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Abstract. qDSA is a high-speed, high-security signature scheme that facilitates implementa-
tions with a very small memory footprint, a crucial requirement for embedded systems and
IoT devices, and that uses the same public keys as modern Diffie–Hellman schemes based on
Montgomery curves (such as Curve25519) or Kummer surfaces. qDSA resembles an adaptation
of EdDSA to the world of Kummer varieties, which are quotients of algebraic groups by ±1.
Interestingly, qDSA does not require any full group operations or point recovery: all computa-
tions, including signature verification, occur on the quotient where there is no group law. We
include details on four implementations of qDSA, using Montgomery and fast Kummer surface
arithmetic on the 8-bit AVR ATmega and 32-bit ARM Cortex M0 platforms. We find that qDSA
significantly outperforms state-of-the-art signature implementations in terms of stack usage and
code size. We also include an efficient compression algorithm for points on fast Kummer surfaces,
reducing them to the same size as compressed elliptic curve points for the same security level.
Keywords. Signatures, Kummer, Curve25519, Diffie–Hellman, elliptic curve, hyperelliptic curve.

1 Introduction

Modern asymmetric cryptography based on elliptic and hyperelliptic curves [29, 31] achieves
two important goals. The first is efficient key exchange using the Diffie–Hellman protocol [16],
using the fact that the (Jacobian of the) curve carries the structure of an abelian group. But
in fact, as Miller observed [31], we do not need the full group structure for Diffie–Hellman:
the associated Kummer variety (the quotient by ±1) suffices, which permits more efficiently-
computable arithmetic [21,32]. Perhaps the most well-known example is Curve25519 [5], which
offers fast scalar multiplications based on x-only arithmetic.

The second objective is efficient digital signatures, which are critical for authentication.
There are several group-based signature schemes, the most important of which are ECDSA [1],
Schnorr [40], and now EdDSA [8] signatures. In contrast to the Diffie–Hellman protocol, all of
these signature schemes explicitly require the group structure of the (Jacobian of the) curve.
An unfortunate side-effect of this is that users essentially need two public keys to support both
curve-based protocols. Further, basic cryptographic libraries need to provide implementations
for arithmetic on both the Jacobian and the Kummer variety, thus complicating and increasing
the size of the trusted code base. For example, the NaCl library [9] uses Ed25519 [8] for sig-
natures, and Curve25519 [5] for key exchange. This problem is worse for genus-2 hyperelliptic
curves, where the Jacobian is significantly harder to use safely than its Kummer surface.

There have been several partial solutions to this problem. By observing that elements of the
Kummer variety are elements of the Jacobian up to sign, one can build scalar multiplication
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SIA), from the Dutch government.



on the Jacobian based on the fast Kummer arithmetic [14, 35]. This avoids the need for a
separate scalar multiplication on the Jacobian, but does not avoid the need for its group law;
it also introduces the need for projecting to and recovering from the Kummer. In any case, it
does not solve the problem of having different public key types.

Another proposal is XEdDSA [36], which uses the public key on the Kummer variety to
construct EdDSA signatures. In essence, it creates a key pair on the Jacobian by appending
a sign bit to the public key on the Kummer variety, which can then be used for signatures.
In [23] Hamburg shows that one can actually verify signatures using only the x-coordinates
of points on an elliptic curve, which is applied in the recent STROBE framework [24]. We
generalize this approach to allow Kummer varieties of curves of higher genera, and naturally
adapt the scheme by only allowing challenges up to sign. This allows us to provide a proof of
security, which has thus far not been attempted (in [23] Hamburg remarks that verifying up
to sign does “probably not impact security at all”). Similar techniques have been applied for
batch verification of ECDSA signatures [28], using the theory of summation polynomials [41].

In this paper we show that there is no intrinsic reason why Kummer varieties cannot be
used for signatures. We present qDSA, a signature scheme relying only on Kummer arithmetic,
and prove it secure in the random oracle model. It should not be surprising that the reduction
in our proof is slightly weaker than the standard proof of security of Schnorr signatures [37],
but not by more than we should expect. There is no difference between public keys for qDSA and
Diffie–Hellman. After an abstract presentation in §2, we give a detailed description of elliptic-
curve qDSA instances in §3. We then move on to genus-2 instances based on fast Kummer
surfaces, which give better performance. The necessary arithmetic appears in §4, before §5
describes the new verification algorithm.

We also provide an efficient compression method for points on fast Kummer surfaces in §6,
solving a long-standing open problem [6]. Our technique means that qDSA public keys for g = 2
can be efficiently compressed to 32 bytes, and that qDSA signatures fit into 64 bytes; it also
finally reduces the size of Kummer-based Diffie–Hellman public keys from 48 to 32 bytes.

Finally, we provide constant-time software implementations of genus-1 and genus-2 qDSA
instances for the AVR ATmega and ARM Cortex M0 platforms. The performance of all four
qDSA implementations, reported in §7, comfortably beats earlier implementations in terms of
stack usage and code size.

Source code. We place all of the software described here into the public domain, to maximize
the reusability of our results. The software is available at http://www.cs.ru.nl/~jrenes/.

2 The qDSA signature scheme

In this section we define qDSA, the quotient Digital Signature Algorithm. We start by recalling
the basics of Kummer varieties in §2.1 and defining key operations in §2.2. The rest of the
section is dedicated to the definition of the qDSA signature scheme, which is presented in
full in Algorithm 1, and its proof of security, which follows Pointcheval and Stern [37, 38].
qDSA closely resembles the Schnorr signature scheme [40], as it results from applying the
Fiat–Shamir heuristic [19] to an altered Schnorr identification protocol, together with a few
standard changes as in EdDSA [8]. We comment on some special properties of qDSA in §2.5.

Throughout, we work over finite fields Fp with p > 3. Our low-level algorithms include costs
in terms of basic Fp-operations: M, S, C, a, s, I, and E denote the unit costs of computing
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a single multiplication, squaring, multiplication by a small constant, addition, subtraction,
inverse, and square root, respectively.

2.1 The Kummer variety setting

Let C be a (hyper)elliptic curve and J its Jacobian3. The Jacobian is a commutative algebraic
group with group operation +, inverse −, and identity 0. We assume J has a subgroup of large
prime order N . The associated Kummer variety K is the quotient K = J /±. By definition,
working with K corresponds to working on J up to sign. If P is an element of J , we denote
its image in K by ±P . In this paper we take log2N ≈ 256, and consider two important cases.

Genus 1. Here J = C/Fp is an elliptic curve with log2 p ≈ 256, while K = P1 is the x-line.
We choose C to be Curve25519 [5], which is the topic of §3.

Genus 2. Here J is the Jacobian of a genus-2 curve C/Fp, where log2 p ≈ 128, and K is
a Kummer surface. We use the Gaudry–Schost parameters [22] for our implementations.
Kummer arithmetic, including some new constructions we need for signature verification
and compression, is described in §4-6.

A point ±P in K(Fp) is the image of a pair of points {P,−P} on J . It is important to
note that P and −P are not necessarily in J (Fp); if not, then they are conjugate points in
J (Fp2), and correspond to points in J ′(Fp), where J ′ is the quadratic twist of J . Both J
and J ′ always have the same Kummer variety; we return to this fact, and its implications for
our scheme, in §2.5 below.

2.2 Basic operations

While a Kummer variety K has no group law, the operation

{±P,±Q} 7→ {±(P +Q),±(P −Q)} (1)

is well-defined. We can therefore define a pseudo-addition operation by

xADD : (±P,±Q,±(P −Q)) 7→ ±(P +Q).

The special case where ±(P − Q) = ±0 is the pseudo-doubling xDBL : ±P 7→ ±[2]P . In our
applications we can often improve efficiency by combining two of these operations in a single
function

xDBLADD : (±P,±Q,±(P −Q)) 7−→ (±[2]P,±(P +Q)) .

For any integer m, the scalar multiplication [m] on J induces the key cryptographic operation
of pseudomultiplication on K, defined by

Ladder : (m,±P ) 7−→ ±[m]P .

As its name suggests, we compute Ladder using Montgomery’s famous ladder algorithm [32],
which is a uniform sequence of xDBLADDs and constant-time conditional swaps.4 This constant-
time nature will be important for signing.
3 In what follows, we could replace J by an arbitrary abelian group and all the proofs would be completely
analogous. For simplicity we restrict to the cryptographically most interesting case of a Jacobian.

4 In contemporary implementations such as NaCl, the Ladder function is sometimes named
crypto_scalarmult.
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Our signature verification requires a function Check on K3 defined by

Check : (±P,±Q,±R) 7−→

{
True if ±R ∈ {±(P +Q),±(P −Q)}
False otherwise

Since we are working with projective points, we need a way to uniquely represent them.
Moreover, we want this representation to be as small as possible, to minimize communication
overhead. For this purpose we define the functions

Compress : K(Fp) −→ {0, 1}256 ,

writing ±P := Compress(±P ), and

Decompress : {0, 1}256 −→ K(Fp) ∪ {⊥}

such that Decompress(±P ) = ±P for ±P in K(Fp) and Decompress(X) = ⊥ for X ∈
{0, 1}256 \ Im(Compress).

For the remainder of this section we assume that Ladder, Check, Compress, and Decompress
are defined. Their implementation depends on whether we are in the genus 1 or 2 setting; we
return to this in later sections.

2.3 The qID identification protocol

Let P be a generator of a prime order subgroup of J , of order N , and let ±P be its image in
K. Let Z+

N denote the subset of ZN with zero least significant bit (where we identify elements
of ZN with their representatives in [0, N−1]). Note that since N is odd, LSB(−x) = 1−LSB(x)
for all x ∈ Z∗N . The private key is an element d ∈ ZN . Let Q = [d]P and let the public key be
±Q. Now consider the following Schnorr-style identification protocol, which we call qID:

(1) The prover sets r ←R Z∗N , ±R← ±[r]P and sends ±R to the verifier;
(2) The verifier sets c←R Z+

N and sends c to the prover;
(3) The prover sets s← (r − cd) mod N and sends s to the verifier;
(4) The verifier accepts if and only if ±R ∈ {±([s]P + [c]Q),±([s]P − [c]Q)}.

There are some important differences between qID and the basic Schnorr identification protocol
in [40].

Scalar multiplications on K. It is well-known that one can use K to perform the scalar
multiplication [14, 35] within a Schnorr identification or signature scheme, but with this
approach one must always lift back to an element of a group. In contrast, in our scheme
this recovery step is not necessary.

Verification on K. The original verification [40] requires checking that R = [s]P + [c]Q for
some R, [s]P, [c]Q ∈ J . Working on K, we only have these values up to sign (i. e. ±R,
±[s]P and ±[c]Q), which is not enough to check that R = [s]P + [c]Q. Instead, we only
verify that ±R = ± ([s]P ± [c]Q).

Challenge from Z+
N . A Schnorr protocol using the weaker verification above would not sat-

isfy the special soundness property: the transcripts (±R, c, s) and (±R,−c, s) are both
valid, and do not allow us to extract a witness. Choosing c from Z+

N instead of Z eliminates
this possibility, and allows a security proof (this is the main difference with Hamburg’s
STROBE [24]).
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Proposition 1. The qID identification protocol is a sigma protocol.

Proof. We prove the required properties (see [25, §6]).
Completeness: If the protocol is followed, then r = s+cd, and therefore [r]P = [s]P+[c]Q

on J . Mapping to K, it follows that ±R = ±([s]P + [c]Q).
Special soundness: Let (±R, c0, s0) and (±R, c1, s1) be two valid transcripts such that

c0 6= c1. By verification, each si ≡ ±r±cid (mod N), so s0±s1 ≡ (c0 ± c1) d (mod N), where
the signs are chosen to cancel r. Now c0± c1 6≡ 0 (mod N) because c0 and c1 are both in Z+

N ,
so we can extract a witness d ≡ (s0 ± s1) (c0 ± c1)−1 (mod N).

