
Be Adaptive, Avoid Overcommitting

Zahra Jafargholi∗ Chethan Kamath† Karen Klein‡ Ilan Komargodski§

Krzysztof Pietrzak† Daniel Wichs ¶

June 2, 2017

Abstract

For many cryptographic primitives, it is relatively easy to achieve selective security (where
the adversary commits a-priori to some of the choices to be made later in the attack) but
appears difficult to achieve the more natural notion of adaptive security (where the adversary
can make all choices on the go as the attack progresses). A series of several recent works
shows how to cleverly achieve adaptive security in several such scenarios including generalized
selective decryption (Panjwani, TCC ’07 and Fuchsbauer et al., CRYPTO ’15), constrained
PRFs (Fuchsbauer et al., ASIACRYPT ’14), and Yao garbled circuits (Jafargholi and Wichs,
TCC ’16b). Although the above works expressed vague intuition that they share a common
technique, the connection was never made precise. In this work we present a new framework
that connects all of these works and allows us to present them in a unified and simplified fashion.
Moreover, we use the framework to derive a new result for adaptively secure secret sharing over
access structures defined via monotone circuits. We envision that further applications will follow
in the future.

Underlying our framework is the following simple idea. It is well known that selective security,
where the adversary commits to n-bits of information about his future choices, automatically
implies adaptive security at the cost of amplifying the adversary’s advantage by a factor of up
to 2n. However, in some cases the proof of selective security proceeds via a sequence of hybrids,
where each pair of adjacent hybrids locally only requires some smaller partial information con-
sisting of m � n bits. The partial information needed might be completely different between
different pairs of hybrids, and if we look across all the hybrids we might rely on the entire n-bit
commitment. Nevertheless, the above is sufficient to prove adaptive security, at the cost of
amplifying the adversary’s advantage by a factor of only 2m � 2n.

In all of our examples using the above framework, the different hybrids are captured by some
sort of a graph pebbling game and the amount of information that the adversary needs to commit
to in each pair of hybrids is bounded by the maximum number of pebbles in play at any point
in time. Therefore, coming up with better strategies for proving adaptive security translates to
various pebbling strategies for different types of graphs.

∗Aarhus University, Denmark. Email: z.jafargholi@gmail.com.
†IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria. Email: {ckamath,pietrzak}@ist.ac.at. Supported

by the European Research Council, ERC consolidator grant (682815 - TOCNeT).
‡IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria. Email: karen.klein@ist.ac.at.
§Department of Computer Science and Applied Mathematics, Weizmann Institute of Science Israel, Rehovot 76100,

Israel. Email: ilan.komargodski@weizmann.ac.il. Supported in part by grants from the Israel Science Foundation
and by a Levzion Fellowship.
¶Northeastern University. Department of Computer Science. wichs@ccs.neu.edu. Research supported by NSF

grants CNS-1314722, CNS-1413964.

1

wichs@ccs.neu.edu

1 Introduction

Many security definitions come in two flavors: a stronger “adaptive” flavor, where the adversary
can arbitrarily make various choices during the course of the attack, and a weaker “selective” flavor
where the adversary must commit to some or all of his choices a-priori. For example, in the context
of identity-based encryption, selective security requires the adversary to decide on the identity of
the attacked party at the very beginning of the game whereas adaptive security allows the attacker
to first see the master public key and some secret keys before making this choice. Often, it appears
to be much easier to achieve selective security than it is to achieve adaptive security.

A series of recent works achieves adaptive security in several such scenarios where we previously
only knew how to achieve selective security: generalized selective decryption (GSD) [Pan07, FJP15],
constrained PRFs [FKPR14], and garbled circuits [JW16]. Although some of these works suggest a
vague intuition that there is a general technique at play, there was no attempt to make this precise
and to crystallize what the technique is or how these results are connected. In this work we present
a new framework that connects all of these works and allows us to present them in a unified and
simplified fashion. Moreover, we use the framework to derive a new result for adaptively secure
secret sharing over access structures defined via monotone circuits.

At a high level, our framework carefully combines two basic tools commonly used throughout
cryptography: random guessing (of the adaptive choices to be made by the adversary)1 and the hy-
brid argument. Firstly, “random guessing” gives us a generic way to qualitatively upgrade selective
security to adaptive security at a quantitative cost in the amount of security. In particular, assume
we can prove the security of a selective game where the adversary commits to n-bits of information
about his future choices. Then, we can also prove adaptive security by guessing this commitment
and taking a factor of 2n loss in the security advantage. However, this quantitative loss is often
too high and hence we usually wish to avoid it or at least lower it. Secondly, the hybrid argument
allows us to prove the indistinguishability of two games GL and GR by defining a sequence of hybrid
games GL ≡ H0,H1, . . . ,H` ≡ GR and showing that each pair of neighboring hybrids Hi and Hi+1

are indistinguishable.

Our Framework. Our framework starts with two adaptive games GL and GR that we wish to
show indistinguishable but we don’t initially have any direct way of doing so. Let HL and HR

be selective versions of the two games respectively, where the adversary initially has to commit
to some information w ∈ {0, 1}n about his future choices. Furthermore, assume there is some
sequence of selective hybrids HL = H0,H1, . . . ,H` ≡ HR such that we can show that Hi and Hi+1 are
indistinguishable. A näıve combination of the hybrid argument and random guessing shows that
GL and GR are indistinguishable at a factor of 2n · ` loss in security, but we want to do better.

Recall that the hybrids Hi are selective and require the adversary to commit to w. However, it
might be the case that for each i we can prove that Hi and Hi+1 would be indistinguishable even if
the adversary didn’t have to commit to all of w but only some partial-information hi(w) ∈ {0, 1}m
for m � n (formalizing this condition precisely requires great care and is the major source of
subtlety in our framework). Notice that the partial information that we need to know about w may

1In many previous works – including [FJP15, FKPR14, JW16], and by the authors of this paper – this random
guessing was referred to as “complexity leveraging”, but this seems to be an abuse of the term. Instead, complexity
leveraging [CGGM00] refers to the use of two different schemes, S1, S2, where the two schemes are chosen with
different values of the security parameter, k1 and k2, where k1 < k2, and such that an adversary against S2 (or
perhaps even the honest user of S2) can break the security of S1.

2

be completely different for different pairs of hybrids, and if we look across all hybrids then we may
need to know all of w. Nevertheless, we prove that this suffices to show that the adaptive games
GL and GR are indistinguishable with only a 2m · `� 2n · ` loss of security.

Applications of Our Framework. We show how to understand all of the prior works mentioned
above as applications of our framework. In many cases, this vastly simplifies prior works. We also
use the framework to derive a new result, proving the adaptive security of Yao’s secret sharing
scheme for access structures defined via monotone circuits.

In all of the examples, we get a series of selective hybrids H1, . . . ,H` that correspond to pebbling
configurations in some graph pebbling game. The amount of information needed to show that
neighboring hybrids Hi and Hi+1 are indistinguishable only depends on the configuration of the
pebbles in the i’th step of the game. Therefore, using our framework, we translate the problem of
coming up with adaptive security proofs to the problem of coming up with pebbling strategies that
only require a succinct representation of each pebbling configuration.

We now proceed to give a high level overview of each of our results applying our general
framework to specific problems, and refer to the main body for technical details.

1.1 Adaptive Secret Sharing for Monotone Circuits

Secret sharing schemes, introduced by Blakley [Bla79] and Shamir [Sha79], are methods that enable
a dealer, that has a secret piece of information, to distribute this secret among n parties such that
a “qualified” subset of parties has enough information to reconstruct the secret while any “unqual-
ified” subset of parties learns nothing about the secret. The monotone collection of “qualified”
subsets is known as an access structure. Any access structure admits a secret sharing scheme but
the share size could be exponential in n [ISN87]. We are interested in efficient schemes in which
the share size is polynomial (in n and possibly in a security parameter).

Many of the classical schemes for secret sharing are perfectly (information theoretically) secure.
The largest class of access structures that admit such a (perfect and efficient) scheme was ob-
tained by Karchmer and Wigderson [KW93] for the class of all functions that can be computed by
monotone span programs. This result generalized a previous work of Benaloh and Leichter [BL90]
(which, in turn, improved a result of Ito, Saito and Nishizeki [ISN87]) that showed the same result
but for a smaller class of access structures: those functions that can be computed by monotone
Boolean formulas. Under cryptographic hardness assumptions, efficient schemes for more general
access structures are known (but security is only for bounded adversaries). In particular, in an un-
published work (mentioned in [Bei11], see also Vinod et al. [VNS+03]), Yao showed how to realize
schemes for access structures that are described by monotone circuits. This construction could be
used for access structures which are known to be computed by monotone circuits but are not known
to be computed by monotone span programs, e.g., directed connectivity [KW88, RPRC16].2 Ko-
margodski, Naor, and Yogev [KNY17] showed how to realize the class of access structures described
by monotone functions in NP3 under the assumption that witness encryption for NP [GGSW13]

2In the access structure for directed connectivity, the parties correspond to an edge in the complete directed graph
and the “qualified” subsets are those edges that connect two distinguished nodes s and t.

3For access structures in NP, a qualified set of parties needs to know an NP witness that they are qualified.

3

and one-way functions exist.45

Selective vs. adaptive security. All of the schemes described above guarantee security against
static adversaries, where the adversary chooses a subset of parties it controls before it sees any of
the shares. A more natural security guarantee would be to require that even an adversary that
chooses its set of parties in an adaptive manner (i.e., based on the shares it has seen so far) is
unable to learn the secret (or any partial information about it).

It is known that the schemes that satisfy perfect security (including the works [ISN87, BL90,
KW93] mentioned above) actually satisfy this stronger notion of adaptive security. However, the
situation for the schemes that are based on cryptographic assumptions (including Yao’s scheme and
the scheme of [KNY17]) is much less clear. Using random guessing (see Lemma 1) it can be shown
that these schemes are adaptively secure, but this reduction loses an exponential (in the number of
parties) factor in the security of the scheme. Additionally, as noted in [KNY17], their scheme can
be shown to be adaptively secure if the witness encryption scheme is extractable.6 The latter is a
somewhat controversial assumption that we prefer to avoid.

Our results. We analyze the adaptive security of Yao’s scheme under our framework and show
that in some cases the security loss is much smaller than 2n. Roughly, we show that if the access
structure can be described by a monotone circuit of depth d and s gates (with unbounded fan-in
and fan-out) the security loss is proportional to sO(d). Thus, for shallow circuits our analysis shows
that an exponential loss is avoidable.

To exemplify the usefulness of the result, consider, for instance, the directed st-connectivity
access structure mentioned in Footnote 2. It is known that it can be computed by a monotone circuit
of size O(n3 log n) and depth O(log2 n), but its monotone formula and span-program complexity is

2Ω(log2 n) [KW88, RPRC16]. Thus, no perfectly secure scheme is known, and our proof shows that
Yao’s scheme for this access structure is secure based on the assumption that quasi-polynomially-
secure one-way functions exist.

Yao’s scheme. In this scheme, an access structure is described by a monotone circuit. The
sharing procedure first labels the output wire of the circuit with the shared secret and then proceeds
to assign labels to all wires of the circuit; in the end the label on each input wire is included in the
share of the corresponding party. The procedure for assigning labels is recursive and in each step
it labels the input wires of a gate g assuming its output wires are already labeled (recall that we
assume unbounded fan-in and fan-out so there are many input and output wires). To do so, we
first sample a fresh encryption key s for a symmetric-key encryption scheme. If the gate is an AND
gate, then we label each input wire with a random string conditioned on their XOR being s, and if
the gate is an OR gate, then we label each input wire with s. In either case, we encrypt the labels
of the output wires under s and include these ciphertexts associated with the gate g as part of ever
party’s share. The reconstruction of the scheme works by reversing the above procedure from the

4Witness encryption for a language L ∈ NP allows to encrypt a message relative to a statement x ∈ L such that
anyone holding a witness to the statement can decrypt the message, but if x /∈ L, then the message is computationally
hidden.

5One can relax the additional assumption of one-way functions to an average-case hardness assumption in NP
[KMN+14].

6This is a knowledge assumption that says that if an adversary can decrypt a witness encryption ciphertext, then
it must know a witness which can be extracted from it.

4

leaves to the root. This scheme is indeed efficient for access structures that have polynomial-size
monotone circuits.

Security proof. Our goal is to show that as long as an adversary controls an unqualified set, he
cannot learn anything about the secret. We start by outlining the selective security proof (following
the argument of [VNS+03]), where the adversary first commits to the “corrupted” set. The proof
is via a series of hybrids in which we slowly replace the ciphertexts associated with various gates
g with bogus ciphertexts. Once we do this for the output gate, the shares become independent of
the secret which proves security. The gates for which we can replace the ciphertexts with bogus
ones are the gates for which the adversary cannot compute the corresponding encryption key. Since
the adversary controls an unqualified set, a sequence which eventually results with replacing the
encryption of the root gate must exist. Since in every hybrid we “handle” one gate and never
consider it again, the number of hybrids is at most the number of gates in the circuit.

The problem with lifting this proof to the adaptive case is that it seems inherent to know the
corrupted set of parties in order to know for which gates g to switch the ciphertexts from real to
bogus (and in what order). However, in the adaptive game this set is not known during the sharing
procedure. A näıve use of random guessing would result in an exponential security loss 2n, where
n is the number of parties.

To overcome this we associate each intermediate hybrid Hi with a pebbling configuration in
which each gate in the circuit is either pebbled (ciphertexts are bogus) or unpebbled (ciphertexts
are real). The pebbling rules are:

1. Can place or remove a pebble on any AND gate for which (at least) one input wire is either
not corrupted or comes out of a gate with a pebble on it.

2. Can place or remove a pebble on any OR gate for which all of the incoming wires are either
non-corrupted input wires or come out of gates all of which have pebbles on them.

