
The Price of Low Communication
in Secure Multi-Party Computation

Juan Garay1, Yuval Ishai2, Rafail Ostrovsky3, and Vassilis Zikas4

1 Yahoo Research, garay@yahoo-inc.com
2 Department of Computer Science, Technion, yuvali@cs.technion.ac.il

3 Department of Computer Science, UCLA, rafail@cs.ucla.edu
4 Department of Computer Science, RPI, vzikas@cs.rpi.edu

Abstract. Traditional protocols for secure multi-party computation (MPC) among n parties that
achieve optimal resiliency communicate at least a linear (in n) number of bits. In this work we investigate
the feasibility of MPC with sublinear communication complexity. Concretely, we consider two clients,
one of which may be corrupted, who wish to perform some joint computation using n servers but
without any trusted setup. We show that enforcing sublinear message complexity drastically affects the
feasibility bounds on the number of corrupted parties that can be tolerated.
We provide a complete investigation of security against semi-honest adversaries—static and adaptive,
with and without erasures—and initiate the study of malicious adversaries. For semi-honest static
adversaries, our bounds match (up to any constant fraction of corruptions) the corresponding bounds
when there is no communication restriction—i.e., we can tolerate up to t < (1/2−ε)n corrupted parties.
For the adaptive case, however, the situation is different. We prove that without erasures a constant
fraction of corruptions is intolerable, and—most surprisingly—when erasures are allowed, we prove that
t < (1−

√
0.5− ε)n corruptions can be tolerated, which we also show to be optimal up to an arbitrarily

small constant factor. The latter optimality proof hinges on a new treatment of probabilistic adversary
structures which may be of independent interest. In the case of active corruptions in this setting, we
prove that static security with abort is feasible when t < (1/2 − ε)n, namely, the bound that is tight
for semi-honest security.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a function on their joint
inputs in a secure way. Roughly speaking, security means that even when some of the parties misbe-
have, they can neither disrupt the output of honest parties (correctness), nor can they obtain more
information than their specified inputs and outputs (privacy). Misbehaving parties are captured
by assuming an adversary that corrupts some of the parties and uses them to attack the protocol.
The usual types of adversary are semi-honest (aka “passive”), where the adversary just sees the
view of corrupted parties, and malicious (aka “active”), where the adversary takes full control of
the corrupted parties.

The seminal results from the ’80s [Yao82, GMW87] proved that under standard cryptographic
assumption, e.g., the existence of enhanced trapdoor permutations (cf. [Gol04],) any multi-party
function can be securely computed in the presence of a polynomially bounded semi-honest adversary
corrupting arbitrary many parties. For the malicious case, [GMW87] proved that arbitrary many
corruptions can be tolerated if we are willing to compromise only fairness—and achieve so-called
security with abort—but an honest majority is required if we insists on achieving also fairness.

In the information-theoretic (IT) model—where there are no restrictions on the adversary’s
computational power—the situation is different. Ben-Or, Goldwasser, and Wigderson [BGW88]
and independently Chaum, Crépeau, and Damg̊ard [CCD88b] proved that IT security is possible if

and only if t < n/3 parties are actively corrupted, (respectively, if and only if t < n/2 are passively
corrupted.) The solutions of [BGW88] are perfectly secure, i.e., there is a zero-error probability.
Rabin and Ben-Or [RB89] proved that if a negligible error probability is allowed (and a broadcast
channel is available to the parties) then any function can be IT-securely computed if and only
if t < n/2 parties are actively corrupted. All the above bounds hold both for a static adversary,
who chooses all corrupted parties at the beginning of the protocol execution, and for an adaptive
adversary, who might corrupt more parties as the protocol evolves and depending on his view of
the protocol so far.

In addition to not relying on computational assumptions, information theoretic protocols typ-
ically enjoy strong composability guarantees. Concretely, the above conditions for the IT setting
allow for universally-composable (UC) secure protocols [Can01]. This is known to be impossible for
the weaker computational bounds in the plain model—i.e., without assuming access to a trusted
setup functionality such as a common reference string (CRS) [CF01]. Given the above advantages
of IT protocols, it is natural to investigate ways to obtain IT-secure protocols for arbitrary many
corruptions.

It is well known that assuming a strong setup such as oblivious transfer (OT) [Rab81],
we can construct IT secure protocols tolerating arbitrary many corruptions both in the semi-
honest [GMW87] and in the malicious setting [Kil88a, IPS08]. However, these solutions require
trusting a (centralised party that serves as) an OT functionality.

