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Abstract. Several recent cryptographic constructions – including a public key encryption
scheme, a fully homomorphic encryption scheme, and a candidate multilinear map construction –
rely on the hardness of the short generator principal ideal problem (SG-PIP): given a Z-basis
of some principal (fractional) ideal in an algebraic number field that is guaranteed to have
an exceptionally short generator with respect to the logarithmic embedding, find a shortest
generator of the principal ideal. The folklore approach to solve this problem is to split it into
two subproblems. First, recover some arbitrary generator of the ideal, which is known as the
principal ideal problem (PIP). Second, solve a bounded distance decoding (BDD) problem in
the log-unit lattice to transform this arbitrary generator into a shortest generator of the ideal.
The first problem, i.e., solving the PIP, is known to be solvable in polynomial time on quantum
computers for arbitrary number fields under the generalized Riemann hypothesis due to
Biasse and Song. Cramer, Ducas, Peikert, and Regev showed, based on the work of Campbell,
Groves, and Shepherd, that the second problem can be solved in polynomial time on classical
computers for cyclotomic number fields of prime-power conductor.
In this work, we extend the work of Cramer, Ducas, Peikert, and Regev to cyclotomic number
fields K = Q(ξm) of conductor m = pαqβ , where p, q are distinct odd primes.
In more detail, we show that the second problem can be solved in classical polynomial time
(with quantum polynomial time precomputation) under some sufficient conditions, if (p, q)
is an (α, β)-generator prime pair, a new notion introduced in this work. We further provide
experimental evidence that suggests that roughly 35% of all prime pairs are (α, β)-generator
prime pairs for all α and β. Combined with the work of Biasse and Song our results show
that under sufficient conditions the SG-PIP can be solved in quantum polynomial time in
cyclotomic number fields of composite conductor of the form pαqβ .

Keywords: Lattice-based cryptography, principal ideal lattices, SG-PIP, SVP, key recovery,
cryptanalysis.

1 Introduction

Modern cryptographic schemes such as RSA and the Diffie-Hellmann protocol rely on the conjectured
hardness of integer factorization and the difficulty of finding discrete logarithms in certain groups.
However, in 1999, Shor [33] presented a quantum algorithm that can solve these problems in
polynomial time, rendering these systems insecure in the face of the possible future existence of
large scale quantum computers. This threat has lead to a new field of research called post-quantum
cryptography [23] which is resistant against quantum adversaries. Many of today’s promising post-
quantum schemes are lattice-based (see, e.g., [30,20,1,15,11,31,29,16]), i.e., their security relies on
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the hardness of lattice problems such as finding a shortest non-zero vector of a lattice, for which
no efficient quantum algorithm is known. In order to boost the efficiency or achieve additional
functionality, more structured lattices have been taken into consideration, for example lattices
induced by ideals or even principal ideals in certain rings, called ideal lattices [21,22]. Some recent
cryptographic constructions – including a public key encryption scheme [7], a fully homomorphic
encryption scheme [35], and a candidate multilinear map construction [13] – rely on the hardness of
the short generator principal ideal problem (SG-PIP) [9]: Given a Z-basis of a principal fractional
ideal a in some algebraic number field K that is guaranteed to have an exceptionally short generator
with respect to the logarithmic embedding, find a shortest generator of the principal ideal a.

The folklore approach to solve this problem, as sketched by Bernstein [3] and Campbell, Groves,
and Shepherd [7] is to split it into the following two problems.

1. Recover some arbitrary generator g′ ∈ K of the ideal a, which is known as the principal ideal
problem (PIP).

2. Transform this generator into some shortest generator. In more detail, let g = ug′ for some unit
u ∈ O×K be a shortest generator of a with respect to the logarithmic embedding. In this case it
holds that Log(g′) ∈ Log(g) + Log(O×K), where Log denotes the logarithmic embedding. Since
Log(g) is short, we can therefore find Log(g) (and hence g) by solving a closest vector problem
in the Dirichlet log-unit lattice Log(O×K).

The best known classical algorithm for solving the principal ideal problem is the algorithm of Biasse
and Fieker [4], whose running time is subexponential in n = [K : Q]. In [7,5,12], a quantum algorithm
with polynomial running time in n was described for cyclotomic fields K = Q(ξm) of prime-power
conductor m = pα. If we assume that the generalized Riemann hypothesis is true, there is an efficient
quantum algorithm for solving the principal ideal problem in arbitrary algebraic number fields,
see [6].

Following the sketch of Campbell, Groves, and Shepherd [7], Cramer, Ducas, Peikert, and
Regev [9] proved that the second problem can be solved in classical polynomial time for cyclotomic
fields K = Q(ξm) of prime-power conductor m = pα, under some conjecture concerning the class
number h+m of K+ = Q(ξm + ξ−1m ). The crucial part of their strategy to solve the problem relies

on the fact that the units
ξjm−1
ξm−1 ∈ Z[ξm]× for j ∈ Zm/{±1} form a well suited basis of the so called

cyclotomic units, a subgroup of finite index in the unit group O×K = Z[ξm]× in the prime-power case
m = pα. The success of their algorithm relies on the following two facts.

1. The index of the group of cyclotomic units in Z[ξm]× is sufficiently small, i.e., bounded by some
constant (or at least by some polynomial in n = ϕ(m)) if m is a prime-power.

2. The norm of the dual vectors Log
(
ξjm−1
ξm−1

)∗
for all j ∈ Zm/{±1} is small enough if m is a

prime-power.

The proofs given in [9] heavily use that the underlying cyclotomic number fields have prime-power
conductor. For instance, it is known that if the conductor has at least four distinct prime factors,

the group generated by the units
ξjm−1
ξm−1 ∈ Z[ξm]× for j ∈ Zm/{±1} has infinite index in the full unit

group, hence in this case the first necessary condition is not satisfied.
In this work, we extend the work of Cramer, Ducas, Peikert, and Regev to cyclotomic number

fields K = Q(ξm) of conductor m = pαqβ , where p, q are distinct odd primes. As in the prime-power

case, we investigate if the units
ξjm−1
ξm−1 ∈ O

×
K = Z[ξm]× for j ∈ Zm/{±1} are well suited to solve the

BDD problem in the log-unit lattice and hence recover some shortest generator. In particular, we
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examine if the group generated by these units has small enough finite index in O×K and if the norm
of the dual vectors of these units in the logarithmic embedding is sufficiently small. We show that
(under some conditions) for cyclotomic number fields of conductor m = pαqβ , both of these properties
are satisfied for these units if (p, q) is an (α, β)-generator prime pair, a new notion introduced in
this work. We further provide experimental evidence that suggests that roughly 35% of prime pairs
are (α, β)-generator prime pairs for all α and β. Combined with the results of Biasse and Song [6]
our results show that under sufficient conditions, the SG-PIP can be solved in classical polynomial
time in cyclotomic number fields of composite conductor of the form pαqβ with quantum polynomial
time precomputation.

Cryptographic Implications. In consequence, we extend the quantum polynomial time key-recover
attacks [7,9] on the cryptographic schemes of [35,13,7] to the case of cyclotomic number fields Q(ξm)
of conductor m = pαqβ for (α, β)-generator prime pairs (p, q). Hence, SG-PIP based schemes are
broken by quantum computers in this case (assuming the generalized Riemann hypothesis).

Outline. This work is structured as follows. In Section 2, we provide the necessary mathematical
background for this work. In Section 3, we sketch the algorithmic approach and sufficient success
conditions presented in [9,7,3] to find a shortest generator of some principal fractional ideal, given
an arbitrary generator. In Section 4, we derive sufficient conditions, under which the algorithmic
approach described in the previous section is successful in the case of cyclotomic fields of conductor
m = pαqβ . We conclude this work by stating some interesting questions that remain open for future
work in Section 5.

2 Preliminaries

We denote the natural numbers without zero by N := {1, 2, 3, . . .} and the natural numbers including
zero by N0 := {0, 1, 2, 3, . . .}. The set of primes is denoted by P. We denote the real and imaginary
part of a complex number z ∈ C by <(z) and =(z), respectively. We use the common notation “iff”
for “if and only if”.

We denote vectors by lower-case bold letters, e.g., x ∈ Rn, and matrices by upper-case bold
letters, e.g., X ∈ Rn×m. For x1, . . . ,xk ∈ Rn we write (x1, . . . ,xk) =: X ∈ Rn×k for the n × k
matrix X whose columns are the vectors x1, . . . ,xk. The canonical inner product and the Euclidean
norm over Rn are denoted by 〈·, ·〉 and || · ||2.

The common rounding function is denoted by bxe = bx+ 1
2c ∈ Z. For a vector v = (v1, . . . , vn)T ∈

Rn we define bve := (bv1e, . . . , bvne)T ∈ Zn component wise.

2.1 Lattices

A lattice L is an additive subgroup of an n-dimensional R-vectorspace V such that there exists
R-linearly independent vectors v1, . . . ,vk ∈ V with L = Zv1 + . . .+Zvk. The vectors v1, . . . ,vk ∈ V
are called basis of the lattice L. If V = Rn, we write L(B) := Zb1 + . . .+ Zbk for the lattice whose
basis is given by the columns of a matrix B ∈ Rn×k. The dimension of a lattice is defined as
dimL := k. A full rank lattice is a lattice with n = k = dimL. A sublattice L′ of L is a lattice
with L′ ⊆ L.
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The dual basis B∗ = (b∗1, . . . ,b
∗
k) ∈ Rn×k of a lattice L(B) ⊆ Rn is defined as the R-basis of

span(B) = B · Rk with 〈b∗i ,bj〉 = δi,j for all i, j ∈ {1, . . . , k}. In other words, B∗ ∈ Rn×k is the
unique matrix with the properties

BT ·B∗ = (B∗)T ·B = Ik and span(B) = span(B∗),

where Ik denotes the k × k identity matrix.
It is easy to see that the unique dual basis B∗ is given by

B∗ = B(BTB)−1.

2.2 Algebraic Number Fields

Let L be a field and K ⊆ L a subfield of L. We write L/K for this field extension and denote the
index of K in L by [L : K] := dimKL (i.e., the dimension of L as a K-vectorspace).

An algebraic number field K is an extension field of Q of finite index, i.e., [K : Q] <∞. For
an algebraic number field K we define the (finite) group of roots of unity as µ(K) := {x ∈ K| xn =
1 for some n ∈ N} and its ring of integers OK as

OK := {α ∈ K| ∃p ∈ Z[X]\{0} : p is monic and p(α) = 0}.

