
Efficient, Constant-Round and Actively Secure MPC:

Beyond the Three-Party Case

Nishanth Chandran∗ Juan Garay† Payman Mohassel‡ Satyanarayana Vusirikala§

Abstract

These are exciting times for secure multi-party computation (MPC). While the feasibility of
constant-round and actively secure MPC has been known for over two decades, the last few years
have witnessed a flurry of designs and implementations that make its deployment a palpable
reality. To our knowledge, however, existing concretely efficient MPC constructions are only for
up to three parties.

In this paper we design and implement a new actively secure 5PC protocol tolerating two
corruptions that requires 8 rounds of interaction, only uses fast symmetric-key operations, and
incurs 60% less communication than the passively secure state-of-the-art solution [CCS 2016].
For example, securely evaluating the AES circuit when the parties are in different regions of the
U.S. and Europe only takes 1.8s which is 2.6× faster than the passively secure 5PC in the same
environment.

Instrumental for our efficiency gains (less interaction, only symmetric key primitives) is a
new 4-party primitive we call Attested OT, which in addition to Sender and Receiver involves
two additional “assistant parties” who will attest to the respective inputs of both parties, and
which might be of broader applicability in practically relevant MPC scenarios. Finally, we also
show how to generalize our construction to n parties with similar efficiency properties where the
corruption threshold is t ≈

√
n, and propose a combinatorial problem which, if solved optimally,

can yield even better corruption thresholds for the same cost.

1 Introduction

Secure multiparty computation (MPC) allows a group of parties with private inputs to compute a
joint function of their inputs correctly, despite the potential misbehavior of some of them, and with-
out revealing any information beyond what can be inferred from the outcome of the computation.
Since the seminal results from the 1980s [Yao82, GMW87, BGW88, CCD88], which demonstrated
the feasibility of general-purpose MPC for computing arbitrary functions, a large body of work
has focused on improving both asymptotic and concrete efficiency of these feasibility results, in
particular in the last few years. For constant-round MPC, which is the focus of this work, the
main ingredient of most existing constructions is Yao’s garbled circuit protocol [Yao82] and its
multi-party variant [BMR90]. In the two-party case, Yao’s original passively secure construction
can be efficiently transformed into an actively secure one by applying the cut-and-choose paradigm
(e.g., [MF06, LP07]) which has been extensively studied and optimized over the last decade or so

∗Microsoft Research, India; Email: nichandr@microsoft.com
†Yahoo! Research; Email: juan.a.garay@gmail.com
‡Visa Research; Email: payman.mohassel@gmail.com
§Microsoft Research, India; Email: satya.vus@gmail.com

1

nichandr@microsoft.com
juan.a.garay@gmail.com
payman.mohassel@gmail.com
satya.vus@gmail.com

Comparison of different MPC protocols

Protocol No. corr. Comm. Assumption Security

[IKP10] t < n
3 O(κn3|C|) PRG Malicious

[LPSY15] t < n− 1 O(κ2n2|C|) PRG+OT Malicious

[BLO16b] t < n− 1 O(κn2|C|) PRG+OT Semihonest

[KRW17] t < n− 1 O(κn
2s|C|

log |C|) PRG+OT Malicious

[HSSV17] t < n− 1 O(κn
2s|C|

log |C|) PRG+OT Malicious

Ours t <
√
n O(κn2|C|) PRG Malicious

Table 1: Comm. complexity of constant-round MPC

(cf. [Woo07, LPS08, NO09, PSSW09, asS11, LP12, KasS12, HKE13, Lin13, MR13, asS13, LR14,
HKK+14, LR15]), and even extended to the three-party case tolerating two corruptions [CKMZ14].
This paradigm, however, is a multiplicative factor of s more expensive than the passively secure
variant in both computation and communication, where s denotes a statistical security parameter
typically set to a value between 40 and 128, depending on the intended security level. Recent
work by Mohassel et al. [MRZ15] and Ishai et al. [IKKP15] show that with only one corruption,
actively secure 3PC can be obtained without this multiplicative overhead. In fact, they propose
constructions that are as efficient as the passive Yao’s garbled circuit protocol for two parties.

To our knowledge, prior to this work it was not known whether the same level of efficiency could
be obtained beyond the three-party case. Even in the case of five parties with only two corrup-
tions, the existing constant-round MPC constructions are either only secure against passive adver-
saries [BLO16b], or incur a multiplicative overhead (in the security parameter) in both computation
and communication, as is the case with concurrent and independent works [KRW17, HSSV17]).

1.1 Our contributions

In this work, we design an actively secure 5PC protocol with security against two corruptions that
requires 8 rounds of interactions, only uses fast symmetric-key operations (i.e., no use of Oblivious
Transfer [OT]), and incurs 60% less communication compared to the state-of-the-art solution of
Ben-Efraim et al. [BLO16b], which is only passively secure (against 4 corruptions). Instrumental
in our construction is a new 4-party primitive we call Attested OT (AOT), which in addition to
Sender and Receiver involves two additional “assistant parties” who will attest to the respective
inputs of both parties.

We also show how to generalize our construction to a larger number of parties n with similar
efficiency properties where the corruption threshold is t ≈

√
n. In fact, we also formulate a com-

binatorial problem that, if solved optimally, can yield even higher corruption thresholds than we
currently obtain. With t denoting the number of corruptions (as a function of n), Comm. denoting
communication complexity and κ, s denoting the computational and statistical security parame-
ters, respectively, the communication complexity of our protocol and its comparison with other
recent works on constant-round MPC is provided in Table 1. Note that the protocol by Ishai et
al. [IKP10] is the only prior work with active security and asymptotic complexity close to ours, but
which does not yield a 5PC with two corruptions (since t < n/3), and its concrete efficiency is not
well-understood.

We have implemented our actively secure 5PC protocol (with up to two active corruptions;
denoted by 5PC-M for brevity) as well as a simpler passively secure variant (denoted by 5PC-

2

SH), and compare their performance to the state-of-the-art implementation of [BLO16b] when
run with five parties and passive security (with up to four corruptions). 5PC-SH requires 8×
less communication, while 5PC-M incurs 60% less communication compared to [BLO16b]. For
medium- to high-latency networks (i.e., machines across US and machines in the US and Europe,
respectively), where constant-round protocols are more suitable, 5PC-SH evaluates the AES and
SHA circuits 2.6 − 4.8× faster than [BLO16b], while 5PC-M is a factor of 1.7 − 2.6× faster than
[BLO16b]. As a concrete example, securely evaluating the AES circuit with machines located across
the US and Europe takes 5PC-M 1.88s, while the [BLO16b] protocol runs in 4.86s.

1.2 Technical overview

Our starting point is the actively secure 3PC protocol with abort by Mohassel et al. [MRZ15], whose
idea was to designate one party P3 as the evaluator and the other two parties (P1, P2) as circuit
garblers. Since at most one party is corrupted, one garbler is always honest. Hence, they have
both garblers generate the garbled circuit using a seed that they agree upon and have P3 check
equality of the garbled circuits before proceeding with garbled input generation and evaluation.
This ensures honest garbled circuit generation, and with a little more work to get maliciously
secure garbled input generation, they obtain an actively secure 3PC protocl with essentially no
additional communication cost compared to semihonest 2PC using garbled circuits.

Generalizing this approach to the five-party case and beyond quickly runs into major technical
challenges. Consider the following näıve generalization, where we designate, say, P5 as the evaluator,
and P1, . . . , P4 as the garblers. We can have the garblers agree upon a seed s, and invidividually
generate the garbled circuit using s and send this to P5. P5 would then check the equality of the
circuits and rejects if they do not match. Now let us assume that P5 somehow receives the garbled
inputs for all parties (we will see that this has its own challenge). This approach fails since if the
two corrupted parties are P5 and one of the garblers, then the two of them combined learn both
the seed (and therefore the garbled circuit secrets) and all other parties garbled inputs which they
can combine to recover everyone’s inputs.

A more promising approach is to have the garblers generate the garbled circuit in a distributed
manner [BMR90, DI05, CKMZ14, BLO16b] so that no single garbler would learn the secrets,
but then the challenge in this distributed setting is to obtain security against malicious garblers.
Unfortunately, the existing solutions do not provide the concrete efficiency we are aiming for and
incur a significant overhead (at least multiplicative in security parameter) compared to the semi-
honest variant.

4-party malicious circuit garbling. To get around the above technical challenge, we design a
new 4-party distributed garbling scheme with the properties that (i) if only one garbler is corrupted,
then the garbled circuit is correct and its secrets remain hidden from the adversary, and (ii) if two
garblers are corrupted, the garbled circuit remains correct but the adversary learns its secrets. This
is sufficient for 5PC, since in the case of two corrupted garblers, the evaluator P5 is guaranteed to
be honest, and hence the only guarantee we need is the correctness of the garbled circuit.

Our starting point is a semi-honest 4-party distributed garbling scheme (4DG) in the same spirit
as [DI05, CKMZ14, BLO16b] that takes place between the four garblers P1, . . . , P4. We assume
that all the randomness needed by Pi is generated using a random seed si. We now distribute these
seeds among the four garblers (P1, . . . , P4) such that the seed generated by Pi is known to two
other parties, and at the same time no single party has knowledge of all four seeds. In particular,
the following assignment works where Si denotes the set of indices of parties with knowledge of
si: S1 = {1, 3, 4}, S2 = {2, 3, 4}, S3 = {1, 2, 3}, and S4 = {1, 2, 4}. The intuition is that all the

3

computation and communication generated based on each si can be perfomed by three parties and
checked against each other for correctness. With at most two corruptions, at least one of the parties
is honest and hence any malicious behavior is caught.

In principle, one can turn this idea into a compiler that transforms the semi-honest 4DG into a
4DG with malicious security tolerating two corruptions as discussed above. However, the resulting
protocol would still not be as efficient as we want it to be. For example, this requires treating the
many two-party OTs performed in the distributed garbling in a non-black-box way and checking
the messages sent/received during the OTs among three designated parties, which is expensive.

Instead, we show how to replace each two-party OT in the semi-honest 4DG with a new protocol
for four parties we call Attested OT (AOT), wherein one party is the sender, another is the receiver,
and two other parties are “attesters” whose role is to check honest behavior by sender and receiver.
We design such a protocol using only symmetric-key operations (i.e., commitments), and show
that in the multiple-instance/batch setting (when many such OTs are performed), the amortized
communication cost is that of sending two commitments and one decommitment. In addition, we
describe a specialized commitment with better efficiency, based on AES and secure in the “ideal
cipher model”.

As a result, we obtain a maliciously secure 4DG protocol with a very small overhead compared
to the semi-honest approach. The garblers send the garbled circuits to P5 for evaluation (with
parties sending hashed copies of each other’s shares to enable P5 to check the correctness of the
garbled circuit).

Garbled input generation. To enable P5 to learn the garbled inputs, it is possible for us to
have the parties peform the garbled input generation using a maliciously secure 5PC protocol since
the cost is only proportional to the input size. However, doing so will be inefficient and would also
require the use of public-key operations (which we wish to avoid). To obtain more efficient garbled
input generation, we consider two separate cases: One for obtaining the garbled inputs for the
garblers, and another for obtaining the evaluator’s garbled input. In the former, each garbler Pi
can generate the parts of the garbled circuit for which it has the seeds, but needs the other garblers’
help to generate the missing parts. To do this, Pi secret-shares his input bit with the other garblers
(who have the seed that Pi is missing). These garblers will compute the “garbled labels” on these
shares and we show that these shares can be combined in a “homomorphic” manner to obtain Pi’s
input shares. This idea does not quite completely work and runs into subtleties, as a malicious P5

colluding with one of the garblers can learn both labels corresponding to Pi’s inputs. To defeat
this, we have an additional step where the garblers mask their shares with secret-sharings of 0. To
generate P5’s garbled input, we reduce the problem to the previous case, by having P5 secret-share
its input between at least three garblers. This almost works, except that in order to prevent the
garblers from lying about their share of P5’s input, we require the garblers to commit to all the
labels and have them open to the “correct” shares (this technique is similar to that used in [MRZ15]
in the context of 3 parties).