Honest-verifier zero-knowledge: A simulator S generates c←R Z+
N and sets s←R ZN

and R← [s]P + [c]Q.5 If R = O, it restarts. It outputs (±R, c, s). As in [38, Lemma 5], we let

δ =
{
(±R, c, s) : c ∈R Z+

N , r ∈R Z∗N ,±R = ±[r]P , s = r − cd
}
,

δ′ =
{
(±R, c, s) : c ∈R Z+

N , s ∈R ZN , R = [s]P + [c]Q ,R 6= O
}

be the distributions of honest and simulated signatures, respectively. The elements of δ and δ′

are the same. First, consider δ. There are exactly N − 1 choices for r, and exactly (N + 1)/2
for c; all of them lead to distinct tuples. There are thus (N2−1)/2 possible tuples, all of which
have probability 2/(N2− 1) of occurring. Now consider δ′. Again, there are (N +1)/2 choices
for c. We have N choices for s, exactly one of which leads to R = O. Thus, given c, there are
N − 1 choices for s. We conclude that δ′ also contains (N2 − 1)/2 possible tuples, which all
have probability 2/(N2 − 1) of occurring. ut

2.4 Applying Fiat–Shamir

Applying the Fiat–Shamir transform [19] to qID yields a signature scheme qSIG. We will need a
hash function H : {0, 1}∗ → Z+

N , which we define by taking a hash function H : {0, 1}∗ → ZN
and then setting H by

H(M) 7−→

{
H(M) if LSB(H(M)) = 0

−H(M) if LSB(H(M)) = 1
.

The qSIG signature scheme is defined as follows:

(1) To sign a message M ∈ {0, 1}∗ with private key d ∈ ZN and public key ±Q ∈ K, the
prover sets r ←R Z∗N , ±R ← ±[r]R, h ← H(±R || M), and s ← (r − hd) mod N , and
sends (±R || s) to the verifier.

(2) To verify a signature (±R || s) ∈ K × ZN on a message M ∈ {0, 1}∗ with public key
±Q ∈ K, the verifier sets h ← H(±R || M), ±T0 ← ±[s]P , and ±T1 ← ±[h]Q, and
accepts if and only if ±R ∈ {±(T0 + T1),±(T0 − T1)}.

Proposition 2 asserts that the security properties of qID carry over to qSIG.

Proposition 2. In the random oracle model, if an existential forgery of the qSIG signature
scheme under an adaptive chosen message attack has non-negligible probability of success, then
the DLP in J can be solved in polynomial time.

Proof. This is the standard proof of applying the Fiat–Shamir transform to a sigma protocol:
see [37, Theorem 13] or [38, §3.2]. ut
5 As we only know Q up to sign, we may need two attempts to construct S.
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2.5 The qDSA signature scheme

Moving towards the real world, we slightly alter the qSIG protocol with some pragmatic
choices, following Bernstein et al. [8]:

(1) We replace the randomness r by the output of a pseudo-random function, which makes
the signatures deterministic.

(2) We include the public key ±Q in the generation of the challenge, to prevent attackers from
attacking multiple public keys at the same time.

(3) We compress and decompress points on K where necessary.

The resulting signature scheme, qDSA, is summarized in Algorithm 1.

Unified keys. Signatures are entirely computed and verified on K, which is also the nat-
ural setting for Diffie–Hellman key exchange. We can therefore use identical key pairs for
Diffie–Hellman and for qDSA signatures. This significantly simplifies the implementation of
cryptographic libraries, as we no longer need arithmetic for the two distinct objects J and K.
Technically, there is no reason not to use a single key pair for both key exchange and signing;
but one should be very careful in doing so, as using one key across multiple protocols could
potentially lead to attacks. The primary interest of this aspect of qDSA is not necessarily in
reducing the number of keys, but in unifying key formats and reducing the size of the trusted
code base.

Security level. The security reduction to the discrete logarithm problem is almost identical to
the case of Schnorr signatures [37]. Notably, the challenge space has about half the size (Z+

N

versus ZN ) while the proof of soundness computes either s0 + s1 or s0 − s1. This results in a
slightly weaker reduction, as should be expected by moving from J to K and by weakening
verification. By choosing log2N ≈ 256 we obtain a scheme with about the same security level
as state-of-the-art schemes (eg. EdDSA combined with Ed25519). This could be made more
precise (cf. [38]), but we do not provide this analysis here.

Key and signature sizes. Public keys fit into 32 bytes in both the genus 1 and genus 2 settings.
This is standard for Montgomery curves; for Kummer surfaces it requires a new compression
technique, which we present in §6. In both cases log2N < 256, which means that signatures
(±R || s) fit in 64 bytes.

Twist security. Rational points on K correspond to pairs of points on either J or its quadratic
twist. As opposed to Diffie–Hellman, in qDSA scalar multiplications with secret scalars are
only performed on the public parameter ±P , which is chosen as the image of large prime
order element of J . Therefore J is not technically required to have a secure twist, unlike
in the modern Diffie–Hellman setting. But if K is also used for key exchange (which is the
whole point!), then twist security is crucial. We therefore strongly recommend twist-secure
parameters for qDSA implementations.

Hash function. The function H can be any hash function with at least a log2
√
N -bit security

level and at least 2 log2N -bit output. Throughout this paper we take H to be the extendable
output function SHAKE128 [18] with fixed 512-bit output. This enables us to implicitly use H
as a function mapping into either ZN ×{0, 1}256 (eg. Line 3 of Algorithm 1), ZN (eg. Line 8 of
Algorithm 1), or Z+

N (eg. Line 11 of Algorithm 1, by combining it with a conditional negation)
by appropriately reducing (part of) the output modulo N .
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Algorithm 1: The qDSA signature scheme

1 function keypair
Input: ()
Output: (±Q || (d′ || d′′)): a compressed public key ±Q ∈ {0, 1}256 where ±Q ∈ K,

and a private key (d′ || d′′) ∈
(
{0, 1}256

)2
2 d← Random({0, 1}256)
3 (d′ || d′′)← H(d)

4 ±Q← Ladder(d′,±P ) // ±Q = ±[d′]P
5 ±Q← Compress(±Q)

6 return (±Q || (d′ || d′′))

7 function sign
Input: d′, d′′ ∈ {0, 1}256, ±Q ∈ {0, 1}256, M ∈ {0, 1}∗

Output: (±R || s) ∈
(
{0, 1}256

)2
8 r ← H(d′′ ||M)

9 ±R← Ladder(r,±P ) // ±R = ±[r]P
10 ±R← Compress(±R)
11 h← H(±R || ±Q ||M)

12 s← (r − hd′) mod N

13 return (±R || s)

14 function verify
Input: M ∈ {0, 1}∗, the compressed public key ±Q ∈ {0, 1}256, and a putative

signature (±R || s) ∈
(
{0, 1}256

)2
Output: True if (±R || s) is a valid signature on M under ±Q, False otherwise

15 ±Q← Decompress(±Q)

16 if ±Q = ⊥ then
17 return False

18 h← H(±R || ±Q ||M)

19 ±T0 ← Ladder(s,±P ) // ±T0 = ±[s]P
20 ±T1 ← Ladder(h,±Q) // ±T1 = ±[h]Q
21 ±R← Decompress(±R)
22 if ±R = ⊥ then
23 return False

24 v ← Check(±T0,±T1,±R) // is ±R = ± (T0 ± T1)?
25 return v



Signature compression. Schnorr mentions in [40] that signatures (R || s) may be compressed
to (H(R || Q ||M) || s), taking only the first 128 bits of the hash, thus reducing signature size
from 64 to 48 bytes. This is possible because we can recompute R from P , Q, s, and H(R ||
Q || M). However, on K we cannot recover ±R from ±P , ±Q, s, and H(±R || ±Q || M), so
Schnorr’s compression technique is not an option for us.

Batching. Proposals for batch signature verification typically rely on the group structure,
verifying random linear combinations of points [8, 33]. Since K has no group structure, these
batching algorithms are not possible.

Scalar multiplication for verification. Instead of computing the full point [s]P + [c]Q with a
two-dimensional multiscalar multiplication operation, we have to compute ±[s]P and ±[c]Q
separately. As a result we are unable to use standard tricks for speeding up two-dimensional
scalar multiplications (eg. [20]), resulting in increased run-time. On the other hand, it has
the benefit of relying on the already implemented Ladder function, mitigating the need for
a separate algorithm, and is more memory-friendly. Our implementations show a significant
decrease in stack usage, at the cost of a small loss of speed (see §7).

3 Implementing qDSA with elliptic curves

Our first concrete instantiation of qDSA uses the Kummer variety of an elliptic curve, which
is just the x-line P1.

3.1 Montgomery curves

Consider the elliptic curve in Montgomery form

EAB/Fp : By2 = x(x2 +Ax+ 1) ,

where A2 6= 4 and B 6= 0. The map EAB → K = P1 defined by

P = (X : Y : Z) 7−→ ±P =

{
(X : Z) if Z 6= 0

(1 : 0) if Z = 0

gives rise to efficient x-only arithmetic on P1 (see [32]). We use the Ladder specified in [17, Alg.
1]. Compression uses Bernstein’s map

Compress : (X : Z) ∈ P1(Fp) 7−→ XZp−2 ∈ Fp ,

while decompression is the near-trivial

Decompress : x ∈ Fp 7−→ (x : 1) ∈ P1(Fp) .

Note that Decompress never returns ⊥, and that Decompress(Compress((X : Z))) = (X : Z)
whenever Z 6= 0 (however, the points (0 : 1) and (1 : 0) should never appear as public keys or
signatures).
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3.2 Signature verification

It remains to define the Check operation for Montgomery curves. In the final step of verification
we are given±R,±P , and±Q in P1, and we need to check whether±R ∈ {±(P +Q),±(P −Q)}.
Proposition 3 reduces this to checking a quadratic relation in the coordinates of ±R, ±P , and
±Q.