We say α ∈ K is integral iff α ∈ OK .
W.l.o.g. it is sufficient to consider K ⊆ C for an algebraic number field K, since there is only

one algebraic closure of Q up to isomorphisms, so we assume Q ⊆ C. Note that OK is a subring of
K, see for example [28, p. 7].

A principal fractional ideal in K is a subring of K of the form gOK for some g ∈ K×.
The class group ClK = IK/PK of K is the quotient of the abelian multiplicative group of

fractional ideal IK and the subgroup of principle fractional ideals PK . The class number hK of
an algebraic number field K is defined as the cardinality of its class group, i.e., hK := |ClK | <∞,
see [28, §3. Ideals].

2.3 Logarithmic Embedding

Let K be an algebraic number field of degree n = [K : Q]. Moreover, let r be the number of real
embeddings of K, i.e., homomorphisms of the form δ1, . . . , δr : K → R, and s the number of non
real homomorphisms (up to complex conjugation) σ1, σ1, . . . , σs, σs → C. Note that n = r + 2s
holds. In this case, we call (r, s) the signature of the number field K. We define the logarithmic
embedding as

Log : K× → Rr+2s

x 7→
(
log(|δ1(x)|), . . . , log(|δr(x)|), log(|σ1(x)|), . . . , log(|σs(x)|)

)
,

This mapping defines a group homomorphism from the multiplicative group K× to the additive
group Rr+2s = Rn.

If the number field K has no real embedding, i.e., n = 2s, it is sufficient to use the reduced
logarithmic embedding of K×:

Logr(x) :=
(

log (|σ1(x)|) , . . . , log (|σs(x)|)
)
∈ Rn/2

for all α ∈ K×, where σ1, σ1, . . . , σs, σs : K → C are the different embeddings of K into C.
The following is known as Dirichlet’s unit theorem [28, Theorem (7.3)].
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Theorem 2.1. Let K be an algebraic number field of degree n = [K : Q] with signature (r, s).
The group Γ := Log(O×K) is a lattice of dimension k := r + s − 1, orthogonal to the vector
1 := (1, . . . , 1) ∈ Rr+2s. We call Γ the log-unit lattice.

Lemma 2.2 ([28, (7.1) Proposition]). For an algebraic number field K the following holds.

ker
(

Log|O×K
)

= µ(K).

Theorem 2.1 and Lemma 2.2 imply the following corollary.

Corollary 2.3. Let K be an algebraic number field of degree n = [K : Q] with signature (r, s). The
group of units O×K is isomorphic to µ(K)× Zr+s−1, which means there are units η1, . . . , ηk ∈ O×K
(where k := r + s − 1), such that each α ∈ O×K can be written as α = ζηe11 · · · η

ek
k with unique

e1, . . . , ek ∈ Z and ζ ∈ µ(K).

Such sets {η1, . . . ηk} ⊆ O×K of multiplicative independent units which generates O×K up to roots
of unity like in Corollary 2.3 are called fundamental systems of units of OK .

Now we are prepared to define what we mean by “short generator” of a principal fractional ideal
in an algebraic number field.

Definition 2.4. Let K be an algebraic number field and g ∈ K×. Then g′ ∈ K× is called a shortest
generator of the principal fractional ideal gOK if g′OK = gOK and

||Log(g′)||2 = min
u∈O×K

||Log(g · u)||2 = min
u∈O×K

||Log(g) + Log(u)||2.

This means g′ is a generator of gOK with minimal norm in the logarithmic embedding.

Note that the minimum in Definition 2.4 exists since Log(g) + Log(O×K) ⊆ Rn is a discrete subset
of Rn, where n = [K : Q].

2.4 Cyclotomic Fields

A cyclotomic field Km is an algebraic number field of the form Km = Q(ξm) for some primitive
m-th root of unity ξm ∈ C, i.e., ord(ξm) = m. If m 6≡ 2 mod 4, the number m is called the
conductor of Km.

The field extension Q(ξm)/Q is Galois with index [Q(ξm) : Q] = ϕ(m), where ϕ(·) is the Euler
totient function (and ξm ∈ C a primitive m-th root of unity). The automorphisms σi(·) of Q(ξm)
are characterized by σi(ξm) := ξim for i ∈ Z×m. From now on we fix ξm := e2πi/m and Km := Q(ξm)
and define Om := OKm .

If m ≡ 2 mod 4, i.e., m = 2 · k for some odd k ∈ N, we have ξm = −ξk and therefore
Q(ξm) = Q(ξk). Hence, w.l.o.g. it is sufficient to assume m 6≡ 2 mod 4.

We can specify the ring of integers Om, namely Om = Z[ξm] (e.g. [28, Prop. (10.2)]).
The Galois group Gal(Km/Q) is isomorphic to Z×m, and for m ≥ 3 the automorphisms σi ∈

Gal(K/Q) with i ∈ Z×m are complex and come in conjugated pairs, i.e., σ−i = σi.

Lemma 2.5. For a cyclotomic field Km we have µ(Km) = 〈±ξm〉 =
{
±ξim| i ∈ Z

}
.
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Proof. Since (±ξm)2m = 1, the inclusion µ(Km) ⊇ 〈±ξm〉 is clear. To proof the reverse inclusion,
we need the fact that finite subgroups of the multiplicative group of a field are cyclic. Hence, let
η ∈ µ(Km) be a generator of µ(Km), i.e., µ(Km) = 〈η〉. We have η ∈ µ(Km) ⊆ Q(ξm), which yields
Q(η) = Q(ξm). This implies ϕ(t) = ϕ(m) and m|t or 2m|t for t := ord(η) = |µ(Km)|, which yields
t = m if m is even and t = 2m, if m is odd. This yields the claim.

The m-th cyclotomic polynomial Φm(X) ∈ Z[X] is defined as the minimal polynomial of the
m-th root of unity ξm ∈ C over Q. It is given by Φm(X) =

∏
i∈Z×m

(
X − ξim

)
. We need the value of

the cyclotomic polynomials in X = 1.

Lemma 2.6. Let m ∈ N with m ≥ 2. Then the following holds.

Φm(1) =

{
p , if m = pl for some prime p and l ∈ N
1 , else.

This lemma is a direct consequence of [14, Corollary 4].

2.5 Circulant Matrices and Characters

We follow along [9, Section 2.2] and present some facts about circulant matrices and characters of
finite abelian groups.

Definition 2.7 (Circulant matrices). Let G be a finite abelian group and a = (ag)g∈G ∈ CG a
complex vector indexed by G. The G-circulant matrix associated with a is the G×G matrix

A :=
(
ai·j−1

)
(i,j)∈G×G ∈ CG×G.

Notice that the transposed matrix of a G-circulant matrix A associated to a = (ag)g∈G is again
a G-circulant matrix associated to a′ = (ag−1)g∈G.

Definition 2.8 (Characters). Let G be a finite abelian group. A character of G is a group
homomorphism

χ : G→ S1 := {z ∈ C| |z| = 1},

i.e., χ(g · h) = χ(g) · χ(h) for all g, h ∈ G. The set of all characters of G is denoted by Ĝ and forms

a group with the usual multiplication of functions, i.e., (χ · Ψ)(g) := χ(g) · Ψ(g) for all χ, Ψ ∈ Ĝ and

g ∈ G. The inverse of a character χ ∈ Ĝ as a group element is given by χ, the composition of the
complex conjugation and χ. The constant character χ ≡ 1 is the identity element of Ĝ and is called
trivial character. Each finite abelian group G is isomorphic to Ĝ. In particular, |G| = |Ĝ|, see
[37, Lemma 3.1].

Theorem 2.9. Let G be a cyclic group of order n with generator g ∈ G. Then all characters of G
are given by

χh(b) := ξ
h·logg(b)
n for 0 ≤ h ≤ n− 1,

where ξn ∈ C is a primitive root of unity of order n and logg(b) ∈ Z with glogg(b) = b ∈ G.

Proof. Let χ ∈ Ĝ be a character, then 1 = χ(1) = χ(gn) = χ(g)n holds. Therefore χ(g) has to be an
n-th root of unity. It is easy to see that the functions χh are well defined and n different characters.
Since there are only |Ĝ| = |G| = n different characters, that are all characters of G.
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Definition 2.10 (Dirichlet Characters). A Dirichlet character χ mod n is a character of the
group G = Z×n , for some n ∈ N. If n|m, the character χ of Z×n induces a character of Z×m via
concatenation of the natural projection π : Zn → Zm and χ, i.e., χ ◦ π. The conductor of a

character χ ∈ Ẑ×n is defined as the smallest number fχ ∈ N with fχ|n, such that χ is induced by

some character Ψ ∈ Ẑ×fχ , i.e., χ = Ψ ◦ π, where π : Zn → Zfχ is the natural projection. If n = fχ for
some character χ mod n, then χ is called primitive character.

A character χ ∈ Ẑ×n is said to be even if χ(−1) = 1, else we say χ is odd. A non-trivial character
χ with values in R, i.e., Im(χ) ∈ {±1}, is called quadratic (since χ2 ≡ 1 holds in this case).

We extend a Dirichlet character χ : Z×n → S1 of conductor fχ to a multiplicative function
χ′ : Z→ S1 ∪ {0} by

χ′(z) :=

{
χfχ(z) , if gcd(z, fχ) = 1

0 , else,

where χfχ : Z×fχ → S1 is a primitive character which induces χ. We just write χ instead of χ′, when
needed.

We identify characters χ of a finite abelian group G with the complex vector (χ(g))g∈G ∈ CG.
This lets us do some geometrical calculations on characters and provides a coherence between circular
matrices and characters.

We collect some properties concerning characters. For a proof see [9, Section 2.2] and use the

fact, that G ∼= Ĝ holds for all finite abelian groups G.

Lemma 2.11. Let G be a finite abelian group. Then the following holds.

1.) For all χ ∈ Ĝ we have

∑
g∈G

χ(g) =

{
|G| , if χ ≡ 1

0 , else.

2.) All characters χ ∈ Ĝ have Euclidean norm ||χ||2 =
√
〈χ, χ〉 =

√
|G|.

3.) Different characters χ, Ψ ∈ Ĝ are pairwise orthogonal, i.e. 〈χ, Ψ〉 = 0.
4.) For all g ∈ G we have

∑
χ∈Ĝ

χ(g) =

{
|G| , if g is the identity element of G

0 , else.

Definition 2.12. The circulant matrix of a finite abelian group G is defined as

PG := |G|−1/2 · (χ(g))(g,χ)∈G×Ĝ ∈ CG×Ĝ.