Generalizing to more than five parties. We now present the high-level idea behind extending
the above techniques to arbitrary n. The idea, as before, is to designate n − 1 parties as garblers
and one party as the evaluator. The garblers will be given q seeds to PRFs such that: a) No t−1 of
the garblers have all seeds; b) every pair of seeds is held by at least one garbler; and c) every seed is
held by at least t+ 1 parties. The reason for this assignment is as follows: Requiring that no t− 1
of the garblers have all seeds ensures that when t − 1 garblers and the evaluator are corrupt, the
privacy (and correctness) of the distributed garbled circuit is guaranteed which leads to security

4

of the nPC. When every pair of seeds is held by at least one garbler, then this garbler can act
as the “attester” in our AOT protocol described earlier, and hence we can replace standard OTs
with AOTs (this is not a strict requirement but yields more efficient protocols). Finally, requiring
that every seed is held by at least t+ 1 parties ensures that when t garblers are corrupt, there will
be at least one honest party that computes the “right” message and hence the (honest) evaluator
will never get an incorrect garbled circuit. The last condition is necessary only for actively secure
nPC. Realizing the above requires us to obtain an assignment of q seeds to n− 1 garblers with the
above properties, which we call the (n, t, q)-assignment problem. We show how this can be done, in
general, with q ≈ n and t ≈

√
n. We leave as an interesting open question to solve the assignment

optimally.

1.3 Related work

As discussed above, a large body of work has studied efficiency of constand-round MPC based on
the seminal works of [Yao82, BMR90], e.g., [DI05, BDNP08, GMS08, IKP10, BLO16b]. In the
passive case, the first implementation of constant-round MPC is due to FairplayMP [BDNP08],
and the state-of-the-art implementation is due to [BLO16b]. In the active case, the most efficient
constructions are due to recent and concurrent work by Hazay et al. and Katz et al. [KRW17,
HSSV17]. As discussed earlier, however, these constructions consider a dishonest majority and as
a result have an additional multiplicative factor of overhead in security parameter compared to our
solution. More efficient constructions for the 3-party case appeared in [CKMZ14, MRZ15, IKKP15].
We compare the asymptotic efficiency of our protocol with the works most related to ours (security
with abort – in the case of active security) in Table 1.

In the case of MPC with round complexity proportional to the depth of the circuit, two differ-
ent lines of research have been pursued, which we now briefly overview. In the cryptographic set-
ting, building on the seminal work by Goldreich et al.[GMW87], offline-generated (authenticated)
multiplication triplets are used to perform secure computation in a fast online phase [CHK+12,
DPSZ12, DKL+13, KSS13], with a few recent works particularly focusing on the three-party case
[AFL+16, FLNW16]. In the information-theoretic setting, building on [BGW88, CCD88], MPC is
achieved using secret-sharing techniques, with several recent work focusing on better efficiency in
the three-party case [BLW08, LDDAM12, ZSB13, CMF+14].

2 Preliminaries

We let κ denote the security parameter, and use x
$← S to denote choosing a value uniformly at

random from set S, and || to denote concatenation of two strings. When denoting message spaces,
we abuse notation and use M for unspecified message spaces that will be clear from the context.

Model and security definition. We will argue the security of our constructions in the simu-
lation paradigm [GMW87, Can00, Can01]. For simplicty, we will follow Canetti’s formulation for
execution of multi-party cryptographic protocols [Can00], where the execution of a protocol by
a set of parties P1, . . . , Pn proceeds in rounds, with inputs provided by an environment program
denoted by Z. Here we provide an abridged formulation of security in such framework. All parties
are modelled as non-uniform interactive Turing machines (ITMs); further, we will be focusing on
the case n = 5, for which we provide concrete performance measures, although our approach works
for general n. An adversary A, who interacts with and acts as instructed by the environment, at
the beginning of the protocol “corrupts” a fraction of the parties (i.e., we consider static security);

5

in the specific case n = 5, the adversary corrupts up to two of them. (See Section 7 for the achieved
thresholds for arbitrary values of n.) These corrupted parties are under the control of the adversary,
and can actively and arbitrarily deviate from the protocol specification. The environment receives
the complete view of all adversarial parties in the interaction. At the end of the interaction, the
environment outputs a single bit.

We now define two interactions. In the real interaction, the parties run a protocol Π in the
presence of A and Z, with input z, z ∈ {0, 1}∗. Let REALπ,A,Z denote the binary distribution
ensemble describing Z’s output in this interaction. In the ideal interaction, parties send their inputs
to an additional entity, a trusted functionality machine F that carries the desired computation
truthfully. Let S (the simulator) denote the adversary in this idealized execution, and IDEALF ,S,Z
the binary distribution ensemble describing Z’s output after interacting with adversary S and ideal
functionality F .

A protocol Π is said to securely realize a functionality F if for every adversary A in the real
interaction, there is an adversary S in the ideal interaction, such that no environment Z, on any
input, can tell the real interaction apart from the ideal interaction, except with negligible probability
(in the security paramete κ). More precisely, if the two binary distribution ensembles above are
computationally indistinguishable.

In this paper we will consider the secure computation of non-reactive functions (also known as
secure function evaluation—SFE), represented by Boolean circuits (see below), and allowing abort,
as instructed by the adversary. We will denote the ideal computation of 5−ary function f with abort
by Ffsfe(P), where P = {P1, P2, P3, P4, P5}. Finally, protocols typically invoke other sub-protocols.
In this framework the hybrid model is like a real interaction, except that some invocations of the
sub-protocols are replaced by the invocation of an instance of an ideal functionality F ; this is
called the “F-hybrid model.” We will perform such replacements, but some times, for the sake of
efficiency, we will break away from modular/black-box composition rules, and thus it will be more
convenient for us to express the security of components in a property-based fashion.

Cryptographic building blocks. Our constructions make use of a a pseudorandom function
family, a collision-resistant hash function, and a secure (non-interactive) commitment scheme. Our
protocol also makes use of variant of Oblivious Transfer we introduce in this paper, called Attested
OT, which we describe in Section 3. We present the definitions and security of the primitives above
in Appendix A.

Distributed circuit garbling schemes. In this paper we will follow the circuit-garbling ap-
proach to secure computation [Yao82], and in particular distributed multi-party garbling (cf. [BMR90,
DI05]). First, we present some notation and correctness properties of garbling schemes, following
Bellare et al. [BHR12]. Given the circuit representation of the function to be garbled f , a garbling
scheme G = (Gb,En,De,Ev, f) consists of the following randomized functions:

Garbling function Gb(f, 1κ) outputs three strings (Gf, e, d);
encoding function En(e, ·) that maps an initial input x to a garbled input X = En(e, x);
evaluation function Ev(Gf, ·) that maps every garbled input X to a garbled output Y =
Ev(Gf, X); and
decoding function De(d, ·) that maps garbled output Y to a final output y = De(d, Y).

Bellare et al. [BHR12] formulate a series of properties for circuit-garbling schemes. In this paper
we will be specifically interested in the following:

6

Definition 1. We say that G = (Gb,En,De,Ev, f) is a correct circuit garbling scheme if for all
functions f , and for all inputs x in the domain of f , De(d,Ev(Gf,En(e, x))) = f(x), where (Gf, e, d)
is the output of Gb(f, 1κ).

Several recent works on concretely efficient MPC (e.g., [CKMZ14, BLO16b]) use and instantiate
circuit-garbling schemes that are computed by multiple parties in a distributed manner based
on Oblivious Transfer. The functionality of such distributed garbling schemes is described in
Figure 9 in Appendix C (our specific distributed garbling function will be described later). Our
construction will be using the semi-honest distributed garbling protocol due to Ben-Efraim et
al. [BLO16b] (which includes the free-XOR optimization) in order to obtain an actively secure
distributed garbling protocol. At a very high level, their protocol allows parties to compute the
distributed garbling function with no communication for all XOR gates and requires every party
to perform (roughly) 2n bit-OTs and 8n string-OTs for every AND gate in the circuit. For more
details, we refer the reader to [BLO16b]; however, the description of our version of the distributed
garbling protocol will not assume prior familiarity with [BLO16b].

3 Attested Oblivious Transfer

While our MPC protocol generalizes to n parties (as described in Section 7), it will be easier to
consider the specific case of 5-party MPC, where the adversary actively corrupts at most 2 parties at
the beginning of the protocol; our experimental results will also focus on this specific case. We now
define two specific 4−party functionalities – Attested OT (AOT) and Batch Attested OT (B-AOT).
AOT can be viewed as an OT protocol between a sender and a receiver, with the additional help
of two “assistant parties” who will attest to the respective inputs of both parties, while B-AOT,
as its name indicates, is the combined/amortized version of AOTs of multiple instances. These
functionalities will help us instantiate efficient malicious variants of OT in our distributed garbling
process with less interaction and using only symmetric-key primitives. Throughout the following
discussion, we will assume that the public commitment key (obtained by executing ComGen(1κ))
as well as the key for the collision-resistant hash function H (obtained when sampling H from H)
are publicly available to all parties.

3.1 Attested OT

The ideal functionality for Attested OT is presented in Figure 1. P1 is the sender with input
(m0,m1) and P2 is the receiver with a bit value b. P3 and P4 are the attesters: they obtain copies
of both P1 and P2’s inputs and will help P1 and P2 perform the OT functionality. We present an
AOT protocol secure against active corruptions in Figure 2 and prove security of the protocol in
Lemma 2. When only considering a passive adversary, a much simpler information-theoretic AOT
protocol with only one attester suffices. We describe this simple protocol in Figure 10 of Appendix
C for completeness. In describing the functionality and protocols, we assume that attesters receive
their copies of inputs from P1 and P2 in each execution. When invoked in our 4-party distributed
garbling, however, the attesters obtain a random seed from P1 and P2 at the beginning of the
protocol and then use it to derive inputs to all future invocations without interaction. We prove
that our protocol is secure against malicious adversaries by showing the lemma below (proof in
Appendix B.

7

Functionality F4AOT(P1, P2, {P3, P4})
F4AOT interacts with parties P1, P2, P3, P4 and the adversary S, with P1 and P2 acting as sender and
receiver, respectively, and P3, P4 as attesters.

On input message (Sender, sid ,m0,m1) from P1, where each mi ∈ M, record (m0,m1) and
send (Sender, sid ,m0,m1) to P3 and P4 and (Sender, sid) to the adversary. Ignore further
(Sender, sid , ·, ·) messages.
On input message (Receiver, sid , b) from P2, where b ∈ {0, 1}, record b and send (Receiver, sid , b)
to P3 and P4 and (Receiver, sid) to the adversary. Ignore further (Receiver, sid , ·) inputs.
On input message (Attester, sid ,mj

0,m
j
1, b

j) from Pj , j ∈ {3, 4}, where each mj
i ∈ M, if

(Sender, sid , ·, ·) and (Receiver, sid , ·) have not been recorded, ignore this message; otherwise,
record (mj

0,m
j
1, b

j) and send (Attester, sid) to the adversary. Ignore further (Attester, sid , ·, ·, ·)
messages.
On input message (Output, sid) from the adversary, if (m0,m1, b) 6= (m3

0,m
3
1, b

3) or (m0,m1, b) 6=
(m4

0,m
4
1, b

4), send (Output, sid ,⊥) to P2; else send (Output, sid ,mb) to P2.
On input message (Abort, sid) from the adversary, send (Output, sid ,⊥) to P2.

Figure 1: The 4-party Attested OT ideal functionality F4AOT.

Protocol Π4aot(P1, P2, {P3, P4})

The protocol is carried out among P1, P2, P3, P4, with P1 and P2 acting as sender and receiver,
respectively, and P3, P4 as attestors. Let Commit = (ComGen,Com,Open) be a secure noninteractive
commitment scheme.

Input. P1 holds m0,m1, and P2 holds b.

Computation. Proceed as follows:

1. P1 generates random values r0, r1 ← {0, 1}∗ and computes (Com0,Open0) := Com(m0; r0)
and (Com1,Open1) := Com(m1; r1). P1 sends Com0 and Com1 to P2 and sends r0,m0, r1,m1

to P3 and P4, who store them as r3
0,m

3
0, r

3
1,m

3
1 and r4

0,m
4
0, r

4
1,m

4
1, respectively.

2. P2 sends b to P3 and P4 who store them as b3 and b4, respectively.

3. P3 and P4 exchange their copies of P1 and P2’s inputs and the random values they receive
from P1.

(a) If the values match, then for i ∈ {3, 4}, Pi computes (Comi
0,Open

i
0) and (Comi

1,Open
i
1)

using scheme Commit and its random values, and sends (Comi
0,Com

i
1) to P2. (Wlog) P3

also sends Openib to P2.

(b) If the values do not match, i.e., (m3
0,m

3
1, b

3, r3
0, r

3
1) 6= (m4

0,m
4
1, b

4, r4
0, r

4
1), they send a ⊥

message to P2 (denoting abort).

Output. P2 checks the following and outputs ⊥ if any of items are true: (i) It receives ⊥ from
P3 or P4; (ii) the three commitment pairs it has received from P1, P3, P4 do not match; and (iii)
Open(Com3

b ,Open
3
b) = ⊥ for b3 = b. Otherwise, P2 outputs m3

b3 = Open(Com3
b ,Open

3
b).