An alternative approach is for the parties to use help from other servers in a network the have
access to, e.g., the Internet. This naturally leads to the formulation of the problem in the so-called
client-server model [CDI05, DI05, DI06, HM00]. This model refines the standard MPC model by
separating parties into clients, who wish to perform some computation and provide the inputs and
receive outputs to it, and servers who help the clients perform their computation. (The same party
can play both roles, as is the case in the standard model of secure computation.) The main advantage
of this refinement is that it allows to decouple the number of clients from the expected “level of
security,” which depends on the number of servers and the security threshold, and, importantly,
it allows us to address the question of how the communication complexity (CC) of the protocol
increases with the number n of servers.

The direct approach to obtain security in the client/server model is to have the clients share
their input to all the servers—in the following we denote by n the number of servers—who perform
the computation on these inputs return to the clients their respective outputs. Using [GMW87,
BGW88, CCD88b, RB89] this yields a protocol tolerating t < n/2 semi-honest corrupted servers
or, for the malicious setting, t < n/2 corrupted servers if broadcast among them is available, and
t < n/3, otherwise. (Recall that the above bounds are in additions to arbitrary many corruptions
of clients).

Despite its simplicity, the above approach incurs a high overhead in communication when the
number of clients is small in comparison with the number of servers—this is usually the case in
natural scenarios. Indeed, the communication complexity of the above protocol would be polynomial
in n. In this work we investigate the question of how to devise optimally resilient IT protocols in the
client/server model whose communication is sublinear in the number n of servers. As we prove, this
low-communication requirement comes at a cost, i.e., it induces a different landscape of feasibility
bounds.

Related Literature. The literature of communication complexity (CC) of MPC is vast. To put
out results in perspective, in the following we discuss some of the most relevant literature on

2

IT MPC with low communication complexity. For notation simplicity, in our discussion we shall
exclude factors that depend only on the security parameter which has no dependency on n, as well
as factors logarithmic in n .

The CC of the original protocols from the 80’s was polynomial (in the best case quadratic) in
n, in particular, poly(n) · |C| where |C| denotes the size of the circuit C that computes the given
function. A long line of work ensued (e.g., [FH94,FY92,HMP00,HM01,JJ00,CDN01,DN03,HN05,
BH06,BH08,IPS08,DKMS12,DKMS14,BCP15]) has reduced this complexity down to linear in the
size of the party set by shifting the dependency on different parameters.

Concretely in the IT setting, Damg̊ard and Nielsen [DN07] achieve a CC of O(n|C| + n2)
messages—i.e., their CC scales in a linear fashion with the size |C| of the circuit C for computing
the given function. Their protocol tolerates t < n/2 semi-honest corruptions. In the malicious
setting, they provided a protocol for tolerating t < n/3 corruptions with a CC of O(n|C|+d ·n2) +
poly(n) messages, where d is the multiplicative depth of the circuit C. Beerliova and Hirt [BH08]
extended this result to perfect security and achieve CC of O(n|C|+ d · n2 + n3). Ben-Sasson, Fehr,
and Ostrovsky [BFO12] achieved CC O(n|C| + d · n2) + poly(n) messages against t < n/2 active
corruptions which was brought down to O(n|C| + n2) by Genkin et al. [GIP+14]. Note that with
the exception of the maliciously secure protocol from [DN07], all the above works tolerate a number
of corruptions which is tight even for the case where no bound on the communication complexity
is considered.

The first to look at achieving a scalability factor that is sublinear in the number of parties were
Damg̊ard and Ishai [DI06] but for the computational setting. In the information-theoretic setting
Damg̊ard, Ishai, and Krøigaard [DIK10] devised a protocol with CC O(log n · |C|) + poly(n, d)
messages tolerating an asymptotically optimal bound of t < (1/2 − ε)n malicious corruptions for
an arbitrary small constant ε > 0.

We point out that all the above results incur polynomial, in n, additive factors on their CC.
This means that even for circuits that are small relative to the number of parties, e.g., even when
|C| = o(n), they communicate a number of bits (or, even worse, messages) which is polynomial in
n. Instead, in this work we are interested in achieving overall communication (bit) complexity of
o(n)|C| without such additive (polynomial or even linear in n) factors.