It follows directly from Lemma 2.11 that PG is unitary, i.e., P−1G = PG
T

.

Lemma 2.13 ([9, Lemma 2.4]). Let G be a finite abelian group and A ∈ CG×G be a complex G×G
matrix. The A is G-circulant if and only if the Ĝ×Ĝ matrix P−1G ·A ·PG is diagonal; equivalently the
columns of PG are the eigenvectors of A. If A is the G-circulant matrix associated with a = (ag)g∈G,

its eigenvalues corresponding to χ ∈ Ĝ is λχ = 〈a, χ〉 =
∑
g∈G ag · χ(g).
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The following statement is a direct consequence of the previous lemma.

Theorem 2.14. Let G be a finite abelian group, a = (ag)g∈G ∈ CG be a complex vector with
associated G-circulant matrix A. The norm of the vector a is given by

||a||22 = |G|−1 ·
∑
χ∈Ĝ

|λχ|2,

where λχ = 〈a, χ〉 =
∑
g∈G ag · χ(g) is the eigenvalue of A corresponding to the eigenvector χ.

Proof. Since PG and therefore P
T

G is unitary, which means that it is norm preserving, we have

||a||22 =
∣∣∣∣PT

G · a
∣∣∣∣2
2

=
∑
χ∈Ĝ

∣∣∑
g∈G

ag · |G|−
1/2χ(g)

∣∣2
= |G|−1

∑
χ∈Ĝ

|λχ|2.

2.6 Dirichlet L-Series

Definition 2.15. Let χ be any Dirichlet character, then the Dirichlet L-function L(·, χ) is defined
as

L(·, χ) : H→ C, s 7→ L(s, χ) :=
∑
n∈N

χ(n)

ns
,

where H := {s ∈ C| <(s) > 1}.

Since the sum in the definition is absolutely convergent for every s ∈ H, the sum converges
uniformly on every Ht := {s ∈ C| <(s) > t} for every t > 1. Hence, L(·, χ) is an analytic function on
H. If χ is the trivial character mod 1, i.e., χ(n) = 1 for all n ∈ Z, the Dirichlet L-function L(·, χ) is
given by the Riemann zeta function ζ(s) =

∑
n∈N

1
ns . If χ is a non-trivial character mod m ∈ N, the

Dirichlet L-function L(·, χ) can be extended uniquely to the whole complex plane, see for example
[27, Theorem 10.7. ff]. Therefore, L(1, χ) is well defined in this case.

Theorem 2.16 ([27, Theorem 4.9.]). If χ is a non-trivial character mod m ∈ N, then

L(1, χ) 6= 0.

Theorem 2.17. There exists a constant C > 0, such that for every non quadratic Dirichlet character
χ mod m ∈ N of conductor fχ > 1

|L(1, χ)| ≥ 1

C log(fχ)
,

and for every quadratic character χ mod m ∈ N of conductor fχ > 1

|L(1, χ)| ≥ 1

C
√
fχ
.

Proof. The first inequality was proven by Landau, see [19, p. 29]. For the second inequality, see [34]
or [17] for concrete results on the constant C > 0.
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3 General Algorithmic Approach

In this section we sketch the algorithmic approach and sufficient success conditions presented in
[9,7,3] to find a shortest generator of some principal fractional ideal, given an arbitrary generator.

A standard approach for recovering a short generator of a principal fractional ideal is shifting
this problem to a closest vector problem with requirements to the distance of the target point to the
lattice, called bounded-distance decoding (BDD).

Problem 3.1 (BDD). Given a lattice L = L(B) and a target point t ∈ span(B) with the property
minv∈L ||v− t||2 ≤ r for some r < 1

2λ1(L), where λ1(L) := minv∈L\{0} ||v||2, find the unique vector
v ∈ L with ||v− t||2 ≤ r.

We will use the following Round-off Algorithm [2] for solving this problem in our setting.

Algorithm 1: Round-off Algorithm

1 Input: B, t.
2 Output: A lattice vector v ∈ L.

3 a← b(B∗)T · te
4 v← B · a
5 return (v,a)

Lemma 3.2 (Correctness Round-off Algorithm, [9, Claim 2.1]). Let L(B) ⊆ Rn be a lattice and
t := v + e ∈ Rn for some v ∈ L(B) and e ∈ Rn. If 〈e, b∗j 〉 ∈ [− 1

2 ,
1
2 ) holds for all j ∈ {1, . . . , k}, the

Round-off Algorithm 1 outputs v = B · a by input B, t.

Note that in general the condition 〈b∗j , e〉 ∈
[
− 1

2 ,
1
2

)
for all j ∈ {1, . . . , k} does not guarantee that

the vector v is in fact the closest vector in L(B) to t = v + e. Therefore, one needs a “sufficiently
good” basis B of the lattice.

Provided that the input basis is sufficiently well suited, Algorithm 2 recovers a shortest generator
of a principal fractional ideal in some algebraic number field K.

Algorithm 2: Recovering a short generator with given basis of O×K
1 Input: A generator g′ ∈ K× of some principal fractional ideal a and b1, . . . , bk ∈ O×K

such that B := {Log(b1), . . . ,Log(bk)} is a basis of Γ = Log(O×K).
2 Output: A generator ge ∈ K of a.

3 (a1, . . . , ak)T ← b(B∗)T · Log(g′)e (Round-off-Step)

4 u′ ←
∏k
i=1 b

ai
i

5 ge ← g′/u′

6 return ge

Lemma 3.3 (Correctness of Algorithm 2, [9, Theorem 4.1]). Let a be a principal fractional ideal in
some algebraic number field K of degree n = [K : Q] with signature (r, s) and k := r + s− 1 and let
b1, . . . , bk ∈ O×K be a fundamental system of units of O×K . Assume that there exists some generator
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g ∈ K× of a satisfying ∣∣〈Log(g),Log(bi)
∗〉
∣∣ < 1

2
for all i ∈ {1, . . . , k}.

Then for any input generator g′ ∈ K× of a Algorithm 2 outputs a generator ge of a with same norm
as g, i.e., ||Log(g)||2 = ||Log(ge)||2.

Theorem 3.4. Algorithm 2 has (classical) polynomial running time in n = [K : Q].

Proof. Since k = r+ s− 1 ≤ n, the algorithm only computes the n× k matrix B, the dual basis B∗,
which includes computing the inverse of a k× k matrix, and some matrix and vector multiplications
of matrices and vectors of size k, which is all polynomial in n.

One natural question arises: If we draw a generator g ∈ K× from a distribution D over K (w.l.o.g.
we ignore the case g = 0), does the condition

∣∣〈Log(g),Log(bi)
∗〉
∣∣ < 1

2 hold for all i ∈ {1, . . . , k} with
non-negligible probability ω > 0 for a fixed basis b1, ..., bk? Lemma 3.3 gives rise to the following
definition.

Condition 3.5. Let D be a probability distribution over some algebraic number field K and M > 0.
If the probability that for all vectors v1, . . . , vk ∈ Rn of Euclidean norm 1 orthogonal to the all-one
vector 1 ∈ Rn the inequalities∣∣〈Log(g), vi〉

∣∣ < 1

2M
for all i ∈ {1, . . . , k}

are satisfied is at least ω ∈ (0, 1), where g ∈ K is drawn from D, we say D satisfies Condition
3.5 with parameters M and ω.

Condition 3.5 can be seen as a sufficient success condition on Algorithm 2, as shown in the
following theorem.

Theorem 3.6. If D is a distribution over an algebraic number field K satisfying Condition 3.5 with
parameters M = max{||Log(b1)∗||2, . . . , ||Log(bk)∗||2} and ω ∈ (0, 1) for the input basis b1, ..., bk ∈
O×K and g ∈ K is chosen from D, then for any input generator g′ of a = gOK , Algorithm 2 outputs
a generator ge ∈ K of a with Euclidean norm at most the norm of g with probability at least ω > 0.

Proof. We set vi := Log(bi)
∗
/||Log(bi)∗||2, which have norm 1 and are orthogonal to the all-one vector

1 ∈ Rn, where n = [K : Q]. Since the distribution D satisfies Condition 3.5 with parameters M and
ω > 0 for b1, ..., bk ∈ O×K , we conclude that

∣∣〈Log(g),Log(bi)
∗〉
∣∣ = ||Log(bi)

∗||2 ·
∣∣〈Log(g),vi〉

∣∣ < M
1

2M
=

1

2

holds with probability ω.

As shown in [9, Section 5] for arbitrary cyclotomic fields Q(ξm) two natural distributions satisfy
Condition 3.5 with a not too small parameter ω > 0 for the basis discussed in Section 4.2: The
continuous Gaussian and other natural distributions. The former is a consequence of the following
theorem about the Gaussian distribution, for more details see [9, 5 Tail Bounds].
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Lemma 3.7 ([9, Lemma 5.4.]). Let n ∈ N, X1, . . . , Xn, X
′
1, . . . , X

′
n be i.i.d. N(0, σ2) variables for

some σ > 0, and let X̂i =
(
X2
i + (X ′i)

2
)1/2

for i ∈ {1, . . . , n}. Then for any set of l ∈ N vectors

a(1), . . . ,a(l) ∈ Rn of Euclidean norm 1 that are orthogonal to the all-one vector 1 ∈ Rn and every
t ≥ Cσ for some universal constant Cσ (that only depends on σ) it holds that

Pr

[
∃j :

∣∣∣〈 (log(X̂1), ..., log(X̂n)
)T

,a(j)
〉∣∣∣ ≥ t] ≤ 2l exp

(
− t

4

)
.

Applied to our setting of cyclotomic number fields, we obtain that Condition 3.5 is satisfied
for Gaussian distributions if the norms of the basis elements in the logarithmic embedding are
sufficiently short.

Corollary 3.8. Let m ∈ N, m ≥ 3, n = ϕ(m), and k = n/2 − 1. If M := max{||Log(bj)
∗||2,

. . . , ||Log(bk)∗||2} is small enough, i.e., 1/2M ≥ Cσ, Condition 3.5 is satisfied for Gaussian distribu-
tions (with standard deviation σ) with parameters M and ω(m) = 1− 2k exp

(
− 1

8M

)
, if ω(m) > 0.