Figure 2: The actively secure 4-party protocol for Attested OT.

Lemma 2. Assuming (ComGen,Com,Open) is a secure commitment scheme, protocol Π4AOT se-
curely realizes the F4AOT functionality.

8

3.2 Batch Attested OT

In our distributed garbling protocol, we need to perform a large batch of attested OT protocols
(proportional to number of gates in the circuit). It turns out that we can optimize communication
complexity of the protocol in the batch setting. In particular, P3 and P4 only need to send a
hash of all commitments they needed to send to P1. Furthermore, only one of them needs to send
decommitments, while the other can just send the hash of all the decommitments concatenated as
that is sufficient for checking the equality of the two. In Appendix C, FB-4AOT (Figure 11) describes
the functionality and Πb-4aot (Figure 12) describes the corresponding protocol for this batch setting.
The security of the batch assisted OT protocol (Lemma 3) below follows in a similar manner to
the proof of Lemma 2 and is omitted here.

Lemma 3. Assuming (ComGen,Com,Open) is a secure commitment scheme, and H ← H is a
collision resistant hash function, protocol Πb-4aot securely realizes the FB-4AOT functionality.

3.3 Efficiency of Attested OT

Semi-honest case. Note that in the semi-honest case, first P1 and P2 send their inputs to P3

and then P3 sends the output to P2. In case of bit OT this requires 4 bits of communication, but in
our four-party garbling where P1 and P2 inputs can derived from a one-time communicated seed,
communicating a single bit per OT is sufficient. Similarly, the string attessted OT requires κ bits
of communication. Also note that only one round of interaction would be sufficient when using
seeds to derive inputs for attesters.

Malicious case. Similarly, in the malicious case, first P1 and P2 send their inputs and randomness
for the commitments to P3 and P4. P3 and P4 exchange hashes of these values. But these steps can
be eliminated in our distributed garbling since inputs can be derived from seeds. Finally P1 sends
commitments and P3 sends decommitments, while P3 and P4 also send hashes of commitments which
again is insignificant in the batch attested OT. So, the overall communication complexity is two
commitments and one decommitment per OT. The computational cost is generating 6 commitments
and roughly 2 hashings per OT. Also note that only one round of interaction is sufficient when
using seeds to derive inputs for attesters.

4 Efficient and Actively Secure 5PC

We start by presenting our actively secure distributed garbling protocol, followed by the 5PC (with
abort) protocol. It turns out that the protocol can be significantly simplified in the case of semi-
honest adversaries, which might also be of practical interest. We conclude the section pointing out
those simplifications.

4.1 Actively secure distributed garbling scheme

Our garbling scheme secure against actively malicious adversaries builds on the passively secure
distributed garbling protocol of Ben-Efraim et al. [BLO16b] (which includes the free-XOR opti-
mization). At a very high level, we make three modifications to their protocol: First, in order to
achieve active security, we ensure that each party’s randomness and keys are generated using a
small random seed, and that exactly two other parties learn the seed of each party. This enables
two other parties to “check” every parties’ computation. Second, we replace calls to each batch of
two-party OTs in their protocol with calls to our 4-party Batch Assisted OT functionlaity FB-4AOT;

9

Function fC4GC(s1, s2, s3, s4)

Inputs. All four parties hold the circuit C, security parameter κ and pseudorandom function family
F. ‘delta’, ‘perm’ and ‘key’ are known public strings. In addition, Pi, i ∈ [4], has private input
random seed si ∈ {0, 1}κ.

Computation. Proceed as follows:

1. For i ∈ [4] do:

Ri := Fsi(‘delta’), Fsi ∈ F.
For every wire w in C that is not the output of an XOR gate, generate a random per-
mutation bit piw := Fsi(‘perm’||w), and let kiw,0 := Fsi(‘key’||w||0) and kiw,1 := kiw,0 ⊕Ri.
(These wires are set in this way in order to enable the free XOR technique.)
In a topological order, for every output wire w of an XOR gate with input wires u and v,
set piw := piu ⊕ piv, kiw,0 := kiu,0 ⊕ kiv,0 and kiw,1 := kiw,0 ⊕Ri.

2. For every w in C, set pw :=
⊕4

i=1 p
i
w.

3. For every AND gate g ∈ C with input wires u, v and output wire w, every α, β ∈ {0, 1} and
every j ∈ [4], set:

gjα,β :=
(4⊕
i=1

Fkiu,α(g||j)⊕ Fkiv,β (g||j)
)

⊕ kiw,0 ⊕
(
Ri · ((pu ⊕ α) · (pv ⊕ β)⊕ pw)

) (1)

Outputs.

(Public outputs) Output to all parties g1
α,β || . . . ||g4

α,β , for every AND gate g ∈ C and every
α, β ∈ {0, 1}.
(Private outputs) Output s3, s4 to P1 and P2, and s1, s2 to P3 and P4.

Figure 3: The 4-party distributed garbling function.

this avoids the use of OT protocols altogether, and reduces the number of rounds of interactions to
just one. Third, for each party’s share of the garbled circuit, two other parties compute the same
share and send it to the party missing that share. This ensures that at least one share is honestly
generated and hence bad garbled circuits can be detected. Through these modifications, we obtain
a more efficient 4-party distributed garbling protocol that will help us get a 5PC protocol secure
against corrupted malicious parties. Our distributed garbling function is defined in Figure 3 (which
is a tailored version of the n−party distributed garbling function from Figure 9). We now describe
our distributed garbling scheme G (cf. Section 2) in more detail below:

In Figure 3 the garbling function is Gb(1κ, f) and Gf is the public output – i.e., g1
α,β|| . . . ||g4

α,β,
for every AND gate g ∈ C and every α, β ∈ {0, 1}.
For every input wire w corresponding to a party Pi’s input bit b, define pjw = Fsj (‘perm’||w),

pw = Σ4
j=1p

j
w, b′ = b ⊕ pw and let the encoding function En(e, ·) be the concatenation of

Fsj (‘key’||w||0) ⊕ Fsj (‘delta’).b′, for all j ∈ [4]. That is, when x = b,X = Fsj (‘key’||w||0) ⊕
Fsj (‘delta’).b′,∀j ∈ [4].
The evaluation function Ev(Gf, ·) is the same function as in the semi-honest protocol of [BLO16b].
Finally, for every output wire w, let Y = Ev(Gf, X) be parsed as k1

w||k2
w||k3

w||k4
w. Now, if

10

Protocol Π4gc(C, {P1, P2, P3, P4})

Inputs. All parties hold the circuit C, security parameter κ and pseudorandom function family F.
‘delta’, ‘perm’, ‘key’, ‘bitOT’ and ‘strOT’ are known public strings. In addition, P1 holds seeds
{s1, s3, s4}, P2 holds seeds {s2, s3, s4}, P3 holds seeds {s1, s2, s3} and P4 holds seed {s1, s2, s4},
where all si are random seeds to F. Denote by Si the set of indices of parties with knowledge of si,
i.e., S1 = {1, 3, 4}, S2 = {2, 3, 4}, S3 = {1, 2, 3}, and S4 = {1, 2, 4}.
Keys and permutation bits. For i ∈ [4], for all j ∈ Si, Pj performs the following:

Ri,j := Fsi(‘delta’). Note, that if parties are honest, then Ri,j = Ri,` = Ri for all j, ` ∈ Si.
For every wire w in C that is not the output of an XOR gate, generate a random permutation
bit pi,jw := Fsi(‘perm’||w), and set ki,jw,0 := Fsi(‘key’||w||0) and ki,jw,1 := ki,jw,0 ⊕ Ri,j . Note, that

ki,jw,β denotes Pj ’s version of kiw,β , for β ∈ {0, 1}.
In a topological order, for every wire that is the output of an XOR gate with input wires u and
v, set pi,jw := pi,ju ⊕ pi,jv , ki,jw,0 := ki,ju,0 ⊕ k

i,j
v,0 and ki,jw,1 := ki,jw,0 ⊕Ri,j .

Computing (pu ⊕ α) · (pv ⊕ β)⊕ pw, for α, β ∈ {0, 1}.
For every AND gate g ∈ C, denote the input wires by u, v and the output wire by w, and
denote Pi’s XOR share of the permutation bits by piu, p

i
v, p

i
w, respectively. Once again, recall

that pi,ju = piu, p
i,j
v = piv, p

i,j
w = piw for all honest j ∈ Si; i.e., pi,ju denotes the value piu as

computed by Pj , j ∈ Si, while piu denotes its true value. Our goal is to compute XOR shares of

pu · pv = (⊕4
i=1p

i
u) · (⊕4

i=1p
i
v) = (⊕4

i=1p
i
u · piv)⊕ (⊕i 6=jpiu · pjv).

For all i ∈ [4], for all j ∈ Si, Pj locally computes pi,ju · pi,jv .
For all i, j ∈ [4], i 6= j, and all g ∈ C:

• For all ` ∈ Si, P` generates a random bit ri,j,` := Fsi(‘bitOT’||i||j||g).

• For all ` ∈ Si ∩ Sj , P` locally computes (pi,`u ⊕ ri,j,`) · pj,`v . In our case, |Si ∩ Sj | = 2 and
we will denote the indices of the parties in Si ∩ Sj by `1i,j , `

2
i,j , where needed.

• Parties invoke F4AOT(Ps, Pr, {P`1i,j , P`2i,j}), where s ∈ Si − Sj , r ∈ Sj − Si, and `1i,j , `
2
i,j ∈

(Si ∩ Sj): Ps inputs (ri,j,s, pi,su ⊕ ri,j,s), Pr inputs pj,rv , and P`zi,j inputs (ri,j , p
j,`zi,j
u ⊕

ri,j,`
z
i,j , p

j,`zi,j
v), for z = 1, 2. Pr receives the output (piu ⊕ ri,j) · pjv (or ⊥).

For all i ∈ [4], all j ∈ Si, and all g ∈ C, Pj does the following:

• Pj locally XORs the values it obtains from the computation above to compute pi,juv, i.e.,
Pi’s XOR share of puv = pu · pv as recorded by Pj .

• Similarly, Pj locally computes Pi’s XOR shares of

puvw = pu · pv ⊕ pw puv̄w = pu · p̄v ⊕ pw
pūvw = p̄u · pv ⊕ pw pūv̄w = p̄u · p̄v ⊕ pw

where p̄ = 1− p, for a bit p.

(Continued in Figure 5.)

Figure 4: The 4-party distributed garbling protocol.

11

Protocol Π4gc(C, {P1, P2, P3, P4}) (cont’d)

Computing Ri ·
(
(pu ⊕ α) · (pv ⊕ β)⊕ pw

)
. For all i, j ∈ [4], i 6= j, and all g ∈ C:

For all ` ∈ Si, P` generates a random κ-bit string Qi,j,` := Fsi(‘strOT’||i||j||g).
For all ` ∈ Si ∩ Sj , P` locally computes (Ri,` ⊕ Qi,j,`) · pj,`uvw. Again, Ri,` is the version of Ri

held by P`.
Parties invoke F4AOT(Ps, Pr,Si∩Sj), where s ∈ Si−Sj , r ∈ Sj−Si, and ` ∈ (Si∩Sj): Ps inputs
(Qi,j,s, Ri,s ⊕Qi,j,s), Pr inputs pj,ruvw, and P` inputs (Qi,j,`, Rj,` ⊕Qi,j,`, Rj,`). Pr receives the
output Qi,j,s⊕Ri,s · pj,ruvw, which is the same as Qi,j ⊕Ri · pjuvw if parties are honest. The same
is repeated for puv̄w, pūvw, and pūv̄w.
Let ρi,j,`w,α,β denote Pj ’s XOR share of Ri ·

(
(pu ⊕ α) · (pv ⊕ β)⊕ pw

)
, as recorded by P`.

Outputs. Let Ri denote the set of indices of seeds held by Pi, i ∈ [4]a. In other words, R1 =
{1, 3, 4}, R2 = {2, 3, 4}, R3 = {1, 2, 3}, and R4 = {1, 2, 4}. For all i ∈ [4], for all g ∈ C, and for all
α, β ∈ {0, 1}:

For all j ∈ Ri, for c ∈ [4], when c = j, Pi locally computes Fkj,iu,α(g||c)⊕Fkj,iv,β (g||c)⊕kj,iw,0⊕ρ
c,j,i
w,α,β .