Finally, a different line of work [BGT13,CCG+15,BCP15] focuses on reducing communication
locality of MPC protocols. This corresponds to the maximum number of neighbors/parties that any
party communicates with directly, i.e., via a bilateral channel, throughout the protocol. Although
these works achieve a sublinear (in the number n of parties) communication locality, they commu-
nicate an at least polynomial number of bits—similarly to the scalable MPC literature discussed
above—therefore failing to achieve our goal of sublinear bit complexity.

Our contributions. In this work we study the feasibility of information-theoretic MPC in the
client-server model with sublinear communication complexity. We consider the case of two clients
and n servers, which we refer to as the (2, n)-client/server model, and prove exact feasibility bounds
on the number of corrupted servers that can be tolerated for MPC in addition to a corrupted
client.5 We provide a complete investigation of security against semi-honest adversaries—static
and adaptive, with and without erasures—and also initiate the study of malicious adversaries. Our
results can be summarized as follows:

5 Our bounds are for the two-client case, but can be easily extended to the multi-client setting with constantly many
clients, as such an extension will just incur a constant multiplicative increase in CC.

3

As a warmup, for the simplest possible case of static semi-honest corruptions, we confirm that
the folklore protocol which has one of the clients ask a random sublinear-size server “commit-
tee” [Bra87] to help the clients perform their computation, is secure and has sublinear message
complexity against t < (1/2 − ε)n corrupted servers, for any given constant 0 < ε < 1/2. Fur-
ther, we prove that this bound is tight. Thus, up to an arbitrary small constant fraction, the
situation is the same as in the case of MPC with unrestricted communication.

In the case of adaptive semi-honest corruptions we distinguish between two cases, depending on
whether or not the (honest) parties are allowed to erase their state. Naturally, allowing erasures
makes it more difficult for the adversary to attack a protocol. However, restricting to sublinear
communication complexity introduces a counter-intuitive complication in providing optimally
resilient protocols. Concretely, in communication-unrestricted MPC (e.g., MPC with linear or
polynomial CC), the introduction of erasures does not affect the exact feasibility bound t < n/2
and typically makes it easier6 to come up with a provably secure protocol against any tolerable
adversary. In contrast, in the sublinear-communication realm erasures have a big effect on the
feasibility bound and make the design of an optimal protocol a far more challenging task. In
fact, proving upper and lower bounds for this (the erasures) setting is the most technically
challenging part of this work.

Specifically, when no erasures are assumed, we show that an adversary corrupting a constant
fraction of the servers (in addition to one of the clients, say, c1), cannot be tolerated. The reason
for this is intuitive: Since there can be at most a sublinear number of messages, there can only
be a sublinear number of servers that are activated (i.e., send or receive messages) during the
protocol. Thus, if the adversary has a linear corruption budget, then if he manages to find
the identities of these active servers, he can adaptively corrupt all of them. Since the parties
cannot erase anything (and in particular they cannot erase their communication history), the
adversary corrupting c1 can “jump” to all servers whose view depends on c1’s view, by traversing
the communication graph which includes the corrupted client. Symmetrically, the adversary
corrupting the other client c2, can corrupt the remainder “protocol-relevant” parties (i.e., parties
whose view depends on the joint view of the clients). Existence of such an adversary contradicts
classical MPC impossibility results [HM97], that prove that if there is a two-set partition of the
party-set and the adversary might corrupt either of the sets (this is the so called Q2 condition
in [HM97]) then this adversary cannot be tolerated for general MPC—i.e., there are functions
that cannot be computed securely against such an adversary.

Most surprising is the setting when erasures are assumed. We prove that any adversary which
corrupts at most t < (1−

√
0.5− ε)n of the parties, for any constant 0 < ε < 1−

√
0.5, can be

tolerated, a bound which is asymptotically tight. The idea of our protocol is as follows. Instead
of having the clients contact the servers for help—which would lead, as above, to the adversary
corrupting too many helpers—every server probabilistically “wakes up” and volunteers to help.
However, a volunteer cannot talk to both clients as with good probability the corrupted client
will be the first he talks to which will result in the volunteer being corrupted before erasing.
Instead, each volunteer asks a random server, called the intermediary, to serve as his point
of contact with one of the two clients. By an appropriate scheduling of message-sending and
erasures, we can ensure that if the adversary jumps and corrupts a volunteer or an intermediary
because he communicated with the corrupted client, then he might at most learn the message

6 As opposed to requiring the use of more complex cryptographic tools such as non-committing encryption [CFGN96,
DN00] as in the non-erasure setting.