Proposition 3. Writing (XP : ZP ) = ±P for P in EAB, etc.: If P , Q, and R are points on
EAB, then ±R ∈

{
±(P +Q),±(P −Q)

}
if and only if

BZZ(X
R)2 − 2BXZX

RZR +BXX(Z
R)2 = 0 (2)

where

BXX =
(
XPXQ − ZPZQ

)2
, (3)

BXZ =
(
XPXQ + ZPZQ

)(
XPZQ + ZPXQ

)
+ 2AXPZPXQZQ , (4)

BZZ =
(
XPZQ − ZPXQ

)2
. (5)

Proof. Let S = (XS : ZS) = ±(P +Q) and D = (XD : ZD) = ±(P −Q). If we temporarily
assume ±0 6= ±P 6= ±Q 6= ±0 and put xP = XP /ZP , etc., then the group law on EAB gives
us xSxD = (xPxQ − 1)2/(xP − xQ)2 and xS + xD = 2((xPxQ + 1)(xP + xQ) + 2AxPxQ).
Homogenizing, we obtain(

XSXD : XSZD + ZSXD : ZSZD
)
= (λBXX : λ2BXZ : λBZZ) . (6)

One readily verifies that Equation (6) still holds even when the temporary assumption does
not (that is, when ±P = ±Q or ±P = ±0 or ±Q = ±0). Having degree 2, the homogeneous
polynomial BZZX2 −BXZXZ +BXXZ

2 cuts out two points in P1 (which may coincide); by
Equation (6), they are ±(P +Q) and ±(P −Q), so if (XR : ZR) satisfies Equation (2) then
it must be one of them. ut

Algorithm 2: Checking the verification relation for P1

1 function Check
Input: ±P , ±Q, ±R = (x : 1) in P1 images of points of EAB(Fp)
Output: True if ±R ∈ {±(P +Q),±(P −Q)}, False otherwise
Cost: 8M+ 3S+ 1C+ 8a+ 4s

2 (BXX , BXZ , BZZ)← BValues(±P,±Q)

3 if BXXx2 −BXZx+BZZ = 0 then return True
4 else return False

5 function BValues
Input: ±P = (XP : ZP ), ±Q = (XQ : ZQ) in K(Fp)
Output: (BXX(±P,±Q), BXZ(±P,±Q), BZZ(±P,±Q)) in F3

p

Cost: 6M+ 2S+ 1C+ 7a+ 3s

// See Algorithm 8 and Proposition 3
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3.3 Using cryptographic parameters

We use the elliptic curve E/Fp : y2 = x3 + 486662x2 + x where p = 2255 − 19, which is
commonly referred to as Curve25519 [5]. Let P ∈ E(Fp) be such that ±P = (9 : 1). Then P
has order 8N , where

N = 2252 + 27742317777372353535851937790883648493

is prime. The xDBLADD operation requires us to store (A+ 2)/4 = 121666, and we implement
optimized multiplication by this constant. In [5, §3] Bernstein sets and clears some bits of the
private key, also referred to as “clamping”. This is not necessary in qDSA, but we do it anyway
in keypair for compatibility.

4 Implementing qDSA with Kummer surfaces

A number of cryptographic protocols that have been successfully implemented with Mont-
gomery curves have seen substantial practical improvements when the curves are replaced
with Kummer surfaces. From a general point of view, a Kummer surface is the quotient of
some genus-2 Jacobian J by ±1; geometrically it is a surface in P3 with sixteen point singu-
larities, called nodes, which are the images in K of the 2-torsion points of J (since these are
precisely the points fixed by −1). From a cryptographic point of view, a Kummer surface is
just a 2-dimensional analogue of the x-coordinate used in Montgomery curve arithmetic.

The algorithmic and software aspects of efficient Kummer surface arithmetic have already
been covered in great detail elsewhere (see eg. [21], [7], and [39]). Indeed, the Kummer scalar
multiplication algorithms and software that we use in our signature implementation are iden-
tical to those described in [39], and use the cryptographic parameters proposed by Gaudry
and Schost [22].

This work includes two entirely new Kummer algorithms that are essential for our signature
scheme: verification relation testing (Check, Algorithm 3) and compression/decompression
(Compress and Decompress, Algorithms 4 and 5). Both of these new techniques require a fair
amount of technical development, which we begin in this section by recalling the basic Kummer
equation and constants, and deconstructing the pseudo-doubling operation into a sequence of
surfaces and maps that will play important roles later. Once the scene has been set, we will
describe our signature verification algorithm in §5 and our point compression scheme in §6.
The reader primarily interested in the resulting performance improvements may wish to skip
directly to §7 on first reading.

The Check, Compress, and Decompress algorithms defined below require the following
subroutines:

– Mul4 implements a 4-way parallel multiplication. It takes a pair of vectors (x1, x2, x3, x4)
and (y1, y2, y3, y4) in F4

p, and returns (x1y1, x2y2, x3y3, x4y4).
– Sqr4 implements a 4-way parallel squaring. Given a vector (x1, x2, x3, x4) in F4

p, it returns
(x21, x

2
2, x

2
3, x

2
4).

– Had implements a Hadamard transform. Given a vector (x1, x2, x3, x4) in F4
p, it returns

(x1 + x2 + x3 + x4, x1 + x2 − x3 − x4, x1 − x2 + x3 − x4, x1 − x2 − x3 + x4).
– Dot computes the sum of a 4-way multiplication. Given a pair of vectors (x1, x2, x3, x4)

and (y1, y2, y3, y4) in F4
p, it returns x1y1 + x2y2 + x3y3 + x4y4.

10



4.1 Constants

Our Kummer surfaces are defined by four fundamental constants α1, α2, α3, α4 and four dual
constants α̂1, α̂2, α̂3, and α̂4, which are related by

2α̂2
1 = α2

1 + α2
2 + α2

3 + α2
4 ,

2α̂2
2 = α2

1 + α2
2 − α2

3 − α2
4 ,

2α̂2
3 = α2

1 − α2
2 + α2

3 − α2
4 ,

2α̂2
4 = α2

1 − α2
2 − α2

3 + α2
4 .

We require all of the αi and α̂i to be nonzero. The fundamental constants determine the dual
constants up to sign, and vice versa. These relations remain true when we exchange the αi
with the α̂i; we call this “swapping x with x̂” operation “dualizing”. To make the symmetry in
what follows clear, we define

µ1 := α2
1 , ε1 := µ2µ3µ4 , κ1 := ε1 + ε2 + ε3 + ε4 ,

µ2 := α2
2 , ε2 := µ1µ3µ4 , κ2 := ε1 + ε2 − ε3 − ε4 ,

µ3 := α2
3 , ε3 := µ1µ2µ4 , κ3 := ε1 − ε2 + ε3 − ε4 ,

µ4 := α2
4 , ε4 := µ1µ2µ3 , κ4 := ε1 − ε2 − ε3 + ε4 ,

along with their respective duals µ̂i, ε̂i, and κ̂i. Note that

(ε1 : ε2 : ε3 : ε4) = (1/µ1 : 1/µ2 : 1/µ3 : 1/µ4)

and µiµj −µkµl = µ̂iµ̂j − µ̂kµ̂l for {i, j, k, l} = {1, 2, 3, 4}. There are many clashing notational
conventions for theta constants in the cryptographic Kummer literature; Table 1 provides a
dictionary for converting between them.

Our applications use only the squared constants µi and µ̂i, so only they need be in Fp. In
practice we want them to be as “small” as possible, both to reduce the cost of multiplying by
them and to reduce the cost of storing them. In fact, it follows from their definition that it
is much easier to find simultaneously small µi and µ̂i than it is to find simultaneously small
αi and α̂i (or a mixture of the two); this is ultimately why we prefer the squared surface for
scalar multiplication. We note that if the µi are very small, then the εi and κi are also small,
and the same goes for their duals. While we will never actually compute with the unsquared
constants, we need them to explain what is happening in the background below.

Finally, the Kummer surface equations involve some derived constants

E :=
16α1α2α3α4µ̂1µ̂2µ̂3µ̂4

(µ1µ4 − µ2µ3)(µ1µ3 − µ2µ4)(µ1µ2 − µ3µ4)
,

F := 2
µ1µ4 + µ2µ3
µ1µ4 − µ2µ3

, G := 2
µ1µ3 + µ2µ4
µ1µ3 − µ2µ4

, H := 2
µ1µ2 + µ3µ4
µ1µ2 − µ3µ4

,

and their duals Ê, F̂ , Ĝ, Ĥ. We observe that E2 = F 2 + G2 + H2 + FGH − 4 and Ê2 =
F̂ 2 + Ĝ2 + Ĥ2 + F̂ ĜĤ − 4.
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Source Fundamental constants Dual constants
[21] and [7] (a :b :c :d) = (α1 :α2 :α3 :α4) (A :B :C :D) = (α̂1 : α̂2 : α̂3 : α̂4)

[11] (a :b :c :d) = (α1 :α2 :α3 :α4) (A :B :C :D) = (µ̂1 : µ̂2 : µ̂3 : µ̂4)

[39] (a :b :c :d) = (µ1 :µ2 :µ3 :µ4) (A :B :C :D) = (µ̂1 : µ̂2 : µ̂3 : µ̂4)

[15] (α :β :γ :δ) = (µ1 :µ2 :µ3 :µ4) (A :B :C :D) = (µ̂1 : µ̂2 : µ̂3 : µ̂4)
Table 1. Relations between our theta constants and others in selected related work

4.2 Fast Kummer surfaces

We compute all of the pseudoscalar multiplications in qDSA on the so-called squared Kum-
mer surface

KSqr : 4E2 ·X1X2X3X4 =

(
X2

1 +X2
2 +X2

3 +X2
4 − F (X1X4 +X2X3)

−G(X1X3 +X2X4)−H(X1X2 +X3X4)

)2

,

which was proposed for factorization algorithms by the Chudnovskys [13], then later for Diffie–
Hellman by Bernstein [6]. Since E only appears as a square, KSqr is defined over Fp. The zero
point on KSqr is ±0 = (µ1 : µ2 : µ3 : µ4). In our implementations we used the xDBLADD and
Montgomery ladder exactly as they were presented in [39, Algorithms 6-7] (see also Algo-
rithm 9). The pseudo-doubling xDBL on KSqr is

±P =
(
XP

1 : XP
2 : XP

3 : XP
4

)
7−→

(
X

[2]P
1 : X

[2]P
2 : X

[2]P
3 : X

[2]P
4

)
= ±[2]P

where

X
[2]P
1 = ε1(U1 + U2 + U3 + U4)

2 , U1 = ε̂1(X
P
1 +XP

2 +XP
3 +XP

4 )2 , (7)

X
[2]P
2 = ε2(U1 + U2 − U3 − U4)

2 , U2 = ε̂2(X
P
1 +XP

2 −XP
3 −XP

4 )2 , (8)

X
[2]P
3 = ε3(U1 − U2 + U3 − U4)

2 , U3 = ε̂3(X
P
1 −XP

2 +XP
3 −XP

4 )2 , (9)

X
[2]P
4 = ε4(U1 − U2 − U3 + U4)

2 , U4 = ε̂4(X
P
1 −XP

2 −XP
3 +XP

4 )2 (10)

for ±P with all XP
i 6= 0; more complicated formulæ exist for other ±P (cf. §5.1).

4.3 Deconstructing pseudo-doubling

Figure 1 deconstructs the pseudo-doubling on KSqr from §4.2 into a cycle of atomic maps
between different Kummer surfaces, which form a sort of hexagon. Starting at any one of
the Kummers and doing a complete cycle of these maps carries out pseudo-doubling on that
Kummer. Doing a half-cycle from a given Kummer around to its dual computes a (2, 2)-isogeny
splitting pseudo-doubling.

Six different Kummer surfaces may seem like a lot to keep track of—even if there are really
only three, together with their duals. However, the new surfaces are important, because they
are crucial in deriving our Check routine (of course, once the algorithm has been written down,
the reader is free to forget about the existence of these other surfaces).

The cycle actually begins one step before KSqr, with the canonical surface

KCan : 2E · T1T2T3T4 =
T 4
1 + T 4

2 + T 4
3 + T 4

4 − F (T 2
1 T

2
4 + T 2

2 T
2
3 )

−G(T 2
1 T

2
3 + T 2

2 T
2
4 )−H(T 2

1 T
2
2 + T 2

3 T
2
4 ) .
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KCan S
(2,2)

// KSqr

H
∼= ##

K̂Int

C
∼=

;;

KInt

Ĉ

∼=
||

K̂Sqr
Ĥ

∼=
bb

K̂Can

Ŝ

(2,2)oo

Fig. 1. Decomposition of pseudo-doubling on fast Kummer surfaces into a cycle of morphisms. Here, KSqr

is the “squared” surface we mostly compute with; KCan is the related “canonical” surface; and KInt is a new
“intermediate” surface which we use in signature verification. (The surfaces K̂Sqr, K̂Can, and K̂Int are their
duals.)

This was the model proposed for cryptographic applications by Gaudry in [21]; we call it
“canonical” because it is the model arising from a canonical basis of theta functions of level
(2, 2).