When c 6= j, Pi computes Fkj,iu,α(g||c) ⊕ Fkj,iv,β (g||c) ⊕ ρc,j,iw,α,β . As a result, Pi holds three of the

four shares it needs to compute the garbled circuit.
For j = [4]−Ri, for all ` ∈ Sj , for c ∈ [4]

1. When c = j, P` sends Fkj,`u,α(g||c)⊕ Fkj,`v,β (g||c)⊕ kj,`w,0 ⊕ ρ
c,j,`
w,α,β to Pi.

b

2. When c 6= j, P` sends Fkj,`u,α(g||c)⊕ Fkj,`v,β (g||c)⊕ ρc,j,`w,α,β to Pi.

If all three versions of each value Pi receives is the same it locally XORs the four values computed
above for all g ∈ C to obtain giα,β , and output g1

α,β || . . . ||g4
α,β for all α, β ∈ {0, 1} and all AND

gates g ∈ C. Else, they output ⊥.

aWhile sets Ri and Si are the same in the 5PC case, they define different sets and would be different in
the general case.

bFor ease of composition we assume all parties send the complete value, but in fact two parties can only
send the hash, which can be batched across all gates to save on communication.

Figure 5: The 4-party distributed garbling protocol (continued from Fig. 4).

12

kiw = kw,0 = Fsi(‘key‘||w||0) for all i ∈ [4], then set αw = 0, else set αw = 1 if kiw = kw,0 =
Fsi(‘key‘||w||0)⊕Ri for all i ∈ [4]. If neither of the two cases hold, then output ⊥; otherwise,
output y = αw ⊕ pw, where pw = Σ4

i=1p
i
w, and where piw = Fsi(‘perm’||w). Thus, the decoding

function De(d, Y) = αw ⊕ pw.

Ben-Efraim et al. [BLO16b] show that the garbling scheme G, defined via the functions above is a
correct garbling scheme. In addition, it is easy to see that when the 4 parties are honest, our protocol
Π4gc(C, {P1, P2, P3, P4} described in Figures 4 and 5 computes the function in Figure 3 correctly
(Definition 1) in the F4AOT-hybrid (FB-4AOT-hybrid) model. We leave this explicit corroboration for
the full version of the paper.

4.2 The actively secure 5PC protocol

The 5PC protocol proceeds through the following steps detailed below. All parties hold the circuit
C, security parameter κ, pseudorandom function family PRF, hash function H, and description
of the commitment scheme. ‘delta’, ‘perm’, ‘key’, ‘bitOT’, ‘strOT’ and ‘rand’ are known public
strings. Pi has a private input xi ∈ {0, 1}`. The circuit C(x1, x2, x3, x4, x5) is modified into a
circuit C ′(x1, x2||x′2, x3||x′3, x4||x′4) = C(x1, x2, x3, x4, x

′
2 ⊕ x′3 ⊕ x′4). The steps in the protocol are

as follows:

1. Seed distribution. Parties P1, P2, P3, P4, known as the garblers, run a seed distribution
phase in which each party picks a seed si and the seeds are distributed such that every party
knows 3 seeds and every seed is held by 3 parties.

2. Garbled input generation. For garblers and evaluator:

Garblers. Consider an input wire w of party P1 with a bit value b. The two labels
corresponding to w are k1

w,0||k2
w,0||k3

w,0||k4
w,0 and k1

w,1||k2
w,1||k3

w,1||k4
w,1 and its permutation

bit is pw = ⊕j∈[4]p
j
w. The goal is to let the evaluator P5 learn k1

w,b⊕pw || . . . ||k
4
w,b⊕pw .

1. First, P1 learns pjw for all j ∈ [4] from the other parties (P1 will check the correctness
of these values by comparing the different versions of these values he receives). P1

sets b′ = b⊕ pjw.

2. Observe that P1 can compute k1
w,b⊕pw , k3

w,b⊕pw , and k4
w,b⊕pw on his own and send

them to P5. This is because P1 knows seeds s1, s3, and s4. We must also somehow
enable P5 to compute k2

w,b⊕pw (without any other party learning this value and P5

itself learning anything else).

3. To do this, P1 will secret-share b′ among P2, P3 and P4; that is, they will receive
b2, b3, b4, respectively, such that b2 ⊕ b3 ⊕ b4 = b′.

4. P`, for ` ∈ {2, 3, 4} can compute k2
w,b`

[`] := Fs2(‘key’||w||0) ⊕ Fs2(‘delta’) · b` as a

share of k2
w,b⊕pw . Through the secret sharing of b′ into b2, b3 and b4, we actually have

that k2
w,b2

[2]⊕ k2
w,b3

[3]⊕ k2
w,b4

[4] = k2
w,b′ = k2

w,b⊕pw .

While the above steps work functionally, security breaks down, as P5 colluding with
one of the garblers can learn both wire labels. To prevent this, we have two garblers, P1

and any other garbler, provide in addition secret sharings of 0 which each P2, P3 and P4

add to their corresponding shares. These values will cancel out when combined, but will
ensure that P5 colluding with a garbler cannot learn anything else.
Evaluator. To compute the garbled label for the evaluator (P5)’s input, P5 first secret-
shares his input with P1, P2, P3, P4, and now these shares can be treated as inputs of
P1, P2, P3, P4. However, a bit more care is needed to prevent Pi, i ∈ [4] lying about their

13

share of P5’s input. To prevent this, we have all parties provide commitments to all labels
and have the corresponding party “open” the right label to the right share. This is quite
similar to the technique used by Mohassel et al. [MRZ15].

5. Distributed circuit garbling. Parties execute the distributed circuit garbling protocol
Π4gc(C, {P1, P2, P3, P4} from Figures 4 and 5. One party (say, P1) sends the distributed garbled
circuit to P5, while other parties send a hash of the garbled circuit. P5 accepts only if the
hashes of the distributed garbled circuit match.

6. Evaluation and output. P5 calls the Ev(Gf, ·) procedure to evaluate the distributed garbled
circuit Gf received. The output labels Y are sent to all parties. Every party runs the De(d, Y)
to obtain the output of the computation, y.

The complete protocol, Π5pc(C, {P1, . . . , P5}), is described in Figure 6. The security of the
protocol is proven in Theorem 4 below, the proof of which is given in Appendix B.

Theorem 4. Assuming (ComGen,Com,Open) is a secure commitment scheme, and H
$← H is

a collision-resistant hash function, protocol Π5pc(C, {P1, . . . , P5}) securely realizes the functionality
FCsfe({P1, . . . , P5})1 in the F4AOT-hybrid model.

In practice, it is useful to execute the distributed circuit garbling protocol phase of the 5PC
in our protocol before both the garbled input generation phases, so that the protocol can be split
into a (slower) offline phase, that is independent of all inputs to the computation, and a (faster)
online phase, that depends on inputs. In this case, our proof should be modified to use an adaptive
notion of distributed garbling similar to what is defined in [BHR12], and can then be shown to be
secure in the random oracle model.

4.3 Passively secure 5PC protocol

So far we have described our 5PC protocol against malicious adversaries. The protocol can be
signifcantly simplified in the semi-honest case. We only point out the simplification we can make
to the actively secure 5PC protocol but omit a full description. (i) First, all calls to F4AOT can be
replaced by the semi-honest variant described in Figure 10, which avoids the use of commitments
and is much more communication efficient. In particular, the bit OTs only require communicating
a single bit while the string OTs only communicate a single string. (ii) It is sufficient for one of
the garblers (say, P1) to compute the full garbled circuit an send it to P5. The other parties can
simply provide the necessary shares for computing the garbled circuit to P1. Consequently, they
also do not sent hashes of the garbled circuit to P5. (iii) Some extra checks done in the garbled
input generation can also be removed. For example, it is sufficient for only one party (as opposed to
three) to send share of the permutation bits for input wires, and we can remove the commitments
introduced for preventing malicious behavior in the garbled input generation for P5. This yields a
much more efficient semi-honest 5PC protocol, as shown in our experimental results in Section 6.1.

5 Efficiency Considerations

We start by discussing the communication efficiency of our 5PC protocol, followed by number of
communication rounds, followed by a fast instantiation of a non-interactive commitment scheme.

1Recall that we slightly abuse notation, and mean security with abort.

14

Protocol Π5pc(C, {P1, . . . , P5})

Inputs. All parties hold the circuit C, security parameter κ and pseudorandom function
family F. ‘delta’, ‘perm’, ‘key’, ‘bitOT’, ‘strOT’ and ‘rand’ are known public strings. Let
(ComGen,Com,Open) be a secure noninteractive commitment scheme, and H a collision-resistant
hash function. In addition, Pi has a private input xi ∈ {0, 1}`. The circuit C(x1, x2, x3, x4, x5) is
modified into a circuit C ′(x1, x2||x′2, x3||x′3, x4||x′4) = C(x1, x2, x3, x4, x

′
2 ⊕ x′3 ⊕ x′4).

Seed distribution.

P1 and P2 generate random seeds s1 and s2 respectively and send them to both P3 and P4. P3

and P4 exchange these two seeds and abort if they do not match. P3 and P4 send s3 and s4 to
both P1 and P2. P1 and P2 exchange these two seeds and abort if they do not match.
Denote by Si the set of indices of parties with knowledge of si, i.e., S1 = {1, 3, 4}, S2 = {2, 3, 4},
S3 = {1, 2, 3}, and S4 = {1, 2, 4}.

Garbled input generation for P1, . . . , P4. For all i ∈ [4], for each input wire w corresponding to
Pi with input value b, do the following:

Let j = [4] − Ri. For all ` ∈ Sj , P` computes pj,`w := Fsj (‘perm’||w) and sends it to Pi. Pi
checks that it receives the same value from all P`’s. If so, simply denote the bit by pjw; if not,
it sets aborti := true. If aborti = true, it sets b to a uniformly random value independent of its
true input.
Pi then sets pw := ⊕4

j=1p
j
w and b′ := b⊕ pw.

Let j = 4−Ri. For all ` ∈ Sj , Pi generates random bits b` such that ⊕`∈Sj b` = b′, and random
strings β` ∈ {0, 1}κ such that ⊕`∈Sjβ` = 0κ. Pi sends b`, β` to P`. Denote by j1, j2, j3 the three
indices in Sj . Pj1 generates random strings γj` ∈ {0, 1}κ where ⊕3

`=1γj` = 0κ, and sends γj2 to
Pj2 and γj3 to Pj3 .

If aborti = false, then for all j ∈ Ri, Pi computes kj,iw,b′ := Fsj (‘key’||w||0) ⊕ Fsj (‘delta’) · b′
and sends to P5; otherwise, Pi sends ⊥ to P5.
Let j = [4] − Ri. For all ` ∈ Sj , if abort` = false, P` computes ki,jw,bj := Fsj (‘key’||w||0) ⊕
Fsj (‘delta’) · b` and sends c` := ki,jw,bj ⊕ β` ⊕ γ` to P5; otherwise P` sends ⊥ to P5.

Finally, P5 computes the label of wire w as the concatenation of kj,iw,b′ for all j ∈ Ri and

kiw,b′ := ⊕`∈Sjcj for j = [4] −Ri (or sets abort5 := true if it receives any ⊥ message from any
Pi, i ∈ [4]).

(Continued in Figure 7.)

Figure 6: The 5PC protocol, secure against malicious adversaries.

15

Protocol Π5pc(C, {P1, . . . , P5}) (cont’d)

Garbled input generation for P5. For each input wire w in the original circuit C corresponding
to P5 with input value b, denote the corresponding input wires for P2, P3, P4 in the modified circuit
C ′ by w2, w3, w4.

P5 generates random bits b2, b3, b4 such that b2 ⊕ b3 ⊕ b4 = b, and sends bi to Pi, i ∈ {2, 3, 4}.
For each of the three wires w`, for all i ∈ [4], for j ∈ Ri, each Pi computes kj,iw`,e :=

Fsj (‘key’||w`||0)⊕ Fsj (‘delta’) · e and rj,ie := Fsj (‘rand’, we
, e), for e ∈ {0, 1}, and computes (Comi

j,w`,e
,Openij,w`,e) := Com(kj,iw`,e; r

j,i
e). It then sends the

ordered pair (Comi
j,wk,0

,Comi
j,wk,1

) to P5 (or ⊥, if aborti = true).
P5 verifies that all commitment pairs it receives from the other parties are consistent, i.e., all
commitments derived from the same seeds are equal. If not, it sets abort5 := true.
For each wire w` where ` ∈ {2, 3, 4}, P` performs the steps above for garbled input generation
of non-P5 parties to compute and send to P5 garbled inputs for wire w` using the input value b`.
The only difference compared to above is that instead of only sending kj,`w`,b` for all j ∈ S`, P`
sends Openj,`w`,b` = (kj,`w`,b` , r

j,`
e) to P5. If Open(Openj,`w`,b`Comj,w`,b`) = 0, P5 sets aborti := true.

Distributed circuit garbling.