The initial hybrid corresponds to the case in which all gates are unpebbled and the final hybrid
corresponds to the case in which all gates are unpebbled except the root gate which has a pebble.
Now, any pebbling strategy that takes us from the initial configuration to the final one, corresponds
to a sequence of selective hybrids Hi. Furthermore, to prove indistinguishability of neighboring
hybrids Hi,Hi+1 we don’t need the adversary to commit to the entire set of corrupted parties ahead
of time but it suffices if the adversary only commits to the pebble configuration in steps i and
i + 1. Therefore, if the pebbling strategy has the property that each configuration requires few
bits to describe, then we would be able to use our framework. We show that for every corrupted
set and any monotone circuit of depth d and s gates, there exists such a pebbling strategy, where
the number of moves is roughly 2O(d) and each configuration has a very succinct representation:
roughly d · log s bits. Plugging this into our framework, we get a proof of adaptive security with
security loss proportional to sO(d). We refer to Section 4 for the precise details.

1.2 Generalized Selective Decryption

Generalized Selective Decryption (GSD), introduced by Panjwani [Pan07], is a game that captures
the difficulty of proving adaptive security of certain protocols, most notably the Logical Key Hi-
erarchy (LKH) multicast encryption protocol. On a high level, it deals with scenario where we
have many secret keys ki and various ciphertexts encrypting one key under another (but no cycles).

5

We will discuss this problem in depth in Section A, here giving a high level overview on how our
framework applies to this problem.

Let (Enc,Dec) be a CPA-secure symmetric encryption scheme with (probabilistic) Enc : K ×
M → C and Dec : K × C → M. We assume K ⊆ M, i.e., we can encrypt keys. In the game, the
challenger — either GL or GR — picks n + 1 random keys k0, . . . , kn ∈ K, and the adversary A is
then allowed to make three types of queries:7

• Encryption query: on input (encrypt, i, j) receives Enc(ki, kj).

• Corruption queries: on input (corrupt, i) receives ki.

• Challenge query, only one is allowed: on input (challenge, i) receives ki in the real game GL,
and a random value in the random game GR.

We think of this game as generating a directed graph, with vertex set V = {0, . . . , n}, where every
(encrypt, i, j) query adds a directed edge (i, j), and we say a vertex vi is corrupted if a query
(corrupt, i) was made, or vi can be reached from a corrupted vertex. The goal of the adversary is
to distinguish the games GL or GR, with the restriction that the constructed graph has no cycles,
and the challenge vertex is a sink. To prove security, i.e., reduce the indistinguishability of GL or
GR to the security of Enc, we can consider a selectivized version of this game where A must commit
to the graph as described above (which uses < n2 bits). The security of this selectivized game can
then be reduced to the security of Enc by a series of < n2 hybrids, where a distinguisher for any
two consecutive hybrids can be used to break the security of Enc with the same advantage. Using
random guessing followed by a hybrid argument we conclude that if Enc is δ-secure, the GSD game
is δ · n2 · 2n2

-secure. Thus, we lose an exponential in n2 factor in the reduction.
Fortunately, if we look at the actual protocols that GSD is supposed to capture, it turns out

that the graphs that A can generate are not totally arbitrary. Two interesting cases are given by
GSD restricted to graphs of bounded depth, and to trees. For these cases better reductions exist.
Panjwani [Pan07] shows that if the adversary is restricted to play the game such that the resulting
graph is of depth at most d, a reduction losing a factor (2n)d exists. Moreover, Fuchsbauer et al.
[FJP15] give a reduction losing a factor n3 logn when the underlying graph is a tree. In Section A we
prove these results in our framework. Our proofs are much simpler than the original ones, especially
than the proof of [Pan07] which is very long and technical. This is thanks to our modular approach,
where our general framework takes care of delicate probabilistic arguments, and basically just leaves
us with the task of designing pebbling strategies, where each pebbling configuration has a succinct
description, for various graphs, which is a clean combinatorial problem. The generic connection
between adaptive security proofs of the GSD problem and graph pebbling is entirely new to this
work.

GSD on a Path. Let us sketch the proof idea for the [FJP15] result, but for an even more
restricted case where the graph is a path visiting every node exactly once. In other words there
is a permutation σ over {0, . . . , n} and the adversary’s queries are of the form (encrypt, σ(i −
1), σ(i)) and (challenge, σ(n)). We first consider the selective game where A must commit to this
permutation σ ahead of time. Let HL,HR be the selectivized versions of GL, GR respectively.

7In the actual game the adversary can also make standard CPA encryption queries Enc(ki,m) for chosen m, i. As
this doesn’t meaningfully change the security proof we ignore this here.

6

To prove selective security, we can define a sequence of hybrid games HL = H0, . . . ,H` = HR.
Each hybrid is defined by a path, 0 → 1 → . . . → n, with a subset of the edges holding a black
pebble. In the hybrid games, a pebble on (i, i + 1) means that instead of answering the query
(encrypt, σ(i), σ(i + 1)) with the “real” answer Enc(kσ(i), kσ(i+1)), we answer it with a “fake”
answer Enc(kσ(i), r) for a random r. The goal is to move from a hybrid with no pebbles (this
corresponds to HL) to one with a single black pebble on the “sink” edge (n−1, n) (this corresponds
to HR). We can prove that neighboring hybrids are indistinguishable via a reduction from CPA
security as long as the pebbling configurations are only modified via the following legal moves:

1. We can put/remove a pebble on the source edge (0, 1) at any time.

2. We can put/remove a pebble on an edge (i, i+ 1) if the preceding edge (i− 1, i) has a pebble.

This is because adding/removing a pebble (i, i + 1) means changing what we encrypt under key
kσ(i) and therefore we need to make sure that either the edge is a source edge or there is already
a pebble on the preceding edge to ensure that the key kσ(i) is never being encrypted under some
other key.

The simplest “basic pebbling strategy” consists of 2n moves where we add pebbles on the path
0→ 1→ . . .→ n, one by one starting on the left and then remove one by one starting on the right,
keeping only the pebble on the sink edge (n − 1, n). This is illustrated in Figure 1.(a) for n = 8.
The strategy uses n pebbles. However, there are other pebbling strategies that allow us to trade off
more moves for fewer pebbles. For example there is a “recursive strategy” (recursively pebble the
middle vertex, then recursively pebble the right-most vertex, then recursively remove the pebble
from the middle vertex) that uses at most logn + 1 pebbles (instead of n), but requires 3logn + 1
moves (instead of just 2n). This is illustrated in Figure 1.(b).

As we described, each pebbling strategy with ` moves gives us a sequence of hybrids HL =
H0, . . . ,H` = HR that allows us to prove selective security. Furthermore, we can prove relatively
easily that neighboring hybrids Hj ,Hj+1 are indistinguishable even if the adversary doesn’t commit
to the entire permutation σ but only to the value σ(i) of vertices i where either Hj or Hj+1 has a
pebble on the edge (i − 1, i). Using our framework, we therefore get a proof of adaptive security
where the security loss is ` ·np where p is the maximum number of pebbles used and ` is the number
of pebbling moves. In particular, if we use the recursive pebbling strategy described above we only
suffer a quasipolynomial security loss 3logn ·nlogn+1, as compared with 2n ·(n+1)! for näıve random
guessing where the adversary commits to the entire permutation σ.

GSD on Low Depth and Other Families of Graphs. The proof outline for GSD on paths is
just a very special case of our general result for GSD for various classes of graphs, which we discuss
in §A. If we consider a class of graphs which can be pebbled using ` pebbling configurations, each
containing at most q pebbles, we get a reduction showing that GSD for this class is δ · ` · 2q secure,
assuming the underlying Enc scheme is δ-secure.

Unfortunately, this approach will not gain us much for graphs with high in-degree: we can only
put a pebble on an edge (i, j) if all the edges (∗, i) going into node i are pebbled. So if we consider
graphs which can have large in-degree d, any pebbling strategy must at some point have pebbled
all the parents of i, and thus we’ll lose at least a factor 2d in the reduction. But remember that to
apply our Theorem 2, we just need to be able to “compress” the information required to simulate
the hybrids. So even if the hybrids correspond to configurations with many pebbles, that is fine as

7

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8•
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• • • •
0 1 2 3 4 5 6 7 8• • • • •
0 1 2 3 4 5 6 7 8• • • • • •
0 1 2 3 4 5 6 7 8• • • • • • •
0 1 2 3 4 5 6 7 8• • • • • • • •
0 1 2 3 4 5 6 7 8• • • • • • •
0 1 2 3 4 5 6 7 8• • • • • •
0 1 2 3 4 5 6 7 8• • • • •
0 1 2 3 4 5 6 7 8• • • •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •

0 1 2 3 4 5 6 7 8•

(a)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8•
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8•
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8•
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• • • •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• • • •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• • • •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• • • •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •
0 1 2 3 4 5 6 7 8• • •
0 1 2 3 4 5 6 7 8• •

0 1 2 3 4 5 6 7 8•

(b)

Figure 1: “Classical” hybrid argument vs. improved hybrid argument. In both diagrams, the edges
that carry a pebble are faked. (a). Illustration of the classical hybrids H0, . . . ,H15 for GSD on a
path graph with n = 8 edges: the number of hybrids is 2n = 16, and the number of fake edges is at
most n. (b.) A sequence of hybrids H̃0, . . . , H̃27 that use fewer fake edges: even though the number
of hybrids is 3logn+1 = 28, the number of fake edges is at most log n+1 = 4. The argument on the
right is identical to the one using nested hybrids in [FJP15], which implicitly uses the edge-pebbling
generated by Algorithm 4

8

long as we can generate a short hint which will allow to emulate it (we use the same idea in the
proof of adaptive security of the secret sharing scheme for monotone circuits with large fan-in).

Consider the selective GSD game, where the adversary commits to all of its queries, we can
think of this as a DAG, where each edge comes with an index indicating in which query this node
was added. Assume the adversary is restricted to choose DAGs of depth l (but no bound on the
in-degree). One can show that there exists a pebbling sequence (of length (2n)l), such that in any
pebbling configuration, all pebbles lie on a path from a sink to a root (which is of length at most l),
and on edges going into this path. Moreover, we can ensure that in any configuration the following
holds: if for a node j on this path, there is a pebble on edge (i, j) with index t, then all edges of
the form (∗, j) with index < t must also have a pebble.

To describe such a configuration, we will output the ≤ l nodes on the path, specify for every
edge on this path if it is pebbled, and for any node j on the path, the number of edges going into
j that have a pebble (note that there are at most 2ln2l choices for this hint). The hint is sufficient
to emulate a hybrid, as for any query (encrypt, i, j) the adversary makes, we will know if the
corresponding edge has a pebble or not. This is clear if the edge (i, j) is on the path, as we know
this path in full. But also for the other edges that can hold a pebble, where j is on the path but i
is not. The reason is that we just have to count which query of the form (∗, j) this is, as we got a
number c telling us that the first c such edges will have a pebble.

Applying Theorem 2, we recover Panjwani’s result [Pan07] showing that if the GSD game
restricted to graphs of depth l only loses a factor nO(l) in the reduction.

1.3 Yao’s Garbled Circuits

Garbled circuits, introduced by Yao in (oral presentations of) [Yao82, Yao86], can be used to garble
a circuit C and an input x in a way that reveals C(x) but hides everything else. More precisely, a
garbling scheme has three procedures; one to garble the circuit C and produce a garbled circuit C̃,
one to garble the input x and produce a garbled input x̃, and one that evaluates the garbled circuit
C̃ on the garbled input x̃ to get C(x). Furthermore, to prove security, there must be a simulator
that only gets the output of the computation C(x) and can simulate the garbled circuit C̃ and
input x̃, such that no PPT adversary can distinguish them from the real garbling.

Adaptive vs. Selective Security. In the adaptive setting, the adversary A first chooses the
circuit C and gets back the garbled circuit C̃, then chooses the input x, and gets back garbled
input x̃. The adversary’s goal is to decide whether he was interacting with the real garbling scheme
or the simulator. In the selective setting, the adversary has to choose the circuit C as well as the
input x at the very beginning and only then gets back C̃, x̃.

Prior Work. The work of Bellare, Hoang and Rogaway [BHR12] raised the question of whether
Yao’s construction or indeed any construction of garbled circuits achieves adaptive security. The
work of Hemenway et al. [HJO+16] gave the first construction of non-trivial adaptively secure
garbled circuits based on one-way functions, by modifying Yao’s construction with an added layer
of encryption having some special properties. Most recently, the work of Jafargholi and Wichs
[JW16] gives the first analysis of adaptive security for Yao’s unmodified garbled circuit construction
which significantly improves on the parameters of trivial random guessing. See [JW16] for a more
comprehensive introduction and broader background on garbled circuits and adaptive security.

9

Here, we present the work of [JW16] as a special case of our general framework. Indeed, the
work of [JW16] already implicitly follows our general framework fairly closely and therefore we only
give a high level overview of how it fits into it.

Selective Hybrids. We start by outlining the selective security proof for Yao’s garbled circuits,
following the presentation of [HJO+16, JW16] which is in turn based on the proof of Lindell and
Pinkas [LP09]. Essentially the proof proceeds via series of hybrids which modify one garbled gate
at a time from the Real distribution to a Simulated one. However, this cannot be done directly
in one step and instead requires going through an intermediate distribution called InputDep (we
explain the name later). There are important restrictions on the order in which these steps can be
taken:

1. We can switch a gate from Real to InputDep (and vice versa) if it is at the input level or if its
predecessor gates are already InputDep.

2. We can switch a gate from InputDep to Simulated (and vice versa) if it is at the output level
or if its successor gates are already Simulated.

The simplest strategy to switch all gates from Real to Simulated is to start with the input level
and go up one level at a time switching all gates to InputDep. Then start with the output level and
go down one level at a time switching all gates to Simulated. This corresponds to the basic proof
of selective security of Yao garbled circuits.