There is one issue we did not mentioned yet. Algorithm 2 uses a basis b1, . . . , bk of O×K (up to
roots of unity), i.e., a fundamental set of units, with sufficiently short dual vectors. However, in
general such a basis is not known for some algebraic number field K. Instead, for special instances
of cyclotomic number fields K = Q(ξm), namely if m is a prime-power or a product of two prime
powers (as analyzed in the next section), only a well suited basis b1, . . . , bk ∈ O×m of a subgroup F
with finite index in O×m is known. This can be compensated for by computing a fundamental system
of units of O×K and afterwards a set of representatives u1, . . . , uf ∈ O×K of O

×
K/µ(K)F , using classical

[4] or quantum [12] algorithms. The quantum algorithm has running time polynomial in n = [K : Q]
and log(|dK |), where dK denotes the discriminant of K. Notice, in the case that K = Q(ξm) is a
cyclotomic field, we obtain |dK | ∈ O(n log(m)) as a direct consequence of [37, Proposition 2.7.].
Hence, the quantum algorithm runs in polynomial time in m. Note that the calculation of the set
of representatives u1, . . . , uf ∈ O×K of O

×
K/µ(K)F has to be done only once for each cyclotomic field

K = Q(ξm) and can therefore be seen as precomputation cost. If one has computed such a set of
representatives u1, . . . , uf ∈ O×K , we can enumerate over all of them and apply Algorithm 2 for each
g′/ui, increasing the running time only by the factor f := |O×K/µ(K)F |. The detailed algorithm if one
has precomputed such a set of representatives can be found in the appendix, see Algorithm 3.

In this work, we show that for cyclotomic number fields Q(ξm) the index of the basis presented
in Section 4.2 is polynomial in m, if m = pαqβ for some suitable odd primes p and q. This yields a
polynomial running time in m of Algorithm 2 in this case.

4 Finding Shortest Generators in Cyclotomic Fields of Conductor
m = pαqβ

In this section we study the SG-PIP in cyclotomic fields of composite conductor m = pαqβ for distinct
odd primes p, q. We first introduce a new notion that is crucial to our analysis, see Subection 4.1.
In Subection 4.2, we fix the subgroup of the units and a corresponding basis we are using in our
approach for Algorithm 3. In Subection 4.3, we derive sufficient conditions under which the index of
this subgroup is sufficiently small for Algorithm 3 to work. In Subection 4.4, we show that under
sufficient conditions, our basis of this subgroup is sufficiently well suited for Algorithm 3 to recover
a shortest generator, as required by Theorem 3.6. This section is concluded in Subsection 4.5, which
puts all the results derived in the previous subsections together, showing that, under sufficient
conditions, the SG-PIP can be solved efficiently in cyclotomic fields of conductor m = pαqβ .
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4.1 Generator Prime Pairs

In the next section we investigate the group generated by the elements
ξum−1
ξm−1 ∈ O

×
m with j ∈ Z×m for

the case, that m = pαqβ only has two distinct odd prime factors. We show the index of this group
in the full group of units is finite iff p is a generator of Z×

qβ
or a square of a generator and q is a

generator of Z×pα or a square of a generator. Therefore, we introduce the following notion and derive
several results surrounding it.

Definition 4.1. Let α, β ∈ N and p, q ∈ P be two distinct odd primes with the following properties:

i) • If q − 1 ≡ 0 mod 4: p is a generator of Z×
qβ

.

• If q − 1 6≡ 0 mod 4: p is a generator of Z×
qβ

or has order
ϕ(qβ)

2 = qβ−1 · q−12 in Z×
qβ

.
And

ii) • If p− 1 ≡ 0 mod 4: q is a generator of Z×pα .

• If p− 1 6≡ 0 mod 4: q is a generator of Z×pα or has order ϕ(pα)
2 = pα−1 · p−12 in Z×pα .

We call such a pair (p, q) an (α, β)-generator prime pair ((α, β)-GPP). If (p, q) is an (α, β)-
generator prime pair for every α, β ∈ N, we just say that (p, q) is a generator prime pair (GPP).

Theorem 4.2 ([8, Lemma 1.4.5.]). Let p be an odd prime, and let g ∈ Z be a primitive root modulo
p. Then either g or g + p is a primitive root modulo every power of p.

In particular, if g ∈ Z is a generator of Z×p2 and therefore also for Z×p , then g is a generator for

all Z×
pl

with l ∈ N.

A direct consequence of Theorem 4.2 is that Z×
pl

is cyclic for every l ∈ N and odd prime number
p ∈ P.

Corollary 4.3. Let p be an odd prime, l ∈ N and g ∈ Z×
pl

be a generator. Then the even Dirichlet

characters of Z×
pl

are given by

χh(b) := ξ
h·a(b)
ϕ(pl)

for 0 ≤ h ≤ ϕ(pl)− 1 and h is even,

where ξϕ(pl) ∈ C is a primitive root of unity of order ϕ
(
pl
)

and a(b) ∈ Z with ga(b) = b ∈ Z×
pl

.

Proof. Since Z×
pl

is cyclic, there exists a generator g ∈ Z×
pl

. Hence, all characters of Z×
pl

are given by

χ1, . . . , χϕ(pl)−1, where χh for 0 ≤ h ≤ ϕ
(
pl
)
−1 denotes the corresponding character from Theorem

2.9. We only have to prove that χh is even iff h is even. Since ga ≡ −1 mod pl for a =
ϕ(pl)

2
(because g has order ϕ

(
pl
)
), we have χh(−1) = ξahϕ(pl) = (−1)h = 1 iff h is even.

Corollary 4.4. Let (p, q) be an (α, β)-GPP for some α, β ∈ N and β ≥ 2. Then (p, q) is an
(α, l)-GPP for every l ∈ N. Analogously, the same results follows if we swap p and q.

In particular, (p, q) is a GPP iff it is a (2, 2)-GPP.

Proof. If p is a generator of Z×
qβ

and therefore also for Z×q2 and Z×q (here we used β ≥ 2), then p is a

generator of Z×
ql

for all l ∈ N by Theorem 4.2.

Else, the order of p in Z×
qβ

is
ϕ(qβ)

2 . Let g ∈ Z be a generator of Z×
qβ

with g2 ≡ p mod qβ . Again,

g is a generator for all Z×
ql

with l ∈ N. Now, let a ∈ Z with ga ≡ p mod ql for some l ≥ β ≥ 2. We

12



conclude ga ≡ p ≡ g2 mod pβ , hence a ≡ 2 mod ϕ
(
qβ
)
, which implies a ≡ 2 mod ϕ

(
q2
)

= q · q−12 .
Since

2 = gcd
(
a, ϕ

(
q2
))

= gcd
(
a, ϕ

(
ql
))

the order of ga in Z×
ql

is
ϕ(ql)

2 .

The only case left is l < β, but since g2 ≡ p mod qβ implies g2 ≡ p mod ql and g is also a

generator of Z×
ql

, p has order
ϕ(ql)

2 in Z×
ql

.

Notation 4.5. Let p, q ∈ P be two distinct odd primes and α, β ∈ {0, 1, 2} be maximally chosen,
such that (p, q) is an (α, β)-GPP. We denote this by saying that (p, q) is an (α, β)M -generator
prime pair. The M indicates, that α and β are chosen maximally.

Figure 1 lists an example for each tuple (α, β) ∈ {0, 1, 2}2, such that (p, q) is an (α, β)M -generator
prime pair with p < q. As we show in this work, the index of the group generated by the elements

0 1 2

0 5, 29 53, 59 5, 11

1 3, 37 3, 1006003 3, 17

2 3, 13 3, 11 3, 5

Fig. 1. (α, β)M -generator prime pairs

ξjm−1
ξm−1 in the full group of units for the case m = pαqβ is finite iff (p, q) is an (α, β)-generator prime

pair, if we only consider odd prime factors. Hence, if (p, q) is a generator prime pair, the finiteness
of this index only depends on the prime pair (p, q) and not on the exponents α, β ∈ N.

Figure 2 lists the four smallest primes q > p for p = 3, 5, 7, 11, 13, 17 such that (p, q) is a generator
prime pair.

p q p q p q p q p q p q p q

3 5 5 17 7 11 11 13 13 37 17 23 19 23

3 7 5 23 7 17 11 17 13 41 17 31 19 29

3 23 5 37 7 23 11 29 13 59 17 37 19 41

3 29 5 47 7 47 11 31 13 67 17 41 19 47

Fig. 2. Generator prime pairs

Figure 3 shows the value of

Q(x) :=
Number of GPP (p, q) with 2 < p < q ≤ x

Number of Primepairs (p, q) with 2 < p < q ≤ x

for x ∈ N with x ≥ 5. It seems reasonable, that being a generator prime pair for two distinct odd
primes p, q is a relatively common case, i.e., approximately 35% of all odd prime pairs up to 32600
are generator prime pairs, as Figure 3 shows.
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Fig. 3. Values of the quotient Q(x) = Number of GPP (p, q) with 2 < p < q ≤ x
Number of prime pairs (p, q) with 2 < p < q ≤ x

An interesting fact is that a similar notion of prime pairs was used in the proof of Catalan’s
conjecture by Preda Mihăilescu [24], namely double Wieferich prime pairs (p, q), which satisfy

pq−1 ≡ 1 mod q2 and qp−1 ≡ 1 mod p2,

see [32, Chapter 1]. They are related to generator prime pairs as follows.

Lemma 4.6. Let (p, q) be a (1, 1)M -generator prime pair. Then (p, q) is a double Wieferich prime
pair.

Proof. Since (p, q) is a (1, 1)M -generator prime pair, the order of p ∈ Z×q2 is given by q−1
2 or q − 1.

This implies pq−1 ≡ 1 mod q2. The equation qp−1 ≡ 1 mod p2 follows analogously.

There are only six known double Wieferich prime pairs, namely (p, q) = (2, 1093), (3, 1006003),
(5, 1645333507), (83, 4871), (911, 318917) and (2903, 18787), see [36]. Only two of them are (1, 1)M -
generator prime pairs, (p, q) = (3, 1006003) and (5, 1645333507).

4.2 Suitable Units in the Case m = pαqβ

Let m ∈ N with m ≥ 3. For the rest of this section, for j ∈ Z×m let

bj :=
ξjm − 1

ξm − 1
∈ O×m (1)

and
bj := Logr(bj) ∈ Rn/2,

where n = ϕ(m). Further, let Gm := Z×m/{±1} (one can identify the group Gm with the set of
representatives {l ∈ N| 1 ≤ l < m

2 with gcd(l,m) = 1}) and let Sm denote the group generated by
{bj | j ∈ Gm\{1}} and ±ξm, i.e.,

Sm :=
〈
± ξm, bj | j ∈ Gm\{1}

〉
=
〈
± ξm, bj | 1 < j <

m

2
, gcd(j,m) = 1

〉
⊆ O×m.
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We collect the vectors bj for j ∈ Gm\{1} in the matrix

B :=

(
log

(∣∣∣ξijm − 1

ξim − 1

∣∣∣))
i∈Gm
j∈Gm\{1}

. (2)

Notice that b−j = ξam ·bj for some a ∈ Zm, hence it is sufficient to consider a set of representatives
of {bj | j ∈ Gm\{1}} as generators of Sm. The characters of Gm = Z×m/{±1} correspond to the even
characters of Z×m via concatenation with the canonical projection Z×m → Z×m/{±1}. We indentify the
characters of Gm with the even characters of Z×m.