P1, . . . , P4 run the distributed circuit garbling protocol Π4gc(C
′, {P1, P2, P3, P4}) using the seeds

generated and distributed above as input. As a result, for all i ∈ [4], Pi learns the garbled version
of circuit C ′, call it GC ′ (or ⊥). In addition, for all j ∈ Si, Pj learns si.
P1 sends GC ′ (or ⊥) to P5, while the other parties only send H(GC ′) (or ⊥). P5 checks that
all the GC ′ and the received hash values are consistent; otherwise sets abort5 := true.

Evaluation and output. P5 now has the correct garbled circuit GC ′, and garbled inputs (call
this X) for all parties. It evaluates the garbled circuit using Ev(GC ′, X) to get Y and sends Y to
all parties. All parties execute y = De(d, Y) to compute the output of the function, ya.

aFor ease of exposition, we assume that the evaluator does not receive any output. If we require the
evaluator to obtain output, then similarly to what is done in the 2-party setting, the evaluator also receives
hashes of both output labels along with the garbled circuit, thus allowing the evaluator to learn what bit
the output label corresponds to.

Figure 7: The 5PC protocol, secure against malicious adversaries (continued from Fig. 6).

16

Communication. In the 4-party distributed circuit garbling protocol, the main communication
cost is due to calls to the AOT protocol. Specifically, the number of F4AOT calls for bit-OTs
is 12 per AND gate (since there are 4 × 3 pairwise OTs in the semi-honest distributed circuit
garbling protocol), where each party plays the role of the sender in 3 and of the receiver in 3.
Since every bit AOT has a communication of 3κ bits, this part gives us a total communication
of 36κ|C| bits. The number of F4AOT calls for the string-OTs is 36 per AND gate, borrowing all
optimizations from [BLO16b], where each party is the sender in 9 and receiver in 9. Since the
AOTs are performed for each gate in parallel, we also take advantage of our Batch AOT protocol
to obtain better efficiency. In particular, the amortized communicaton cost of each AOT in the
batch setting is two commitments and one decommitment. This yields 96 commitments and 48
decommitments (κ-bits each); i.e., 144κ bits of total communication per gate for the string OTs.
Hence, the OT phase has a total communication of 180κ|C| bits.

To communicate the shares of the computed garbled circuit among the parties, each of the 4
parties must send 4 garbled circuit “shares” and each garbled gate requires 16κ bits of communi-
cation. This yields a total of 64κ|C| bits of communication. This sums up all communications that
grow with the number of AND gates, yielding a total of roughly 244κ|C| bits of communication in
total.

In contrast, the passively secure 5PC protocol of [BLO16b] which would perform a 5-party
distributed circuit garbling, would require 20 bit OTs per gate and 60 string OTs per gate. Ignoring
the communication cost of the bit OTs and assuming 4/3 hash values are communicated per
string OT (since these are correlated OTs they can benefit from a 1/3 reduction in communication
[BLO16b]), this yields 80κ bits of communication per gate. An additional communication of 500κ
bits per gate is required for exchanging the garbled circuit (each of the 5 parties receives 5 of the full
garbled circuits which at 20κ bits pergate). This results in a total of 580κ bits of communication
per gate or roughly 580κ|C| bits of communication in total.

In summary, we obtain a 5PC protocol tolerating two malicious corrupted parties with 58%
better communication complexity than the semi-honest 5PC protocol with security against four
corruptions. We realize that the security guarantees are incomparable; yet, this indicates that one
can achieve a tradeoff between number of corrupted parties and communication complexity.

Rounds. The protocol requires two initial rounds to exchange the seeds among the parties. This
initial exchange, however, can be done only once and then used for multiple protocol execution;
hence, we do not count it towards the total round complexity. Each set of Batch AOTs requires
one round, hence a total of two. One additional round is required for exchanging shares of the
garbled circuit, and another round for sending the garbled circuits to P5. Three additional rounds
are needed for P5 to learn all the garbled inputs, and one extra round to send the results back to
all parties. This yields a total of 8 rounds of interaction for the full 5PC protocol (ignoring the two
rounds for exchanging the seeds).

A fast commitment scheme. While instantiating our bit and string commitments (required
in the bit- and string-OT protocols), we observe that the (standard) commitment scheme with
Com(m; r) = (c = H(m||r), d = m||r) (where H is a hash function, modeled as a random oracle),
with c being the commitment and d the opening/decommitment, has an overhead of 2.44 microsec-
onds per commitment (our protocol makes use of many commitments, proportional to the circuit
size).

We reduce this overhead by constructing new bit and string commitment scheme based on block

17

ciphers (e.g., AES), whose security holds in the ideal cipher model [Sha49, Bla06, HKT10]. At a
high level, our commitment scheme is as follows. Let F : {0, 1}κ × {0, 1}κ → {0, 1}κ denote a
random permutation, parameterized by a key k—denoted Fk(·). We assume that all parties have
access to k (and hence Fk(·)). Our bit commitment scheme is then

Com(b; r)
∆
= (c = Fk(r)⊕ r ⊕ bκ, d = r||b),

where bκ denotes bit b repeated κ times and r is chosen at random from {0, 1}κ. Hiding follows from
the fact that the distribution of Fk(r) ⊕ r is indistinguishable from Uκ (the uniform distribution
on κ bits), which follows simply from Fk(·) being a pseudorandom function and r being chosen at
random. Regarding binding, an adversarial sender must find r, r′ such that Fk(r)⊕ r = Fk(r′)⊕ r′,
where x denotes the complement of x, in order to break it. If the adversary makes at most q queries

to Fk(·), then one can show that the probability of finding such a pair is at most q2

2κ .
Now, a similar approach does not however work for string commitments — e.g., Fk(r)⊕ r ⊕m

for m ∈ {0, 1}κ is not a secure commitment. However, we can show that

Com(m; r)
∆
= (c = Fk(r)⊕ r ⊕ Fk(m)⊕m, d = r||m)

is a secure commitment scheme using an argument similar to the above. This gives us a commitment
scheme with an overhead of only 0.04 microseconds per commitment (roughly 62 times faster than
the SHA256 based commitment scheme).

6 Implementation and Experiments

We implemented both our semi-honest as well as maliciously secure 5PC protocols (henceforth
referred to as 5PC-SH and 5PC-M, for brevity) and ran various experiments for different circuit sizes
and different latencies. Our code built upon the code for n−party semi-honest secure computation
provided by Ben-Efraim et al. [BLO16a]. For all our experiments, we measured the times for the
offline phase, which is independent of the inputs to the computation (distributed garbled circuit
computation), and for the online phase, which is dependent on the inputs to the computation
(garbled input generation, garbled circuit evaluation and output sharing), separately.

Platforms and parameters. We ran our experiments on Microsoft Azure Classic DS4 V2 VM
instances (2.4 GHz Intel Xeon Processor with 8 cores) in three different configurations. All our
experiments use hardware instructions AES-NI for the PRFs and SHA-256 for the hash function.
For the first experiment, all instances were located in the Eastern US region. For the second
experiment, the 5 instances were spread across East, Central, West, North Central, and South
Central US regions, and for the third experiment, 3 garblers were located in the Western US region
with a garbler and an evaluator located in Central Europe. As was reported in [BLO16b], network
fluctuations account for almost all the variations in timings in our protocols.

We ran the protocol for 5 parties (semi-honest and malicious) on 2 different functions. In the
first function, parties each hold 128-bit shares of key and input and the output of the computation
was the AES function on the XOR of the party’s inputs. The AES circuit we used had 6800 AND
gates. In the second function, parties hold 300-bit values as input and the output of the computation
was the SHA-256 function on the concatenation of all party’s inputs. The SHA-256 circuit we used
had 90,825 AND gates. Each experiment was performed 30 times and we computed the mean and
standard deviation of all experiments. All numbers provided in the tables are in milliseconds with
a 95% confidence interval. We compare all our results with the results obtained when executing

18

Total Communication of 5 parties [MB]

AES SHA-256

BLO 73.3 756
5PC-M 28.6 356
5PC-SH 9.3 112.2

Table 2: Communication comparison

the semi-honest protocol/code of [BLO16b, BLO16a] for 5 parties (secure against 4 semi-honest
corruptions and henceforth referred to as BLO2) on the same platforms as our experiments. While
our computation (as well as communication) can be parallelized across the 8 cores (across the
garbling process) we only deployed mild parallelization and leave further optimizations to future
work.

6.1 Experimental Evaluation

Communication measurements. We first present the total communication (among all parties)
of our protocols and a comparison with the numbers from [BLO16b]. As can be seen from Table 2,
the total communication of 5PC-M is less than half that of BLO’s communication (however, this
protocol tolerates 4 semi-honest corruptions and could be optimized for 2 corruptions), while the
communication in 5PC-SH is only 12− 15% that of BLO.

We present our experimental results on the three different network configurations listed above.

Low-latency network. In this network, all Azure Classic DS4 V2 VM instances were located in
the Eastern US region with an average round-trip time of 2.7 milliseconds across all the instances
(maximum time of 7.1 milliseconds). The average bandwidth as measured by the Iperf testing tool
was 4.5 Gbps. We report the following times: offline execution time (OFT), which measures the
wall clock time taken to execute the offline (distributed garbling) phase; the online execution time
(ONT), which measures the wall clock time taken to execute the online (input-specific) phase; total
protocol time (TPT) which measures the wall clock time to execute the entire protocol; and the
CPU time (CPUT), which measures the total time spent on computing across all cores (note that
this time can sometimes be larger than TPT when there is great degree of parallelization in the
implementation). The results are presented and compared in Tables 3 and 4.

As can be seen from the table, for the AES circuit, our 5PC-M is only 69% slower than BLO
(which is only passively secure) in terms of TPT, with CPUT being even lesser in our case (in-
dicating that compute time can be reduced in our protocol through greater parallelization which
our protocol accommodates). Our 5PC-SH takes about the same time as BLO (due to the very
fast network, the savings in communication is not visible and the BLO protocol takes advantage of
parallelization in compute even though the CPU time in BLO is 78% more than in our protocol).
For the SHA-256 circuit, our 5PC-M is only about 2.3 times slower than BLO, with roughly same
CPU times, and our 5PC-SH is about 1.5 times slower than BLO, with about 52% of the CPU
time, once again due to the parallelization optimizations performed in BLO.

2The protocol execution time of [BLO16b] does not vary with the number of corruptions.

19

5PC-M

OFT ONT TPT CPUT

Garblers 198± 2 8± 1 206± 3 184± 2
Evaluator 50± 1 23± 1 74± 2 57± 2

5PC-SH

OFT ONT TPT CPUT

Garblers 130± 2 8± 1 138± 2 114± 1
Evaluator 24± 1 23± 1 46± 2 36± 1

BLO

OFT ONT TPT CPUT

All parties 118± 2 4± 1 122± 3 203± 2

Table 3: Execution times [ms]: AES circuit, low latency

5PC-M

OFT ONT TPT CPUT

Garblers 2402± 21 9± 1 2411± 22 2715± 28
Evaluator 587± 11 148± 5 735± 16 632± 11

5PC-SH

OFT ONT TPT CPUT

Garblers 1536± 14 9± 1 1545± 15 1328± 10
Evaluator 297± 17 150± 4 447± 21 363± 10

BLO

OFT ONT TPT CPUT

All parties 994± 13 56± 1 1050± 14 2543± 17

Table 4: Execution times [ms]: SHA-256 circuit, low latency

20

5PC-M

OFT ONT TPT CPUT

Garblers 648± 48 39± 3 687± 51 182± 4
Evaluator 243± 52 84± 3 328± 55 60± 4

5PC-SH

OFT ONT TPT CPUT

Garblers 441± 69 44± 3 485± 71 116± 2
Evaluator 111± 21 111± 17 223± 38 36± 2

BLO

OFT ONT TPT CPUT

All parties 1177± 43 81± 3 1259± 46 207± 3

Table 5: Execution times [ms]: AES circuit, med. latency

5PC-M

OFT ONT TPT CPUT

Garblers 3430± 99 38± 2 3468± 101 2707± 22
Evaluator 789± 197 288± 126 1077± 323 607± 10

5PC-SH

OFT ONT TPT CPUT

Garblers 1937± 68 41± 2 1978± 70 1348± 12
Evaluator 526± 158 214± 5 740± 163 338± 5

BLO

OFT ONT TPT CPUT

All parties 6007± 159 139± 2 6146± 161 2593± 14

Table 6: Execution times [ms]: SHA-256 circuit, med. latency

Medium-latency network. For the second experiment, the 5 instances were spread across East,
Central, West, North Central, South Central US regions with an average round-trip time of the
slowest link (East to West) being 92.8 milliseconds (maximum time of 974.6 milliseconds). The
average bandwidth, again of the slowest link, as measured by the Iperf testing tool was 292 Mbps.
The results are presented and compared in Tables 5 and 6. As communication becomes critical
in medium-latency networks, our protocols perform significantly better than existing protocols in
this domain. As can be seen from the table, for the AES circuit, our 5PC-M is actually 1.83 times
faster than BLO (which, again, is only passively secure) in terms of total execution time; this is due
to our better overall communication complexity as this factor dominates even in medium-latency
networks . Our 5PC-SH is 2.6 times faster than BLO. For the SHA-256 circuit, our 5PC-M is once
again 1.77 times faster than BLO, while our 5PC-SH is 3.1 times faster than BLO.