However, the above is not the only possibility. In particular, any strategy for switching all gates
from Real to Simulated following rules (1) and (2) corresponds to a sequence of hybrid games for
proving selective security. We can identify the above with a pebbling game where one can place
pebbles on the gates of the circuit. The Real distribution corresponds to not having a pebble and
there are two types of pebbles corresponding to the InputDep and Simulated distributions. The goal
is to start with no pebbles and finish by placing a Simulated pebble on every gate in the circuit while
only performing legal moves according to rules (1) and (2) above. Every pebbling strategy gives
rise to a sequence of hybrid games H0,H1, . . . ,H` for proving selective security, where the number
of hybrids ` corresponds to the number of moves and each hybrid Hi is defined by the configuration
of pebbles after i moves.

From Selective to Adaptive. The problem with translating selective security proofs into the
adaptive setting lies with the InputDep distribution of a gate. This distribution depends on the
input x (hence the name) and, in the adaptive setting, the input x that the adversary will choose
is not yet known at the time when the garbled circuit is created. To be more precise, the InputDep
distribution of a gate i only depends on the 1-bit value going over the output wire of that gate dur-
ing the computation C(x). Moreover, if we take any two fixed hybrid games Hi,Hi+1 corresponding
to two neighboring pebble configurations (ones which differ by a single move) we can prove indis-
tinguishability even if the adversary does not commit to the entire n-bit input x ahead of time but
only commits to the bits going over the output wires of all gates i that are in InputDep mode in
either configuration. This means that as long as the pebbling strategy only uses m pebbles of the
InputDep type at any point in time, each pair of hybrids Hi,Hi+1 can proved indistinguishable in
a partially selective setting where the adversary only commits to m bits of information about his
input ahead of time, rather than committing to the entire n bit input x. Using our framework,

10

this shows that whenever there is a pebbling strategy for the circuit C that requires ` moves and
uses at most m pebbles of the InputDep type, we can translate the selective hybrids into a proof of
adaptive security where the security loss is ` · 2m.

It turns out that for any graph of depth d there is a pebbling strategy that uses O(d) pebbles
and ` = 2O(d) moves, meaning that we can prove adaptive security with a 2O(d) security loss. This
leads to a proof of adaptive security for NC1 circuits where the reduction has only polynomial
security loss, but more generally we can often get a much smaller security loss than the trivial 2n

bound achieved by näıve random guessing.8

1.4 Constrained Pseudorandom Functions

Goldreich et al. [GGM84] introduced the notion of a pseudorandom function (PRF). A PRF is an
efficiently computable keyed function F : K × X → Y, where F(k, ·), instantiated with a random
key k ← K, cannot be distinguished from a function randomly chosen from the set of all functions
X → Y with non-negligible probability. More recently, the notion of constrained pseudorandom
functions (CPRF) was introduced as an extension of PRFs, by Boneh and Waters [BW13], Boyle
et al. [BGI14] and Kiayias et al. [KPTZ13], independently. Informally, a constrained PRF allows
the holder of a master key to derive keys which are constrained to a set, in the sense that such a
key can be used to evaluate the PRF on that set, while the outputs on inputs outside of this set
remain indistinguishable from random.

Goldreich et al., in addition to formally defining PRFs, gave a construction of a PRF from any
length doubling pseudorandom generator (PRG). Their construction is depicted in Figure 2. All
three of the aforementioned results [BW13, BGI14, KPTZ13] show that this GGM construction
already gives a so-called “prefix-constrained” PRF, which is a CPRF where for any x ∈ {0, 1}∗, one
can give out keys which allow to evaluate the PRF on all inputs whose prefix is x. This is a simple
but already very interesting class of CPRFs as it can be used to construct a punctured PRF, which
in turn is a major tool in constructing various sophisticated primitives based on indistinguishability
obfuscation (see, for example, [BW13, SW14, HSW14]).

k∅

k0

k00

k000 k001

k01

k010 k011

k1

k10

k100 k101

k11

k110 k111

Figure 2: Illustration of the GGM PRF. Every left child kx‖0 of a node kx is defined as the first half
of PRG(kx), the right child kx‖1 as the second half. The circled node corresponds to GGM(k∅, 010).

8The presentation in [JW16] follows the above outline fairly closely and the reader can easily match it with our
general framework. The one conceptual difference is that we think of all the hybrids Hi as existing in the selective
setting where the adversary commits to the entire input but then we analyze indistinguishability of neighboring
hybrids in a partially selective setting. The work of [JW16] thought of the hybrids Hi as already being partially
selective, which made it difficult to compare neighboring hybrids, since the adversary was expected to commit to
different information in each one. We view our new framework as being conceptually simpler.

11

Prior work. To show that the GGM construction is a prefix-constrained PRF one must show how
to transform an adversary that breaks GGM as a prefix-constrained PRF into a distinguisher for
the underlying PRG. The proofs in [BW13, BGI14, KPTZ13] only show selective security, where
the adversary must initially commit to the output he wants to be challenged on in the security
game. There is a loss in tightness by a factor of 2n. This can then be turned into a proof against
adaptive adversaries via random guessing, losing an additional exponential factor 2n in the input
length n.

Fuchsbauer et al. [FKPR14] showed that it is possible to achieve adaptive security by losing
only factor of (3q)logn, where q denotes the number of queries made by the adversary — if q is
polynomial, the loss is not exponential as before, but just quasi-polynomial. The bound relies on
the so-called “nested hybrids” technique. Informally, the idea is to iterate random guessing and
hybrid arguments several times. The random guessing is done in a way where one only has to
guess some tiny amount of information, which although insufficient to get a full reduction using the
hybrid argument, nevertheless reduces the complexity of the task significantly. Every such iteration
“cuts” the domain in half, so after logarithmically many iterations the reduction is done. If the
number of iterations is small, and the amount of information guessed in each iteration tiny, this
can still lead to a reduction with much smaller loss than “single shot” random guessing.

Our results. We cast the result in [FKPR14] in our framework, giving an arguably simpler and
more intuitive proof. To this aim, we first describe the GGM construction and sketch its security
proof.

Given a PRG : {0, 1}m → {0, 1}2m, the PRF GGM : {0, 1}m × {0, 1}n → {0, 1}m is defined
recursively as

GGM(k, x) = kx where k∅ = k and kx‖0‖kx‖1 = PRG(kx).

The construction is also a prefix-constrained PRF: given a key kx for any x ∈ {0, 1}∗, one can
evaluate GGM(k, x′) for all x′ whose prefix is x.

The security of the GGM as a PRF is given in [GGM84]. In particular, they show that if an
adversary exists who distinguishes GGM(k, ·) (real experiment) from a uniformly random function
(random experiment) with advantage ε making q (adaptive) queries, then an adversary of roughly
the same complexity exists who distinguishes PRG(Um) from U2m with advantage ε/nq. Thus if we
assume that PRG is δ-secure, then GGM is δnq-secure against any q-query adversary of the same
complexity. This is one of the earliest applications of the hybrid argument.

The security definition for CPRFs is quite different from that of standard PRFs: the adversary
will get to query the CPRF F(k, ·) in both, the real and random experiment (and can ask for
constrained keys, not just regular outputs), and only at the very end the adversary will choose a
challenge query x∗, which is then answered with either the correct CPRF output F(k, x∗) (in the
real experiment) or a random value (in the random experiment). In the selective version of these
security experiments, the adversary has to choose the challenge x∗ before making any queries. In
particular, for the case of prefix-constrained PRFs, the experiment is as follows. The challenger
samples k ∈ {0, 1}n uniformly at random. The adversary A first commits to some x∗ ∈ {0, 1}n.
Then it can make constrain queries x ∈ {0, 1}∗ for any x which is not a prefix of x∗, and receives
the constrained key kx in return. Finally, A gets either GGM(k, x∗) (in the real game) or a random
value, and must guess which is the case.

12

Selective hybrids. A näıve sequence of selective hybrids, which is of length 2n, relies just on the
knowledge of x∗. For n = 8 the corresponding 16 hybrid games are illustrated in Figure 1.a. Each
path C(n) corresponds to a hybrid, and it “encodes” how the value of the function F is computed on
the challenge input x∗ (and this determines how the function is computed on the rest of the inputs
too). An edge that does not carry a pebble is computed, normally, as defined in GGM — i.e., if the
ith edge is not pebbled then kx∗[1,i−1]‖0‖kx∗[1,i−1]‖1 is set to PRG(kx[1,i−1]), where for x ∈ {0, 1}n,
x[1, i] denotes its i bit prefix. On the other hand, for an edge with a pebble, we replace the PRG
output with a random value — i.e., kx∗[1,i−1]‖0‖kx∗[1,i−1]‖1 is set to a uniformly random string in
{0, 1}2m. It’s not hard to see that any distinguisher for two consecutive hybrids can be directly used
to break the PRG with the same advantage by embedding the PRG-challenge – which is either U2m

or PRG(Um) – at the right place. Using standard random guessing we can get adaptive security
losing an additional factor 2n in the distinguishing advantage by initially guessing x∗ ∈ {0, 1}n.

From selective to adaptive. Before we explain the improved reduction, we take a step back
and consider an even more selective game where A must commit, in addition to the challenge query
xq = x∗, also to the constrain queries {x1, . . . , xq−1}. We can use the knowledge of x1, . . . , xq−1 to
get a better sequence of hybrids: this requires two tricks. First, as in GSD on a path, instead of
using the pebbling strategy in Figure 1.a, we switch to the recursive pebbling sequence in Figure 1.b.
Second, we need a more concise “indexing” for the pebbles: unlike in the proof for GSD, here we
can’t simply give the positions of the (up to log n+1) pebbles as hint to simulate the hybrids, as the
graph has exponential size, thus even the position of a single pebble would require as many bits to
encode as the challenge x∗. Instead, we assume there’s an upper bound q on the number of queries
made by the adversary. For a pebble on the ith edge, we just give the index of the first constrain
query whose i bit prefix coincides with x∗, i.e., the minimum j such that xj [1, i] = x∗[1, i]. This
information is sufficient to tell when exactly during the experiment we have to compute a value
that corresponds to a pebbled edge.

As there are 3logn hybrids, and each hint comes from a set of size qlogn (i.e., a value ≤ q for
every pebble), our Theorem 2 implies that GGM is a δ(3q)logn secure prefix-constrained PRF if
PRG is δ secure.

2 Notation

Throughout, we use λ to denote the security parameter. We use capital letters like X to denote
variables, small letters like x to denote concrete values, calligraphic letters like X to denote sets and
sans-serif letters like X to denote algorithms. Our algorithms can all be modelled as (potentially
interactive, probabilistic, polynomial time) Turing machines. With X ≡ Y we denote that X has
exactly the same input/output distribution as Y, and X ∼ Y denotes that X and Y have the same
distributions. UX denotes the uniform distribution over X . In particular, Un denotes the uniform
distribution over {0, 1}n. For a set X , sX denotes the complexity of sampling uniformly at random
from X . For a, b ∈ N, a ≥ b, by [a, b] we denote the set {a, a + 1, . . . , b}. For x ∈ {0, 1}n we’ll
denote with x[1, i] its i bit prefix.

13

3 The Framework

We consider a game described via a challenger G which interacts with an adversary A. At the
end of the interaction, G outputs a decision bit b and we let 〈A,G〉 denote the random variable
corresponding to that bit.

Definition 1. We say that two games defined via challengers G0 and G1 are (s, ε)-indistinguishable
if for any adversary A of size at most s:

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| ≤ ε.

We say that two games are perfectly indistinguishable and write G0 ≡ G1 if they are (∞, 0)-
indistinguishable.

Selectivized Games. We define two operations that convert adaptive or partially selective games
into further selective games.

Definition 2 (Selectivized Game). Given an (adaptive) game G and some function g : {0, 1}∗ →W
we define the selectivized game H = SELW [G, g] which works as follows. The adversary A first sends
a commitment w ∈ W to H. Then H runs the challenger G against A, at the end of which G outputs
a bit b′. Let transcript denote all communication exchanged between G and A. If g(transcript) = w
then H outputs the bit b′ and else it outputs 0. See Figure 3.(a).

Note that the selectivized game gets a commitment w from the adversary but essentially ignores
it during the rest of the game. Only, at the very end of the game, it checks that the commitment
matches what actually happened during the game.

Definition 3 (Further Selectivized Game). Assume Ĥ is a (partially selective) game which ex-
pects to receive some commitment u ∈ U from the adversary in the first round. Given functions
g : {0, 1}∗ → W and h : W → U we define the further selectivized game H = SELU→W [Ĥ, g, h] as
follows. The adversary A first sends a commitment w ∈ W to H and H begins running Ĥ and passes
it u = h(w). It then continues running the game between Ĥ and A at the end of which Ĥ outputs
a bit b′. Let transcript denote all communication exchanged between Ĥ and A. If g(transcript) = w
then H outputs the bit b′ and else it outputs 0. See Figure 3.(b).

Note that if Ĥ is a (partially selective) game where the adversary sends some commitment u,
then in the further selectivized game the adversary might have to commit to more information
w. The further selectivized game essentially ignores w and only relies on the partial information
u = h(w) during the course of the game but only at the very end is still checks that the full
commitment w matches what actually happened during the game.

Random Guessing. We first present the basic reduction using random guessing.

Lemma 1. Assume we have two games defined via challengers G0 and G1 respectively. Let
g : {0, 1}∗ → W be an arbitrary function and define the selectivized games Hb = SELW [Gb, g] for
b ∈ {0, 1}. If H0, H1 are (s, ε)-indistinguishable then G0, G1 are (s− sW , ε · |W|)-indistinguishable,
where sW denotes the complexity of sampling uniformly at random from W.

14

H

G

A

=

gτ

b′

b

w

(a)

H

Ĥ

A

=

g

h·

τ

b′

b

w

x

(b)

Figure 3: Selectivizing. (a): SELW [G, g], and (b): SELU→W [Ĥ, g, h]. The symbol τ is short for
transcript, the nodes with g and h compute the respective functions, whereas the node with =
outputs a bit b as prescribed in the consistency check.