Now we can begin our tour around the hexagon, moving from KCan to KSqr via the squar-
ing map

S :
(
T1 : T2 : T3 : T4

)
7−→

(
X1 : X2 : X3 : X4

)
=
(
T 2
1 : T 2

2 : T 2
3 : T 3

4

)
,

which corresponds to a (2, 2)-isogeny of Jacobians. Moving on from KSqr, the Hadamard
transform isomorphism

H : (X1 : X2 : X3 : X4) 7−→ (Y1 : Y2 : Y3 : Y4) =


X1 +X2 +X3 +X4

: X1 +X2 −X3 −X4

: X1 −X2 +X3 −X4

: X1 −X2 −X3 +X4


takes us into a third kind of Kummer, which we call the intermediate surface:

KInt :
2Ê

α1α2α3α4
· Y1Y2Y3Y4 =

Y 4
1

µ21
+

Y 4
2

µ22
+

Y 4
3

µ23
+

Y 4
4

µ24
− F̂

(
Y 2
1
µ1

Y 2
4
µ4

+
Y 2
2
µ2

Y 2
3
µ3

)
− Ĝ

(
Y 2
1
µ1

Y 2
3
µ3

+
Y 2
2
µ2

Y 2
4
µ4

)
− Ĥ

(
Y 2
1
µ1

Y 2
2
µ2

+
Y 2
3
µ3

Y 2
4
µ4

)
.

We will use KInt for signature verification. Now the dual scaling isomorphism

Ĉ :
(
Y1 : Y2 : Y3 : Y4

)
7−→

(
T̂1 : T̂2 : T̂3 : T̂4

)
=
(
Y1/α̂1 : Y2/α̂2 : Y3/α̂3 : Y4/α̂4

)
takes us into the dual canonical surface

K̂Can : 2Ê · T̂1T̂2T̂3T̂4 =
T̂ 4
1 + T̂ 4

2 + T̂ 4
3 + T̂ 4

4 − F̂ (T̂ 2
1 T̂

2
4 + T̂ 2

2 T̂
2
3 )

− Ĝ(T̂ 2
1 T̂

2
3 + T̂ 2

2 T̂
2
4 )− Ĥ(T̂ 2

1 T̂
2
2 + T̂ 2

3 T̂
2
4 ) .

We are now halfway around the hexagon; the return journey is simply the dual of the outbound
trip. The dual squaring map

Ŝ :
(
T̂1 : T̂2 : T̂3 : T̂4

)
7−→

(
X̂1 : X̂2 : X̂3 : X̂4

)
=
(
T̂ 2
1 : T̂ 2

2 : T̂ 2
3 : T̂ 3

4

)
,
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another (2, 2)-isogeny, carries us into the dual squared surface

K̂Sqr : 4Ê2 · X̂1X̂2X̂3X̂4 =

(
X̂2

1 + X̂2
2 + X̂2

3 + X̂2
4 − F̂ (X̂1X̂4 + X̂2X̂3)

− Ĝ(X̂1X̂3 + X̂2X̂4)− Ĥ(X̂1X̂2 + X̂3X̂4)

)2

,

before the dual Hadamard transform

Ĥ :
(
X̂1 : X̂2 : X̂3 : X̂4

)
7−→

(
Ŷ1 : Ŷ2 : Ŷ3 : Ŷ4

)
=


X̂1 + X̂2 + X̂3 + X̂4

: X̂1 + X̂2 − X̂3 − X̂4

: X̂1 − X̂2 + X̂3 − X̂4

: X̂1 − X̂2 − X̂3 + X̂4


takes us into the dual intermediate surface

K̂Int :
2E

α1α2α3α4
· Ŷ1Ŷ2Ŷ3Ŷ4 =

Ŷ 4
1

µ21
+

Ŷ 4
2

µ22
+

Ŷ 4
3

µ23
+

Ŷ 4
4

µ24
− F̂

(
Ŷ 2
1
µ1

Ŷ 2
4
µ4
− Ŷ 2

2
µ2

Ŷ 2
3
µ3

)
− Ĝ

(
Ŷ 2
1
µ1

Ŷ 2
3
µ3
− Ŷ 2

2
µ2

Ŷ 2
4
µ4

)
− Ĥ

(
Ŷ 2
1
µ1

Ŷ 2
2
µ2
− Ŷ 2

3
µ3

Ŷ 2
4
µ4

)
.

A final scaling isomorphism

C :
(
Ŷ1 : Ŷ2 : Ŷ3 : Ŷ4

)
7−→

(
T1 : T2 : T3 : T4

)
=
(
Ŷ1/α1 : Ŷ2/α2 : Ŷ3/α3 : Ŷ4/α4

)
takes us from K̂Int back to KCan, where we started.

The canonical surfacesKCan resp. K̂Can are only defined over Fp(α1α2α3α4) resp. Fp(α̂1α̂2α̂3α̂4),
while the scaling isomorphisms Ĉ resp. C are defined over Fp(α̂1, α̂2, α̂3, α̂4) resp. Fp(α1, α2, α3, α4).
Everything else is defined over Fp.

We confirm that one cycle around the hexagon, starting and ending on KSqr, computes the
pseudo-doubling of Equations (7), (8), (9), and (10). Similarly, one cycle around the hexagon
starting and ending on KCan computes Gaudry’s pseudo-doubling from [21, §3.2].

5 Signature verification on Kummer surfaces

To verify signatures in the Kummer surface implementation, we need to supply a Check
algorithm which, given ±P , ±Q, and ±R on KSqr, decides whether ±R ∈ {±(P +Q),±(P −
Q)}. For the elliptic version of qDSA described in §3, we saw that this came down to checking
that ±R satisfied one quadratic relation whose three coefficients were biquadratic forms in
±P and ±Q. The same principle extends to Kummer surfaces, where the pseudo-group law is
similarly defined by biquadratic forms; but since Kummer surfaces are defined in terms of four
coordinates (as opposed to the two coordinates of the x-line), this time there are six simple
quadratic relations to verify, with a total of ten coefficient forms.

5.1 Biquadratic forms and pseudo-addition

Let K be a Kummer surface. If ±P is a point on K, then we write (ZP1 : ZP2 : ZP3 : ZP4 )
for its projective coordinates. The classical theory of abelian varieties tells us that there exist
biquadratic forms Bij for 1 ≤ i, j ≤ 4 such that for all ±P and ±Q, if ±S = ±(P + Q) and
±D = ±(P −Q) then(

ZSi Z
D
j + ZSj Z

D
i

)4
i,j=1

= λ
(
Bij(Z

P
1 , Z

P
2 , Z

P
3 , Z

P
4 , Z

Q
1 , Z

Q
2 , Z

Q
3 , Z

Q
4 )
)4
i,j=1

(11)
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where λ ∈ k× is some common projective factor depending only on the affine representatives
chosen for ±P , ±Q, ±(P +Q) and ±(P −Q). These biquadratic forms are the foundation of
pseudo-addition and doubling laws on K: if the “difference” ±D is known, then we can use the
Bij to compute ±S.

Proposition 4. Let {Bij : 1 ≤ i, j ≤ 4} be a set of biquadratic forms on K × K satisfying
Equation (11) for all ±P , ±Q, ±(P +Q), and ±(P −Q). Then

±R = (ZR1 : ZR2 : ZR3 : ZR4 ) ∈ {±(P +Q),±(P −Q)}

if and only if (writing Bij for Bij(ZP1 , . . . , Z
Q
4 )) we have

Bjj · (ZRi )2 − 2Bij · ZRi ZRj +Bii · (ZRj )2 = 0 for all 1 ≤ i < j ≤ 4 . (12)

Proof. Looking at Equation (11), we see that the system of six quadratics from Equation (12)
cuts out a zero-dimensional degree-2 subscheme of K: that is, the pair of points {±(P +
Q),±(P −Q)} (which may coincide). Hence, if (ZR1 : ZR2 : ZR3 : ZR4 ) = ±R satisfies all of the
equations, then it must be one of them. ut

5.2 Deriving efficiently computable forms

Proposition 4 is the exact analogue of Proposition 3 for Kummer surfaces. All that we need to
turn it into a Check algorithm for qDSA is an explicit and efficiently computable representation
of the Bij . These forms depend on the projective model of the Kummer surface; so we write
BCan
ij , BSqr

ij , and BInt
ij for the forms on the canonical, squared, and intermediate surfaces.

On the canonical surface, the forms BCan
ij are classical (see e.g. [3, §2.2]). The on-diagonal

forms BCan
ii are

BCan
11 =

1

4

(V1
µ̂1

+
V2
µ̂2

+
V3
µ̂3

+
V4
µ̂4

)
, BCan

22 =
1

4

(V1
µ̂1

+
V2
µ̂2
− V3
µ̂3
− V4
µ̂4

)
, (13)

BCan
33 =

1

4

(V1
µ̂1
− V2
µ̂2

+
V3
µ̂3
− V4
µ̂4

)
, BCan

44 =
1

4

(V1
µ̂1
− V2
µ̂2
− V3
µ̂3

+
V4
µ̂4

)
, (14)

where

V1 =
(
(TP1 )2 + (TP2 )2 + (TP3 )2 + (TP4 )2

)(
(TQ1 )2 + (TQ2 )2 + (TQ3 )2 + (TQ4 )2

)
,

V2 =
(
(TP1 )2 + (TP2 )2 − (TP3 )2 − (TP4 )2

)(
(TQ1 )2 + (TQ2 )2 − (TQ3 )2 − (TQ4 )2

)
,

V3 =
(
(TP1 )2 − (TP2 )2 + (TP3 )2 − (TP4 )2

)(
(TQ1 )2 − (TQ2 )2 + (TQ3 )2 − (TQ4 )2

)
,

V4 =
(
(TP1 )2 − (TP2 )2 − (TP3 )2 + (TP4 )2

)(
(TQ1 )2 − (TQ2 )2 − (TQ3 )2 + (TQ4 )2

)
,

while the off-diagonal forms Bij with i 6= j are

BCan
ij =

2

µ̂iµ̂j − µ̂kµ̂l

(
αiαj

(
TPi T

P
j T

Q
i T

Q
j + TPk T

P
l T

Q
k T

Q
l

)
− αkαl

(
TPi T

P
j T

Q
k T

Q
l + TPk T

P
l T

Q
i T

Q
j

)) (15)

where {i, j, k, l} = {1, 2, 3, 4}.
All of these forms can be efficiently evaluated. The off-diagonal BCan

ij have a particularly
compact shape, while the symmetry of the on-diagonal BCan

ii makes them particularly easy to
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compute simultaneously: indeed, that is exactly what we do in Gaudry’s fast pseudo-addition
algorithm for KCan [21, §3.2].

Ideally, we would like to evaluate the BSqr
ij on KSqr, since that is where our inputs ±P ,

±Q, and ±R live. We can compute the BSqr
ij by dualizing the BCan

ij , then pulling the B̂Can
ij on

K̂Can back to KSqr via Ĉ ◦H. But while the resulting on-diagonal BSqr
ii maintain the symmetry

and efficiency of the BCan
ii ,6 the off-diagonal BSqr

ij turn out to be much less pleasant, with
less apparent exploitable symmetry. For our applications, this means that evaluating BSqr

ij for
i 6= j implies taking a significant hit in terms of stack and code size, not to mention time.

We could avoid this difficulty by mapping the inputs of Check from KSqr into K̂Can, and
then evaluating the B̂Can

ij . But this would involve using—and, therefore, storing—the four
large unsquared α̂i, which is an important drawback.