High-latency network. For the last experiment, 3 garblers were located in the Western US
region and the remaining garbler and the evaluator located in North Europe. with an average
round-trip time of the slowest link (West US to North Europe) being 142.6 milliseconds (maximum
time of 153.2 milliseconds). The average bandwidth, again of the slowest link, as measured by the

21

5PC-M

OFT ONT TPT CPUT

Garblers 1655± 104 220± 18 1875± 122 196± 2
Evaluator 1116± 45 316± 5 1432± 50 63± 2

5PC-SH

OFT ONT TPT CPUT

Garblers 790± 96 110± 28 900± 124 120± 1
Evaluator 750± 32 264± 30 1014± 62 39± 1

BLO

OFT ONT TPT CPUT

All parties 4556± 256 299± 10 4855± 266 249± 51

Table 7: Execution times [ms]: AES circuit, high latency

5PC-M

OFT ONT TPT CPUT

Garblers 7529± 478 242± 32 7771± 510 2875± 32
Evaluator 2444± 214 453± 4 2897± 219 642± 14

5PC-SH

OFT ONT TPT CPUT

Garblers 3722± 384 221± 23 3943± 407 1409± 17
Evaluator 3069± 396 455± 14 3524± 410 397± 12

BLO

OFT ONT TPT CPUT

All parties 12957± 624 366± 18 13323± 642 2751± 16

Table 8: Execution times [ms]: SHA-256 circuit, high latency

Iperf testing tool was 146 Mbps. The results3 are presented and compared in Tables 7 and 8. For
AES, our 5PC-M is 2.6 times faster than BLO in total execution time and our 5PC-SH is 4.8 times
faster than BLO. For SHA-256, our 5PC-M is 1.7 times faster than BLO, while 5PC-SH is 3.38
times faster than BLO.

7 The n-party case

So far, we have described our efficient MPC protocol for the case of five parties. It turns out
that the ideas easily generalize to more than five parties as long as we can find appropriate seed
distribution strategies that meet certain combinatorial properties. Next, we review these properties
and various seed assignment strategies.

To generalize our approach to n-party MPC with at most t corrupted parties, similarly to the
five-party case, we let Pn be the evaluator and have the remining n− 1 parties simulate a q-party
distributed garbling scheme (q-DG) to generate the garbled circuit used for evaluation. We focus

3Network time is the huge dominating factor in this case. Since we measure average time of garblers, when one of
the links between a garbler and evaluator is slow, the time of the evaluator is affected more than the average time of
the garblers, sometimes leading to a longer total time for the evaluator.

22

on the generalization of the distributed garbling component of the MPC protocol and note that
similar ideas can be used for the generalization of the garbled-input step.

At a high level, this q-DG protocol needs to satisfy two main properties: (i) Produce a correct
garbled circuit even if up to t < n of the garblers are corrupted, and (ii) hide its randomness
from the adversary (i.e., the randomness used to garble the circuit) even if up to t − 1 garblers
are corrupted. The adversary’s corruption strategy can be split into two cases. If the adversary
corrupts t garblers, but the evaluator remains honest, the first condition ensures that the garbled
circuit is honestly generated and the honest evaluator (Pn) will evaluate the correct garbled circuit.
If, on the other hand, the adversary corrupts Pn and t − 1 of the garblers, the second property
ensures that the corrupt evaluator does not learn the secrets of the garbled circuit and hence no
information about the honest garblers’ inputs is revealed.

To obtain a protocol that meets the above two properties, we follow the same approach as in
the five-party case. In particular, we assume that all the randomness needed by the party i in the
q-party distributed garbling is generated using a random seed si. Hence, we have q seeds s1, . . . , sq
that need to be distributed among the n − 1 garblers. This seed distribution step should satisfy
the following properties:

1. Privacy: No t−1 garblers4 should hold all seeds. This property is required for both the semi-
honest and the malicious variants of our MPC protocol, and ensures that a corrupt evaluator
does not learn an honest garbler’s input to the computation.

2. OT Attestation: For every pair of seeds si, sj , there should be a party Pk that holds both
seeds. This party will play the role of attester in our AOT protocols, which we use as replace-
ment for OT. We note that a more expensive variant of our construction without AOT can do
without this condition.

3. Correctness: Every seed is held by at least t + 1 parties. This property is only needed for
the actively malicious case as it ensures that when each message of the semi-honest garbling
protocol is received from t + 1 parties, at least one of those messages was generated by an
honest party and hence it must be the correct message.

7.1 The (n, t, q)-Assigment Problem

The above requirements yield an interesting combinatorial problem, which we call the (n, t, q)-
assignment problem, for finding seed assignments that minimize n and q but maximize the corrup-
tion threshold t. It is easy to obeserve that the (5, 2, 4)-assignment we used in our 5PC protocol
({s1, s3, s4}, {s2, s3, s4}, {s1, s2, s3}{s1, s2, s4}) has all three properties. Next, we provide a general
solution to the problem that works for all values of n, and also explore better assignments for
particular values of n. A more thorough study of the problem is left as future work.

We describe a simple solution for the case n = t2 + 1 and q = t2 that meeds the Privacy and
Correcntess properties discussed above. Let s1, . . . , sq be the random seeds we need to assign to
n− 1 parties. We simply assign to Pi the seeds s((i−1) mod q)+1, . . . , s((i+t) mod q)+1. The modular
operation enforces that we “cycle around” when sq is reached. It is easy to see that this assignment
satisfies Privacy since even if the t−1 parties chosen not to have any overlap in their set of assigned
seeds, they can only cover (t− 1)(t+ 1) = t2− 1 = q− 1 seeds. Note that this assignment does not
meet the OT Attestation condition and hence needs to be instantiated using standard OTs (with
OT extension), where each OT message is computed by the t + 1 parties who hold the seeds for
either the sender or the receiver in that OT instance. Finally, it is easy to see that each seed si is
held by t+ 1 parties, namely, Pi mod q, . . . , P(i+t+1) mod q.

4That’s right, t− 1 and not t, as we have to account for the possiblity of the evaluator being corrupted.

23

7.2 A Few Special Cases

The above assignment strategy is general but does not always yield the optimal assignment. For
example, while it yields the optimal solution for t = 2 and n = 5, the best solution it yields for
t = 3 is n = 10 and q = 9. We now show a simple alternative assignment where q = 6 suffices
which implies fewer seeds and a more efficient distributed garbling protocol.

(10, 3, 6)-assignment (active security). Consider the first five seeds s1, . . . , s5. There are
(

5
4

)
=

5 subsets of size four. We assign each subset to one of the first five parties and assign s6 to
P6, P7, P8, P9. As before, P10 is not a garbler. It is easy to see that no two parties hold all the
seeds and each seed is held by at least four parties. This satisfies both the Privacy and Correctness
conditions that are sufficient for actively secure MPC. This solution also generalizes easily to a
solution with q ≈ n and t ≈

√
n.

(7, 3, 6)-assignment (semi-honest security). The assignment of the six seeds to the six gar-
blers is as follows: {s1, s2, s3}, {s3, s4, s5},
{s2, s4, s5}, {s1, s5, s6}, {s2, s3, s6}, {s1, s4, s6}. This assignment meets the Privacy and OT Attes-
tation conditions, yielding a very efficient semi-honest 7PC protocol that can fully benefit from our
AOT protocols. In particular, it is easy to see that no two parties hold all six seeds and that every
pair of seeds is held by at least one of the garblers.

References

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-
throughput semi-honest secure three-party computation with an honest majority. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 805–817. ACM, 2016.

[asS11] abhi shelat and Chih-Hao Shen. Two-output secure computation with malicious adversaries.
In Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.
Proceedings, pages 386–405, 2011.

[asS13] abhi shelat and Chih-Hao Shen. Fast two-party secure computation with minimal assump-
tions. In 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, pages 523–534, 2013.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for secure multi-party
computation. In Proceedings of the 15th ACM conference on Computer and communications
security, pages 257–266. ACM, 2008.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC [DBL88],
pages 1–10.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In the
ACM Conference on Computer and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012, pages 784–796, 2012.

[Bla06] John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash func-
tion. In Fast Software Encryption, 13th International Workshop, FSE 2006, volume 4047 of
Lecture Notes in Computer Science, pages 328–340. Springer, 2006.

[BLO16a] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Implementation of protocol from blo16.
https://github.com/cryptobiu/Semi-Honest-BMR, 2016.

24

https://github.com/cryptobiu/Semi-Honest-BMR

[BLO16b] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multiparty
computation for the internet. In Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, October 24-28, 2016, pages 578–590,
2016.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-
preserving computations. In European Symposium on Research in Computer Security, pages
192–206. Springer, 2008.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure proto-
cols (extended abstract). In Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 503–513, 1990.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. 13(1):143–202,
2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October
2001, Las Vegas, Nevada, USA, pages 136–145, 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure proto-
cols (extended abstract). In STOC [DBL88], pages 11–19.

[CHK+12] Seung Geol Choi, Kyung-Wook Hwang, Jonathan Katz, Tal Malkin, and Dan Rubenstein.
Secure multi-party computation of boolean circuits with applications to privacy in on-line
marketplaces. In Cryptographers Track at the RSA Conference, pages 416–432. Springer, 2012.

[CKMZ14] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient three-party
computation from cut-and-choose. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II,
pages 513–530, 2014.

[CMF+14] Koji Chida, Gembu Morohashi, Hitoshi Fuji, Fumihiko Magata, Akiko Fujimura, Koki Hamada,
Dai Ikarashi, and Ryuichi Yamamoto. Implementation and evaluation of an efficient secure com-
putation system using rfor healthcare statistics. Journal of the American Medical Informatics
Association, 21(e2):e326–e331, 2014.

[DBL88] Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, 2-4 May 1988,
Chicago, Illinois, USA. ACM, 1988.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In Advances in Cryptology - CRYPTO 2005: 25th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceed-
ings, pages 378–394, 2005.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P Smart.
Practical covertly secure mpc for dishonest majority–or: breaking the spdz limits. In European
Symposium on Research in Computer Security, pages 1–18. Springer, 2013.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Advances in Cryptology–CRYPTO 2012, pages
643–662. Springer, 2012.

[FLNW16] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-
party computation for malicious adversaries and an honest majority. pages 554–581. Springer,
2016.

[GMS08] Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and multi party com-
putation against covert adversaries. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 289–306. Springer, 2008.

25

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In STOC, pages 218–229. ACM, 1987.

[HKE13] Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computation us-
ing symmetric cut-and-choose. In CRYPTO (2), volume 8043 of Lecture Notes in Computer
Science, pages 18–35. Springer, 2013.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J Malozemoff.
Amortizing garbled circuits. In International Cryptology Conference, pages 458–475. Springer,
2014.

[HKT10] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. Equivalence of the random oracle
model and the ideal cipher model, revisited. CoRR, abs/1011.1264, 2010.

[HSSV17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round mpc
combining bmr and oblivious transfer. Cryptology ePrint Archive, Report 2017/214, 2017.
http://eprint.iacr.org/2017/214.

[IKKP15] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky. Secure com-
putation with minimal interaction, revisited. In CRYPTO (2), volume 9216 of Lecture Notes
in Computer Science, pages 359–378. Springer, 2015.

[IKP10] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with minimal
interaction. In CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 577–594.
Springer, 2010.

[KasS12] Benjamin Kreuter, abhi shelat, and Chih-Hao Shen. Billion-gate secure computation with
malicious adversaries. In Proceedings of the 21th USENIX Security Symposium, Bellevue, WA,
USA, August 8-10, 2012, pages 285–300, 2012.

[KRW17] Jonathan Katz, Samuel Ranellucci, and Xiao Wang. Authenticated garbling and efficient
maliciously secure multi-party computation. Cryptology ePrint Archive, Report 2017/189,
2017. http://eprint.iacr.org/2017/189.

[KSS13] Marcel Keller, Peter Scholl, and Nigel P Smart. An architecture for practical actively secure
mpc with dishonest majority. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 549–560. ACM, 2013.