4

that was already sent to this client. The choice of 1−
√

0.5 is an optimal choice that will ensure
that no adaptive adversary can corrupt more than 1/2 of the active servers set in this protocol.
The intuition behind it is that if the adversary corrupts each party with probability 1−

√
0.5,

then for any volunteer/intermediary pair, the probability that the adversary corrupts both of
them before they erase (by being lucky and corrupting any on of them at random) is 1/2.

Although proving the above is far from straightforward, the most challenging part is the
proof of impossibility for t = (1 −

√
0.5 + ε)n corruptions. In a nutshell, this proof works as

follows: Every adaptive adversary attacking a protocol induces a probability distribution on the
set of corrupted parties; this distribution might depend on the coins of the adversary and the
inputs and coins of all parties. This is because the protocol’s coins and inputs define the sequence
of point-to-point communication channels in the protocol, which in turn can be exploited by the
adversary to expand his corruption set, by for example jumping to parties that communicate
with the already corrupted set. Such a probability distribution induces a probabilistic adversary
structure that assigns to each subset of parties the probability that this subset gets corrupted.

We provide a natural definition of what it means for such a probabilistic adversary structure
to be intolerable and define a suitable “domination” condition which ensures that any structure
that dominates an intolerable structure is also intolerable. We then use this machinery to
prove that the adversary that randomly corrupts (approximately) (1 −

√
0.5)n servers and

then corrupts everyone that talks to the corrupted parties in every protocol round induces a
probabilistic structure that dominates an intolerable structure and is, therefore, also intolerable.
We believe that the developed machinery might be useful for analyzing other situations in which
party corruption is probabilistic.

Finally, we initiate the study of actively secure MPC with sublinear communication. Here we
look at static corruptions and provide a protocol which is IT secure with fair abort [GMW87,
IOZ14] against any adversary corrupting a client and t < (1/2 − ε)n servers for a constant
0 < ε < 1/2. This matches the semi-honest lower bound for static security, at the cost, however,
of allowing the protocol to abort, a price which seems inevitable in our setting. Proving wether
or not such an abort is indeed necessary and/or extending our treatment to adaptive active
corruptions is left as an open question.

We note that both our positive and negative results are of the strongest possible form. Specifically,
our designed protocols communicate a sublinear number of bits, whereas our impossibility proofs
apply to all protocols that communicate a sublinear number of messages (independently of how
long these messages are).

Organization of the paper. In Section 2 we present the model (network, security) used in this
work and establish the necessary terminology and notation. Section 3 presents our treatment of
semi-honest static security, while Section 4 is dedicated to semi-honest adaptive corruptions, with
erasures (Section 4.1) and without erasures (Section 4.2). Finally, Section 5 includes our feasibility
result for malicious (static) adversaries.

2 Model, Definitions and Building Blocks

We consider a set of n + 2 parties, where two special parties, called the clients, wish to securely
compute a function on their joint inputs with the help of the remaining n parties, called the servers.
We denote by C = {c1, c2} and by S = {s1, . . . , sn} the sets of clients and servers, respectively.
We shall denote by P the set of all parties, i.e., P = C ∪ S. The parties are connected by a

5

complete network of (secure) point-to-point channel as in standard unconditional secure multi-
party computation (MPC) protocols [BGW88,CCD88a]. We call this model the (2, n)-client/server
model.

The parties wish to compute a given two-party function f on inputs from the clients by invoking
a synchronous protocol Π. (Wlog, we assume that f is a public-output function f(x1, x2) = y, where
xi is ci’s input; using standard techniques, this can be extended to multi-input and private-output
functions—cf. [LP09].) Such a protocol proceeds in synchronous rounds where in each round any
party might send messages to other parties and the guarantee is that any message sent in some
round is delivered by the beginning of the following round. Security of the protocol is defined as
security against an adversary that gets to corrupt parties and uses them to attack the protocol. We
will consider both a semi-honest (aka passive) and a malicious (aka active) adversary. A semi-honest
adversary gets to see the view of parties it corrupts—and attempts to extract information from
it—but allows parties to correctly execute their protocol. In contrast, a malicious adversary takes
full control of corrupted parties. Furthermore, we consider both static and adaptive corruptions.
A static adversary chooses the set of corrupted parties at the beginning of the protocol execution,
whereas and adaptive adversary chooses this set dynamically by corrupting (additional) parties as
the protocol evolves (and depending on his view of the protocol). A threshold (tc, ts)-adversary in
the client/server model is an adversary that corrupts in total up to tc clients and additionally up
to ts servers.