Why do the nice B̂Can
ij become so ugly when pulled back to KSqr? The map Ĉ : KInt → K̂Can

has no impact on the shape or number of monomials, so most of the ugliness is due to the
Hadamard transform H : KSqr → KInt. In particular, if we only pull back the B̂Can

ij as far as
KInt, then the resulting BInt

ij retain the nice form of the BCan
ij but do not involve the α̂i. This

fact prompts our solution: we map ±P , ±Q, and ±R through H onto KInt, and verify using
the forms BInt

ij .

Theorem 1. Up to a common projective factor, the on-diagonal biquadratic forms on the
intermediate surface KInt are

BInt
11 = µ̂1 (κ1F1 + κ2F2 + κ3F3 + κ4F4) , (16)

BInt
22 = µ̂2 (κ2F1 + κ1F2 + κ4F3 + κ3F4) , (17)

BInt
33 = µ̂3 (κ3F1 + κ4F2 + κ1F3 + κ2F4) , (18)

BInt
44 = µ̂4 (κ4F1 + κ3F2 + κ2F3 + κ1F4) , (19)

where

F1 = P1Q1 + P2Q2 + P3Q3 + P4Q4 , F2 = P1Q2 + P2Q1 + P3Q4 + P4Q3 ,

F3 = P1Q3 + P3Q1 + P2Q4 + P4Q2 , F4 = P1Q4 + P4Q1 + P2Q3 + P3Q2 ,

where Pi = ε̂i(Y
P
i )2 and Qi = ε̂i(Y

Q
i )2 for 1 ≤ i ≤ 4. Up to the same common projective

factor, the off-diagonal forms are

BInt
ij = C · Cij ·

(
µ̂kµ̂l

(
Y P
ij − Y P

kl

)(
Y Q
ij − Y

Q
kl

)
+
(
µ̂iµ̂j − µ̂kµ̂l

)
Y P
kl Y

Q
kl

)
(20)

for {i, j, k, l} = {1, 2, 3, 4} where Cij := µ̂iµ̂j(µ̂iµ̂k − µ̂jµ̂l)(µ̂iµ̂l − µ̂jµ̂k), Y P
ij := Y P

i Y
P
j ,

Y Q
ij := Y Q

i Y
Q
j , and

C :=
8(µ1µ2µ3µ4)(µ̂1µ̂2µ̂3µ̂4)

(µ̂1µ̂2 − µ̂3µ̂4)(µ̂1µ̂3 − µ̂2µ̂4)(µ̂1µ̂4 − µ̂2µ̂3)
.

6 As they should, since they are the basis of the efficient pseudo-addition on KSqr!

16



Proof. By definition, T̂Si T̂
D
j +T̂Sj T̂

D
i = B̂Can

ij (T̂P1 , . . . , T̂
Q
4 ). Pulling back via Ĉ using T̂i = Yi/α̂i

yields

BInt
ij (Y P

1 , . . . , Y
Q
4 ) = Y S

i Y
D
j + Y S

j Y
D
i = α̂iα̂j

(
T̂Si T̂

D
j + T̂Sj T̂

D
i

)
= α̂iα̂j · B̂Can

ij (T̂P1 , . . . , T̂
Q
4 )

= α̂iα̂j · B̂Can
ij (Y P

1 /α̂1, . . . , Y
Q
4 /α̂4) .

Dualizing the BCan
ij from Equations (13), (14), and (15), we find

BInt
11 = µ̂1/

(
4µ1µ2µ3µ4(µ̂1µ̂2µ̂3µ̂4)

2
)
·
(
κ1F1 + κ2F2 + κ3F3 + κ4F4

)
,

BInt
22 = µ̂2/

(
4µ1µ2µ3µ4(µ̂1µ̂2µ̂3µ̂4)

2
)
·
(
κ2F1 + κ1F2 + κ4F3 + κ3F4

)
,

BInt
33 = µ̂3/

(
4µ1µ2µ3µ4(µ̂1µ̂2µ̂3µ̂4)

2
)
·
(
κ3F1 + κ4F2 + κ1F3 + κ2F4

)
,

BInt
44 = µ̂4/

(
4µ1µ2µ3µ4(µ̂1µ̂2µ̂3µ̂4)

2
)
·
(
κ4F1 + κ3F2 + κ2F3 + κ1F4

)
,

while the off-diagonal forms Bij with i 6= j are

BInt
ij =

2

µ̂kµ̂l(µ̂iµ̂j − µ̂kµ̂l)

(
µ̂kµ̂l

(
Y P
ij − Y P

kl

)(
Y Q
ij − Y

Q
kl

)
+ (µ̂iµ̂j − µ̂kµ̂l)Y P

kl Y
Q
kl

)

for {i, j, k, l} = {1, 2, 3, 4}. Multiplying all of these forms by a common projective factor of
4(µ1µ2µ3µ4)(µ̂1µ̂2µ̂3µ̂4)

2 eliminates the denominators in the coefficients, and yields the forms
of the theorem. ut

5.3 Signature verification

We are now finally ready to implement the Check algorithm for KSqr. Algorithm 3 does this
by applying H to its inputs, then using the biquadratic forms of Theorem 1. Its correctness is
implied by Proposition 4.

5.4 Using cryptographic parameters

Gaudry and Schost take p = 2127 − 1 and (µ1 : µ2 : µ3 : µ4) = (−11 : 22 : 19 : 3) in [22]. We
also need the constants (µ̂1 : µ̂2 : µ̂3 : µ̂4) = (−33 : 11 : 17 : 49), (κ1 : κ2 : κ3 : κ4) = (−4697 :
5951 : 5753 : −1991), and (ε̂1 : ε̂2 : ε̂3 : ε̂4) = (−833 : 2499 : 1617 : 561).7 In practice, where
these constants are “negative”, we reverse their sign and amend the formulæ above accordingly.
All of these constants are small, and fit into one or two bytes each (and the ε̂i are already
stored for use in Ladder). We store one large constant

C = 0x40F50EEFA320A2DD46F7E3D8CDDDA843,

and recompute the Cij on the fly.

7 Following the definitions of §4.1, the µ̂i are scaled by −2, the ε̂i by 1/11, and C by 2/112. These changes
influence the BInt

ij , but only up to the same projective factor.
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Algorithm 3: Checking the verification relation for points on KSqr

1 function Check
Input: ±P , ±Q, ±R in KSqr(Fp)
Output: True if ±R ∈ {±(P +Q),±(P −Q)}, False otherwise
Cost: 76M+ 8S+ 88C+ 42a+ 42s

2 (YP ,YQ)← (Had(±P ), Had(±Q))

3 (B11,B22,B33,B44)← BiiValues(YP ,YQ)
4 YR ← Had(±R)
5 for (i, j) in {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} do
6 LHS← Bii · (YRj )2 + Bjj · (YRi )2

7 Bij ← BijValue(YP ,YQ, (i, j))
8 RHS← 2Bij · YRi · YRj
9 if LHS 6= RHS then

10 return False

11 return True

12 function BiiValues
Input: ±P , ±Q in KInt(Fp)
Output: (BInt

ii (±P,±Q))4i=1 in F4
p

Cost: 16M+ 8S+ 28C+ 24a

// See Algorithm 13 and Theorem 1

13 function BijValue
Input: ±P , ±Q in KInt(Fp) and (i, j) with 1 ≤ i, j ≤ 4 and i 6= j

Output: BInt
ij (±P,±Q) in Fp

Cost: 10M+ 10C+ 1a+ 5s

// See Algorithm 12 and Theorem 1

6 Kummer point compression

Our public keys are points on KSqr, and each signature includes one point on KSqr. Minimizing
the space required by Kummer points is therefore essential.

A projective Kummer point is composed of four field elements; normalizing by dividing
through by a nonzero coordinate reduces us to three field elements (this can also be achieved
using Bernstein’s “wrapping” technique [6], as in [7] and [39]). But we are talking about Kum-
mer surfaces—two-dimensional objects—so we might hope to compress to two field elements,
plus a few bits to enable us to correctly recover the whole Kummer point. This is analogous
to elliptic curve point compression, where we compress projective points (X : Y : Z) by nor-
malizing to (x, y) = (X/Z, Y/Z), then storing (x, σ), where σ is a bit indicating the “sign” of
y. Decompressing the datum (x, σ) to (X : Y : Z) = (x : y : 1) then requires solving a simple
quadratic to recover the correct y-coordinate.

For some reason, no such Kummer point compression method has explicitly appeared in
the literature. Bernstein remarked in 2006 that if we compress a Kummer point to two co-
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ordinates, then decompression appears to require solving a complicated quartic equation [6].
This would be much more expensive than computing the single square root required for ellip-
tic decompression; this has perhaps discouraged implementers from attempting to compress
Kummer points.

But while it may not always be obvious from their defining equations, the classical theory
tells us that every Kummer is in fact a double cover of P2, just as elliptic curves are double
covers of P1. We use this principle below to show that we can always compress any Kummer
point to two field elements plus two auxiliary bits, and then decompress by solving a quadratic.
In our applications, this gives us a convenient packaging of Kummer points in exactly 256 bits.

6.1 The general principle

First, we sketch a general method for Kummer point compression that works for any Kummer
presented as a singular quartic surface in P3.

Recall that if N is any point in P3, then projection away from N defines a map πN : P3 →
P2 sending points in P3 on the same line through N to the same point in P2. (The map πN
is only a rational map, and not a morphism; the image of N itself is not well-defined.) Now,
let N be a node of a Kummer surface K: that is, N is one of the 16 singular points of K. The
restriction of πN to K forms a double cover of P2. By definition, πN maps the points on K
that lie on the same line through N to the same point of P2. Now K has degree 4, so each
line in P3 intersects K in four points; but since N is a double point of K, every line through
N intersects K at N twice, and then in two other points. These two remaining points may
be “compressed” to their common image in P2 under πN , plus a single bit to distinguish the
appropriate preimage.

To make this more concrete, let L1, L2, and L3 be linearly independent linear forms on
P3 vanishing on N ; then N is the intersection of the three planes in P3 cut out by the Li. We
can now realise the projection πN : K → P2 as

πN : (P1 : · · · : P4) 7−→
(
L1(P1, . . . , P4) : L2(P1, . . . , P4) : L3(P1, . . . , P4)

)
.

Replacing (L1, L2, L3) with another basis of 〈L1, L2, L3〉 yields another projection, which cor-
responds to composing πN with a linear automorphism of P2.

If L1, L2, and L3 are chosen as above to vanish on N , and L4 is any linear form not in
〈L1, L2, L3〉, then the fact that πN is a double cover of the (L1, L2, L3)-plane implies that the
defining equation of K can be rewritten in the form

K : K2(L1, L2, L3)L
2
4 − 2K3(L1, L2, L3)L4 +K4(L1, L2, L3) = 0

where eachKi is a homogeneous polynomial of degree i in L1, L2, and L3. This form, quadratic
in L4, allows us to replace the L4-coordinate with a single bit indicating the “sign” in the
corresponding root of this quadratic; the remaining three coordinates can be normalized to an
affine plane point. The net result is a compression to two field elements, plus one bit indicating
the normalization, plus another bit to indicate the correct value of L4.

Remark 1. Stahlke gives a compression algorithm in [42] for points on genus-2 Jacobians in
the usual Mumford representation. The first step can be seen as a projection to the most
general model of the Kummer (as in [12, Chapter 3]), and then the second is an implicit
implementation of the principle above.
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6.2 From squared Kummers to tetragonal Kummers

We want to define an efficient point compression scheme for KSqr. The general principle above
makes this possible, but it leaves open the choice of node N and the choice of forms Li. These
choices determine the complexity of the resulting Ki, and hence the cost of evaluating them;
this in turn has a non-negligible impact on the time and space required to compress and
decompress points, as well as the number of new auxiliary constants that must be stored.