[LDDAM12] John Launchbury, Iavor S Diatchki, Thomas DuBuisson, and Andy Adams-Moran. Efficient
lookup-table protocol in secure multiparty computation. In ACM SIGPLAN Notices, vol-
ume 47, pages 189–200. ACM, 2012.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II, pages 1–17, 2013.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In Advances in Cryptology - EUROCRYPT 2007, 26th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Barcelona, Spain, May 20-24, 2007, Proceedings, pages 52–78, 2007.

[LP12] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious
transfer. J. Cryptology, 25(4):680–722, 2012.

[LPS08] Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. Implementing two-party computation effi-
ciently with security against malicious adversaries. In Security and Cryptography for Networks,
6th International Conference, SCN 2008, Amalfi, Italy, September 10-12, 2008. Proceedings,
pages 2–20, 2008.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round
multi-party computation combining BMR and SPDZ. In CRYPTO (2), volume 9216 of Lecture
Notes in Computer Science, pages 319–338. Springer, 2015.

26

http://eprint.iacr.org/2017/214
http://eprint.iacr.org/2017/189

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose yao-based secure computation in the on-
line/offline and batch settings. In International Cryptology Conference, pages 476–494.
Springer, 2014.

[LR15] Yehuda Lindell and Ben Riva. Blazing fast 2pc in the offline/online setting with security for
malicious adversaries. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 579–590. ACM, 2015.

[MF06] Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for malicious two-party compu-
tation, 2006.

[MR13] Payman Mohassel and Ben Riva. Garbled circuits checking garbled circuits: More efficient
and secure two-party computation. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,
pages 36–53, 2013.

[MRZ15] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party computation: The
garbled circuit approach. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO, USA, October 12-6, 2015, pages 591–602, 2015.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for Two-Party Secure Computation, pages
368–386. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party
computation is practical. In Advances in Cryptology - ASIACRYPT 2009, 15th International
Conference on the Theory and Application of Cryptology and Information Security, Tokyo,
Japan, December 6-10, 2009. Proceedings, pages 250–267, 2009.

[Sha49] Claude E Shannon. Communication theory of secrecy systems. Bell Labs Technical Journal,
28(4):656–715, 1949.

[Woo07] David P. Woodruff. Revisiting the efficiency of malicious two-party computation. In Advances
in Cryptology - EUROCRYPT 2007, 26th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007, Proceedings,
volume 4515 of Lecture Notes in Computer Science, pages 79–96. Springer, 2007.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages
160–164. IEEE, 1982.

[ZSB13] Yihua Zhang, Aaron Steele, and Marina Blanton. Picco: a general-purpose compiler for private
distributed computation. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 813–826. ACM, 2013.

A Preliminaries (cont’d)

In this section we present complementary preliminary material, including the definition of the
cryptographic building blocks.

Definition 5. A pseudo-random function (PRF) family PRF is a family of functions PRF :
K × D → R. The setup algorithm produces (on input 1κ) a key k at random from K. Let
PRFk(·) be the function parameterized by k. The security property requires that when k is chosen
at random from K, no PPT adversary A can distinguish between PRFk(·) and a random function
(with appropriate domain and range), when given oracle access to one of the functions.

Definition 6. A collision-resistant hash function (CRHF) family H is a family of functions H :
K × D → R, where |D| < |R|. The setup algorithm produces (on input 1κ) a key k at random
from K. Let Hk(·) be the function parameterized by k. The security property requires that when k
is chosen at random from K, no PPT adversary A, given H and k, can produce x0 and x1 (with
x0 6= x1) such that Hk(x0) = Hk(x1), except with negligible probability in κ.

27

Definition 7. A (non-interactive) commitment scheme (for a message space M) is a triple of
algorithms (ComGen,Com,Open) such that:

CK ← ComGen(1κ), where CK is the public commitment key;
for m ∈ M, (c, d) ← Com(m) is the commitment/decommitment pair for m. (We omit men-
tioning the public key CK when it is clear from the context.) When we wish to make explicit
the randomness used by Com(·), we write Com(m; r);
m̃← Open(c, d), where m̃ ∈ M ∪ {⊥}, and where ⊥ is returned if c is not a valid commitment
to any message;

satisfying the following properties:

Correctness: For any m ∈ M,Open(Com(m)) = m.
Hiding: For all m0,m1 ∈ M output by any PPT adversary A, the distributions c0 and c1

are indistinguishable to A, where (cb, db) ← Com(mb) for b ∈ {0, 1}, except with negligible
probability.
Binding: No PPT adversary A can produce (c, d0, d1,m0,m1) (with m0 6= m1) such that
Open(c, db)→ mb for b ∈ {0, 1}, except with negligible probability.

Oblivious Transfer. While our protocol does not make use of the oblivious transfer primitive,
we present the primitive below for completeness (as the protocol of [BLO16b], which we modify,
does). The oblivious transfer (OT) functionality is described in Figure 8; for a description of a
protocol implementing the functionality, we refer the reader to [BLO16b].

Functionality FOT(P1, P2)

FOT interacts with parties P1 and P2 and the adversary S, with P1 and P2 acting as sender and receiver,
respectively.

Input.

On input message (Sender, sid ,m0,m1) from P1, where each mβ ∈ M, record (m0,m1) and send
(Sender, sid) to the adversary. Ignore further (Sender, ·, ·, ·) messages.
On input message (Receiver, sid , b) from P2, where b ∈ {0, 1}, record b and send (Receiver, sid)
to the adversary. Ignore further (Receiver, ·, ·) inputs.

Output. On input message (Output, sid) from the adversary, send (Output, sid , success,mb) to P2.

Figure 8: The Oblivious Transfer ideal functionality FOT.

B Proofs

Lemma 3.1 Assuming (ComGen,Com,Open) is a secure commitment scheme, protocol Π4AOT se-
curely realizes the F4AOT functionality.

Proof. (Sketch) We shall prove this considering various corruption scenarios and providing simulator
strategies for each. For any adversary A corrupting parties, we describe a simulator S interacting
with the ideal functionality F4AOT. We first consider the case when only one party is corrupted.
P1 is the sender and P2 is the receiver.

28

P1 is corrupted: P2, P3 and P4 are honest. S runs A. It receives two tuples from A,
(m3

0,m
3
1, r

3
0, r

3
1) and (m4

0,m
4
1, r

4
0, r

4
1) intended for P3 and P4. If the tuples are not equal, S

sends ⊥ to the functionality, and simulates the honest parties aborting. If the tuples are the
same, A will send (Com1

0,Com
1
1 intended for P2. S verifies that the commitments are correctly

generated using the tuple it obtained earlier. If not, it sends an Abort message to the func-
tionality; else, it submits (m3

0,m
3
1, b

3, r3
0, r

3
1) as P1’s input to the functionality. This completes

the simulator’s description.
Note that in the real execution, if P3 and P4 receive two sets of values (m3

0,m
3
1, r

3
0, r

3
1) 6=

(m4
0,m

4
1, r

4
0, r

4
1), then P3 and P4 will detect this and induce an abort in Step 3b of the pro-

tocol. This abort is independent of P2’s input b and identically distributed to S’s abort. If
P3 and P4 receive two sets of values that are equal, then P3 and P4 will generate and send
(Com1

0,Com
1
1,Open

1
m1
b2

) to P2 (as m3
0 = m4

0 and m3
1 = m4

1, when P3 and P4 are honest). If

P1 sends a different set of commitments (Com
1
0,Com

1
1) in Step 1 of the protocol, then P2 will

detect this and abort. Once again, this abort is independent of b and identically distributed to

S’s abort. Now, suppose (Com
1
0,Com

1
1) = (Com3

0,Com
3
1) (i.e., the commitments to m1

0 and m1
1

by P1, P3 and P4 are identical), then P2 indeed receives the opening to Com1
b from P3 and P4

and hence outputs mb.
P2 is corrupted: In this case, P1, P3 and P4 are honest. S runs A. It receives two bits from
the adversary, b3, b4, intended for P3 and P4. If the two values are different, S sends Abort to
the functionality and simulates the honest parties aborting. If the two bits are the same, it
submits b3 as P2’s input to the ideal functionality and receives m3

b3 from the functionality. It
then generates two commitments/openings (Com1

0,Com
1
1), one committing to m3

b3 , and another
to a dummy value, say, 0 (permuted based on the bit b3), and sends the two commitments to
A on behalf of honest P1. It then sends decommitment for m3

b3 on behalf of honest P3. This
completes the simulation.

In the real execution, P2 will receive commitments (Com1
0,

Com1
1) as well as the decommitment Open1

b2 in Step 3a. By the hiding property of the commit-
ment scheme, P2 will learn no information about m1

b̄2
and it can be replaced by a commitment

to 0, making the real and simulated views indistinguishable.
P3 is corrupted: since P1, P2 are honest, S receives (m3

0,m
3
1, b

3) from the functionality. It then
generates fresh randomness r3

0, r
3
1 and sends (m3

0,m
3
1, r

3
0, r

3
1) on behalf of P1 and b3 on behalf

of P2 to the adversary. If A sends a different tuple intended for honest P4, S sends Abort

to the functionality and simulates the honest P4 aborting. Else, it receives two commitments
and a decommitment from A intended for P2. If the commitments and/or decommitment are
not consistent with the tuples it sent to A earlier, S sends Abort to the functionality. This
completes the simulation.

In the real execution, if P3 cheats by sending a different set of (m3
0,m

3
1, b

3, r3
0, r

3
1) values in

Step 3b, then P4 will send a ⊥ message to P2, which is what our simulator does as well. If P3

cheats by sending a different set of commitments to P2 in Step 3a, then again P2 will detect this
as honest P4 (and P1) send honest versions of these commitments. If P3 cheats by sending a
different opening of the commitment Com3

b3 , then by the binding property of the commitment
scheme, P3 can indeed only open Com3

b3 = Com1
b2 to m1

b2 and hence P2 will output m1
b2 (or

abort) which is identical to S’s behavior.
P4 is corrupted: This case is similar to when P3 is corrupted.

Next, let us consider the case when two parties are corrupted: Note that our functionality in
this case does not require privacy of inputs since corrupted attesters will learn both parties’ inputs.
It only guarantees that an honest P2 will always output the right mb (or abort); hence, the only

29

interesting cases are when P2 is honest, i.e., P1 and P3 are corrupted, or P3 and P4 are corrupted
(other cases are symmetric).

P1 and P3 are corrupted: P2 and P4 are honest. S runs A. It receives a tuple from A,
(m4

0,m
4
1, r

4
0, r

4
1) intended from P1 to P4 and another tuple (m3

0,m
3
1, b

3, r3
0, r

3
1) intended from P3

to P4. If the tuples do not hold the same values, S sends Abort to the functionality. , simulating
the honest P4 aborting. If the tuples are the same, A will send (Com1

0,Com
1
1 intended for P2.

S verifies that the commitments are correctly generated using the tuple it obtained earlier. If
not, it sends Abort to the functionality, inducing P2’s abort. Else, it submits (m4

0,m
4
1, b

4, r4
0, r

4
1)

as P1’s input to the functionality. This completes the simulator’s description.
Consider the real execution. Recall that P4 is honest in this case. If P3 sends a different

set of values in Step 3b, then P4 will send a ⊥ message, and P2 will abort the protocol. Now, if

P1 or P3 send maliciously generated messages (Com
i
0,Com

i
1) (for i = 1, 3, in Step 1 or Step 3a,

respectively), then P2 will detect this and output ⊥ when P4 sends the correct (Com4
0,Com

4
1)

to P1 in Step 3a. Similarly, if P3 sends a maliciously generated message (m̄3
b3 , r̄b3) (in Step

3a), then, by the binding property of the commitment scheme, m̄3
b3 = m1

b2 . Hence, P2 always
outputs m1

b2 or aborts. It is easy to see that the aborts are identically distributed to the
simulation.
P3 and P4 are corrupted: In this case, P1 and P2 are honest and the simulation is very similar
to the case above where P3 was corrcupted with the only difference that S does not simulate
an honest P4 aborting since P4 is not honest in this case.

Theorem 4.1 Assuming (ComGen,Com,Open) is a secure commitment scheme, and H
$← H is

a collision-resistant hash function, protocol Π5pc(C, {P1, . . . , P5}) securely realizes the functionality
FCsfe({P1, . . . , P5})5 in the F4AOT-hybrid model.

Proof. (Sketch) To prove our 5PC protocol Π5pc(C, {P1, . . . , P5}) secure, for any adversary A in the
protocol, we describe a simulator S that interacts with the ideal functionality FCsfe({P1, . . . , P5}).
There are two main corruption scenarios to consider: (i) When two garblers are corrupted. In this
case, without loss of generality we assume P1 and P2 are corrupted since the protocol is symmetric
with respect to the garblers; and (ii) when the evaluator P5 and one of the garblers is corrupted.
Similary, wlog, we assume P1 and P5 are corrupted.

