it in the
diagram in Figure 1, and note that the previous theorem is obtained by the
application to the setting when Y = R and X = U .

Y Z X≈O(ε)

`1-distance

≈
O

(
2
−m

2 εσ
− 1

2

)
`2-distance

real key model key

security tradeoff: εX = εY +O(ε)

Fig. 1: Relation between key distributions X and Y that provide similar security
for square-secure applications. A transformation from X to Y involves probabil-
ity mass ”smoothing” first in `1-distance and next in `2-distance.

Not discussing the technicalities in full detail, we would like to provide some
intuitions and more insight into proof techniques. The problem boils down to
explaining why the difference of the expectations ED(X)−ED(Y ) is small when
D is of small variance (D runs over different attacker advantage profiles). The
first reason is that there is a small bias between X and Y . This is addressed by
passing from Y to Z, which is essentially smoothing in the `1 distance. However,
there is another more subtle reason - when the bias may be substantially bigger
but it changes over particular inputs adaptively to D, so that the difference is
small because of the variance of D. To smooth it out, we use the `2-distance,
passing from Z to X. With the help of the tools from convex optimization we
prove that these ”pathologies” are actually the only ones. We illustrate the proof
technique in Figure 2 below.

1.4 Organization

We explain notions and definitions in Section 2. Our main result is proved in
Section 3. In Section 4 we conclude our work.

2 Preliminaries

Basic conventions By PX we denote the probability mass function of a random
variable X, that is PX(x) = Pr[X = x]. All logarithms are taken at base 2

Distance metrics

Definition 1 (`1-distance). The `1 distance between two vectors p, q ∈ RN is
defined by

d1(p; q) =
∑
i

|pi − qi|.
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PY (x)− PX(x)

D(x)

Fig. 2: Our technique. To maximize the difference ED(X) − ED(Y ) (when D is
constrained by its variance), biggest values of D correspond to the biggest bias
∆(x) = PX(x)−PY (x), while moderate values of D are proportional to moderate
bias ∆(x). This behavior follows by the techniques of constrained optimization
(KKT conditions).

Definition 2 (statistical distance). The statistical distance between (distri-
butions of) two random variables X,Y taking values in the same finite set equals

SD(X;Y ) =
1

2
d1(PX ;PY ) =

1

2

∑
x

|PX(x)− PY (x)|

Definition 3 (`2-distance). The `2 distance between two vectors p, q ∈ RN is
defined by

d2(p; q) =

√∑
i

(pi − qi)2.

Entropy measures

Definition 4 (collision entropy). The collision entropy of a random variable
X is defined as

H2(X) = − log
∑
x

Pr[X = x]2

Definition 5 (smooth collision entropy). For ε > 0, the ε-smooth collision
entropy of a random variable X is defined as

Hε
2(X) = max

X′:SD(X′;X)6ε
H2(X ′).

Security of cryptographic applications We consider cryptographic application
(primitive, protocol, scheme) P where the security is defined by an interactive
game between an attacker A and a challenger C (both probabilistic). The chal-
lenger uses a key r sampled either from the uniform distribution Um (the ”ideal”
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setting) or a distribution R (the ”real” setting). The probability (over the inter-
nal coins of the attacker and challenger) that the attacker wins the game when
the key is r is denoted by Pr[A wins |r]. Now we can formally define security

Definition 6 (advantage). For a fixed cryptographic application, the advan-
tage of an attacker A is defined as

AdvA(r) = Pr[A wins |r]− c

where ”A wins |r” denotes the event that an attacker wins the security game
conditioned on the key used being r. For indistinguishability games c = 1

2 and
for unpredictability games c = 0.

Definition 7 (square-security [DY13]). An application is σ-square secure
against a class of attackers A if for every A ∈ A it holds that

Er←U

(
AdvA(r)

)2
6 σ.

In particular, σ-square security implies

Var

[
AdvA(U)

]
6 σ.

3 Main results

3.1 Smooth entropy is sufficient for security of weak keys

We start with the following lemma, which slightly generalizes Lemma 2.2 from
[BDKPP+11].