The adversary is rushing [Can00, HZ10], i.e., in each round he first receives the messages that
are sent to corrupted parties, and then has the corrupted parties send their messages for that round.
For adaptive security with erasures we adopt the natural model in which each of the operations
“send-message”, “receive-message”, and “erase-messages from state” is atomic and the adversary
is able to corrupt after any such atomic operation. This, in particular, means that when a party
sends a message to a corrupted party, then the adversary can corrupt the sender before he erases
this message. More concretely, every round is partitioned in mini-rounds, where in each mini-round
the party can send a message, or receive a message, or erase a message from its state—exclusively.
This is not only a natural erasure model, but ensures that one does not design protocols whose
security relies on the assumption that honest parties can send and erase, simultaneously, as an
atomic operation (cf. [HZ10] for a related discussion about atomicity of sending messages).

The communication complexity of a protocol is the number of bits that are sent or received
by honest parties during a protocol execution. Throughout this work we will consider protocols
in which honest (or semi-honest) parties send at most a sublinear (in n) number of messages
in the protocol, i.e., the communication complexity is o(n). Furthermore, we will only consider
information-theoretic security (see below).

Simulation-based security. We will use the standard simulation-based definition of security
from [Can00]. At a high-level, a protocol for a given function is rendered secure against a given
class of adversaries if for any adversary in this class, there exists a simulator that can emulate,
in an ideal evaluation experiment, the adversary’s attack to the protocol. More concretely, the
simulator participates in an ideal evaluation experiment of the given function, where the parties
have access to a trusted third party—often referred to as the ideal functionality—that receives their
inputs, performs the computation and returns their outputs. The simulator corrupts the same set
of parties as the adversary does (statically or adaptively), and has the same control as the (semi-
honest or malicious) adversary has on the corrupted parties. His goal is to simulate the view of
the adversary and choose inputs for corrupted parties so that for any initial input distribution, the

6

joint distribution of the honest parties’ outputs and adversarial view in the protocol execution is
indistinguishable from the joint distribution of honest outputs and the simulated view in an ideal
evaluation of the function. Refer to [Can00] for a detailed specification of the simulation-based
security definition.

In this work we consider information-theoretic security and therefore we will require statistical
indistinguishability. Using the standard definitions of negligible functions [Gol01], we say that a
pair of distribution ensembles X and Y indexed by n ∈ N are (statistically) indistinguishable if for
all (not necessarily efficient) distinguishers D the following function with domain S:

∆X ,Y(n) := |Pr[D(Xn) = 1]− Pr[D(Yn) = 1]|

is negligible in s. In this case we write X ≈ Y to denote this relation. We will further use X ≡ Y
to denote the fact that X and Y are identically distributed.

The view of the adversary in an execution of a protocol consists of the inputs and randomness
of all corrupted parties and all the messages sent or received during the protocol execution. We will
use ViewA,Π to denote the random variable (ensemble) corresponding to the view of the adversary
when the parties run protocol Π. The view Viewσ,f of the simulator σ in an ideal evaluation of f
is defined analogously.

For a probability distribution Pr over a sample space T and for any T ∈ T we will denote by
Pr(T) the probability of T . We will further denote by T ← Pr the action of sampling the set T
from the distribution Pr. In slight abuse of notation, for an event E we will denote by Pr(E) the
probability that E occurs. Finally for random variables X and Y we will denote by PrX (x) the
probability that X = x and by PrX|Y(x|y) the probability that X = x conditioned on Y = y.

Oblivious Transfer and OT combiners. Oblivious Transfer (OT) [Rab81] is a two-party func-
tionality between a sender and a receiver. In its most common variant called 1-out-of-2-OT,7 the
sender has two inputs x0, x1 ∈ {0, 1} and the receiver has one bit input b ∈ {0, 1}, called the
selection bit. The functionality allows the sender to transmit the input xb to the receiver so that
(1) the sender does not learn which bit was transmitted (i.e., learns nothing), and (2) the receiver
does not learn anything about the input xb̄.