If [O×m : Sm] is finite, the elements bj for j ∈ Gm\{1} have to be a basis of the group Sm, by

comparing the Z-rank of Sm and O×m, which is ϕ(m)
2 − 1 = |Gm\{1}|.

4.3 Index of the Subgroup in the Full Unit Group

We determine the index of Sm in the full group of units O×m in the case m = pαqβ with α, β ∈ N and
distinct odd primes p, q. As we show in this work, the index is finite iff (p, q) is an (α, β)-generator
prime pair. Moreover, in this case the index is bounded by the product of the class number h+m and
a factor, which is linear in m.

The next lemma provides an explicit expression for the index of Sm in the full group of units
O×m, which is a direct consequence of [37, Corollary 8.8.].

Lemma 4.7. Let m ∈ N with m ≥ 3 and m 6≡ 2 mod 4. If m is not a prime-power, i.e., has at
least two distinct prime factors, the index of Sm in O×m is given by

[O×m : Sm] = 2h+m
∏
χ∈Ĝm
χ 6≡1

∏
p|m
p∈P

(1− χ(p))

if the right hand side is not equal 0, else the index is infinite. The factor h+m is the class number of
Q(ξm)+ := Q(ξm + ξ−1m ).

We define

βm :=
∏
χ∈Ĝm
χ 6≡1

∏
p|m
p∈P

(1− χ(p))

for m ∈ N.

Theorem 4.8. Let p, q be two distinct odd primes and m = pαqβ for some α, β ∈ N. Then

βm =
ϕ(m)

4
=

(p− 1)(q − 1)

4pq
m

iff (p, q) is an (α, β)-GPP, and βm = 0 otherwise.

In particular, the index is finite and bounded by [O×m : Sm] = h+m
(p−1)(q−1)

2pq m ≤ h+m · m2 , iff (p, q)

is an (α, β)-GPP.
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Proof. Assume that (p, q) is an (α, β)-generator prime pair. Since m is only divisible by the primes
p, q, we obtain

βm =
∏
χ∈Ĝm
χ6≡1

∏
t|m
t∈P

(1− χ(p)) =
∏
χ∈Ĝm
χ 6≡1

(1− χ(p)) (1− χ(q)) .

If χ ∈ Ẑ×m is an even character of conductor fχ > 1 with pq|fχ, then χ(p) = χ(q) = 0 and therefore
(1− χ(p)) (1− χ(q)) = 1. Hence, we split the product into two products over non-trivial, even
Dirichlet characters of Z×pα and Z×

qβ
.

∏
χ∈Ĝm
χ 6≡1

(1− χ(p)) (1− χ(q)) =

 ∏
χ∈Ĝpα
χ 6≡1

(1− χ(q))

 ·
 ∏
χ∈Ĝ

qβ

χ 6≡1

(1− χ(p))

 .

Hence it is sufficient to prove ∏
χ∈Ĝ

qβ

χ 6≡1

(1− χ(p)) =
ϕ
(
qβ
)

2
.

Let g be a generator of Z×
qβ

, and a ∈ Z with ga ≡ p mod qβ . Since (p, q) is an (α, β)-generator prime

pair, we conclude gcd

(
a,

ϕ(qβ)
2

)
= 1 by comparing the order of p in Z×

qβ
, independent whether

q − 1 ≡ 0 mod 4 or q − 1 6≡ 0 mod 4. The even characters of Z×
qβ

are given by Corollary 4.3, which
implies ∏

χ∈Ĝ
qβ

χ 6≡1

(1− χ(p)) =
∏

1≤h≤ϕ(qβ)−1
h even

(
1− ξhaϕ(qβ)

)

=
∏

1≤k≤ϕ(q
β)

2 −1

(
1− ξkaϕ(qβ)

2

)

=
(1)

∏
1≤k≤ϕ(q

β)
2 −1

(
1− ξkϕ(qβ)

2

)

=
(2)

X
ϕ(qβ)

2 − 1

X − 1

∣∣∣
X=1

=

(
X

ϕ(qβ)
2 −1 +X

ϕ(qβ)
2 −2 + . . .+ 1

)∣∣∣
X=1

=
ϕ
(
qβ
)

2
,

where we used in equality (1) that multiplying with a is a permutation of Zϕ(qβ)
2

with 0 · a ≡ 0

mod ϕ(qβ)
2 , since gcd

(
a, ϕ(q

β)
2

)
= 1, and in (2) we used X l − 1 =

∏
0≤k≤l−1

(
X − ξkl

)
for all l ∈ N.
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Conversely, assume that (p, q) is not an (α, β)-generator prime pair, i.e., w.l.o.g. p is not a

generator of Z×
qβ

and has not order
ϕ(qβ)

2 in Z×
qβ

if q − 1 6≡ 0 mod 4. Again, let g be a generator of

Z×
qβ

, and a ∈ Z with ga ≡ p mod ql.

– If ϕ
(
qβ
)
≡ q − 1 ≡ 0 mod 4, we have gcd

(
a, ϕ

(
qβ
))
> 1, else p would generate Z×

qβ
. Let t ∈ P

with t| gcd
(
a, ϕ

(
qβ
))

. Then h :=
ϕ(qβ)
t ∈ N is even and 1 ≤ h ≤ ϕ

(
qβ
)
− 1. Notice, this also

holds for t = 2, since 4|ϕ
(
qβ
)
. By Corollary 4.3, there is a non-trivial, even Dirichlet character

χh of Z×
qβ

with

χh(p) = ξahϕ(qβ) = ξ
a
t ϕ(qβ)
ϕ(qβ)

= 1.

– If q − 1 6≡ 0 mod 4 and therefore ϕ
(
qβ
)
6≡ 0 mod 4, we have gcd

(
a, ϕ

(
qβ
))

> 2, else p

would have order ϕ
(
qβ
)

or
ϕ(qβ)

2 in Z×
qβ

. Since 4 - ϕ
(
qβ
)
, there is some t ∈ P with t 6= 2 and

t| gcd
(
a, ϕ

(
qβ
))

. Then h :=
ϕ(qβ)
t ∈ N is even and 1 ≤ h ≤ ϕ

(
qβ
)
− 1. Again, by Corollary 4.3,

there is a non-trivial, even Dirichlet character χh of Z×
qβ

with

χh(p) = ξahϕ(qβ) = ξ
a
t ϕ(qβ)
ϕ(qβ)

= 1.

We conclude βm = 0 in this case.

We have proven that the factor βm is sufficiently small, if m = pαqβ for some (α, β)-generator
prime pair (p, q). The second factor of the index [O×m : Sm] is given by the class number h+m, which
has to be sufficiently small, too.

Theorem 4.9 ([25, Theorem 1.1.]). Let m be a composite integer, m 6≡ 2 mod 4, and let Q(ξm)+ =
Q(ξm + ξ−1m ). Then the class number h+m of Q(ξm)+ is

h+m =


1 if ϕ(m) ≤ 116 and m 6= 136, 145, 212,

2 if m = 136,

2 if m = 145,

1 if m = 256,

where ϕ(·) is the Euler phi function. Furthermore, under the generalized Riemann hypothesis (GRH),
h+212 = 5 and h+512 = 1.

Remark 4.10. In our case, m = pαqβ for some (α, β)-generator prime pair (p, q). Since we want
a polynomial running time in m of Algorithm 2 for cyclotomic fields Km = Q(ξm), we need a
polynomial bound of the index [O×m : Sm] = 2h+mβm. The factor βm ∈ N is bounded by m

4 , hence it is
sufficient if h+m is bounded by some polynomial in m, if m = pαqβ, at least for a fixed generator prime
pair (p, q). We do not know if such a bound holds. However, by Theorem 4.9 one could conjecture
that the class number h+m is bounded by some polynomial. In [10] this is presented as a reasonable
conjecture.
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4.4 Norms of the Basis Elements

We determine the norm of the dual vectors b∗j for j ∈ Gm\{1} in the case, that m = pαqβ , for some
α, β ∈ N and (p, q) is an (α, β)-generator prime pair. Again, we follow along [9, Chapter 3], but there
are some issues with the used methods there, since they only work in the prime-power case. For
example, some eigenvalues of the matrix Z (see below) are equal zero, hence we can not evaluate the
norm of the vector associated to the Gm-circulant inverse. Further, the calculation of the eigenvalues
in the non-prime-power case is more complicated. As we show in this work, the eigenvalues of Z
corresponding to the non-trivial characters are all non-zero iff (p, q) is an (α, β)-generator prime
pair and m = pαqβ for some α, β ∈ N.

Let m ∈ N with m ≥ 2. We define

zj := ξjm − 1 ∈ Om

for all j ∈ Z×m, and

zj := Logr(zj) ∈ Rn/2

for all j ∈ Gm (again, n = ϕ(m)). Notice that zj is well defined since ξ−jd − 1 is the complex

conjugate of ξjd − 1, hence |ξ−jm − 1| = |ξjm − 1| and therefore Logr(zj) = Logr(z−j). We collect all
the vectors zj−1 for j ∈ Gm in the matrix Z ∈ Rn/2×n/2, i.e.,

Z :=
(

log
(∣∣ξi·j−1

m − 1
∣∣))

i,j∈Gm
.

Since the entry with index (i, j) ∈ Gm ×Gm only depends on i · j−1, the matrix Z is Gm-circulant
and associated with z1. Notice that the vectors zj and the matrix Z only depend on m.

Our first goal is to prove that only the eigenvalue of Z corresponding to the trivial character of
Z×m is zero, in the case that m = pαqβ , for some α, β ∈ N and distinct primes p and q.

Lemma 4.11. Let m = pαqβ for some distinct primes p, q ∈ P and α, β ∈ N. Then the eigenvalue
λχ of Z corresponding to the trivial character 1 ≡ χ ∈ Gm is λχ = 0.