Lemma 1. Let X be an N -element set and X be a random variable over X .
Then for any D : X → [−1, 1] we have

ED(X) 6 ED(U) +
√
VarD(U) ·

√
2d − 1 + ε (4)

where U is uniform over X and

d = logN −Hε
2(X) (5)

is the smooth collision entropy deficiency.

Proof. By the definition of smooth collision entropy, there exist X ′ such that
H2(X ′) = logN − d and SD(X ′;X) 6 ε. Note that for any constant c we have

ED(X ′)− ED(U) =
∑
x

(D(x)− c) · (PX′(x)− PU (x))

By applying the Cauchy-Schwarz inequality we obtain

ED(X ′) 6 ED(U) +
√
Ex←U (D(x)− c)2 ·

√
2d − 1.
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Maximizing over the choice of c and using the definition of variance yields

ED(X ′) 6 ED(U) +
√
VarD(U) ·

√
2d − 1.

Since X and X ′ are ε-close, we have ED(X) 6 ED(X ′) + ε which finishes the
proof.

As a corollary we immediately obtain that smooth collision entropy can re-
place the plain collision entropy for square-friendly applications.

Corollary 1 (Security under smooth colision entropy). Fix an application
that needs an m-bit key. Let X be a key distribution and d = m−Hε

2(X). Then
for any attacker A such that the application is σ-square secure we have

εreal 6 εideal +
√
σ ·
√

2d − 1 + ε.

In particular, when ε = O
(√

σ ·
√

2d − 1
)

one has

εreal 6 εideal +O
(√

σ ·
√

2d − 1
)
.

3.2 Characterizing equally secure weak keys

Theorem 1 (Best key smoothing for square-friendly applications). Let
X be an N -element set and X,Y be random variables over X such that

ED(Y ) 6 ED(X) + ε (6)

for all D : X → [−1, 1] such that

VarD(U) 6 σ (7)

Then for some random variable Y ′ over X the following holds true:

(a) Y and Z are 4ε-close in `1-distance

(b) Z and X are
√

2ε2

Nσ -close in `2-distance

Remark 1 (Variance vs expected square). Note that ED(Y ) 6 ED(X) + ε holds

for D if and only if it holds for D′(x)
def
= D(x) + c where c is a constant. Thus

the condition in Equation (7) can be replaced by Er←UD(r)2 6 σ.

The result is optimal up to a constant factor in O(ε), as shown below. We
skip the proof which is merely an extension of the proof of Lemma 1.

Corollary 2 (The characterization is optimal up to constants). Let
X,Y, Z be random variables over X such that conditions (a) and (b) in The-
orem 1. Then

ED(Y ) 6 ED(X) + (2 +
√

2)ε

for all D such that Var(D) 6 σ.
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Proof (of Theorem 1). Define ∆(x) = PY (x) − PX(x). Let X+ contain inputs
x that correspond to the first 2nσ greatest values of ∆(x). Similarly, let X−
contain inputs x that correspond to the first 2nσ smallest values of ∆(x). Let
X0 = X \ X+ ∪ X−.
Ideas from convex optimization We can consider Equation (6) and Equation (7)
as the optimization program of maximizing ED(X) − ED(Y ) under the vari-
ance assumption. By Remark 1 we know that the variance constraint can be
replaced by the second moment constraint. By applying the necessary condition
for the constrained optimization programs - Karush-Kuhn-Tucker Theorem (see
for instance [BL05]) - the maximizing D must be of the following form

D(x) = max(min(a ·∆(x) + b, 1), 1).

where a and b are some constants. In the further analysis we will apply the
assumptions of the theorem to functions D fitting his shape.
Heavy weights Define D(x) = sgn(∆(x)) when x ∈ X+ and D(x) = 0 otherwise.
Note that D satisfies Equation (7). By Equation (6) and the definition of D we
obtain

ε > ED(Y )− ED(X) =
∑
x∈X+

|∆(x)| (8)

Since the smallest element in a set is not bigger than the average, we obtain

. min
x∈X+

∆(x) 6
ε

Nσ
. (9)