Proof. We prove the contrapositive. Assume that there is an adversary A of size s′ = s− sW such
that

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| > ε · |W|.

Let A∗ be the adversary that first chooses a uniformly random w ←W and then runs A. Then for
b ∈ {0, 1}:

Pr[〈A∗,Hb〉 = 1] = Pr[〈A,Gb〉 = 1]/|W|

and therefore
|Pr[〈A∗,H0〉 = 1]− Pr[〈A∗,H1〉 = 1]| > ε.

Moreover, since A∗ is of size s′+ sW = s this shows that H0 and H1 are not (s, ε)-indistinguishable.

3.0.1 Partially Selective Hybrids.

Consider the following setup. We have two adaptive games GL and GR. For some function
g : {0, 1}∗ → W we define the selectivized games HL = SELW [GL, g], HR = SELW [GR, g] where
the adversary commits to some information w ∈ W. Moreover, to show the indisitinguishability of
HL,HR we have a sequence of ` (selective) hybrid games HL = H0,H1, . . . ,H` = HR.

If we only assume that neighboring hybrids Hi,Hi+1 are indistinguishable then by combining the
hybrid argument and random guessing we know that GL and GR are indistinguishable at a security
loss of ` · |W|.

Theorem 1. Assume that for each i ∈ {0, . . . , `−1}, the games Hi,Hi+1 are (s, ε)-indistinguishable.
Then GL and GR are (s − sW , ε · ` · |W|)-indistinguishable, where sW denotes the complexity of
sampling uniformly at random from W.

15

Proof. Follows from Lemma 1 and the hybrid argument.

Our goal is to avoid the loss of |W| in the above theorem. To achieve this, we will assume
a stronger condition: not only are neighboring hybrids Hi,Hi+1 indistinguishable, but they are
selectivized versions of less selective games Ĥi,0, Ĥi,1 which are already indistinguishable. In par-
ticular, we assume that for each pair of neighboring hybrids Hi,Hi+1 there exist some less selective
hybrids Ĥi,0, Ĥi,1 where the adversary only commits to much less information hi(w) ∈ U instead of
w ∈ W. In more detail, for each i there is some function hi : W → U that lets us interpret Hi+b as
a selectivized version of Ĥi,b via Hi+b ≡ SELU→W [Ĥi,b, g, hi]. In that case, the next theorem shows
that we only get a security loss proportional to |U| rather than |W|. Note that different pairs of
“less selective hybrids” Ĥi,0, Ĥi,1 rely on completely different partial information hi(w) about the
adversary’s choices. Moreover, the “less selective” hybrid that we associate with each Hi can be
different when we compare Hi−1,Hi (in which case it is Ĥi−1,1) and when we compare Hi and Hi+1

(in which case it is Ĥi,0).

Theorem 2 (main). Let GL and GR be two adaptive games. For some function g : {0, 1}∗ →W we
define the selectivized games HL = SELW [GL, g], HR = SELW [GR, g]. Let HL = H0,H1, . . . ,H` = HR

be some sequence of hybrid games.
Assume that for each i ∈ {0, . . . , `− 1}, there exists a function hi : W → U and games Ĥi,0, Ĥi,1

such that:
Hi ≡ SELU→W [Ĥi,0, g, hi] , Hi+1 ≡ SELU→W [Ĥi,1, g, hi]. (1)

Furthermore, assume that Ĥi,0, Ĥi,1 are (s, ε)-indistinguishable. Then GL and GR are (s− sU , ε ·
` · |U|)-indistinguishable, where sU denotes the complexity of sampling uniformly at random from
U .

Proof. Assume that A is an adaptive distinguisher for GL and GR of size s′ such that

|Pr[〈A,GL〉 = 1]− Pr[〈A,GR〉 = 1]| > ε′.

Let A∗ be a fully selective distinguisher that guesses w ←W uniformly at random in the first round
and then runs A. By the same argument as in Lemma 1 and Theorem 1 we know that there exists
some i ∈ [0, `) such that:

|Pr[〈A∗,Hi〉 = 1]− Pr[〈A∗,Hi+1〉 = 1]| ≥ ε′/(` · |W|) (2)

Let A′ be a partially selective distinguisher that guesses u← U uniformly at random in the first
round and then runs A. We want to relate the probabilities Pr[〈A∗,Hi+b〉 = 1] and Pr[〈A′, Ĥi,b〉 = 1].

Recall that the game 〈A∗,Hi+b〉 consists of A∗ selecting a uniformly random value w ← W
(which we denote by the random variable W) and then we run A against Ĥi,b(u) (denoting the

challenger Ĥi,b that gets a commitment u in first round) which results in some transcript and an
output bit b∗; if g(transcript) = w the final output is b∗ else 0.

Similarly, the game 〈A′, Ĥi,b〉 consists of A′ selecting a uniformly random value u ← U (which

we denote by the random variable U) and then we run A against Ĥi,b(u). Therefore:

16

Pr[〈A∗,Hi+b〉 = 1]

=
∑
u∈U

Pr[hi(W) = u︸ ︷︷ ︸
I

] · Pr[〈A, Ĥi,b(u)〉 = 1︸ ︷︷ ︸
II

] · Pr[W = g(transcript)|I, II]

=
∑
u∈U

|h−1
i (u)|
|W|

· Pr[〈A, Ĥi,b(u)〉 = 1] · 1

|h−1
i (u)|

=
1

|W|
·
∑
u∈U

Pr[〈A, Ĥi,b(u)〉 = 1]

=
|U|
|W|
·
∑
u∈U

Pr[〈A, Ĥi,b(u)〉 = 1] · Pr[U = u]

=
|U|
|W|
· Pr[〈A′, Ĥi,b〉 = 1]

Combining the above with equation 2 we get:

|Pr[〈A′, Ĥi,0〉 = 1]− Pr[〈A′, Ĥi,1〉 = 1]| ≥ ε′/(` · |U|)

Since by assumption Ĥi,0, Ĥi,1 are (s, ε)-indistinguishable and A′ is of size s′ + sU this shows
that when s′ = s− sU then ε′ ≤ ε · ` · |U| which proves the theorem.

3.1 Example: GSD on a Path

As an example, we consider the problem of generalised selective decryption (GSD) on a path graph
with n edges, where n is a power of two.

Let (Enc,Dec) be a symmetric encryption scheme with (probabilistic) Enc : K ×M → C and
Dec : K×C →M. We assume K ⊆M so that we can encrypt keys, and that the encryption scheme
is (s, δ)-indistinguishable under chosen-plaintext attack.9 In the game, the challenger — either GL

or GR — picks n+ 1 random keys k0, . . . , kn ∈ K, and the adversary A is then allowed to make two
types of queries:

• Encryption queries, (encrypt, vi, vj): it receives back Enc(ki, kj).

• Challenge query, (challenge, vi∗): here the answer differs between GL and GR, with GL

answering with ki∗ (real key) and GR answering with r ← K (random, “fake” key).

A cannot ask arbitrary queries: it is restricted to encryption queries that form a path graph with
the challenge query as the sink. That is, a valid attacker A is allowed exactly n encryption queries
(encrypt, vit , vjt), for t = 1, . . . , n, and a single (challenge, vi∗) query such that the directed graph
Gκ = (V, E) with V = {v0, . . . , vn} and E = {(vi1 , vj1), . . . , (vin , vjn)} forms a path with sink vi∗ .

9To be precise, we only need the encryption scheme to be secure in a weaker model where encryptions of two
random messages m0,m1 ∈ K under a random key k ∈ K are (s, δ)-indistinguishable, with the adversary having
access to ciphertexts on random messages from K.

17

Fully selective hybrids. Let’s look at a näıve sequence of intermediate hybrids H0, . . . ,H2n−1.
The fully selective challenger HI receives as commitment the exact permutation σ that A will query
— i.e, vσ(i) is the ith vertex on the path. Therefore, W = Sn+1 (the symmetry group over 0, . . . , n)
and g is the function that outputs the observed permutation from transcript. Next, HI samples
2(n+ 1) keys k0, . . . , kn, r0, . . . , rn, and when A makes a query (encrypt, vσ(i), vσ(i+1)), it returns

for 0 ≤ I ≤ n :
Enc(kσ(i), rσ(i+1)) if (0 ≤ i ≤ I) (Fake edge)

Enc(kσ(i), kσ(i+1)) otherwise. (Real edge)

for n < I ≤ 2n− 1 :

Enc(kσ(i), rσ(i+1)) if (0 ≤ i ≤ 2n− 1− I) ∨ (i = n− 1) (Fake edge)

Enc(kσ(i), kσ(i+1)) otherwise. (Real edge)
(3)

Thus, in the sequence H0, . . . ,H2n−1, edges are “faked” sequentially down the path, and then
“restored”, except for the last edge, in the reverse order up the path— see Figure 1.a. By definition,
H0 = GL and H2n−1 = GR. Moreover, HI and HI+1 can be shown (s, δ)-indistinguishable: when A
queries for (encrypt, vσ(I), vσ(I+1)), the reduction RI returns the challenge ciphertext

C(·, kσ(I+1), rσ(I+1)) if (I ≤ n) (Real to fake)

C(·, rσ(I+1), kσ(I+1)) otherwise. (Fake to real)
(4)

For the rest of the queries, RI works as prescribed in eq.3.10 It is easy to see that RI simulates
HI when the ciphertext corresponds to the first message, and HI+1 otherwise. By Theorem 1,
(s−n ·sEnc, δ(2n+1)(n+1)!)-indistinguishability of GL and GR follows, where sEnc is the complexity
of the Enc algorithm and the (n+ 1)! factor is the size of the set W = Sn+1.

Partially selective hybrids. In order to simulate according to the strategy just described, it
suffices for the hybrid (as well as the reduction) to guess the edges that are faked — however,
this number can be at most n (e.g., in the middle hybrids) and, therefore, the simulator guesses
the whole path anyway. Intuitively, this is where the overall looseness of the bound stems from.
Now, consider the alternative sequence of hybrids H̃0, . . . , H̃27 given in Figure 1.b: the edges in this
sequence are faked and restored, one at a time, in a recursive manner to ensure that at most four
edges end up fake per hybrid. In particular, the new hybrid H̃I , fakes all the edges that belong to
a set PI ⊆ E . That is, when A makes a query (encrypt, vi, vj) — instead of following eq.3, — H̃I
returns

Enc(ki, rj) if ((vi, vj) ∈ PI) (Fake edge)
Enc(ki, kj) otherwise. (Real edge)

(5)

This strategy can be extended to arbitrary n, and there exists such a sequence of sets P0, . . . ,P3logn

where the sets are of size at most log n+ 1.11

Next, we show that the above simulation strategy satisfies the requirements for applying The-
orem 2. Firstly, as shown in Algorithm 1, the strategy is partially selective — i.e., H̃I+b =
SELU→W [ĤI,b, g, hI], where, for I ∈ [0, ` = 3logn], the function hI : Sn+1 → E logn+1 computes

PI . Secondly, as the simulation in ĤI,0 and ĤI,1 differ by exactly one edge — which is real

10Even though RI does not know the key kσ(I), the query (encrypt, vσ(I−1), vσ(I)) does not cause a problem as its
response is Enc(kσ(I), rσ(I−1)).

11Later, in §A.2.3, we see that the sequence P0, . . . ,P3log n corresponds to an “edge-pebbling” of the path graph.

18

H̃A
I+b

1: Obtain σ ∈ Sn+1 from A
2: Compute P := P0, . . . ,P`
3: Run ĤI,b((PI ,PI+1))
4: if g(transcript) = σ then
5: return ĤI,b’s output
6: else return 0
7: end if

ĤA
I,b((PI ,PI+1))
1: Choose 2n keys r1, . . . , rn, k1, . . . , kn ← K
2: Whenever A queries (encrypt, vi, vj):
3: if (vi, vj) ∈ PI+b then return Enc(ki, rj)
4: else return Enc(ki, kj)
5: end if
6: return A’s output

Algorithm 1: H̃I+b = SELU→W [ĤI,b, g, hI]

in one and fake in the other — they can be shown to be (s, δ)-indistinguishable. To be pre-
cise, if (vi∗ , vj∗) := PI4PI+1, where 4 denotes the symmetric difference, when A queries for
(encrypt, vi∗ , vj∗), the reduction R̃I returns

C(·, kj∗ , rj∗) if (PI ⊂ PI+1) (Real to fake)
C(·, rj∗ , kj∗) otherwise. (Fake to real)

(6)

with the rest of the queries answered as in eq.5.
Although, the number of hybrids is greater than in the previous sequence, the number of fake

edges in any hybrid is at most log n+ 1. Thus, the reduction can work with less information than
earlier. By Theorem 2, (s − n · sEnc − sP , δ · 3logn · n2(logn+1))-indistinguishability of GL and GR

follows, where sP is the size of the algorithm that generates the set P = {P0, . . . ,P`}, and the
n2(logn+1) factor results from the fact that the compressed set U = E logn+1. Thus, the bound is
improved considerably from exponential to quasi-polynomial. A more formal treatment is given in
§A.

4 Adaptive Secret Sharing for Monotone Circuits

Throughout history there have been many formulations of secret sharing schemes, each providing
a different notion of correctness or security. We focus here on the computational setting and adapt
the definitions of [KNY17] for our purposes. Bellare and Rogaway [RB07] survey many different
definitions, so we refer there for more information.

A computational secret sharing scheme involves a dealer who has a secret, a set of n parties,
and a collection M of “qualified” subsets of parties called the access structure.

Definition 4 (Access structure). An access structure M on parties [n] is a monotone set of subsets
of [n]. That is, M ⊆ 2[n] and for all X ∈M and X ⊆ X ′ it holds that X ′ ∈M .