Proof. By Theorem 2.14, the eigenvalue of the Gm-circulant matrix Z corresponding to the trivial
character 1 ≡ χ ∈ Gm is given by

λχ = 〈z1, 1〉 =
1

2

∑
j∈Z×m

log
(∣∣ξjm − 1

∣∣) =
1

2
log

∣∣∣ ∏
j∈Z×m

(
ξjm − 1

) ∣∣∣
 =

1

2
log
(∣∣Φm(1)

∣∣) =
(1)

0,

where (1) follows from Corollary 2.6.

Lemma 4.12. Let m = pαqβ for some distinct primes p, q ∈ P and α, β ∈ N. Furthermore, let
χ ∈ Gm be an even character of conductor fχ > 1 with pq|fχ. Then the eigenvalue λχ of Z
corresponding to χ is given by

λχ =
1

2

∑
a∈Z×fχ

χ(a) · log(|1− ξafχ |).
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Proof. Let π : Z×m → Z×f be the canonical projection and f := fχ > 1 be the conductor of χ. For

a ∈ Z×f and a fixed integer representative a′ ∈ Z of a ∈ Z×f we have

π−1(a) =

{
a′ + k · f ∈ Z×m

∣∣ 0 ≤ k < m

f

}
, (3)

since pq|f implies gcd(a′ + k · f,m) = 1, and the kernel of π has size m
f . One can easy see that the

m
f different numbers a′ + k · f for 0 ≤ k < m

f are indeed different mod m. Now, by Theorem 2.14,
the eigenvalue of the Gm-circulant matrix Z corresponding to χ is given by

λχ = 〈z1, χ〉 =
∑
j∈Gm

χ(j) · log
(∣∣ξjm − 1

∣∣)
=

1

2

∑
a∈Z×f

χ(a)
∑
j∈Z×m
π(j)=a

log
(∣∣1− ξjm∣∣)

=
(3)

1

2

∑
a∈Z×f

χ(a) log

 ∏
0≤k<m

f

∣∣1− ξa′+k·fm

∣∣
=
(?)

1

2

∑
a∈Z×f

χ(a) log
(∣∣1− ξaf ∣∣) ,

where we used in (?) the identity Xn − Y n =
∏

0≤k<n
(
X − ξknY

)
for n := m

f , X := 1 and Y := ξa
′

m ,

together with the fact that ξk·fm = ξkn and ξa
′

f = ξa.

Lemma 4.13. Let m = pαqβ for some distinct primes p, q ∈ P and α, β ∈ N. Furthermore, let
χ ∈ Gm (i.e., χ is an even character of Z×m) be a character of conductor fχ > 1 with q - fχ. Then
the eigenvalue λχ of Z corresponding to χ is given by

λχ =
1

2
(1− χ(q))

∑
a∈Z×fχ

χ(a) · log(|1− ξafχ |).

Analogously, the same results hold if we swap p and q.

Proof. Let f := fχ > 1 be the conductor of χ, i.e., f = pe for some 1 ≤ e ≤ α. Further, let
π : Z×m → Z×f be the canonical projection. For a ∈ Z×f and a fixed integer representative a′ ∈ Z of

a ∈ Z×f we have

π−1(a) = Ψ−1
({

a′ + k · f ∈ Z×pα
∣∣ 0 ≤ k < pα

f

}
× Z×

qβ

)
⊆ Z×m (4)

by Chinese remainder theorem, where

Ψ : Zm → Zpα × Zqβ
a 7→ (a mod pα, a mod qβ).
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Therefore, the Chinese remainder theorem implies that there are r1, r2 ∈ Z such that r1q
β ≡ 1

mod pα and r2p
α ≡ 1 mod qβ , which yields

π−1(a) =

{
(a′ + k · f) · r1qβ + y · r2pα ∈ Z×m

∣∣ 0 ≤ k < pα

f
, y ∈ Z×

qβ

}
⊆ Z×m (5)

for a fixed integer representative a′ ∈ Z of a ∈ Z×f . For a ∈ Z×f we have

∏
j∈Z×m
π(b)=a

(
1− ξjm

)
=
∏
y∈Z×

qβ

∏
0≤k< pα

f

(
1− ξkr1pα

f

· ξyr2
qβ
· ξa

′r1
pα

)

=
(1)

∏
y∈Z×

qβ

(
1− ξyr2

pα

f

qβ
· ξa

′r1
pα

f

pα

)

=
(2)

∏
y∈Z×

qβ

(
1− ξy

pα

f

qβ
· ξar1f

)

=
(3)

1− ξar1q
β

f

1− ξar1qβ−1

f

=
(4)

1− ξaf
1− ξar1qβ−1

f

.

In equation (1) we have used again the identity Xn− Y n =
∏

0≤k<n
(
X − ξknY

)
for n := pα

f , X := 1

and Y := ξyr2
qβ
· ξar1pα , where r1 ∈ Z×pα

f

and therefore multiplication with r1 is a permutation of Z pα

f
.

The same permutation argument implies equation (2), since r2 ∈ Z×
qβ

. In (3) we have used the
identity

∏
a∈Z×

qβ

(
X − ξaqβY

)
=

Xqβ − Y qβ

Xqβ−1 − Y qβ−1

for X = 1 and Y = ξar1f . The hypothesis r1q
β ≡ 1 mod pα implies r1q

β ≡ 1 mod f and therefore
equation (4). Finally, we calculate the eigenvalue λχ.
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λχ = 〈z1, χ〉 =
1

2

∑
j∈Z×m

χ(j) · log
(∣∣1− ξjm∣∣)

=
1

2

∑
a∈Z×f

χ(a)
∑
j∈Z×m
π(j)=a

log
(∣∣1− ξjm∣∣)

=
1

2

∑
a∈Z×f

χ(a) log


∣∣∣∣∣ ∏
j∈Z×m
π(j)=a

(
1− ξjm

) ∣∣∣∣∣


=
1

2

∑
a∈Z×f

χ(a) log

(∣∣∣∣∣ 1− ξaf
1− ξar1qβ−1

f

∣∣∣∣∣
)

=
1

2

∑
a∈Z×f

χ(a) log
(∣∣1− ξaf ∣∣)− 1

2

∑
a∈Z×f

χ(a) log
(∣∣∣1− ξar1qβ−1

f

∣∣∣)
=
(5)

1

2

∑
a∈Z×f

χ(a) log
(∣∣1− ξaf ∣∣)− 1

2

∑
a∈Z×f

χ(a · q) log
(∣∣1− ξaf ∣∣)

=
1

2
(1− χ(q))

∑
a∈Z×f

χ(a) log
(∣∣1− ξaf ∣∣) ,

where we used in (5) the substitution a for ar1q
β−1 and the fact, that r1q

β ≡ 1 mod pα implies
r1q

β−1 · q ≡ r1qβ ≡ 1 mod f , i.e., q is the multiplicative inverse of r1q
β−1 mod f .

The next theorem provides a connection between the occurring sum in the eigenvalues λχ and
the Dirichlet L-function.

Theorem 4.14 ([37, Lemma 4.8. and Theorem 4.9.]). Let χ be an even Dirichlet character mod
m ∈ N of conductor fχ > 1. Then∣∣∣ ∑

a∈Z×fχ

χ(a) · log
(∣∣1− ξafχ ∣∣) ∣∣∣ =

√
fχ · |L(1, χ)|.

Theorem 4.15. Let m = pαqβ for some distinct primes p, q ∈ P and α, β ∈ N. Further, let χ ∈ Gm
be an even Dirichlet character mod m of conductor fχ > 1. Then the eigenvalue λχ = 〈z1, χ〉 of Z
corresponding to χ is given by

|λχ| =
1

2

∣∣ (1− χ(p)) (1− χ(q))
∣∣ ·√fχ · |L(1, χ)|.

In particular, if p, q are odd primes, all eigenvalues λχ corresponding to some non-trivial even
character χ ∈ Gm are non-zero iff (p, q) is an (α, β)-generator prime pair.

Proof. If pq|fχ, then χ(p) = χ(q) = 0, i.e., (1− χ(p)) (1− χ(q)) = 1. Else, if fχ = pe for some
1 ≤ e ≤ α, then χ(p) = 0, what implies (1− χ(p)) (1− χ(q)) = (1 − χ(q)). Analogously follows
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(1− χ(p)) (1− χ(q)) = (1− χ(p)), if fχ = qe for some 1 ≤ e ≤ β. Therefore, Lemma 4.12, Lemma
4.13 and Theorem 4.14 imply

|λχ| =
1

2

∣∣ (1− χ(p)) (1− χ(q))
∣∣·∣∣∣ ∑

a∈Z×fχ

χ(a)·log
(∣∣1− ξafχ ∣∣) ∣∣∣ =

1

2

∣∣ (1− χ(p)) (1− χ(q))
∣∣·√fχ·|L(1, χ)|.

By Theorem 2.16, L(1, χ) 6= 0 holds for all non-trivial characters. Hence, we conclude that λχ = 0
holds for some non-trivial, even character χ mod m iff

0 =
∏
χ∈Ĝm
χ 6≡1

(1− χ(p)) (1− χ(q)) =
∏
χ∈Ĝm
χ 6≡1

∏
t|m
t∈P

(1− χ(t)) = βm,

where we used the fact that concatenation with the complex conjugation is a permutation of Ĝm.
By Theorem 4.8, βm 6= 0 holds iff (p, q) is an (α, β)-generator prime pair (where m = pαqβ). This
yields the second claim.

We are now prepared to express the norm of the dual vectors b∗j in terms of the eigenvalues λχ.
Notice that this is the same result as in the prime-power case, but is more complicated to prove
since Z is not invertible, see [9, Lemma 3.2.].

Lemma 4.16. Let (p, q) be an (α, β)-generator prime pair, and m := pαqβ. Then the norm of b∗j
for all j ∈ Gm\{1} is given by

||b∗j ||22 = |Gm|−1 ·
∑
χ∈Ĝm
χ 6≡1

|λχ|−2,

where λχ = 〈z1, χ〉 denotes the eigenvalue of Z corresponding to χ.

In particular, all dual vectors b∗j have the same norm.

Proof. First, we note that the sum on the right hand side is well defined by Theorem 4.15. Our goal
is to prove the claim by defining a “pseudo inverse” D of ZT and show that b∗j is the j-th column
of D.

For simplification, we fix an order of Ĝm, i.e., Ĝm = {χ1, . . . , χn} with n = ϕ(m)
2 and χ1 ≡ 1

is the trivial character mod m. This allows us to represent Ĝm × Ĝm matrices by n× n matrices.
Notice that the characters χj are different from the characters of Theorem 2.9, we only used a

similar notation. The order of Ĝm yields an order of the eigenvalues λ1, . . . , λk of Z, where λ1 = 0 by
Lemma 4.11 and λj 6= 0 for 2 ≤ j ≤ n by Theorem 4.15. Since Z is a Gm-circulant matrix, Lemma
2.13 implies

Z = PGm


0 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

P−1Gm .