As proved by Kilian and Goldreich, Micali, and Wigderson [GMW87,Kil88b], OT is a complete
primitive for two-party computation (2PC), even against malicious adversaries. Specifically, Kilian’s
result shows that given the ability to call an ideal oracle/functionality fOT that computes OT, two
parties can securely compute an arbitrary function of their inputs with unconditional security. The
efficiency of these protocols was later improved by Ishai et al. [IPS08].

Beaver [Bea95] showed how OT can be precomputed, i.e., how parties can, in an offline phase,
compute correlated randomness that allows, during the online phase, to implement OT by simply
the sender sending to the receiver two messages of the same length as the messages he wishes
to input to the OT hybrid (and the receiver sending no message). Thus, a trusted party which
is equivalent (in terms of functionality) to OT, is one that internally pre-computes the above
correlated randomness and hands to the sender and the receiver his part of it. We will refer to such
a correlated randomness setup (Rs, Rr) where the sender receives Rs and the receiver Rr as and
OT pair. The size of each component in such an OT pair is the same as (or linear in) the size of
the inputs that the parties would hand to the OT functionality.

A fair amount of work has been devoted to so-called OT combiners, namely, protocols that can
access several m OT protocols out of which ` might be insecure, and combine them into a secure

7 In this work we will use OT to refer to 1-out-of-2 OT.

7

OT protocol (e.g., [HKN+05,MPW07,HIKN08]). Such a combiner with linear rate (i.e., where the
total communication of the combiner is linear in the total communication of the OT protocol) exists
both for semi-honest and for malicious security as long as ` < m/2. Such an OT combiner can be
applied to the pre-computed OT protocol to transform m precomputed OT strings out of which `
are sampled from the appropriate distribution by a trusted party, into one securely precomputed
OT string (which can then be used to implement a secure instance of OT).

3 Sublinear Communication with Static Corruptions

As a warm up, we start our treatment of secure computation in the (2, n)-client/server model with
the case of a static adversary, where, as we show, requiring sublinear communication complexity
comes almost at no cost in terms of how many corrupted parties can be tolerated. We consider the
case of a semi-honest adversary and prove that any (1, t)-adversary with t < (1

2 − ε)n corruptions
can be tolerated, for an arbitrary constant 0 < ε < 1

2 . We further prove that this bound is tight
(up to an arbitrary small constant fraction of corruptions); i.e., if for some ε > 0, t = (1

2 + ε)n, then
a semi-honest (1, t)-adversary cannot be tolerated.8

Concretely, in the static semi-honest case the following “folklore” protocol based on the ap-
proach of selecting a random committee [Bra87] is secure and has sublinear message complexity.
This protocol has any of the two clients, say, c1, choose (with high probability) a random com-
mittee/subset of the servers of at most polylogarithmic size and inform the other client about this
choice. These servers are given as input secret sharings of the client’s inputs, and are requested to
act as servers in a standard MPC protocol that is secure in the presence of an honest majority, for
example, the semi-honest MPC protocol by Ben-Or, Goldwasser and Wigderson [BGW88], hereafter
referred to as the “BGW” protocol. The random choice of the servers that execute the BGW pro-
tocol will ensure that, except with negligible (in n) probability, a majority of them will be honest.
Furthermore, because the BGW protocol’s complexity is polynomial in the party size, which in this
case is polylogarithmic, the total communication complexity in this case is polylogarithmic. The
protocol outlined above, denoted Πstat, is specified in more detail below and its security is stated
in Theorem 1. The proof is simple and follows the above idea; it can be found in Appendix A.

Protocol Πstat(C = {c1, c2},S = {s1, . . . , sn}, f)

1. Client c1 chooses a subset S̄ ⊆ S of logδ n servers (i.e., |S̄| = logδ n) for some constant δ > 1 uniformly at
random. Client c1 sends (the identities of) S̄ to c2 and to every party in S̄.

2. Each ci secret-shares his input xi to the parties in S̄ by means of a |S̄|
2

-out-of-|S̄| secret-sharing scheme

(e.g., using Shamir’s polynomial secret sharing [Sha79] with degree t = b|S̄|c
2

).
3. The servers in S̄ invoke an MPC protocol which is unconditionally secure for an honest majority (e.g., the

BGW protocol) to compute the function f ′ that on inputs the shares distributed by the clients performs
the following computation: It privately reconstructs x1 and x2, evaluates f on these inputs (i.e., computes
y = f(x1, x2)), and outputs y towards a default server s ∈ S̄ (the one with the smallest index, for example).

4. s sends y to both clients who output it and halt.