We sometimes think of M as a characteristic function M : 2[n] → {0, 1} that outputs 1 on input
X if and only if X is in the access structure. Here, we mostly consider access structures that can be
described by a monotone Boolean circuit. These are directed acyclic graphs (DAGs) in which leaves
are labeled by input variables and every internal node is labeled by an OR or AND operation. We
assume that the circuit has fan-in kin and fan-out (at most) kout. The computation is done in the
natural way from the leaves to the root which corresponds to the output of the computation. A
circuit in which every gate has fan-out kout = 1 is called a formula.

19

A secret sharing scheme for M is a method by which the dealer efficiently distributes shares to
the parties such that (1) any subset in M can efficiently reconstruct the secret from its shares, and
(2) any subset not in M cannot efficiently reveal any partial information on the secret. We denote
by Πi the share of party i and by ΠX the joint shares of parties X ⊆ [n].

Definition 5 (Secret sharing). Let M : 2[n] → {0, 1} be an access structure. A secret sharing
scheme for M consists and secret space S of efficient sharing and reconstruction procedures S and
R, respectively, that satisfy the following requirements:

1. S(1λ, n, S) gets as input the unary representation of a security parameter, the number of
parties and a secret S ∈ S, and generates a share for each party.

2. R(1λ,ΠX) gets as input the unary representation of a security parameter, the shares of a
subset of parties X, and outputs a string S′.

3. Completeness: For a qualified set X ∈ M the reconstruction procedure R outputs the shared
secret:

Pr
[
R(1λ,ΠX) = S

]
= 1,

where the probability is over the randomness of the sharing procedure Π1, . . . ,Πn ← S(1λ, n, S).

4. Adaptive security: For every adversary A of size s it holds that

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| ≤ ε,

where the challenger Gb is defined as follows:

(a) The adversary A specifies a secret S ∈ S.

i. If b = 0: the challenger generate shares Π1, . . . ,Πn ← S(1λ, n, S).

ii. If b = 1: the challenger samples a random S′ ∈ S and generate shares Π1, . . . ,
Πn ← S(1λ, n, S′).

(b) The adversary adaptively specifies an index i ∈ [n] and if the set of parties he requested
so far is unqualified, he gets back Πi, the share of the i-th party.

(c) Finally, the adversary outputs a bit b′, which is the output of the experiment.

The selective security variant is obtained by changing item 4b in the definition of the challenger
Gb so that the adversary first sends a commitment to the set of shares X he wants to see ahead of
time before seeing any share. We denote this challenger by Hb = SEL2[n] [Gb, X].

4.1 The scheme of Yao

Here we describe the scheme of Yao (mentioned in [Bei11], see also Vinod et al. [VNS+03]). The
access structure M is given by a monotone Boolean circuit that is composed of AND and OR
gates with fan-in kin and fan-out (at most) kout. Each leaf in the circuit is associated with an
input variable x1, . . . , xn (there may be multiple inputs corresponding to the same input variable).
During the sharing process, each wire in the circuit is assigned a label and the shares of party
i ∈ [n] corresponds to the labels of the wires corresponding to the input variable xi. The sharing is

20

done from the output wire to the leaves. The reconstruction is done in reverse: using the shares of
the parties (that correspond to labels of the input wires), we recover the label of the output wire
which will correspond to the secret.

The scheme (S,R) uses a symmetric-key encryption scheme SKE = (Enc,Dec) in which keys
are uniformly random strings in {0, 1}λ and is ε-secure: any polynomial-time adversary cannot
distinguish the encryption of m1 ∈ {0, 1}λ from an encryption of m2 ∈ {0, 1}λ with probability
larger than ε. The sharing procedure S is described in Figure 4.

The sharing procedure S:

Input : A secret S ∈ {0, 1}λ.

1. Initialize Π(S, i) = ∅ for every i ∈ [n].

2. Label the output wire ow with the secret `ow = S.

3. Repeat the following until all input wires of the circuit are labeled.

(a) Let g be a gate with kin input wires and (at most) kout output wires. Let w′
1, . . . , w

′
kout

be the
output wires of g having labels `w′

1
, . . . , `w′

kout
and w1, . . . , wkin be the input wires. Associate

with g a fresh encryption key sg ← {0, 1}λ.

(b) If g = AND, assign the label of w1, . . . , wkin to be random conditioned on `w1
⊕· · ·⊕ `wkin

= sg.

(c) If g = OR, assign the label of w1, . . . , wkin to be sg.

(d) For every i ∈ [n], add to the share of the ith party an encryption of the labels of the w′
i’s under

sg. That is,

Π(S, i) = Π(S, i) ∪ {(g,Encsg (`w′
1
), . . . ,Encsg (`w′

kout
))}.

4. For every input wire w associated with the input variable xi, add to the share of the ith party the
tuple that consists of the name of the wire and its label:

Π(S, i) = Π(S, i) ∪ {(w, `w)}.

5. Output Π(S, 1), . . . ,Π(S, n).

Figure 4: Yao’s secret sharing scheme (S,R) for an access structure M described by a monotone
Boolean circuit.

The reconstruction procedure R of the scheme is essentially applying the reverse operations
from the leaves of the circuit to the root. Given the labels of the input wires of an AND gate g, we
recover the key associated with g by applying a XOR operation on the labels of the input wires,
and then recover the labels of the output wires by decrypting the corresponding ciphertexts. Given
the labels of the input wires of an OR gate g, we recover the key associated with g by setting it to
be the label of any input wire, and then recover the labels of the output wires by decrypting the
corresponding ciphertexts. The label of the output wire of the root gate is the recovered secret.

The scheme is efficient in the sense that the share size of each party is bounded by kout · λ · s,
where s is the number of gates in the circuit. So, if the circuit is of polynomial-size (in n), then
the share size is also polynomial (in n and in the security parameter).

Correctness of the scheme follows by an induction on the depth of the circuit and we omit

21

further details here. Vinod et al. [VNS+03] proved that this scheme12 is selectively secure by a
sequence of roughly s hybrid arguments, where s is the number of gates in the circuit representation
of M . By the basic random guessing lemma (Lemma 1), this scheme is also adaptively secure but
the security loss is exponential in the number of players the adversary requests to see. The later can
be exponential in O(n) so for our scheme to be adaptively secure, we need the encryption scheme
to be exponentially secure.

Theorem 3 ([VNS+03]). Assume that SKE is a ε-secure symmetric-key encryption scheme. Then,
for any polynomial-time adversary A and any access structure on n parties described by a monotone
circuit with s gates, it holds that

|Pr[〈A,H0〉 = 1]− Pr[〈A,H1〉 = 1]| ≤ kout · s · ε,

and (using Lemma 1),

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| ≤ 2n · kout · s · ε,

In the following subsection we prove that the scheme is adaptively secure and the security loss
is roughly 2d·log s, where d and s are the depth and number of gates, respectively, in the circuit
representing the access structure.

Theorem 4. Assume that SKE is ε-secure. Then, for any polynomial-time adversary A and any
access structure on n parties described by a monotone circuit of depth d and s gates with fan-in kin
and fan-out kout, it holds that

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| ≤ 2d·(log s+log kin+2) · (2kin)2d · kout · ε.

4.2 Hybrids and pebbling configurations

To prove Theorem 4 we rely on the framework introduced in Theorem 2 that we briefly recall
here. Our goal is to prove that an adversary cannot distinguish the challengers GL = G0 and
GR = G1, corresponding to the adaptive game. We define the selective version of the games
HL = SEL2[n] [GL, X] and HR = SEL2[n] [GR, X], where the adversary has to commit to the whole
set of shares it wished to see ahead of time. We construct a sequence of ` selective hybrid games
HL = H0,H1, . . . ,H`−1,H` = HR. For each Hi we define two selective games Ĥi,0 and Ĥi,1 and show
that for every i ∈ {0, . . . , `− 1}, there exists a mapping hi such that the games Hi+b and Ĥi,b (for
b ∈ {0, 1}) are equivalent up to the encoding of the inputs to the games (given by hi). Then, we
can apply Theorem 2 and obtain our result.

The fully-selective hybrids. The sequence of fully selective hybrids HL = H0,H1, . . . ,H`−1,H` =
HR is defined such that each experiment is associated with a pebbling configuration. In a pebbling
configuration, each gate is either pebbled or unpebbled. A configuration is specified by a com-
pressed string that fully specifies the names of the gates which have a pebble on them (and the
rest of the gates implicitly do not). We will define the possible pebbling configurations later but
for now let us denote by Q the number of possible pebbling configurations.

12To be more precise, the scheme that Vinod et al. presented and analyzed is slightly different. Specifically, they
considered AND and OR gates with fan-out 1 and showed how to separately handle FAN-OUT gates (gates that have
fan-in 1 and fan-out 2). Their analysis can be modified to handle our scheme.

22

We define for every j ∈ [Q], a hybrid experiment Hj in which the adversary first commits to
the set X of parties it wishes to see their shares, and then the challenger executes a new sharing
procedure Sj that depends on the j-th pebbling configuration. Roughly, this sharing procedure
acts exactly as the original sharing procedure S, but whenever it encounters a gate with a pebble
it generates bogus ciphertexts rather than the real ones. This sharing procedure is described in
Figure 5.

The sharing procedure Sj:

Input : A secret S ∈ {0, 1}λ.

1. Initialize Πi = ∅ for every i ∈ [n].

2. Label the output wire ow with the secret `ow = S.

3. Repeat the following until all input wires of the circuit are labeled.

(a) Let g be a gate with kin input wires and (at most) kout output wires. Let w′
1, . . . , w

′
kout

be the
output wires of g having labels `w′

1
, . . . , `w′

kout
and w1, . . . , wkin be the input wires. Associate

with g a fresh encryption key sg ← {0, 1}λ.

(b) If g = AND, assign the label of w1, . . . , wkin to be random conditioned on `w1
⊕· · ·⊕ `wkin

= sg.

(c) If g = OR, assign the label of w1, . . . , wkin to be sg.

(d) If g has no pebble on it: For every i ∈ [n], add to the share of the ith party an encryption of
the labels of the w′

i’s under sg. That is,

Πi = Πi ∪
(
g,Encsg (`w′

1
), . . . ,Encsg (`w′

kout
)
)
.

(e) If g has a pebble on it: Sample fresh random strings r1, . . . , rkout and for every i ∈ [n], add to
the share of the ith party an encryption of ri and under sg. That is,

Πi = Πi ∪ {(g,Encsg (r1), . . . ,Encsg (rkout))}.

4. For every input wire w associated with the input variable xi, add to the share of the ith party the
tuple that consists of the name of the wire and its label:

Πi = Πi ∪ {(w, `w)}.

5. Output Π1, . . . ,Πn.

Figure 5: The sharing procedure Sj for an access structure M , described by a monotone Boolean
circuit, and the j-th pebbling configuration which encodes the color of the pebble on each gates.

Observe that the hybrid that corresponds to the configuration in which all gates are unpebbled
is identical to the experiment HL and the configuration in which there is a pebble only on the root
gate corresponds to the experiment HR.

Pebbling rules and strategies. The rules of the pebbling game depend on the subset of parties
whose shares the adversary sees. The rules are:

1. Can place or remove a pebble on any AND gate for which (at least) one input wire is either
not in X or comes out of a gate with a pebble on it.

23

2. Can place or remove a pebble on any OR gate for which all of the incoming wires are either
input wires not in X or come out of gates all of which have pebbles on them.

Our goal is to find a sequence of pebbling rules so that starting with the initial configuration
(in which there are no pebbles at all) will end up with a pebbling configuration in which only the
root has a pebble. Jumping ahead, we would like for the sequence of pebbling rules to have the
property that each configuration is as short to describe as possible (i.e., minimize Q). One way to
achieve this is to have at any configuration along the way, as few pebbles as possible. An even more
succinct representation can be obtained if we allow many pebbles but have a way to succinctly
represent their location. This is what we achieve in the following lemma.

Lemma 2. For every subset of parties X and any monotone circuit of depth d, fan-in kin, and s
gates, there exists a sequence of (2kin)2d pebbling rules such that every pebbling configuration can
be uniquely described by at most d · (log s+ log kin + 1) bits.

Proof. A pebbling configuration is described by a list of pairs (gate name, counter), where the
counter is a number between 1 and kin, and another bit b to specify whether the root gate has a
pebble or not. The counter will represent the number of predecessors, ordered from left to right,
that have a pebble on them. Any encoding uniquely defines a pebbling configuration (but notice
that the converse is not true).

Denote by TX(d) the number of pebbling rules needed (i.e., the length of the sequence) and
by PX(d) the maximum size of the description of the pebbling configuration during the sequence.
The sequence of pebbling rules is defined via a recursive procedure in the depth d. We first pebble
each of the kin predecessors of the root from left to right and add a pair (root gate, counter) to the
configuration. After we finish pebbling each predecessor we increase the counter by 1 to keep track
of how many predecessors have been pebbled. To pebble all predecessors we used kin · TX(d − 1)
pebbling rules and the maximal size of a configuration is at most PX(d− 1) + (log s+ log kin + 1).
The log s term comes from specifying the name of the root gate, the log kin term come from the
number of predecessors of the root gate that have a pebble on them, and the single bit is to signal
whether the root gate is pebbled or not.

After this recursive pebbling each of the predecessors have a pebble only at their root gate and
the root (of the depth d circuit) has no pebble. Now, we need to remove the pebble from the root
of every predecessor of the root gate and put a pebble on the root gate. For the latter we apply
one pebbling rule and put a pebble on the root gate. To remove the pebbles from the predecessors
of the root gate we reverse the recursive pebbling procedure (by “unpebbling” from right to left
and updating the counter appropriately), resulting in the application of additional kin · TX(d − 1)
pebbling rules. When we finish unpebbling, since the root has no predecessors with pebbles, we
remove from the description of the configuration the pair corresponding to the root gate. Thus, we
get that the maximum size of a pebbling configuration at any point in time is is

PX(d) ≤ PX(d− 1) + (log s+ log kin + 1)⇒ PX(d) ≤ d · (log s+ log kin + 1).