P1 and P2 are corrupted. At a high level, in this case the evaluator is honest, and hence the
only guarantee we need from the distributed circuit garbling is to generate a correct garbled circuit.
We also require that the garblers’ inputs are extractable from the garbled input generation process.
These two properties combined will guarantee that we can describe a simulator that simulates any
adversary corrupting P1 and P2. More details follow.
S runs A. S receives two copies of each seed s1, s2 intended for honest parties P3 and P4 from

A. S checks whether the two copies are the same or not. If not, it sends an abort message to the
functionality. Else S generates random seeds s3 and s4 on behalf of honest P3 and P4 and sends
them to the adversary. It then generates random inputs x3, x4, x5 for P3, P4, P5 and uses them in
the rest of the simulation.

During the garbled input generation S behaves as honest P3, P4, P5 in most cases and using the
random inputs and seeds it generated above, and sends an abort to the functionality if it detects any
cheating, or if the adversary opens the commitments generated for P5’s garbled input generation to

5Recall that we slightly abuse notation, and mean security with abort.

30

a different value than expected (this is indistinguishable from the real-world interaction due to the
binding property of the commitment). The aborts are independent of the honest parties’ inputs as
the inputs are always XORed with three uniformly random pads one of which is held by an honest
party. If there is no abort, for each input wire of P1, A sends Fs1(‘key’||w||0) ⊕ Fs1(‘delta’) · b′
intended for P5. Given that S has knowledge of all seeds, it can use it to derive b′ and further
derive P1’s input b = b′ ⊕ pw. A similar strategy can be used to extract P2’s input. Denote these
inputs by x′1, x

′
2.

In the distributed garbling stage, S behaves as honest P3 and P4 and instructs the functionality
to abort if it detects any cheating, i.e., if messages intended for P3 and P4 are not consistent. If
there is no abort, it is easy to see that the garbling function described in Figure 3 will be the output
of honest parties. If the garbled circuit sent by A intended for P5 (or its hash) is not the same as
what the honest parties would have obtained, S sends abort to the functionality.
S then sends x′1, x

′
2 to the functionality. From the correctness of the garbling function, if there

are no aborts, the garbled circuit evaluated by P5 in the real protocol would evaluate to the same
output as what the functionality returns.

P1 and P5 are corrupted. In this case, the evaluator is not honest but only one of the garblers
is malicious. At a high level, after extracting the adversary’s inputs for P1 and P5, the simulator
obtains the output of the computation from the functionality and helps generate a fake circuit
that always evaluates to that output, but is indistinguisable from the real garbled circuit in the
adversary’s view. Furthermore, it should be hard for the adversary (corrupted P5) to produce any
output label that translates to a different value than the hardcoded output in the fake garbled
circuit. More details follow.
S runs A. S receives two copies of seed s1 intended for honest parties P3 and P4 from A.

S checks whether the two copies are the same or not. If not, it sends an abort message to the
functionality. Else S generates random seeds s2, s3 and s4 on behalf of honest P2, P3 and P4 and
sends s3 and s4 to the adversary. It then generates random inputs x2, x3 and x4 for P2, P3 and P4

and uses them in the rest of the simulation.
S extracts P1’s input in the distributed garbled input generation as in the previous case. Denote

that by x′1. Extracting P5’s input is somewhat similar. Note that A sends three XOR shares of its
inputs to the garblers. At least two of these are honest parties and hence S obtains those shares.
The third share is extracted similarly to the input extraction for the garblers above since the process
for garbling each share is similar and the three shares are XORed to obtain the extracted input x′5.
S now calls the functionality with inputs x′1, x

′
5 for P1 and P5 and obtains out = f(x′1, x2, x3, x4, x

′
5).

Next, the simulator who plays the role of honest parties P2, P3, P4 needs to influence the distributed
circuit garbling scheme to generate a fake garbled circuit that hard-codes out as its output when run
on extracted inputs x′1, x

′
5 and the random inputs S generated on behalf of honest parties, while

ensuring that this fake distributed circuit garbling is indistinguishable from the real distributed
circuit garbling protocol from the adversary’s point of view.

The idea behind this simulation is as follows and is similar to the one in [BLO16b] except in our
case the adversary can be malicious on behalf of one garbler. S knows all the seeds generated above.
Furthermore, it has full control of any randomness and garbled circuit shares generated using s2

since only P1 is corrupted among the garblers and he does not hold s2, and S is playing the role of
all three parties holding s2. S participates in the distributed garbling as before for all intermediate
gates. For the output gates, however, it needs to make sure that the labels corresponding to bits
of out are always the labels encrypted in rows corresponding to evaluation using the extracted and
random inputs S knows. Given that S has knowledge of all seeds, it knows what the corresponding

31

label for out is (say, 0) and also knows the label corresponding to 1. For all such rows that encrypt
the label 1, S can produce the one-time pads that are derived using s2 (on behalf of honest P2, P3

and P4) such that the encrypted label is flipped to the label for 0 instead. As a result, the generated
garbled circuit will evaluate to out, and this process is indistinguishable from the adversary’s point
of view given that it only can decrypt one row of each table and other rows are indistinguishable
from random given the semantic security of the encryption used for garbling and the fact that the
adversary does not know all seeds.
S sends this fake garbled circuit (or its hash) on behalf of honest parties to A who controls

the evaluator. Finally, S receives an output out′ along with the corresponding output label. If
it receives a different output than out from the adversary, it instructs the functionality to abort.
The probability that P5 can generate a different output label is negligible since in this fake garbled
circuit only one label is decrypted and portions of the other label are encrypted using a seed that is
not known to the adversary. As a result, the distributions in the real- and ideal-world interactions
are indistinguishable. This completes the sketch of the proof.

C Figures

Function fCGC

Inputs. All parties hold the circuit C, security parameter κ. In addition Pi holds the following
private inputs:

1. A global difference string Ri ∈ {0, 1}κ chosen at random;

2. For every wire w in C that is not the output of an XOR gate, a random permutation bit piw
and kiw,0 chosen at random from {0, 1}κ

Computation. Proceed as follows:

1. For i ∈ [4], in a topological order, for every output wire w of an XOR gate with input wires u
and v, set piw := piu ⊕ piv, kiw,0 := kiu,0 ⊕ kiv,0 and kiw,1 := kiw,0 ⊕Ri.

2. For every w in C, set pw :=
⊕4

i=1 p
i
w.

3. For every AND gate g ∈ C with input wires u, v and output wire w, every α, β ∈ {0, 1} and
every j ∈ [4], set:

gjα,β :=
(4⊕
i=1

Fkiu,α(g||j)⊕ Fkiv,β (g||j)
)

⊕ kiw,0 ⊕
(
Ri · ((pu ⊕ α) · (pv ⊕ β)⊕ pw)

) (2)

Outputs. Output to all parties g1
α,β || . . . ||g4

α,β , for every AND gate g ∈ C and every α, β ∈ {0, 1}.

Figure 9: The distributed circuit-garbling function.

32

Protocol Πsh4aot(P1, P2, P3)

The protocol is carried out among P1, P2, P3, with P1 and P2 acting as sender and receiver,
respectively, and P3 as the attester.

Input. P1 holds m0,m1, and P2 holds b.

Computation.

1. P1 sends m0,m1 to P3, and P2 sends b to P3.

2. P3 sends mb to P2.

Output. P2 outputs mb.

Figure 10: The passively secure 4-party protocol for Attested OT.

Functionality FB-4AOT(P1, P2, {P3, P4})

FB-4AOT interacts with parties P1, P2, P3, P4 and the adversary S, with P1 and P2 acting as sender and
receiver, respectively, and P3, P4 as attesters.

Input.

On input message (Sender, sid , {m0,t,m1,t}t∈[`]) from P1, where each mi,t ∈ M, record
{(m0,t,m1,t)}t∈[`] and send (Sender, sid , {m0,t,m1,t}t∈[`]) to P3 and P4 and (Sender, sid) to the
adversary. Ignore further (Sender, ...) messages.
On input message (Receiver, sid , {bt}t∈[`]) from P2, where bt ∈ {0, 1}, record {bt}t∈[`] and send
(Receiver, sid , {bt}t∈[`]) to P3 and P4 and (Receiver, sid) to the adversary. Ignore further
(Receiver, ...) inputs.
On input message (Attester, sid , {mj

0,t,m
j
1,t, b

j
t}t∈[`]) from Pj for j ∈ {3, 4}, where each

mj
i,t ∈ M, record {(mj

0,t,m
j
1,t, b

j
t)}t∈[`] and send (Attester, sid) to the adversary. Ignore further

(Attester, ...) messages.

Output. On input message (Output, sid) from the adversary, if (m0,t,m1,t, bt) 6= (m3
0,t,m

3
1,t, b

3
t)

or (m0,t,m1,t, bt) 6= (m4
0,t,m

4
1,t, b

4
t) for any t ∈ [`], send (Output, sid ,⊥) to P2; else send

(Output, sid , {mbt,t}t∈[`]) to P2.

Figure 11: The 4-party Batch Attested OT ideal functionality FB-4AOT.

33

Protocol Πb-4aot(P1, P2, {P3, P4})

The protocol is carried out among P1, P2, P3, P4, with P1 and P2 acting as sender and receiver,
respectively, and P3, P4 as attestors. Let Commit = (ComGen,Com,Open) be a secure noninteractive
commitment scheme.

Inputs. P1 holds {m1
0,t,m

1
1,t}t∈[`], and P2 holds {b2t}t∈[`].

1. P1 generates random values {r0,t, r1,t}t∈[`] ← {0, 1}∗ and computes (Com1
0,t,Open0,t) :=

Com(m1
0,t; r0,t), (Com1

1,t,Open1,t) := Com(m1
1,t; r1,t). P1 sends {Com1

0,t}t∈[`] and

{Com1
1,t}t∈[`] to P2 and sends {r0,t,m0,t, r1,t,m1,t}t∈[`] to P3 and P4, who store them as

{r3
0,tm

3
0,t, r

3
1,t,m

3
1,t}t∈[`] and {r4

0,t,m
4
0,t, r

4
1,t,m

4
1,t}t∈[`], respectively.

2. P3 and P4 exchange hash of the values they received from P1 i.e.
H({m3

0,t,m
3
1,t, b

3
t , r

3
0,t, r

3
1,t}t∈[`]) and H({m4

0,t,m
4
1,t, b

4
t , r

4
0,t, r

4
1,t}t∈[`]).

(a) If the values match, then for i ∈ {3, 4}, Pi computes (Comi
0,t,Open

i
0,t) and

(Comi
1,t,Open

i
1,t) using scheme Commit and random values ri0,t and ri1,t respectively,

compute H({Comi
0,t,Com

i
1,t}t∈[`]) and sends the hash value to P2. (Wlog) P3 also sends

{Open3
t,b3t
}t∈[`] to P2.

(b) If the hash values do not match, i.e., H({m3
0,t,m

3
1,t, b

3
t , r

3
0,t, r

3
1,t}t∈[`]) 6=

H({m4
0,t,m

4
1,t, b

4
t , r

4
0,t, r

4
1,t}t∈[`]), they send ⊥ message to P2 (denoting abort).

3. P2 checks the following and outputs ⊥ if any of them is true: (i) it receives ⊥ from P3 or P4; (ii)
the hash of the set of three commitments pairs it has received from P1, P3, P4 do not match;
i.e., H({Com1

0,t,Com
1
1,t}t∈[`]) 6= H({Com3

0,t,Com
3
1,t}t∈[`]) or H({Com1

0,t,Com
1
1,t}t∈[`]) 6=

H({Com4
0,t,Com

4
1,t}t∈[`]) (iii) Open(Com3

t,b3t
,Open3

t,b3t
) = ⊥ for b3t = b2t and for any t ∈ [`].

Otherwise, P2 outputs {m3
t,b3t
}t∈[`] ← Open(Com3

t,b3t
,Open3

t,b3t
).

Figure 12: The 4-party protocol for Batch Attested OT.

34

	Introduction
	Our contributions
	Technical overview
	Related work

	Preliminaries
	Attested Oblivious Transfer
	Attested OT
	Batch Attested OT
	Efficiency of Attested OT

	Efficient and Actively Secure 5PC
	Actively secure distributed garbling scheme
	The actively secure 5PC protocol
	Passively secure 5PC protocol

	Efficiency Considerations
	Implementation and Experiments
	Experimental Evaluation

	The n-party case
	The (n,t,q)-Assigment Problem
	A Few Special Cases

	Preliminaries (cont'd)
	Proofs
	Figures