Theorem 1. Protocol Πstat unconditionally securely computes any given 2-party function f in the
(2, n)-client/server model in the presence of a passive and static (1, t)-adversary with t < (1/2−ε)n,

8 Wlog we can assume that the semi-honest adversary just outputs his entire view [Can00]; hence semi-honest
adversaries only differ in the set of parties they corrupt.

8

for any given constant 0 < ε < 1/2. Moreover, Πstat communicates O(logδ
′
(n)) messages, for a

constant δ′ > 1.

Next, we prove that Theorem 1 is tight. The proof idea is as follows: If the adversary corrupts
almost a majority of the parties, no matter which subset of the servers is actually activated (i.e.,
sends or receives a message) in the protocol9, an adversary that randomly chooses the parties to
corrupt has a good chance of corrupting any half of the active server set. Thus, existence of a
protocol for computing, e.g., the OR function while tolerating such an adversary would contradict
the impossibility result by Hirt and Maurer [HM97] which implies that an adversary who can
corrupt a set and its complement—or supersets thereof—is intolerable for the OR function.

Theorem 2. Assuming a static adversary, there exists no information theoretically secure protocol
for computing the boolean OR of the (two) clients’ inputs with message complexity m = o(n)
tolerating a (1, t)-adversary with t ≥ n/2− δ, for some δ = O(1).

Proof. Assume towards contradiction that a protocol Π as in the above theorem exists. Let S̄
denote the set of active servers at the end of the protocol execution (i.e., the set of servers that
send or receive a message during the protocol execution). By the message-complexity assumption,
|S̄| ≤ m = o(n) since each server in S̄ has to participate in at least one message exchange.

Consider the (1, t)-adversary A1 that corrupts one of the two client randomly (i.e., each with
probability 1/2) and additionally corrupts t servers as follows: First he picks a subset S ′ ⊆ S with
|S ′| = δ parties uniformly at random which he does not corrupt, and from the remaining n − δ
parties he corrupts a random subset A1 ⊆ (S\S ′) with |A1| = dn/2−δe. Consider now the adversary
A2 that emulates a copy of A1 but corrupts the client that A1 does not corrupt, and also corrupts
all the servers in S\S ′ that A1 does not corrupt (A2 also leaves out the servers in S ′). Let A2 denote
the set of parties corrupted by A2. Clearly, if S ′ ∩ S̄ = ∅ then A1 ∪ A2 ⊆ S̄. But with probability
p ≥ 1 − δm

n (which is not negligible, since δ = O(1) and m = o(n)) we do have S ′ ∩ S̄ = ∅. This

holds because each of the parties in S ′ is in S̄ with probability at most |S̄|n ≤
m
n (recall that S ′and

S̄ are chosen uniformly and independently.) Thus, a protocol which is secure against both A1 and
A2 would have to be private against A1 or A2 being corrupted with S̄ ⊆ A1 ∪A2.

Next, we observe that if a protocol is private against some adversary, then it remains private
even if the adversary gets access to the entire view of the inactive servers. Indeed, the states of
these servers are independent of the states of active parties and depend only on their internal
randomness, hence they are perfectly simulatable. Thus, if Π can tolerate Ai, then it can also
tolerate A′i which in addition to Ai learns the state of all servers in (S \ S̄); denote by A′i the
(random variable corresponding to the) set of parties that A′i learns their view. The above analysis
implies that A′1 ∪ A′2 = S with noticeable probability. Hence, if Π tolerates adversary A it also
tolerates an adversary choosing to corrupt between A′1 and A′2—where with noticeable probability
A′1 ∪A′2 = S—and also corrupting any one of the two clients; existence of such a Π contradicts the
impossibility of computing the OR against non-Q2 adversary structures [HM97]. ut

4 Sublinear Communication with Adaptive Corruptions

In this section we consider an adaptive semi-honest adversary and prove corresponding tight bounds
for security with erasures—the protocol can instruct parties to erase their state so as to pro-

9 Note that not all servers can be activated as the number of active servers is naturally bounded by the (sublinear)
communication complexity.

9

tect information from an adaptive adversary who has not yet corrupted the party—and without
erasures—everything that the parties see stays in their state.