The total number of pebbling rules we apply is

TX(d) ≤ 2kin · TX(d− 1) + 1⇒ TX(d) ≤ (2kin)2d.

This completes the proof of the lemma.

24

Recall that we denote by Q the number of possible pebbling configurations. Using the pebbling
strategy from Lemma 2, we get that

Q ≤ 2d·(log s+log kin+1).

The partially-selective hybrids. We define the partially selective hybrids Ĥj,0 and Ĥj,1 for
every Hj and j ∈ [Q]. In both hybrid games Ĥj,0 and Ĥj,1, the adversary first commits to the
j-th pebbling configuration and the next pebbling rule to apply. Denote by j′ ∈ [Q] the index of
the pebbling configuration resulting from applying the next configuration rule to the j-th pebbling
configuration. In Ĥj,0 the challenger samples the shares from Sj and in Ĥj,1 the challenger samples
the shares from Sj

′
(but other than this the games do not change).

Denote by U the space of messages that the adversary has to commit in the partially selective
hybrids Ĥj,b. This space includes all tuples of pebbling configurations and an additional valid
pebbling rule. First, recall that there are Q possible pebbling configurations. Seocnd, observe
that a pebbling rule can be described by a gate name: a pebbling rule is just flipping the color
of the pebble on that gate. For a circuit with s gates this requires additional log s bits. Thus,
U = {(i, g) | i ∈ [Q], g ∈ [s]} and this means that the size of U is bounded by

|U| ≤ Q · s ≤ 2d·(log s+log kin+1) · s.

By semantic security of the symmetric-key encryption scheme and the fact that we replace kout
ciphertexts with bogus ones, we have that the games Ĥj,0 and Ĥj,1 are indistinguishable. The proof
is by planting the challenge ciphertext as the ciphertext in the gate where the “next pebbling rule”
is applied. In Ĥj,0 it is a “real” ciphertext while in Ĥj,1 it is a bogus one.

Lemma 3. Assume that SKE is ε-secure. Then, for any polynomial-time adversary A and any
access structure on n parties described by a monotone circuit it holds that

|Pr[〈A, Ĥj,0〉 = 1]− Pr[〈A, Ĥj,1〉 = 1]| ≤ kout · ε.

Applying Theorem 2 with the fact that ` ≤ (2kin)2d and |U| ≤ 2d·(log s+log kin+1) · s, we get that
if SKE is ε-secure, then for any polynomial-time adversary A and any access structure on n parties
described by a monotone circuit of depth d and s gates of fan-in kin and fan-out kout, it holds that

|Pr[〈A,G0〉 = 1]− Pr[〈A,G1〉 = 1]| ≤ 2d·(log s+log kin+1) · s · (2kin)2d · kout · ε
≤ 2d·(log s+log kin+2) · (2kin)2d · kout · ε.

5 Open Problems

In this work we presented a framework for proving adaptive security of various schemes including
secret sharing over access structures defined via monotone circuits, generalized selective decryption,
constrained PRFs, and Yao’s garbled circuits. The most natural future direction is to find more
applications where our framework can be used to prove adaptive security with better security loss
than using the standard random guessing. Also, improving our results in terms of security loss is
an open problem.

In all of our applications of the framework, the security loss of a scheme is captured by the
existence of some pebbling strategy. Does there exist a connection in the opposite direction between
the security loss of a scheme and possible pebbling strategies? That is, is it possible to use lower
bounds for pebbling strategies to show that various security losses are necessary?

25

Acknowledgments

The fourth author thanks his advisor Moni Naor for asking whether Yao’s secret sharing scheme is
adaptively secure and for his support.

References

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In 3rd International Workshop,
IWCC, pages 11–46, 2011.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM Journal
on Computing, 18(4):766–776, 1989.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages
501–519. Springer, Heidelberg, March 2014.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 134–153.
Springer, Heidelberg, December 2012.

[BL90] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone
functions. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 27–
35. Springer, Heidelberg, August 1990.

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS 1979 National
Computer Conference, 48:313–317, 1979.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume
8270 of LNCS, pages 280–300. Springer, Heidelberg, December 2013.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In 32nd ACM STOC, pages 235–244. ACM Press, May
2000.

[FJP15] Georg Fuchsbauer, Zahra Jafargholi, and Krzysztof Pietrzak. A quasipolynomial re-
duction for generalized selective decryption on trees. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology – CRYPTO 2015, volume 9215 of Lecture
Notes in Computer Science, pages 601–620. Springer Berlin Heidelberg, 2015.

[FKPR14] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Vanishree Rao.
Adaptive security of constrained prfs. In Palash Sarkar and Tetsu Iwata, editors, Ad-
vances in Cryptology – ASIACRYPT 2014, volume 8874 of Lecture Notes in Computer
Science, pages 82–101. Springer Berlin Heidelberg, 2014.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applications
of random functions. In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume
196 of LNCS, pages 276–288. Springer, Heidelberg, August 1984.

26

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
ACM STOC, pages 467–476. ACM Press, June 2013.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel
Wichs. Adaptively secure garbled circuits from one-way functions. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages
149–178. Springer, Heidelberg, August 2016.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 201–220. Springer,
Heidelberg, May 2014.

[ISN87] M. Ito, A. Saito, and Takao Nishizeki. Secret sharing schemes realizing general access
structure. In Proc. IEEE Global Telecommunication Conf. (Globecom’87), pages 99–
102, 1987.

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of yao’s garbled circuits. In
Martin Hirt and Adam D. Smith, editors, Theory of Cryptography - 14th International
Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings,
Part I, volume 9985 of Lecture Notes in Computer Science, pages 433–458, 2016.

[KMN+14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev.
One-way functions and (im)perfect obfuscation. In 55th FOCS, pages 374–383. IEEE
Computer Society Press, October 2014.

[KNY17] Ilan Komargodski, Moni Naor, and Eylon Yogev. Secret-sharing for NP. J. Cryptology,
30(2):444–469, 2017.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM CCS 13, pages 669–684. ACM Press,
November 2013.

[Krá01] Richard Královic. Time and space complexity of reversible pebbling. In SOFSEM 2001:
Theory and Practice of Informatics, 28th Conference on Current Trends in Theory
and Practice of Informatics Piestany, Slovak Republic, November 24 - December 1,
2001, Proceedings, volume 2234 of Lecture Notes in Computer Science, pages 292–303.
Springer, 2001.

[KW88] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. In 20th ACM STOC, pages 539–550. ACM Press, May 1988.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of Structures
in Complexity Theory, pages 102–111, 1993.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

27

[Pan07] Saurabh Panjwani. Tackling adaptive corruptions in multicast encryption protocols.
In SalilP. Vadhan, editor, Theory of Cryptography, volume 4392 of Lecture Notes in
Computer Science, pages 21–40. Springer Berlin Heidelberg, 2007.

[RB07] Phillip Rogaway and Mihir Bellare. Robust computational secret sharing and a unified
account of classical secret-sharing goals. In Peng Ning, Sabrina De Capitani di Vimer-
cati, and Paul F. Syverson, editors, ACM CCS 07, pages 172–184. ACM Press, October
2007.

[RPRC16] Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Exponen-
tial lower bounds for monotone span programs. In 57th FOCS, pages 406–415. IEEE
Computer Society Press, 2016.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, November 1979.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

[VNS+03] V. Vinod, Arvind Narayanan, K. Srinathan, C. Pandu Rangan, and Kwangjo Kim.
On the power of computational secret sharing. In Thomas Johansson and Subhamoy
Maitra, editors, INDOCRYPT 2003, volume 2904 of LNCS, pages 162–176. Springer,
Heidelberg, December 2003.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

A Generalised Selective Decryption

The generalised selective decryption (GSD) game was introduced in [Pan07] in order to capture the
hardness of proving adaptive security of cryptographic protocols. [Pan07] then showed how GSD
can be used to show adaptive security of multicast encryption protocol and logical key hierarchy.

Notation. For n = n(λ), G = (V, E) denotes a directed acyclic graph (DAG) with V = {v1, . . . , vn}
and E ⊆ V2. The set of all graphs of n vertices is denoted G(n). The indegree (resp., outdegree)
of a vertex is defined as the number of edges coming in to (resp., going out of) that vertex. The
indegree (resp., outdegree) of the graph is the maximum indegree (resp., outdegree) over all the
vertices. A vertex with indegree (resp., outdegree) zero is called a source (resp., sink). Let S (resp.,
T) denote the set of source (resp., sink) vertices of a graph. We assume that the set of edges E
is (totally) ordered: we use (u, v) < (u′, v′) to denote that (u, v) precedes (u′, v′) in the set. For
v ∈ V, we define parents(v) := {u : (u, v) ∈ E} and in(v) := {(u, v) : u ∈ parents(v)}. We assume
that parents(·) preserves the order on E — i.e., if (u, v) < (u′, v) then u precedes u′ in parents(v).
Finally, parents−1(v) denotes the set parents(v) with elements in the reverse order.

28

A.1 Formal Definitions

We generalise the definition of GSD given in §3.1. Let (Enc,Dec) be a symmetric encryption scheme
with Enc : K ×M → C, Dec : K × C → M and we assume K ⊆ M (so we can encrypt keys). We
assume that (Enc,Dec) is correct, i.e.,

∀k ∈ K,m ∈M : Pr[Dec(k,Enc(k,m)) = m] = 1

and that it is (s, ε)-indistinguishable under chosen-plaintext attack (IND-CPA) — see Definition 6.

Definition 6 (IND-CPA). The game is played between a challenger (either G0 or G1) and an
adversary on the symmetric encryption scheme (Enc,Dec). The challenger chooses the challenge
key k ← K. The adversary can make two types of queries:

• Encryption queries (encrypt,m), m ∈M: the challenger returns (Enc(k,m).

• One challenge query (challenge,m0,m1), m0,m1 ∈ M: the challenger when simulating Gb
returns the challenge ciphertext Enc(k,mb).

An encryption scheme (Enc,Dec) is said to be (s, ε)-indistinguishable under chosen-plaintext attack,
if G0 and G1 are (s, ε)-indistinguishable.

Definition 7 (Adaptive GSD [Pan07]). The game is played between a challenger G (which is
either GL or GR) and an adversary A using (Enc,Dec). G picks n keys k1, . . . , kn ← K uniformly at
random, and initialises a graph Gκ := ({v1, . . . , vn}, ∅); it also initialises a set C = ∅. A can make
three types of queries:

• Encryption queries, (encrypt, vi, vj): G returns Enc(ki, kj), and adds (vi, vj) to E.

• Corruption queries, (corrupt, vi): G returns ki,and adds vi to C.

• One challenge query (challenge, vi): Here the answer differs between GL and GR: GL answers
with ki (real key), whereas GR answers with r ← K (fake key) sampled uniformly at random
— for the task to be non-trivial, vi must be a sink and it must not be reachable from any
vertex in C.13

Note that the order “<”on E considered here is the “temporal” order induced by the game:
if A queried (encrypt, u, v) before (encrypt, u′, v′) in the game, then (u, v) was added to the set
E before (u′, v′), and hence (u, v) < (u′, v′).14 The graph Gκ, along with the order <, is called
the key-graph. In the fully selectivized version of Definition 7, A must commit to the key-graph
beforehand — i.e., the selective challenger HL = SELGκ [GL, g] (resp., HR = SELGκ [GR, g]), where
Gκ = Gκ(n) is the set of all key-graphs of n vertices (i.e., the set of all graphs G(n) along with the
set of all possible edge orderings on them), and g is the function that extracts the key-graph from
the transcript.

Definition 8. An encryption scheme (Enc,Dec) is called (s, ε)-adaptive (resp., selective) GSD-
secure if GL and GR (resp., HL and HR) are (s, ε)-indistinguishable.

13As noted in [Pan07], through a standard hybrid argument, ε-security in the above model implies (ε ·m)-security
in a (stronger) model where m = m(λ) challenges are allowed.

14An order can be maintained even when there are parallel queries (viz., the order within the parallel query)

29

Existing Results. Let sEnc denote the size of the algorithm Enc. [Pan07] shows that if the
key-graph is of depth l = l(n), then an (s, ε)-indistinguishable encryption scheme is also (s − (n ·
sK + n2 · sEnc), O(ε · 2nl+1))-adaptive GSD-secure. As a corollary, for perfect binary trees the loss
in tightness is only O(nlogn+2). In [FJP15], it is shown that if the key-graph is a tree, then the
encryption scheme is (s − (n · sK + n2 · sEnc), O(ε · nO(logn))-adaptive GSD-secure — the result is
established using the nested hybrids technique [FKPR14]. We recapture the result in [Pan07], as
well as the result for paths in [FJP15] in our framework.

A.1.1 Overview.

We prove selective security first (c.f., §A.2) and then apply Theorem 2 to establish adaptive security
(c.f., §A.2.2). The main idea behind proving selective security is to associate, as in §4, a hybrid
experiment to a pebbling configuration of the underlying key-graph (c.f., Lemma 4).

A.2 Hybrids and Pebbling Configurations

Recall that our goal is to show that the indistinguishability of the encryption scheme implies
indistinguishability of the fully selectivized games HL and HR. To this aim, we first construct a
set of ` − 1 intermediate (fully selectives) hybrids HL = H0,H1, . . . ,H` = HR by associating each
experiment with a pebbling configuration. Then we further selectivize these games by showing that
there exists Ĥi,b, b ∈ {0, 1}, for each Hi, i ∈ [0, `]. For this, we rely on the pebbling sequence to
have certain desirable properties.

A.2.1 Fully Selective Hybrids.

Let’s focus on the first part. For ease of exposition, let’s restrict the adversary to commit key-
graphs having only one sink which, by definition, is also the challenge vertex in the GSD game.
Now, consider the structure of key-graphs for HL and HR — let’s call them, respectively, the left
and the right key-graph. In the left key-graph all the edges are real, whereas in the right key-graph
only the edges that are incident on the sink are fake — some examples are given in Figure 6.