In this section we define a choice of Li reflecting the special symmetry of KSqr. A similar
procedure for KCan appears in more classical language8 in [26, §54]. The trick is to distinguish
not one node of KSqr, but rather the four nodes forming the kernel of the (2, 2)-isogeny
Ŝ ◦ Ĉ ◦ H : KSqr → K̂Sqr, namely

±0 = N0 = (µ1 : µ2 : µ3 : µ4) , N1 = (µ2 : µ1 : µ4 : µ3) ,

N2 = (µ3 : µ4 : µ1 : µ2) , N3 = (µ4 : µ3 : µ2 : µ1) .

We are going to define a coordinate system where these four nodes become the vertices of a
coordinate tetrahedron; then, projection onto any three of the four coordinates will represent a
projection away from one of these four nodes. The result will be an isomorphic Kummer KTet

whose defining equation is quadratic in all four of its variables. This might seem like overkill
for point compression—quadratic in just one variable would suffice—but it has the agreeable
effect of dramatically reducing the overall complexity of the defining equation, saving time
and memory in our compression and decompression algorithms.

The key is the matrix identity
κ̂4 κ̂3 κ̂2 κ̂1

κ̂3 κ̂4 κ̂1 κ̂2

κ̂2 κ̂1 κ̂4 κ̂3

κ̂1 κ̂2 κ̂3 κ̂4



µ1 µ2 µ3 µ4

µ2 µ1 µ4 µ3

µ3 µ4 µ1 µ2

µ4 µ3 µ2 µ1

 = 8µ̂1µ̂2µ̂3µ̂4


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 , (21)

which tells us that the projective isomorphism T : P3 → P3 defined by

T :


X1

: X2

: X3

: X4

 7→


L1

: L2

: L3

: L4

 =


κ̂4X1 + κ̂3X2 + κ̂2X3 + κ̂1X4

: κ̂3X1 + κ̂4X2 + κ̂1X3 + κ̂2X4

: κ̂2X1 + κ̂1X2 + κ̂4X3 + κ̂3X4

: κ̂1X1 + κ̂2X2 + κ̂3X3 + κ̂4X4


maps the four “kernel” nodes to the corners of a coordinate tetrahedron:

T (N0) = (0 : 0 : 0 : 1) , T (N2) = (0 : 1 : 0 : 0) ,

T (N1) = (0 : 0 : 1 : 0) , T (N3) = (1 : 0 : 0 : 0) .

8 The analogous model of KCan in [26, §54] is called “the equation referred to a Rosenhain tetrad”, whose defin-
ing equation “...may be deduced from the fact that Kummer’s surface is the focal surface of the congruence
of rays common to a tetrahedral complex and a linear complex.” Modern cryptographers will understand
why we have chosen to give a little more algebraic detail here.

20



The image of KSqr under T is the tetragonal surface

KTet : 4tL1L2L3L4 =

r21(L1L2 + L3L4)
2 + r22(L1L3 + L2L4)

2 + r23(L1L4 + L2L3)
2

− 2r1s1((L
2
1 + L2

2)L3L4 + L1L2(L
2
3 + L2

4))

− 2r2s2((L
2
1 + L2

3)L2L4 + L1L3(L
2
2 + L2

4))

− 2r3s3((L
2
1 + L2

4)L2L3 + L1L4(L
2
2 + L2

3))

where t = 16µ1µ2µ3µ4µ̂1µ̂2µ̂3µ̂4 and

r1 = (µ1µ3 − µ2µ4)(µ1µ4 − µ2µ3) , s1 = (µ1µ2 − µ3µ4)(µ1µ2 + µ3µ4) ,

r2 = (µ1µ2 − µ3µ4)(µ1µ4 − µ2µ3) , s2 = (µ1µ3 − µ2µ4)(µ1µ3 + µ2µ4) ,

r3 = (µ1µ2 − µ3µ4)(µ1µ3 − µ2µ4) , s3 = (µ1µ4 − µ2µ3)(µ1µ4 + µ2µ3) .

As promised, the defining equation of KTet is quadratic in all four of its variables.
For compression we project away from T (±0) = (0 : 0 : 0 : 1) onto the (L1 : L2 : L3)-plane.

Rewriting the defining equation as a quadratic in L4 gives

KTet : K4(L1, L2, L3)− 2K3(L1, L2, L3)L4 +K2(L1, L2, L3)L
2
4 = 0

where

K2 := r23L
2
1 + r22L

2
2 + r21L

2
3 − 2 (r3s3L2L3 + r2s2L1L3 + r1s1L1L2) ,

K3 := r1s1(L
2
1 + L2

2)L3 + r2s2(L
2
1 + L2

3)L2 + r3s3(L
2
2 + L2

3)L1

+ (2t− (r21 + r22 + r23))L1L2L3 ,

K4 := r23L
2
2L

2
3 + r22L

2
1L

2
3 + r21L

2
1L

2
2 − 2 (r3s3L1 + r2s2L2 + r1s1L3)L1L2L3 .

Lemma 1. If (l1 : l2 : l3 : l4) is a point on KTet, then

K2(l1, l2, l3) = K3(l1, l2, l3) = K4(l1, l2, l3) = 0 ⇐⇒ l1 = l2 = l3 = 0 .

Proof. Write ki for Ki(l1, l2, l3). If (l1, l2, l3) = 0 then (k2, k3, k4) = 0, because each Ki is
nonconstant and homogeneous. Conversely, if (k2, k3, k4) = 0 and (l1, l2, l3) 6= 0 then we could
embed a line in KTet via λ 7→ (l1 : l2 : l3 : λ); but this is a contradiction, because KTet contains
no lines. ut

6.3 Compression and decompression for KSqr

In practice, we compress points on KSqr to tuples (l1, l2, τ, σ), where l1 and l2 are field elements
and τ and σ are bits. The recipe is

(1) Map (X1 : X2 : X3 : X4) through T to a point (L1 : L2 : L3 : L4) on KTet.
(2) Compute the unique (l1, l2, l3, l4) in one of the forms (∗, ∗, 1, ∗), (∗, 1, 0, ∗), (1, 0, 0, ∗), or

(0, 0, 0, 1) such that (l1 : l2 : l3 : l4) = (L1 : L2 : L3 : L4).
(3) Compute k2 = K2(l1, l2, l3), k3 = K3(l1, l2, l3), and k4 = K4(l1, l2, l3).
(4) Define the bit σ = Sign(k2l4 − k3); then (l1, l2, l3, σ) determines l4. Indeed, q(l4) = 0,

where q(X) = k2X
2 − 2k3X + k4; and Lemma 1 tells us that q(X) is either quadratic,

linear, or identically zero.
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– If q is a nonsingular quadratic, then l4 is determined by (l1, l2, l3) and σ, because
σ = Sign(R) where R is the correct square root in the quadratic formula l4 = (k3 ±√
k23 − k2k4)/k2.

– If q is singular or linear, then (l1, l2, l3) determines l4, and σ is redundant.
– If q = 0 then (l1, l2, l3) = (0, 0, 0), so l4 = 1; again, σ is redundant.
Setting σ = Sign(k2l4 − k3) in every case, regardless of whether or not we need it to
determine l4, avoids ambiguity and simplifies code.

(5) The normalization in Step 2 forces l3 ∈ {0, 1}; so encode l3 as a single bit τ .

The datum (l1, l2, τ, σ) completely determines (l1, l2, l3, l4), and thus determines (X1 : X2 :
X3 : X4) = T −1((l1 : l2 : l2 : l4)). Conversely, the normalization in Step 2 ensures that
(l1, l2, τ, σ) is uniquely determined by (X1 : X2 : X3 : X4), and is independent of the repre-
sentative values of the Xi.

Algorithm 4 carries out the compression process above; the most expensive step is the
computation of an inverse in Fp. Algorithm 5 is the corresponding decompression algorithm;
its cost is dominated by computing a square root in Fp.

Algorithm 4: Kummer point compression for KSqr

1 function Compress
Input: ±P in KSqr(Fp)
Output: (l1, l2, τ, σ) with l1, l2 ∈ Fp and σ, τ ∈ {0, 1}
Cost: 8M+ 5S+ 12C+ 8a+ 5s+ 1I

2
(L1, L2,

L3, L4

)
←
(Dot(±P, (κ̂4, κ̂3, κ̂2, κ̂1)), Dot(±P, (κ̂3, κ̂4, κ̂1, κ̂2)),
Dot(±P, (κ̂2, κ̂1, κ̂4, κ̂3)), Dot(±P, (κ̂1, κ̂2, κ̂3, κ̂4))

)
3 if L3 6= 0 then
4 (τ, λ)← (1, L−13 ) // Normalize to (∗ : ∗ : 1 : ∗)
5 else if L2 6= 0 then
6 (τ, λ)← (0, L−12 ) // Normalize to (∗ : 1 : 0 : ∗)
7 else if L1 6= 0 then
8 (τ, λ)← (0, L−11 ) // Normalize to (1 : 0 : 0 : ∗)
9 else

10 (τ, λ)← (0, L−14 ) // Normalize to (0 : 0 : 0 : 1)

11 (l1, l2, l4)← (L1 · λ, L2 · λ, L4 · λ) // (l1 : l2 : τ : l4) = (L1 : L2 : L3 : L4)
12 (k2, k3)← (K2(l1, l2, τ),K3(l1, l2, τ)) // See Algorithm 14,15
13 R← k2 · l4 − k3
14 σ ← Sign(R)
15 return (l1, l2, τ, σ)

Proposition 5. Algorithms 4 and 5 (Compress and Decompress) satisfy the following prop-
erties: given (l1, l2, τ, σ) in F2

p × {0, 1}2, Decompress always returns either a valid point in
KSqr(Fp) or ⊥; and for every ±P in KSqr(Fp), we have

Decompress(Compress(±P )) = ±P .
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Algorithm 5: Kummer point decompression to KSqr

1 function Decompress
Input: (l1, l2, τ, σ) with l1, l2 ∈ Fp and τ, σ ∈ {0, 1}
Output: The point ±P in KSqr(Fp) such that Compress(±P ) = (l1, l2, τ, σ), or ⊥ if

no such ±P exists
Cost: 10M+ 9S+ 18C+ 13a+ 8s+ 1E

2 (k2, k3, k4)← (K2(l1, l2, τ),K3(l1, l2, τ),K4(l1, l2, τ)) // Alg. 14,15,16
3 if k2 = 0 and k3 = 0 then
4 if (l1, l2, τ, σ) 6= (0, 0, 0, Sign(0)) then
5 return ⊥ // Invalid compression

6 L← (0, 0, 0, 1)

7 else if k2 = 0 and k3 6= 0 then
8 if σ 6= Sign(−k3) then
9 return ⊥ // Invalid compression

10 L← (2 · l1 · k3, 2 · l2 · k3, 2 · τ · k3, k4) // k4 = 2k3l4
11 else
12 ∆← k23 − k2k4
13 R← HasSquareRoot(∆,σ) // R = ⊥ or R2 = ∆, Sign(R) = σ

14 if R = ⊥ then
15 return ⊥ // No preimage in KTet(Fp)

16 L← (k2 · l1, k2 · l2, k2 · τ, k3 + R) // k3 + R = k2l4

17
(X1, X2,

X3, X4

)
←
(Dot(L, (µ4, µ3, µ2, µ1)), Dot(L, (µ3, µ4, µ1, µ2)),
Dot(L, (µ2, µ1, µ4, µ3)), Dot(L, (µ1, µ2, µ3, µ4))

)
18 return (X1 : X2 : X3 : X4)

Proof. In Algorithm 5 we are given (l1, l2, τ, σ). We can immediately set l3 = τ , viewed as an
element of Fp. We want to compute an l4 in Fp, if it exists, such that k2l24−2k3l4+k4 = 0 and
Sign(k2l4− l3) = σ where ki = Ki(l1, l2, l3). If such an l4 exists, then we will have a preimage
(l1 : l2 : l3 : l4) in KTet(Fp), and we can return the decompressed T −1((l1 : l2 : l3 : l4)) in KSqr.