Small weights Define D(x) = sgn(∆(x)) when x ∈ X− and D(x) = 0 otherwise.
Clearly D satisfies Equation (7). By Equation (6) and the definition of D we
obtain

ε > ED(Y )− ED(X) =
∑
x∈X−

|∆(x)|. (10)

Estimating the maximum element in a set by the average, and combining this
with the triangle inequality we obtain

max
x∈X−

∆(x) >

∑
x∈X− ∆(x)

#X−

> −
∑
x∈X− |∆(x)|

#X−

> − ε

Nσ
. (11)

Moderate weights Define D(x) in the following way

D(x) =

{
∆(x) · Nσε , x ∈ X0

0, x 6∈ X0
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Note that |D(x)| 6 1 by Equation (11) and Equation (9). Note that D satisfies
Equation (7). By Equation (6) and the definition of D we obtain

ε > ED(Y )− ED(X) =
Nσ

ε

∑
x∈X0

∆(x)2, (12)

and therefore we conclude that∑
x∈X0

∆(x)2 6
ε2

Nσ
. (13)

Smoothing. Let Z be a random variable with the following distribution

PZ(x) =

{
PY (x)−∆(x) +∆ , x ∈ X− ∪ X+

PY (x) , x ∈ X0.

where

∆ =

∑
x∈X−∪X+ ∆(x)

#X− + #X+

is chosen so that PZ is the probability measure. By Equation (8) and Equa-
tion (10) we obtain

d1(PY ;PZ) =
∑

x∈X−∪X+

|∆(x)−∆| 6 4ε.

Moreover

(d2(PZ ;PX))
2

=(a)
∑

x∈∪X−∪X+

∆2 =(b)

(∑
x∈X−∪X+ ∆(x)

)2
#X− + #X+

6
2ε2

Nσ
.

where (a) follows by the definition of ∆ and (b) follows by Equations (8) and (10)
and the fact that #X− = #X+ = Nσ. ut

3.3 Characterizing good weak keys

Theorem 2. Let X be an N -element set, Y be a random variable over X and
U be uniform over X . Suppose that

ED(Y ) 6 ED(U) + ε

for all D : X → [−1, 1] such that VarD(U) 6 σ. Then

H2ε
2 (Y ) > logN − d

where

2d − 1 =
2ε2

σ
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From Theorem 2, applied to D being all square-secure advantage profiles4, we
immediately obtain the following corollary

Corollary 3 (Smooth colision entropy is necessary for security under
weak keys). Let X be an m-bit key. Suppose that for every application P and
every attacker A such that P is σ-secure against A, under the key X one has

εreal 6 εideal + ε

Then H2ε
2 (X) > m− d where

2d − 1 = O
(
ε2σ−1

)
Proof (Proof of Theorem 2). By Theorem 1 and Remark 1 there is Z which is

4ε-close to X in d1 and ε′-close to U in d2 where (ε′)2 = 2ε2

Nσ . We obtain∑
x

PZ(x)2 − 1

N
=(a)

∑
x

PZ(x)2 + 2
∑
x

PU (x)PZ(x)−
∑
x

PU (x)2

=(b)
∑
x

(PZ(x)− PU (x))
2

6(c) 2ε2

Nσ

where (a) follows because
∑
x PZ(x) = 1 and PU (x) = 1

N , (b) is the elementary
identity and (c) follows by the assumption on Z. This means that

H2(Z) = logN − log

(
1 +

2ε2

σ

)
.

and, since SD(Y ;Z) 6 2ε we get

H2ε
2 (Y ) > logN − log

(
1 +

2ε2

σ

)
.

which completes the proof.

4 Conclusion

In this paper we showed a functional characterization of smooth colision en-
tropy in the context of key derivation. Namely, it provides optimal bounds for
the security of square-friendly applications fed with weak keys. Our result is
complementary to the previous works of Barak at al. [BDKPP+11] and Dodis,
Yu [DY13].

4 The advantage for idistinguishability games has the range
[
− 1

2
, 1
2

]
, and for unpre-

dictability it is [0, 1]. Therefore, we need to scale D (by an affine transform) to the
range [−1, 1] when applying Theorem 2. This slightly changes constants under O(·).
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