22



We define

DT := PGm


0 0 . . . 0
0 1
λ2
. . . 0

...
...

. . .
...

0 0 . . . 1
λn

P−1Gm .

Let dj be the j-th column of D for j ∈ Gm. We claim that dj = b∗j for all j ∈ Gm\{1}. Since

span (B) ⊆ RGm ∼= Rn is the subspace orthogonal to the all-one vector 1, we have to prove 〈dj ,1〉 = 0
or all j ∈ Gm\{1}, first. The components of the vector dj just differ by the order of the entries of
d1, since D is a Gm-circulant matrix associated to d1 by Lemma 2.13. Hence,

〈dj ,1〉 = 〈d1,1〉 = 0,

since 〈d1,1〉 is the eigenvalue of D corresponding to the trivial character 1 ≡ χ ∈ Ĝm.

Now, we only have to prove 〈di,bj〉 = δi,j for all i, j ∈ Gm\{1}. We define

ZM1 := Z


1 1 . . . 1
0 0 . . . 0
...

...
...

0 0 . . . 0

 = (z1, . . . , z1) ∈ RGm×Gm ,

where the first row of the matrix, which only has ones in the first row and zeroes elsewhere,
corresponds to 1 ∈ Gm. Since bj = zj − z1 for all j ∈ Gm\{1} (see definition), we have

〈di,bj〉 =
(
DTB

)
i,j

=
(
DTZ−DTZM1

)
i,j

=


PGm


0 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

P−1Gm

︸ ︷︷ ︸
=:M

−PGm


0 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

P−1Gm

︸ ︷︷ ︸
=M


1 1 . . . 1
0 0 . . . 0
...

...
...

0 0 . . . 0




i,j

= Mi,j −Mi,1

for all i, j ∈ Gm\{1}. The entry Mi,j of M can easily be calculated , we obtain

Mi,j =
1

|Gm|
∑
χ∈Ĝm
χ 6≡1

χ
(
i · j−1

)
.
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Lemma 2.11 4.) implies for all i, j ∈ Gm\{1}

Mi,j −Mi,1 =
1

|Gm|

 ∑
χ∈Ĝm
χ 6≡1

χ
(
i · j−1

)
−
∑
χ∈Ĝm
χ6≡1

χ (i)


=

1

|Gm|

( ∑
χ∈Ĝm

χ
(
i · j−1

)
︸ ︷︷ ︸

=|Gm|, if i=j
=0, else

−
∑
χ∈Ĝm

χ (i)

︸ ︷︷ ︸
=0

since i 6=1

)

= δi,j .

By the uniqueness of the dual basis, this implies b∗j = dj for all j ∈ Gm\{1}. Therefore, Theorem
2.14 implies

||b∗j ||22 = ||dj ||22 = ||d1||22 = |Gm|−1 ·
∑

χ∈Ĝm\{1}

|λχ|−2

for all j ∈ Gm\{1}, since the eigenvalues of D are given by 1
λ2
, . . . , 1

λn
and, again, the components

of dj are just a permutation of the components of d1.

To obtain an upper bound for ||b∗j ||2, we need a lower bound for the eigenvalues λχ. We need
the following lemma.

Lemma 4.17. Let n ∈ N. Then

n−1∑
k=1

1

|1− ξkn|2
=

1

2

n−1∑
k=1

1

1− cos
(
2π
n k
) ≤ 1 +

n

4
+

1

9
n2.

A proof can be found in the appendix. The following theorem summarizes the presented results
and provides an upper bound for ||b∗j ||2.

Theorem 4.18. Let (p, q) be an (α, β)-generator prime pair, and m := pαqβ. Then the norm of all
b∗j for j ∈ Gm\{1} is equal and bounded by

||b∗j ||22 ≤
15C ′

m
+ C2 log2(m) ·

(
15αβ

2m
+

55(α+ β)

8m
+

5β

12pα
+

5α

12qβ

)
without the GRH, and

||b∗j ||22 ≤ C2(log ◦ log)2(m) ·
(

15αβ

2m
+

55(α+ β)

8m
+

5β

12pα
+

5α

12qβ

)
,

if the GRH holds, for some constants C,C ′ > 0, where C ′ depends on p, q and C is independent of
m. Note that log(m) = α log(p) + β log(q) holds for m = pαqβ.
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Proof. Under the GRH, we have

||b∗j ||22 = |Gm|−1 ·
∑
χ∈Ĝm
χ 6≡1

|λχ|−2 =
8pq

(p− 1)(q − 1)
· 1

m

∑
χ∈Ĝm
χ 6≡1

1∣∣ (1− χ(p)) (1− χ(q))
∣∣2 · fχ · |L(1, χ)|2

≤ 15

m
· l2(m)

∑
χ∈Ĝm
χ 6≡1

1∣∣ (1− χ(p)) (1− χ(q))
∣∣2 · fχ

with l(m) := C log(log(m)) ≥ C log(log(fχ)) for some constant C > 0 by Theorem 2.17 (we take
the sum over all non-trivial characters, therefore 3 ≤ fχ|m holds for each of these characters χ),
Lemma 4.16 and Theorem 4.15. We have used that pq

(p−1)(q−1) is maximal for p = 3 and q = 5.

Without the GRH, we have to distinguish between the quadratic and non quadratic characters.

Since Z×pα is cyclic, there is exactly one non-trivial quadratic character of Z×pα ∼= Ẑ×pα . We claim that
the conductor of this quadratic character is p. Let Ψ be the non-trivial quadric character of Z×p , then

Ψ induces a non-trivial quadratic character of Z×pα via concatenation with the natural projection

from Z×pα to Z×p . However, there is only one non-trivial character of Z×pα , hence it has conductor

p. Analogously follows, that there is exactly one non-trivial quadratic character of Z×
qβ

, which has

conductor q. Since Ẑ×m ∼= Ẑ×pα × Ẑ×
qβ

, there are only three non-trivial quadratic characters of Z×m,

which have conductor p, q and pq. Therefore, there exists a constant C ′ > 0, such that∑
χ∈Ĝ

pl1 ql2
\{1}

χ is quadratic

|λχ|−2 ≤ C ′

for all l1, l2 ∈ N, since the bound of the eigenvalues λχ only depends on the conductor fχ by Theorem
4.15 and Theorem 2.17. This implies

||b∗j ||22 = |Gm|−1 ·

 ∑
χ∈Ĝm\{1}
χ is quadr.

|λχ|−2 +
∑

χ∈Ĝm\{1}
χ is not quadr.

|λχ|−2


≤ 15C1

m
+

15

m
·

∑
χ∈Ĝm\{1}

χ is not quadr.

1∣∣ (1− χ(p)) (1− χ(q))
∣∣2 · fχ · |L(1, χ)|2

≤ 15C1

m
+

15

m
· l2(m)

∑
χ∈Ĝm
χ 6≡1

1∣∣ (1− χ(p)) (1− χ(q))
∣∣2 · fχ

with l(m) := C log(m) ≥ C log(fχ) for some constant C > 0 by Theorem 2.17. Hence, in both cases
(with and without the GRH ) we have to bound the occurring sum. Again, we split the sum into three
sums over the characters with pq|fχ, q - fχ and p - fχ. If pq|fχ, then

∣∣ (1− χ(p)) (1− χ(q))
∣∣ = 1,
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therefore ∑
χ∈Ĝm
pq|fχ

1∣∣ (1− χ(p)) (1− χ(q))
∣∣2 · fχ =

∑
χ∈Ĝm
pq|fχ

1

fχ
=
∑
pq|t|m

1

t

∑
χ∈Ĝm
fχ=t

1

≤
∑
pq|t|m

1

t
· t

2
=

1

2
α · β,

where we used that there at most |Ĝt| = ϕ(t)
2 ≤

t
2 characters of conductor t in Ĝm.

If q - fχ = pe for some 1 ≤ e ≤ α, then
∣∣ (1− χ(p)) (1− χ(q))

∣∣ =
∣∣ (1− χ(q))

∣∣. Let g ∈ Z be a

generator of Z×pα and a ∈ Z with ga ≡ q mod pα. Since (p, q) is an (α, β)-generator prime pair, it

follows gcd
(
a, ϕ(p

e)
2

)
= 1 for every 1 ≤ e ≤ α. Therefore, by Corollary 4.3 it holds

∑
χ∈Ĝm

1<fχ|pα

1∣∣ (1− χ(p)) (1− χ(q))
∣∣2 · fχ =

∑
χ∈Ĝm

1<fχ|pα

1∣∣1− χ(q)
∣∣2 · fχ

≤
α∑
e=1

1

pe

∑
χ∈Ĝpe
χ 6≡1

1∣∣1− χ(q)
∣∣2

=

α∑
e=1

1

pe

ϕ(pe)
2 −1∑
k=1

1∣∣1− ξkϕ(pe)
2

∣∣2
≤
(1)

α∑
e=1

1

pe
·
(

1 +
ϕ(pe)

8
+
ϕ(pe)2

36

)

=

α∑
e=1

1

pe
+
p− 1

8p
+

(p− 1)2pe−2

36

≤ α

p
+
α

8
+ αpα−2

(p− 1)2

36
,

where (1) follows from Lemma 4.17. Analogously follows

∑
χ∈Ĝm
1<fχ|qβ

1∣∣ (1− χ(p)) (1− χ(q))
∣∣2 · fχ ≤ β

q
+
β

8
+ βqβ−2

(q − 1)2

36
.

Altogether we have

||b∗j ||22 ≤
15C1

m
+

15

m
· l2(m)

(
α

p
+
β

q
+

1

2
α · β +

α+ β

8
+ βqβ−2

(q − 1)2

36
+ αpα−2

(p− 1)2

36

)
≤ 15C1

m
+ l2(m)

(
15αβ

2m
+

55(α+ β)

8m
+

5β

12pα
+

5α

12qβ

)
,
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where l(m) is either l(m) = C log(log(m)) under the GRH or l(m) = C log(m) without the GRH

for some constant C > 0. We have used that α
p + β

q ≤
α
3 + β

5 ≤
α+β
3 . Notice that the term 15C′

m can

be omitted under the GRH, since it does not occur in the bound of ||b∗j ||22.