If (k2, k3) = (0, 0) then k4 = 2k3l4 − k2l24 = 0, so l1 = l2 = τ = 0 by Lemma 1. The only
legitimate datum in this form is is (l1 : l2 : τ : σ) = (0 : 0 : 0 : Sign(0)). If this was the input,
then the preimage is (0 : 0 : 0 : 1); otherwise we return ⊥.

If k2 = 0 but k3 6= 0, then k4 = 2k3l4, so (l1 : l2 : τ : l4) = (2k3l1 : 2k3l2 : 2k3τ : k4). The
datum is a valid compression unless σ 6= Sign(−k3), in which case we return ⊥; otherwise,
the preimage is (2k3l1 : 2k3l2 : 2k3τ : k4).

If k2 6= 0, then the quadratic formula tells us that any preimage satisfies k2l4 = k3 ±√
k23 − k2k4, with the sign determined by Sign(k2l4 − k3). If k23 − k2k4 is not a square in Fp

then there is no such l4 in Fp; the input is illegitimate, so we return ⊥. Otherwise, we have a
preimage (k2l1 : k2l2 : k2l3 : l3 ±

√
k23 − k2k4).
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Line 17 maps the preimage (l1 : l2 : l3 : l4) in KTet(Fp) back to KSqr(Fp) via T −1, yielding
the decompressed point (X1 : X2 : X3 : X4). ut

6.4 Using cryptographic parameters

Our compression scheme works out particularly nicely for the Gaudry–Schost Kummer over
F2127−1. First, since every field element fits into 127 bits, every compressed point fits into
exactly 256 bits. Second, the auxiliary constants are small: we have (κ̂1 : κ̂2 : κ̂3 : κ̂4) =
(−961 : 128 : 569 : 1097), each of which fits into well under 16 bits. Computing the polynomials
K2, K3, K4 and dividing them all through by 112 (which does not change the roots of the
quadratic) gives

K2(l1, l2, τ) = (q5l1)
2 + (q3l2)

2 + (q4τ)
2 − 2q3

(
q2l1l2 + τ(q0l1 − q1l2)

)
, (22)

K3(l1, l2, τ) = q3
(
q0(l

2
1 + τ)l2 − q1l1(l22 + τ) + q2(l

2
1 + l22)τ

)
− q6q7l1l2τ , (23)

K4(l1, l2, τ) = ((q3l1)
2 + (q5l2)

2 − 2q3l1l2
(
q0l2 − q1l1 + q2

)
)τ + (q4l1l2)

2 , (24)

where (q0, . . . , q7) = (3575, 9625, 4625, 12259, 11275, 7475, 6009, 43991); each of the qi fits into
16 bits. In total, the twelve new constants we need for Compress and Decompress together fit
into less than two field elements’ worth of space.

7 Implementation

In this section we present the results of the implementation of the scheme on the AVR ATmega
and ARM Cortex M0 platforms. We have a total of four implementations: on both platforms
we implemented both the Curve25519-based scheme and the scheme based on a fast Kummer
surface in genus 2. The benchmarks for the AVR software are obtained from the Arduino
MEGA development board containing an ATmega2560 MCU, compiled with GCC v4.8.1.
For the Cortex M0, they are measured on the STM32F051R8 MCU on the STMF0Discovery
board, compiled with Clang v3.5.0. We refer to the (publicly available) code for more detailed
compiler settings. For both Diffie–Hellman and signatures we follow the eBACS [4] API.

7.1 Core functionality

The arithmetic of the underlying finite fields is well-studied and optimized, and we do not
reinvent the wheel. For field arithmetic in F2255−19 we use the highly optimized functions
presented by Hutter and Schwabe [27] for the AVR ATmega, and the code from Düll et al. [17]
for the Cortex M0. For arithmetic in F2127−1 we use the functions from Renes et al. [39], which
in turn rely on [27] for the AVR ATmega, and on [17] for the Cortex M0.

The SHAKE128 functions for the ATmega are taken from [10], while on the Cortex M0 we
use a modified version from [2]. Cycle counts for the main functions defined in the rest of
this paper are presented in Table 2. Notably, the Ladder routine is by far the most expensive
function. In genus 1 the Compress function is relatively costly (it is essentially an inversion),
while in genus 2 Check, Compress and Decompress have only minor impact on the total run-
time. More interestingly, as seen in Table 3 and Table 4, the simplicity of operating only on
the Kummer variety allows smaller code and less stack usage.
9 The implementation decompresses ±R within Check, while Algorithm 3 assumes ±R to be decompressed.
We have subtracted the cost of the Decompress function once.
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Genus Function Ref. AVR ATmega ARM Cortex M0

1

Ladder Alg. 6 12 539 098 3 338 554

Check Alg. 2 46 546 17 044

Compress §3.1 1 067 004 270 867

Decompress §3.1 694 102

2

Ladder Alg. 9 9 624 637 2 683 371

Check9 Alg. 3 84 424 24 249

Compress Alg. 4 212 374 62 165

Decompress Alg. 5 211 428 62 471

Table 2. Cycle counts for the four key functions of qDSA at the 128-bit security level.

7.2 Comparison to previous work

There are not many implementations of complete signature and key exchange schemes on
microcontrollers. On the other hand, there are implementations of scalar multiplication on
elliptic curves. The current fastest on our platforms are presented by Düll et al. [17], and since
we are relying on exactly the same arithmetic, we have essentially the same results. Similarly,
the current records for scalar multiplication on Kummer surfaces are presented by Renes et
al. [39]. Since we use the same underlying functions, we have similar results.

More interestingly, we compare the speed and memory usage of signing and verification
to best known results of implementations of complete signature schemes. To the best of our
knowledge, the only other works are the Ed25519-based scheme by Nascimento et al [34],
the FourQ-based scheme (obtaining fast scalar multiplication by relying on easily computable
endomorphisms) by Liu et al [30], and the genus-2 implementation from [39].

AVR ATmega. As we see in Table 3, our implementation of the scheme based on Curve25519
outperforms the Ed25519-based scheme from [34] in every way. It reduces the number of clock
cycles needed for sign resp. verify by more than 26% resp. 17%, while reducing stack usage
by more than 65% resp. 47%. Code size is not reported in [34]. Comparing against the FourQ
implementation of [30], we see a clear trade-off between speed and size: FourQ has a clear
speed advantage, but qDSA on Curve25519 requires only a fraction of the stack space.

The implementation based on the Kummer surface of the genus-2 Gaudry–Schost Jacobian
does better than the Curve25519-based implementation across the board. Compared to [39],
the stack usage of sign resp. verify decreases by more than 54% resp. 38%, while decreasing
code size by about 11%. On the other hand, verification is about 26% slower. This is explained
by the fact that in [39] the signature is compressed to 48 bytes (following Schnorr’s suggestion),
which means that one of the scalar multiplications in verification is only half length. Comparing
to the FourQ implementation of [30], again we see a clear trade-off between speed and size, but
this time the loss of speed is less pronounced than in the comparison with Curve25519-based
qDSA.

ARM Cortex M0. In this case there is no elliptic-curve-based signature scheme to compare
to, so we present the first. As we see in Table 4, it is significantly slower than its genus-2
10 All reported code sizes except those from [30, Table 6] include support for both signatures and key exchange.
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Ref. Object Function Clock cycles Stack Code size10

[34] Ed25519
sign 19 047 706 1 473 bytes

–
verify 30 776 942 1 226 bytes

[30] FourQ sign 5 174 800 1 572 bytes 25 354 bytes
verify 11 003 800 4 957 bytes 33 372 bytes

This work Curve25519
sign 14 067 995 512 bytes

21 347 bytes
verify 25 355 140 644 bytes

[39]
Gaudry– sign 10 404 033 926 bytes

20 242 bytes
Schost J verify 16 240 510 992 bytes

This work
Gaudry– sign 10 477 347 417 bytes

17 880 bytes
Schost K verify 20 423 937 609 bytes

Table 3. Performance comparison of the qDSA signature scheme against the current best implementations, on
the AVR ATmega platform.

counterpart in this paper (as should be expected), while using a similar amount of stack and
code. The genus-2 signature scheme has similar trade-offs on this platform when compared to
the implementation by Renes et al. [39]. The stack usage for sign resp. verify is reduced by
about 57% resp. 43%, while code size is reduced by about 8%. For the same reasons as above,
verification is about 28% slower.

Ref. Object Function Clock cycles Stack Code size11

This work Curve25519
sign 3 889 116 660 bytes

18 443 bytes
verify 6 793 695 788 bytes

[39]
Gaudry– sign 2 865 351 1 360 bytes

19 606 bytes
Schost J verify 4 453 978 1 432 bytes

This work
Gaudry– sign 2 908 215 580 bytes

18 064 bytes
Schost K verify 5 694 414 808 bytes

Table 4. Performance comparison of the qDSA signature scheme against the current best implementations, on
the ARM Cortex M0 platform.
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A Elliptic implementation details

The algorithms in this section complete the description of elliptic qDSA in §3.
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A.1 Pseudoscalar multiplication

The keypair, sign, and verify functions all require Ladder, which we define below. Al-
gorithm 6 describes the scalar pseudomultiplication that we implemented for Montgomery
curves, closely following our C reference implementation. To make our Ladder constant-time,
we use a conditional swap procedure CSWAP. This takes a single bit and a pair of items as
arguments, and swaps those items if and only if the bit is 1.

Algorithm 6: Ladder: the Montgomery ladder for elliptic pseudo-multiplication on P1,
using a combined differential double-and-add (Algorithm 7).

1 function Ladder
Input: m =

∑255
i=0mi2

i ∈ Z and ±P = (x : 1) ∈ P1(Fp) , x 6= 0

Output: ±[m]P

Cost: 1280M+ 1024S+ 256C+ 1024a+ 1024s

2 prevbit← 0

3 (V0,V1)←
(
(1 : 0),±P

)
4 for i = 255 down to 0 do
5 (bit, prevbit, swap)← (mi, bit, bit⊕ prevbit)
6 CSWAP(swap, (V0,V1))

7 xDBLADD(V0,V1, x)

8 CSWAP(bit, (V0,V1))

9 return V0

Algorithm 7 implements xDBLADD for Montgomery curves in the usual way. Note that the
assumption that ±(P − Q) 6∈ {(1 : 0), (0 : 1)} implies that xDBLADD will always return the
correct result.

Algorithm 7: xDBLADD: combined pseudo-addition and doubling on P1.

1 function xDBLADD
Input: ±P = (XP : ZP ) and ±Q = (XQ : ZQ) in P1(Fq), and x ∈ F∗q such that

(x : 1) = ±(P −Q)

Output: (±[2]P,±(P +Q))

Cost: 5M+ 4S+ 1C+ 4a+ 4s

2 (U0,U1,V0,V1)← (XP , ZP , XQ, ZQ)

3 (W0,W1)← (U0 + U1,U0 − U1)

4 (U0,U1)← (V0 + V1,V0 − V1)

5 (V0,U1)← (W0 · U1,W1 · U0)

6 (U0,V1)← (V0 + U1,V0 − U1)

7 (U0,V0,V1)← (U2
0,V

2
0, x · U0)

8 (W0,U0)← (W2
1,W

2
0)

9 U1 ← U0 −W0

10 U0 ←W0 · U0

11 W1 ← A+2
4 · U1

12 W1 ←W0 ·W1

13 U1 ←W1 · U1

14 return
(
(U0,U1), (V0,V1)

)
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A.2 The BValues subroutine for signature verification

The elliptic version of the crucial Check subroutine of verify (Algorithm 2) used a function
BValues to calculate the values of the biquadratic forms BXX , BXZ , and BZZ . This function
can be implemented in a number of ways, with different optimizations for speed or stack usage.
Algorithm 8 illustrates the approach we used for BValues, motivated by simplicity and stack
minimisation.