Consider the simplest case of G1: the left and right key-graphs correspond, exactly, to the left
and right games in IND-CPA. To be precise, they correspond to the IND-CPA game where k2 is the
challenge key, and the adversary challenges on the messages (k1, r): if the challenger responds with
a ciphertext that corresponds to k1, then we end up with the left key-graph for G1, and otherwise
we end up with the right key-graph. Thus, in the case of G2, changing an edge from real to fake is
indistinguishable to a GSD adversary. For G2, the edges incident on v1 have to be faked iteratively:
first (v4, v1), then (v2, v1) and finally (v3, v1), and we end up in the right key-graph. Thus, we get a
sequence of hybrids HL = H0, . . . ,H3 = HR, one corresponding to each act of faking. Each of these
moves can be shown indistinguishable by reducing to the case of G1.

Next consider the slightly more involved graph G3: unlike in the cases of G1 and G2, some of
the edges in G3 cannot be faked straight away. For example, consider the left-key graph and the
key-graph that has (v2, v1) faked. An attempt to show that these two are indistinguishable would
fail: such a reduction, which must set k2 as the challenge key, would not be able to answer, for
example, to the query (encrypt, v4, v2). However, if we first fake all the edges that are incident on
v2 (iteratively, as in the case of G2), then the query (encrypt, v4, v2) does not pose a problem (as
it is responded with Enc(v4, r) for some r ← K). Thus, before faking an edge (u, v) we must ensure
that all the incoming edges to u are faked. Such a sequence is given in Figure 7.

30

k2 • • k2 •

k1 r • k1 r

(a)

k4 k2 k3 • k4 k2 k3

• k1 r • • k1 r •

(b)

k4 k3 k6

• k2 k5

• k1 r

k3 k3 k6

• k2 k5

• k1 r

(c)

Figure 6: Examples of key-graphs for the extreme games HL and HR. (a): G1, (b): G2 and (c):
G3. In the key-graphs given on the left (the left key-graph), all the edges are real, whereas in those
given on the right (the right key-graph), only the edges that are incident on the challenge vertex
(v1) are fake.

To summarize, our goal is to start with the left key-graph and end up with the right key-graph
by faking edges or restoring faked edges, one at a time keeping in mind that before faking or
restoring an edge (u, v) all the edges coming in to u must be already fake. This can be abstracted
out as an edge-pebbling game: faking (resp., restoring) an edge is equivalent to placing (resp.,
removing) a pebble on the edge, and the goal of the pebbling is to pebble all the incoming edges
of the sink. A more formal definition follows.

Reversible edge-pebbling. The classical reversible black pebbling game on DAGs was intro-
duced in [Ben89] to model reversible computation. A pebble in the reversible edge-pebbling game
– unlike in the classical case – is placed on the edges. Thus, a pebbling configuration is a subset of
the edges. A vertex is deemed pebbled if all its incoming edges are pebbled — i.e., v ∈ V is pebbled
in a configuration Pi if in(v) ⊆ Pi.

Definition 9. A reversible edge-pebbling of a DAG G = (V, E) is a sequence P := P0, . . . ,P`
with each configuration Pi ⊆ E and, in particular, P0 = ∅ and P` = ∪v∈T ′ in(v) for some ∅ 6= T ′ ⊆
T . In a move, a pebble can be placed on or removed from an edge (u, v) iff the vertex u is pebbled —
thus, edges going out from S can be pebbled or unpebbled in any move. Thus, P is a valid pebbling
sequence iff

∀i ∈ [1, `],∃!(u, v) ∈ Pi−14Pi, (in(u) ⊆ Pi−1).

Thus, for a target set T ′ ⊆ T , starting from a completely unpebbled graph, the aim is to
achieve a pebbling configuration in which only the vertices T ′ are pebbles, and all other edges are
unpebbled. The space complexity of an edge pebbling P is defined as SP(G) := maxi∈[0,`] |Pi|,
and the space complexity of edge-pebbling a DAG is S(G) := minP SP(G). Similarly, we for an
edge-pebbling P = P0, . . . ,P` of a graph G, the number of moves (`, i.e.,) is denoted by TP(G).

31

Definition 10 (Ordered edge-pebbling). An edge-pebbling P = P0, . . . ,P` of a graph G = (V, E)
that has ordered E is said to be ordered if for each configuration Pi the following holds:

(u, v) ∈ Pi =⇒ ∀ ((u′, v) < (u, v)) : (u′, v) ∈ Pi.

In other words, if an edge (u, v) carries a pebble in Pi then all the edges that are incident on v and
precede (u, v) must also carry pebbles.

For an ordered edge-pebbling, we are interested in a coarser measure of space complexity called
the lateral space complexity, which takes into account the fact that an ordered pebbling is “com-
pressible”: in a configuration Pi, if the pebbles that come in to a vertex v are (u1, v), . . . , (up, v)
(in that order), then it suffices just to store v and the number of incident pebbled edges, i.e., p.
We call p the “index” of a vertex in a pebbling configuration. More formally, for a vertex v ∈ V
and a pebbling configuration Pi, let index(v,Pi) denote the number of incoming edges to v that are
pebbled — i.e.,

index(v,Pi) :=
∣∣{(u, v′) ∈ Pi : v′ = v}

∣∣ .
Note that for a graph with bounded indegree d, the index is also bounded by d. Thus, an ordered
pebbling configuration Pi is compressed as it suffices to store all the vertices that have non-zero
index (along with the index), i.e., the set Qi defined as

Qi := {(v, index(v,Pi)) : v ∈ V, index(v,Pi) > 0}.

The maximum size of these sets is precisely defined as the lateral space-complexity S′ of the edge
pebbling — i.e., S′P(G) := maxi∈[0,`] |Qi|. The lateral space complexity of edge-pebbling a DAG is
S′(G) := minP S

′
P(G).15

The edge-pebbling equivalent to the sequence of hybrids given in Figure 7 is given in Figure 8.
However, it is not ordered. An alternative edge-pebbling, which is ordered, is given in Figure 9.
Next, we formally show that an ordered edge-pebbling implies a sequence of fully selective hybrids.

Lemma 4. For Gκ ∈ Gκ, let P0, . . . ,P` be an ordered edge-pebbling that is generated by a determin-
istic edge-pebbling algorithm P. Then the sequence of hybrids HP,I , I ∈ [0, `] and with HP,I defined
in Algorithm 2, constitutes a valid sequence of fully selective hybrids. Furthermore, if sP denotes
the complexity of P, then an encryption scheme (Enc,Dec) that is (s, ε)-secure under IND-CPA, is
(s−O(sP + n2 · sEnc), ε · `)-selective GSD-secure.

As a corollary to Lemma 4 and Theorem 1, an encryption scheme (Enc,Dec) that is (s, ε)-secure
under IND-CPA, is (s−O(sP + n2 · sEnc + sW), ε · ` · exp(n))-adaptive GSD-secure.

of lemma. Fix a graph G and consider the pebbling sequence P = P0, . . . ,P` ← P(G). Each
configuration PI yields a challenger HI,P described in Algorithm 2. By the properties of the pebbling
configurations P0 and P`, it is easy to see that HP,0 ≡ HL and HP,` ≡ HR. Moreover, HP,I is
(s−O(sP+n2 ·sEnc), ε)-indistinguishable from HP,I+1, for I ∈ [0, `−1] — we do not give the details,
but the main point is to plug in the challenge ciphertext on the (only) edge that is different in the
two hybrids. Thus, HP,0, . . . ,HP,` constitutes a valid sequence of fully selective hybrids.

15Note that S′(G) ≤ S(G), with equality holding, for example, for graphs with in-degree one — also, S(G) ≤ d·S′(G),
where d is the in-degree of the DAG.

32

HA
P,I

1: Obtain the key-graph Gκ ∈ Gκ from A
2: Compute P0, . . . ,P` ← P(Gκ) . Generate the ordered pebbling
3: Initialise c1, . . . , cn := 0 . Counters for edges incident on each vertex
4: Compute QI . Contains the set of “pebbled” vertices and their indices
5: Choose 2n keys r1, . . . , rn, k1, . . . , kn ← K
6: Whenever A makes a query (encrypt, vi, vj):
7: if (vj ∈ QI) then . Carries pebble?
8: if cj ≤ indexj then return Enc(ki, rj) . Fake if within the index
9: else return Enc(ki, kj) . Real edge

10: end if
11: cj := cj + 1
12: else return Enc(ki, kj) . Real edge
13: end if
14: Whenever A makes a query (corrupt, vi) or (challenge, vi) return ki
15: return A’s output

Algorithm 2: Template for generating fully selective hybrids.

A.2.2 Partially Selective Hybrids.

Here we show that the fully selective sequence of hybrids HP,0, . . . ,HP,` constructed in the previous
subsection is also partially selective, with each HP,I of the form prescribed in eq.1. This is made
possible by the fac that an ordered pebbling is, as we discussed, compressible. As a result, better
bounds on adaptive security follows by Theorem 2.

Lemma 5. For d = d(n) and l = l(n), let Gκ = Gκ(n, d, l) denote the subset of key-graphs in Gκ(n)
with in-degree d and depth l. For Gκ ∈ Gκ(n, d, l), let P0, . . . ,P` be an ordered edge-pebbling that is
generated by a deterministic edge-pebbling algorithm P. Let β denote its lateral space complexity.
Then, for I ∈ [0, `) and b ∈ {0, 1},

HP,I+b = SELU→Gκ [ĤI,b, g, hI],

where ĤI,b is defined in Algorithm 3, and U is the set (V × [1, d])2β.

As a corollary to Lemma 5 and Theorem 2, we get our main result for the GSD game.

Theorem 5. Let n, d, β, ` be as in Lemma 5. Let sP denote the complexity of P, then an encryption
scheme (Enc,Dec) that is (s, ε)-secure under IND-CPA, is (s−O(sP+n2 ·sEnc), ε·`·(n·d)2β)-adaptive
GSD-secure, where U = (V × [1, d])2β.

of lemma. The partial selectivising of HP,I+b = SELU→Gκ [ĤI,b, g, hI] is shown in Algorithm 3. The

proof for the indistinguishability of ĤI,0 and ĤI,1 follows the same line of argument as in the proof
of Lemma 4 and is omitted.

33

HA
P,I

1: Obtain the key-graph Gκ ∈ Gκ from A
2: Compute P0, . . . ,P` ← P(Gκ)
3: Compute QI , QI+1

4: Run ĤI,b(QI ,QI+1)

5: return ĤI,b’s output

ĤA
I,b(QI ,QI+1)
1: Initialise c1, . . . , cn := 0
2: Choose 2n keys r1, . . . , rn, k1, . . . , kn ← K
3: Whenever A makes a query (encrypt, vi, vj):
4: if (vj ∈ QI+b) then
5: if (cj ≤ indexj ∈ QI+b) then . The index of vj in QI is compared
6: return Enc(ki, rj)
7: else return Enc(ki, kj)
8: end if
9: cj := cj + 1

10: else return Enc(ki, kj)
11: end if
12: Whenever A makes a query (corrupt, vi) or (challenge, vi) return ki
13: return A’s output

Algorithm 3: Partially selectivized hybrids. HP,I+b := SELU→Gκ [ĤI,b, g, hI], where U is the set
(V × [1, d])2β.

34

A.2.3 Corollaries.

As corollaries to Theorem 6, we capture the existing results on GSD: viz., the result on paths using
the nested hybrid technique, given in [FJP15], which was briefly discussed in §3.1, and the bound
for general DAGs in [Pan07].

Corollary 1 (GSD for path graphs is quasi-polynomial in length). Let C(n) := Gκ(n+ 1, 1, n+ 1)
denote the set of all chain key-graphs of n edges. An encryption scheme (Enc,Dec) that is (s, ε)-
secure under IND-CPA is (s−O(sP1 + n · sEnc), ε · 3n · nlogn+1)-adaptive GSD-secure on C(n).

Proof. Suppose that n is a power of two. An edge-pebbling algorithm for a chain graphs C(n) ∈ C(n)
is given in Algorithm 4 — the algorithm is to be invoked on (G, (0, n), (0, n)) in order to pebble
the sink. It is called the nested pebbling strategy as it is used implicitly in the argument for path
graphs using nested hybrids in [FJP15]. The number of pebbles used by P1 is captured by the
recursion SP1(C(n)) = SP1(C(n/2) + 1, with SP1(C(1)) = 1.16 The number of moves, on the other
hand, is captured by T (n) = 3 · T (n/2) with T (1) = 1. Therefore, SP1(C(n)) = log n + 1 and
TP1(C(n)) = 3logn. As the indegree of a path graph is one, all its pebbling sequence are ordered,
and its lateral space complexity is the same as the number of pebbles — i.e., β = log n + 1. The
corollary now follows Theorem 6. A similar argument can be made for arbitrary n.

P1((A,B), (a, b))
1: if b = a+ 1 then
2: if (a, a+ 1) is pebbled then remove it . Pi+1 := Pi \ {(a, a+ 1)}
3: else place pebble on (a, a+ 1) . Pi+1 := Pi ∪ {(a, a+ 1)}
4: end if . Increment counter i
5: else
6: P1((A,B), (a, (a+ b)/2)) . Recursively pebble left half
7: P1((A,B), ((a+ b)/2, b)) . Recursively pebble right half
8: P1((A,B), (a, (a+ b)/2))) . Recursively unpebble left half
9: end if

10: if (A,B) = (a, b) then HALT end if

Algorithm 4: Nested pebbling for path graphs with n edges, where n is a power of two. Note
that the initial call must be P1((0, n), (0, n)).