The following corollary states, that the basis b1, . . . ,bk for m = pαqβ is well suited for BDD, if
(p, q) is a generator prime pair and the distance between α and β is not too big.

Corollary 4.19. Let (p, q) be a generator prime pair and c ∈ N0. Further, let αl := l, βl := l + c
and ml := pαlqβl for all l ∈ N. Then

||b∗j ||2 → 0 for l→∞

for all j ∈ Gm\{1} and

ml · exp

(
− 1

8||b∗j ||2

)
→ 0 for l→∞.

In particular, for every ω ∈ (0, 1) Condition 3.5 holds with parameters M = ||Log(bj)
∗||2 for all

j ∈ Gm\{1} and ω for large enough ml, if the generator g ∈ Kml is drawn from a continuous
Gaussian.

Proof. It is sufficient to prove the statement by using the bound without the GRH.
Since log(ml) = αl log(p) + βl log(q) ≤ C · l for some constant C > 0, Theorem 4.18 implies

||b∗j ||22 ∈ O
(
l3 · p

l + ql+c

plql+c

)
.

This implies ||b∗j ||22 → 0 for l→∞. Further, if we assume p < q, we obtain

ml · exp

(
− 1

8||b∗j ||2

)
= exp

(
log(ml)−

1

8||b∗j ||2

)
≤ exp

(
Cl − C ′ pl/2q(l+c)/2

8l3/2
√
pl + ql+c

)

= exp

Cl − C ′ pl/2

8l3/2
√

pl

ql+c
+ 1


≤ exp

(
Cl − C ′ p

l/2

16l3/2

)
→ 0 for l→∞

for some constant C ′ > 0.
Hence, Condition 3.5 holds with parameter ω > 0 and M = ||b∗j ||2 for j ∈ Gm\{1} and large

enough l by Theorem 3.8.

4.5 Conclusion

We have extended the results of [9] to cyclotomic number fields of conductor m = pαqβ for some
distinct odd primes p and q. We have investigated the group Sm generated by the roots of unity
and the elements

ξjm − 1

ξm − 1
∈ O×m
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for j ∈ Z×m, if m is the product of two odd prime-powers, and presented a criterion to determine
when [O×m : Sm] = 2h+mβm 6= 0 holds if m = pαqβ . We showed that this is the case if and only if (p, q)
is an (α, β)-generator prime pair. Moreover, we have proven that the factor βm is bounded by m

4 in
this case. As mentioned in Remark 4.10, if the class number h+m is bounded by some polynomial
in m, at least for fixed (p, q), Algorithm 2 can be executed in polynomial running time in m by
Theorem 3.4.

To guarantee that Algorithm 2 outputs a short generator with non negligible probability
ω ∈ (0, 1), we need Condition 3.5 to be satisfied for Gaussian distributions with parameters
M = max{||b∗j ||2

∣∣ j ∈ Gm\{1}} and ω. We have proven that this condition is satisfied for all

ω ∈ (0, 1) for large enough m = pαqβ , if |α− β| is bounded by some constant, see Corollary 4.19.

Therefore, we can efficiently recover shortest generators of principle fractional ideals in Km with
overwhelming probability in the case that m = pαqβ is sufficiently large, the distance of α and β
is not too big, and (p, q) is a GPP and the shortest generators are chosen from some continuous
Gaussian (and if h+m is small enough).

5 Future Work

We extended the results of [9] to cyclotomic fields, whose conductor is the product of two odd prime

powers, by studying the group generated by the units
ξjm−1
ξm−1 for j ∈ Gm\{1}.

However, there are some interesting questions that remain open. First, can our results be extended
to the case p = 2, i.e., m = 2αqβ for some odd prime q? The issue with the prime 2 is that Z×2α is
cyclic if and only if α = 1 or α = 2. However, the structure of of Z×2α for α ≥ 3 is given by

Z×2α ∼= Z2 × Z2α−2 ,

see [8, Theorem 1.4.1]. It seems reasonable that this fact can be used to extend our results to the
case p = 2. Further, by computation we conjecture

β2αqβ =
ϕ
(
2αqβ

)
4

in the case that β2αqβ 6= 0.

A second open question is the case, that m is the product of more than two prime-powers. In
fact, if m has at least four distinct prime factors, the index of our considered units in the full group
of units is always infinite, see Lemma 5.1 in the appendix. Therefore, our techniques can not be
applied in thes case in a straight-forward manner. We leave the question whether our techniques
can be extended to the case that the conductor is the product of exactly three prime-powers to
future work. In this case, we note that, since more eigenvalues of the introduced matrix Z are zero,
Lemma 4.16 is no longer valid and thus needs to be extended. For arbitrary m, a basis of some finite
index subgroup of O×m is known, namely

bj :=
∏
d∈Dm

ξjd − 1

ξd − 1
∈ O×m
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for j ∈ Gm\{1}, where Dm := {d ∈ N| d|m, d > 1 and gcd(d, md ) = 1}. However, the index of these
units in the full group of units is given by

[(O+
m)× : G+m] = h+m

∏
χ∈Ĝm
χ 6≡1

∏
p|m
p-fχ
p∈P

(ϕ (pep) + 1− χ(p)) 6= 0,

where m =
∏
p|m p

ep denotes the prime factorization of m and h+m is the class number of K+
m =

Q(ξm)+, see [37, Theorem 8.3.]. This index however is growing too fast with m for our purpose.
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Appendix

The case that m has at least four distinct prime factors

We give a proof of Exercise 8.8 in [37].

Lemma 5.1. Let m ∈ N with m 6≡ 2 mod 4 have at least four distinct prime factors, say p < q <
r < s. Then the index [Om : Sm] is infinite.

Proof. Let χq, χr and χs are the non trivial quadratic characters of Z×q ,Z×r and Z×s , respectively. If
χl(p) = 1 and χl(−1) = 1 for some l ∈ {q, r, s}, then the index is infinite by Lemma 4.7. Else, if there
are two characters, say χq and χr, such that χq(p) = χq(p) and χq(−1) = χr(−1), then χqr := χq·χr is
a non trivial quadratic character of Z×qr ∼= Z×q ×Z×r , where χqr(a) := χq(a)·χr(a) for all a ∈ Z×qr. Since
χqr(p) = χq(p)·χr(p) = 1 and analogously χqr(−1) = 1, this implies the finiteness of the index in this
case again by Lemma 4.7. The only case left is {(χq(p), χq(−1)), (χr(p), χr(−1)), (χs(p), χs(−1))} =
{(−1, 1), (1,−1), (−1,−1)}. In this case, χqrs := χq · χr · χs is a non trivial quadratic Dirichlet
character of Z×qrs with χqrs(p) = 1 and χqrs(−1) = 1, hence the index is infinite by Lemma 4.7.

Proof of Lemma 4.17

Proof of Lemma 4.17. We prove this by splitting the sum into the sum over the points ξkn with
<
(
ξkn
)
≤ 0, which yields |1− ξkn| ≥ 1, and the sum over the points ξkn with <

(
ξkn
)
> 0. The following

holds.

n−1∑
k=1

1

|1− ξkn|2
=

n−1∑
k=1

1∣∣1− (cos
(
2π
n k
)

+ i sin
(
2π
n k
)) ∣∣2

=
1

2

n−1∑
k=1

1

1− cos
(
2π
n k
)

=
1

2

bn−1
4 c∑

k=1

1

1− cos
(
2π
n k
) +

n−1−bn−1
4 c∑

k=bn−1
4 c+1

1

1− cos

(
2π

n
k

)
︸ ︷︷ ︸

≤0︸ ︷︷ ︸
≤1

+

n−1∑
k=n−bn−1

4 c

1

1− cos
(
2π
n k
)


≤ 1

2

2

bn−1
4 c∑

k=1

1

1− cos
(
2π
n k
) +

((
n− 1−

⌊n− 1

4

⌋)
−
(⌊n− 1

4

⌋
+ 1

)
+ 1

)
=

1

2

2

bn−1
4 c∑

k=1

1

1− cos
(
2π
n k
) + 2

(
n− 1

4
+
n− 1

4
−
⌊n− 1

4

⌋)
≤ 1

2

2

bn−1
4 c∑

k=1

1

1− cos
(
2π
n k
) + 2

(
1 +

n− 1

4

) ≤ 1 +
n

4
+

bn−1
4 c∑

k=1

1

1− cos
(
2π
n k
) .
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For all x ∈ (0, 2] the inequality cos(x) < 1 − x2

2 + x4

24 holds, see for example [18, Section 8.7,
Einschließungslemma]. Since 2π

n k ∈ (0, 2) for k = 1, ...,
⌊
n−1
4

⌋
(if n ≤ 4, the following sum is empty,

hence equals zero), we have

bn−1
4 c∑

k=1

1

1− cos
(
2π
n k
) ≤ bn−1

4 c∑
k=1

1

1− 1 +
( 2π
n k)

2

2 − ( 2π
n k)

4

24

=
2

4π2

bn−1
4 c∑

k=1

n2

k2
(
1− 4π2k2

12n2

)
≤ 1

2π2

bn−1
4 c∑

k=1

n2

k2

(
1−

π2
(⌊

n−1
4

⌋)2

3n2

)

≤ n2

2π2

bn−1
4 c∑

k=1

1

k2
(
1− π2

48

) ≤ n2

2π2

bn−1
4 c∑

k=1

4

3k2

≤ 2n2

3π2

∞∑
k=1

1

k2
=

2n2

3π2
· π

2

6
=
n2

9
,

where we used in the last line the equality ζ(2) =
∑∞
k=1

1
k2 = π2

6 for the Riemann zeta function ζ,
see for example [18, Section 15.4].

Recovering a short generator with a basis of a finite subgroup of O×
K

Algorithm 3: Recovering a short generator with a basis of a finite subgroup of O×K
1 Input: A generator g′ ∈ K× of gOK and b1, ..., bk ∈ O×K such that

B := {Log(b1), ...,Log(bk)} is a basis of a subgroup of Γ = Log(O×K) with finite index f .
Set F := 〈b1, ..., bk〉 ⊆ O×K .

2 Output: A generator gh ∈ K× of gOK with norm less or equal to the norm of the (short)
generator g.

3 Calculate a set of representatives u1, ..., uf of O
×
K/µ(K)F (This can be preprocessed)

4 N ←∞
5 for i = 1, ..., f do
6 ge(i)← output ge of Algorithm 2 with input g

′
/ui and b1, ..., bk

7 if ||Log(ge(i))||2 < N then
8 gh ← ge(i)
9 N ← ||Log(ge(i))||2

10 return gh
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