Algorithm 8: BValues: evaluates BXX , BXZ , and BZZ on P1.

1 function BValues

Input: ±P = (XP : ZP ), ±Q = (XQ : ZQ) in K(Fp)
Output: (BXX(±P,±Q), BXZ(±P,±Q), BZZ(±P,±Q)) in F3

p

Cost: 6M+ 2S+ 1C+ 7a+ 3s

2 (T0,T1)← (XP ·XQ, ZP · ZQ)
3 U← (T0 − T1)

2

4 T0 ← T0 + T1

5 (T1,T2)← (XP · ZQ, XQ · ZP )
6 W← (T1 − T2)

2

7 V← T0 · (T1 + T2)

8 T0 ← 4 · T1 · T2

9 T1 ← 2 · T0

10 T1 ← A+2
4 · T1

11 V← V + T1 − T0

12 return (U,V,W)

B Kummer surface implementation details

The algorithms in this section complete the description of Kummer qDSA in §§4-6. They follow
our C reference implementation very closely. Recall that we have the following subroutines:

– Mul4 implements a 4-way parallel multiplication. It takes a pair of vectors (x1, x2, x3, x4)
and (y1, y2, y3, y4) in F4

p, and returns (x1y1, x2y2, x3y3, x4y4).
– Sqr4 implements a 4-way parallel squaring. Given a vector (x1, x2, x3, x4) in F4

p, it returns
(x21, x

2
2, x

2
3, x

2
4).

– Had implements a Hadamard transform. Given a vector (x1, x2, x3, x4) in F4
p, it returns

(x1 + x2 + x3 + x4, x1 + x2 − x3 − x4, x1 − x2 + x3 − x4, x1 − x2 − x3 + x4).
– Dot computes the sum of a 4-way multiplication. Given a pair of vectors (x1, x2, x3, x4)

and (y1, y2, y3, y4) in F4
p, it returns x1y1 + x2y2 + x3y3 + x4y4.

B.1 Scalar pseudomultiplication

The Montgomery Ladder for scalar pseudomultiplication on KSqr is implemented in Algo-
rithm 9, replicating the approach in [39]. It relies on the WRAP and xDBLADD functions, im-
plemented in Algorithm 10 respectively 11. The function WRAP takes a Kummer point ±P in
KSqr(Fp) and returns w2, w3, and w4 in Fp such that (1 : w2 : w3 : w4) = (1/XP

1 : 1/XP
2 :

1/XP
3 : 1/XP

4 ). The resulting values are required in every xDBLADD within Ladder; the idea
is to compute them once with a single inversion at the start of the procedure, thus avoiding
further expensive inversions. We note that this “wrapped” form of the point ±P was previously
used as a compressed form for Kummer point transmission, but since it requires three full field
values it is far from an optimal compression.
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Algorithm 9: Ladder: the Montgomery ladder for pseudomultiplication on KSqr, based
on a combined differential double-and-add (Algorithm 11).
1 function Ladder

Input: m =
∑255

i=0mi2
i ∈ Z and ±P ∈ KSqr(Fp)

Output: ±[m]P
Cost: 1799M+ 3072S+ 3072C+ 4096a+ 4096s+ 1I

2 prevbit← 0
3 W← WRAP(±P )
4 (V0,V1)←

(
(µ1 : µ2 : µ3 : µ4),±P

)
5 for i = 255 down to 0 do
6 (bit, prevbit, swap)← (mi, bit, bit⊕ prevbit)
7 CSWAP(swap, (V0,V1))
8 xDBLADD(V0,V1,W)

9 CSWAP(bit, (V0,V1))
10 return V0

Algorithm 10: WRAP: (pre)computes inverted Kummer point coordinates.

1 function WRAP
Input: ±P ∈ KSqr(Fp)
Output: (w2, w3, w4) ∈ F3

p such that
(1 : w2 : w3 : w4) = (1/XP

1 : 1/XP
2 : 1/XP

3 : 1/XP
4 )

Cost: 7M+ 1I

2 V1 ← XP
2 ·XP

3 // 1M
3 V2 ← XP

1 /(V1 ·XP
4 ) // 2M+1I

4 V3 ← V2 ·XP
4 // 1M

5 return (V3 ·X3,V3 ·X2,V1 · V2) // 3M

Algorithm 11: xDBLADD: combined pseudo-addition and doubling on KSqr.

1 function xDBLADD
Input: ±P,±Q in KSqr(Fp), and (w2, w3, w4) = WRAP(±(P −Q)) in F3

p

Output: (±[2]P,±(P +Q)) ∈ KSqr(Fp)2

Cost: 7M+ 12S+ 12C+ 16a+ 16s

2 (V1,V2)← (Had(V1), Had(V2))

3 (V1,V2)← (Sqr4(V1), Mul4(V1,V2))

4 (V1,V2)← (Mul4(V1, (ε̂1, ε̂2, ε̂3, ε̂4)), Mul4(V2, (ε̂1, ε̂2, ε̂3, ε̂4)))

5 (V1,V2)← (Had(V1), Had(V2))

6 (V1,V2)← (Sqr4(V1), Sqr4(V2))

7 (V1,V2)← (Mul4(V1, (ε1, ε2, ε3, ε4))), Mul4(V2, (1, w2, w3, w4))))

8 return (V1,V2)
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B.2 Subroutines for signature verification

The crucial Check function for KSqr (Algorithm 3) calls subroutines BiiValues and BijValue
to compute the values of the biquadratic forms on KInt. Algorithms 12 and 13 are our simple
implementations of these functions. We choose to only store the four constants µ̂1, µ̂2, µ̂3
and µ̂4, but clearly one can gain some efficiency by pre-computing more constants (eg. µ̂1µ̂2,
µ̂1µ̂4 − µ̂2µ̂3, etc.). As the speed of this operation is not critical, it allows us to reduce the
number of necessary constants. The four values of B11, B22, B33, and B44 are computed simul-
taneously, since many of the intermediate operands are shared (as is clear from Equations (16)
through (19)).

Algorithm 12: BijValue: evaluates one of the off-diagonal Bij on KInt.

1 function BijValue
Input: ±P , ±Q in KInt(Fp) and (i, j) such that {i, j, k, l} = {1, 2, 3, 4}
Output: BInt

ij (±P,±Q) in Fp
Cost: 10M+ 10C+ 1a+ 5s

2 (V0,V1,V2,V3)← (Y P
i · Y P

j , Y
P
k · Y P

l , Y
Q
i · Y

Q
j , Y

Q
k · Y

Q
l )

3 (V0,V2)← (V0 − V1,V2 − V3)

4 (V0,V1)← (V0 · V2,V1 · V3)

5 (V0,V1)← (V0 · µ̂kµ̂l,V1 · (µ̂iµ̂j − µ̂kµ̂l))
6 V0 ← V0 + V1

7 V0 ← V0 · µ̂iµ̂j(µ̂iµ̂k − µ̂jµ̂l)(µ̂iµ̂l − µ̂jµ̂k)
8 V0 ← V0 · C
9 return V0

B.3 Subroutines for compression and decompression

The compression and decompression functions in Algorithms 4 and 5 require the evaluation
of the polynomials K2, K3, and K4. We used the simple strategy in Algorithms 14, 15, and 16
(get_K2, get_K3, and get_K4, respectively), which prioritises low stack usage over speed
(which is again not critical here).
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Algorithm 13: BiiValues: evaluates B11, B22, B33, and B44 on KInt.

1 function BiiValues
Input: ±P , ±Q in KInt(Fp)
Output: (BInt

ii (±P,±Q))4i=1 in F4
p

Cost: 16M+ 8S+ 28C+ 24a

2 (V,W)← (±P,±Q)

3 (V,W)← (Sqr4(V), Sqr4(W))

4 (V,W)← (Mul4(V, (ε̂1, ε̂2, ε̂3, ε̂4)), Mul4(W, (ε̂1, ε̂2, ε̂3, ε̂4)))

5 U←

(
Dot(V, (W1,W2,W3,W4)) , Dot(V, (W2,W1,W4,W3)) ,

Dot(V, (W3,W4,W1,W2)) , Dot(V, (W4,W3,W2,W1))

)

6 V←

(
Dot(U, (κ̂1, κ̂2, κ̂3, κ̂4)) , Dot(U, (κ̂2, κ̂1, κ̂4, κ̂3)) ,

Dot(U, (κ̂3, κ̂4, κ̂1, κ̂2)) , Dot(U, (κ̂4, κ̂3, κ̂2, κ̂1))

)
7 V← Mul4(V, (µ̂1, µ̂2, µ̂3, µ̂4))
8 return V

Algorithm 14: get_K2: evaluates the polynomial K2 at (l1, l2, τ).

1 function get_K2
Input: (l1, l2, τ) with l1, l2 ∈ Fp and τ ∈ {0, 1}
Output: K2(l1, l2, τ) in Fp as in Equation (22)
Cost: 1M+ 3S+ 6C+ 4a+ 2s

2 V← l1 · q2
3 V← l2 · V
4 if τ = 1 then
5 W← l1 · q0
6 V← V + W
7 W← l2 · q1
8 V← V −W

9 V← V · q3
10 V← V + V
11 W← l1 + q5

12 W←W2

13 V←W − V
14 W← l2 · q3
15 W←W2

16 V←W + V
17 if τ = 1 then
18 W← q24
19 V←W + V

20 return V



Algorithm 15: get_K3: evaluates the polynomial K3 at (l1, l2, τ).

1 function get_K3
Input: (l1, l2, τ) with l1, l2 ∈ Fp and τ ∈ {0, 1}
Output: K3(l1, l2, τ) in Fp as in Equation (23)
Cost: 3M+ 2S+ 6C+ 4a+ 2s

2 U← l22
3 V← l21
4 if τ = 1 then
5 W← U + V
6 W←W · q2
7 U← U + 1

8 V← V + 1

9 U← U · l1
10 V← V · l2
11 U← U · q1
12 V← V · q0

13 V← V − U
14 if τ = 1 then
15 V← V + W

16 V← V · q3
17 if τ = 1 then
18 U← l1 · l2
19 U← U · q6
20 U← U · q7
21 V← V − U

22 return V

Algorithm 16: get_K4: evaluates the polynomial K4 at (l1, l2, τ).

1 function get_K4
Input: (l1, l2, τ) with l1, l2 ∈ Fp and τ ∈ {0, 1}
Output: K4(l1, l2, τ) in Fp as in Equation (24)
Cost: 3M+ 3S+ 6C+ 4a+ 2s

2 if τ = 1 then
3 W← l2 · q0
4 V← l1 · q1
5 W←W − V
6 W←W + q2
7 W←W · l1
8 W←W · l2
9 W←W · q3

10 W←W + W
11 V← l1 · q3
12 V← V2

13 W← V −W
14 V← l2 · q5
15 V← V2

16 W← V + W

17 V← l1 · q4
18 V← V · l2
19 V← V2

20 if τ = 1 then
21 V← V + W

22 return V
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