Corollary 2 (GSD for DAGs is exponential in depth). For l = l(n), let Gκ(n, l) denote the subset of
graphs in Gκ(n) with depth l. An encryption scheme (Enc,Dec) that is (s, ε)-secure under IND-CPA
is (s−O(sP2 + n2 · sEnc), ε · ` · n8l)-adaptive GSD-secure on Gκ(n, d, l). 17

Proof. A reversible edge-pebbling strategy that pebbles a single edge ((u∗, v∗)) is given in Al-
gorithm 5. In order to pebble a vertex v∗, the algorithm is to be called sequentially on all
u∗ ∈ parents(v∗). An example of this pebbling strategy is given in Figure 9. Let’s first see why the
pebbling sequence generated is ordered. For an edge (u, v), the order in which the edges incident on
a vertex u are pebbled is determined by parents(u), which we assumed preserves the edge ordering.

16It is known that the strategy is optimal — i.e., S(C(n)) = SP1(C(n)). [Krá01]
17Compare with [Pan07]

35

Moreover, the edges are restored in the opposite order. Together, these two steps ensure that in any
configuration, if an edge (u, v) carries a pebble then all the edges that are incident on v and precede
(u, v) must also carry pebbles. In addition, all the vertices that have edges with pebbles coming
into the them lie along a path from a source to a sink — it follows that the lateral edge-pebbling
complexity β is at most l. The number of moves in above strategy is captured by the recursion
T (l) ≤ 2n · T (l − 1) with T (1) ≤ 2n, and hence TP2(Gκ(n, l)) < (2n)l. Plugging in these values in
Theorem 6 proves the corollary.

P2(G, (u∗, v∗), (u, v))
1: for x ∈ parents(u) do P2(G, (u∗, v∗), (x, u)) . Pebble parents recursively
2: if (u, v) is pebbled then remove pebble on (u, v) . Pi+1 := Pi \ {(u, v)}
3: else place pebble on (u, v) . Pi+1 := Pi ∪ {(u, v)}
4: end if . Increment counter i
5: for x ∈ parents−1(u) do P2(G, (u∗, v∗), (x, u)) . Unpebble parents, in reverse
6: if (u, v) = (u∗, v∗) then HALT end if

Algorithm 5: A recursive edge-pebbling algorithm. Note that to pebble an edge (u, v) ∈ E , the
initial call must be P1(G, (u, v), (u, v))

36

1 2 3

� 4 5 �

• 6 �

• • •

� • • �

• • �

• • •

� • • �

• • �

• • •

� • • �

• • �

• • •

� • • �

• • �

• • •

� • • �

• • �

• • •

� • • �

• • �

• • •

� • • �

• • �

• • •

� • • �

• • �

• • •

� • • �

• • �

• • •

� • • �

• • �

Figure 7: A sequence of hybrids for G3. The square boxes indicate fake keys and, hence, the edges
incident on these boxes are the faked edges.

37

1 2 3

4 5

6

1 2 3

4 5

6

•
1 2 3

4 5

6

• •
1 2 3

4 5

6

• • •

1 2 3

4 5

6

• • • •
1 2 3

4 5

6

• • • •

•

1 2 3

4 5

6

• • • •

• •

1 2 3

4 5

6

• • •

• •

1 2 3

4 5

6

• •

• •

1 2 3

4 5

6

•

• •

1 2 3

4 5

6

• •

Figure 8: An example of an edge-pebbling sequence — it corresponds to a sequence of hybrids for
the graph G3. If an edge carries a pebble, then that edge is faked during the simulation. Thus, the
first configuration is the real game, whereas the last configuration — with all the incoming edges
to the challenge faked — is the random game.

38

1 2 3

4 5

6

1 2 3

4 5

6

•
1 2 3

4 5

6

• •
1 2 3

4 5

6

• • •

1 2 3

4 5

6

• • •

•

1 2 3

4 5

6

• •

•

1 2 3

4 5

6

•

•

1 2 3

4 5

6

•

1 2 3

4 5

6

•

•

1 2 3

4 5

6

•

• •

1 2 3

4 5

6

• •

Figure 9: An example of edge-pebbling of G3 that uses “fewer” pebbles than in Figure 8. Although
the space complexity of the above DAG is four, its lateral space complexity is just two. Note that
the edge-pebbling is ordered.

39

B Constrained Pseudorandom Functions

In this section, we formalise the high level ideas that we presented in §1.4

B.1 Formal Definitions

Definition 11 (GGM PRF). Given a PRG : {0, 1}m → {0, 1}2m, the PRF GGM : {0, 1}m ×
{0, 1}n → {0, 1}m is defined as

GGM(k, x) = kx where k∅ = k and kx‖0‖kx‖1 = PRG(kx).

Next, we give the definitions for CPRFs that are tailored to prefix-constrained PRFs.

Definition 12. For n ∈ N, a function F : K×{0, 1}n → Y is a prefix-constrained PRF if there
are algorithms F.constrain : K × {0, 1}n → K and F.eval : K × {0, 1}n → Y which for all k ∈ K,
x ∈ {0, 1}n and kx ← F.constrain(k, x) satisfy

F.eval(kx, x
′) =

{
F(k, x′) if x is a prefix of x′

⊥ otherwise.

That is, F.constrain(k, x) outputs a key kx that allows evaluation of F(k, ·) on all inputs that
has x as a prefix. We can derive a prefix-constrained PRF from the GGM construction by setting
K = {0, 1}m, Y = {0, 1}2m, and for a random k ← K defining FGGM.constrain(k, x) := GGM(k, x)
and

FGGM.eval(kx, x
′) =

{
GGM(k, x′) if x is a prefix of x′

⊥ otherwise.

The security for prefix-constrained PRFs is argued using the following game.

Definition 13. The game is played between a challenger G (which is either GL or GR) and an
adversary A using F. G picks a random key k ← K, and initialises a set x = ∅. A can make at
most q = q(n) queries, which is either:

• Constrain queries, (constrain, x): G returns F.constrain(k, x), and adds x to x.

• One challenge query (challenge, x∗): Here the answer differs between GL and GR: GL answers
with F.eval(k, x∗) (real output), whereas GR answers with random r ← Y (fake, random output)
— for the task to be non-trivial, no element in x must be a prefix of x∗. G adds x∗ to x.

In the fully selectivized version of Definition 13, A must commit to the to the whole set x :=
{x1, . . . , xq−1, xq = x∗}. Therefore, the selective challenger is defined as HL = SEL{0,1}n·q [GL, g]
(resp., HR = SEL{0,1}n·q [GR, g]), where g is the function that extracts x from the transcript. Note
that the amount of information that A commits to in the selectivised games is much more than the
one defined in [FKPR14].

Definition 14. A prefix-constrained PRF F is (s, ε, q)-adaptive-secure (resp., selective-secure) if
GL and GR (resp., HL and HR) are (s, ε)-indistinguishable.

40

B.2 Hybrids and Pebbling Configurations

B.2.1 Fully Selective Hybrids.

Let’s recall briefly from §1.4 how we used the knowledge of x1, . . . , xq−1 to get a better sequence of
hybrids. First we switched to the recursive pebbling sequence in Figure 1.b. Second, we managed
to shrink the index of the pebble from [0, 2n] to [0, q] by assuming an upper bound q on the number
of queries made by the adversary: we set the index of a pebble to the index of the first constrain
query whose i bit prefix coincides with x∗. More formally, the index for a pebble on the ith edge
is defined as

index(x, i) := arg min
j∈[q−1]

{x∗[i] = xj [i]}.

In particular, by definition of the security game, index(x, n) = q. The index of an edge-pebbling
configuration is accordingly defined as

index(x,PI) := {indexi : i ∈ PI , indexi = index(x, i)}.

By using the edge-pebbling P0, . . . ,P` generated by P1 (Algorithm 4), where ` = 3logn, we get a
sequence of fully selective hybrids H(P0), . . . ,H(P`), with HI described in Algorithm 6, and the
following lemma.

HA(PI)
1: Obtain x ∈ {0, 1}n·q from A
2: Compute index := index(x,PI)
3: Sample key k∅ ← K, set ∀x ∈ {0, 1}≤n : kx := ⊥ . Initialise the keys
4: Initialise the counter c = 1
5: Whenever A makes a query (·, x):
6: Start
7: if (c = indexi ∈ index) then set kx[i]‖0‖kx[i]‖1 ← U2m . Fake output
8: Increment c by one
9: return K(x) . Compute the key using the sub-routine

10: End
11: return A’s output

K(x):
1: if kx 6= ⊥ then return kx . Key already defined
2: Set l = |x| − 1, kx[l] = K(x[l − 1]) . Recursively compute the key
3: kx[l−1]‖kx[l−1] := PRG(kx[l]) . Normal output
4: return kx

Algorithm 6: Template for generating fully selective hybrids. The sub-routine K(x) computes the
key kx from the first key that has already been defined on the path from x to the root. We reuse
this sub-routine in later part of the sections.

Lemma 6. Let ` := 3logn. The sequence of hybrids H(P0), . . . ,H(P`) constitutes a valid sequence
of fully selective hybrids. Furthermore, if the PRG is (s, ε)-indistinguishable then the constrained
PRF FGGM is (s − O(sP1 + qn · sPRG), ε · `, q)-selective secure, where sP1 (resp, sPRG) denotes the
complexity of P1 (resp., PRG).

41

Proof. By the properties of the pebbling configurations P0 and P`, it is easy to see that H(P0) ≡ HL

an H(P`) ≡ HR. In addition, the neighbouring hybrids H(PI) and H(PI+1) are (s− qn · sPRG, ε, q)-
indistinguishable — see Algorithm 7 for a reduction. The lemma follows.

RA(PI ,PI+1, y) . y ∈ {0, 1}2m is the PRG challenge
1: Obtain x ∈ {0, 1}n·q from A
2: index := index(x,PI ∩ PI+1), indexi∗ := index(x,PI4PI+1)
3: Sample key k∅ ← K, set ∀x ∈ {0, 1}≤n : kx := ⊥ . Initialise the keys
4: Initialise the counter c = 1
5: Whenever A makes a query (·, x):
6: Start
7: if (c = indexi∗) then set kx[i∗]‖0‖kx[i∗]‖1 := y . Fake or real
8: if (c = indexi ∈ index) then set kx[i]‖0‖kx[i]‖1 ← U2m . Fake output
9: Increment c by one

10: return K(x) . Compute the key using the sub-routine
11: End
12: return A’s output

Algorithm 7: The reduction algorithm that establishes the indistinguishability of H(PI) and
H(PI+1). (See Algorithm 6 for the description of K.)

Lemma 7. The sequence of fully selective hybrids H(P0), . . . ,H(P3logn) are partially selective as

H(PI+b) = SEL{0,1}2·logn·log q→{0,1}n·log q [ĤI,b, g, hI], (7)

where ĤI,b is described in Algorithm 8, and hI is the function that, on input the queries x, computes
the indices indexI and indexI+1 of the pebbling configurations PI and PI+1, respectively.18

It follows from Theorem 2 and Lemma 7 that the prefix-constrained CPRF FGGM is adaptive-
secure with a quasi-polynomial loss in tightness.

Theorem 6. If the underlying PRG is (s, ε)-indistinguishable then FGGM is (s−O(sP1 +qn·sPRG), ε·
3logn · n2·log q)-adaptive-secure prefix-constrained PRF.

of lemma. It remains to show that Ĥ0 and Ĥ1 are indistinguishable — the reduction is given in
Algorithm 9. The lemma follows.

18There are means to further compress hI : it suffices that it returns the indices index(x,PI ∩ PI+1) and
index(x,PI4PI+1), along with a bit b∗ which indicates what the pebbling move is — i.e., if, in move I + 1, the
edge (i∗, i∗+1) was added to PI then b∗ = 0, otherwise b∗ = 1. But we prefer the simpler hI for the sake of simplicity
of exposition.

42

Ĥ
A,hI(·)
b (PI ,PI+1)
1: Obtain (indexI , indexI+1) using hI(·) from H
2: Sample key k∅ ← K, set ∀x ∈ {0, 1}≤n : kx := ⊥ . Initialise the keys
3: Initialise the counter c = 1
4: Whenever A makes a query (·, x):
5: Start
6: if (c = indexi ∈ indexI+b) then set kx[i]‖0‖kx[i]‖1 ← U2m . Faked
7: Increment c by one
8: return K(x) . Compute the key using the sub-routine
9: End

10: return A’s output

Algorithm 8: Partially selectivized hybrids Ĥb for Hb. (See Algorithm 6 for the description of K.)

R′A,hI(·)(PI ,PI+1, y) . y ∈ {0, 1}2m is the PRG challenge
1: Obtain (indexI , indexI+1) using hI(·) from A
2: Let indexi∗ := indexI4indexI+1, index := indexI ∩ indexI+1

3: Sample key k∅ ← K, set ∀x ∈ {0, 1}≤n : kx := ⊥ . Initialise the keys
4: Initialise the counter c = 1
5: Whenever A makes a query (·, x):
6: Start
7: if (c = indexi∗) then set kx[i∗]‖0‖kx[i∗]‖1 := y . Fake or real output
8: if (c = indexi ∈ index) then set kx[i]‖0‖kx[i]‖1 ← U2m . Fake output
9: Increment c by one

10: return K(x) . Compute the key using the sub-routine
11: End
12: return A’s output

Algorithm 9: The reduction algorithm that establishes the indistinguishability of the partial
hybrids Ĥ0 and Ĥ1. (See Algorithm 6 for the description of K.)

43

	Introduction
	Adaptive Secret Sharing for Monotone Circuits
	Generalized Selective Decryption
	Yao's Garbled Circuits
	Constrained Pseudorandom Functions

	Notation
	The Framework
	Partially Selective Hybrids.
	Example: GSD on a Path

	Adaptive Secret Sharing for Monotone Circuits
	The scheme of Yao
	Hybrids and pebbling configurations

	Open Problems
	Generalised Selective Decryption
	Formal Definitions
	Overview.

	Hybrids and Pebbling Configurations
	Fully Selective Hybrids.
	Partially Selective Hybrids.
	Corollaries.

	Constrained Pseudorandom Functions
	Formal Definitions
	Hybrids and Pebbling Configurations
	Fully Selective Hybrids.