4.1 Security with Erasures

We start with the setting where erasures of parties’ states are allowed, which prominently demon-
strates that sublinear communication comes at an unexpected cost in the number of corruptions
that can be tolerated. Specifically, in this section we show that for any constant 0 < ε < 1−

√
0.5,

there exists a protocol that computes any given two-party function f in the presence of a (1, t)-
adversary (Theorem 3). Most surprisingly, we prove that this bound is tight up to any arbitrary
small constant fraction of corruptions (Theorem 4). The technique used in proving the lower bound
introduces a novel treatment of (and a toolboox for) probabilistic adversary structures that we
believe can be of independent interest.

We start with the protocol construction. First, observe that the idea behind protocol Πstat can-
not work here as an adaptive adversary can corrupt client c1, wait for him to choose the servers
in S̄, and then corrupt all of them adaptively since he has a linear corruption budget. (Note that
erasures cannot help here as the adversary sees the list of all receivers by observing the corrupted
sender’s state.) This attack would render any protocol non-private. Instead, we will present a pro-
tocol which allows clients c1 and c2 to pre-compute sufficiently many 1-out-of-2 OT functionalities
fOT ((m0,m1), b) = (⊥,mb) in the (2, n)-client/server model with sublinear communication com-
plexity. The completeness of OT ensures that this allows c1 and c2 to compute any given function.

A first attempt towards the above goal is as follows. Every server independently decides with

probability p = logδ n
n (based on his own local randomness) to “volunteer” in helping the clients by

acting as an OT dealer (i.e., acting as a trusted party that prepares and sends to the clients an OT
pair). The choice of p can be such that with overwhelming probability not too many honest servers
volunteer (at most sublinear in n) and the majority of the volunteers are honest. Thus, the majority
of the distributed OT pairs will be honest, which implies that the parties can use an OT-combiner
that is secure for a majority of good OTs (e.g., [HKN+05]) on the received pre-computed OT pairs
to derive a secure implementation of OT.

Unfortunately, the above idea does not quite work. To see why, consider an adversary who
randomly corrupts one of the clients and as soon as any honest volunteer sends a messages to the
corrupted client, the adversary corrupts him as well and reads his state. (Recall that send and erase
are atomic operations.) It is not hard then to verify that even if the volunteer erases part of its
state between contacting each of the two clients, with probability (at least) 1/2 such an adversary
learns the entire internal state of the volunteer before he gets a chance to erase it.

So instead of the above idea, our approach is as follows. Every server, as above, decides with

probability p = logδ n
n to volunteer in helping the clients by acting as an OT dealer and computes

the OT pair, but does not send it. Instead, it first chooses another server, which we refer to as
his intermediary, uniformly at random, and forwards him one of the components in the OT pairs
(say, the one intended for the receiver); then, it erases the sent component and the identity of the
intermediary along with the coins used to sample it (so that now his state only includes the sender’s
component of the OT pair); finally, both the volunteer and his intermediary forward their values
to their intended recipient.

It is straightforward to verify that with the above strategy the adversary does not gain anything
by corrupting a helping server—whether a volunteer or his associated intermediary—when he talks

10

to the corrupted client. Indeed, at the point when such a helper contacts the client, the part of the
OT pair that is not intended for that client and the identity of the other associated helper have both
been erased. But now we have introduced an extra point of possible corruption: The adversary can
learn any given OT pair by corrupting either the corresponding volunteer or his intermediary before
the round where the clients are contacted. However, as we will show, when t < (1−

√
0.5− ε)n, the

probability that the adversary corrupts more than half of such pairs is negligible.

The complete specification of the above sketched protocol, denoted ΠOT
adap is shown below, fol-

lowed by the statement of its security.

Protocol ΠOT
adap(C = {c1, c2},S = {s1, . . . , sn})

1. Every server si ∈ S locally decides to become active with probability p = logδ n
n

for a publicly known
constant δ > 1. Let S̄1 denote the set of parties that become active in this round. Every si ∈ S̄1 prepares

an OT pair ((mi, ri), otidi), where otidi ∈ {0, 1}logδ n is a uniformly chosen identifier.
2. Every si ∈ S̄1 choses a relayer sij ∈ S uniformly at random and sends (ri, otidi) to sij . Denote by
S̄2 = {sij |si ∈ S̄} the set of all relayers (i.e., intermediaries).

3. Every si ∈ S̄1 erases ri and the randomness used to select sij .
4. Every si ∈ S̄1 sends (mi, otidi) to c1 and every sij ∈ S̄2 sends (ri, otidi) to c2.
5. Every si ∈ S̄1 and every sij ∈ S̄2 erase its entire internal state.
6. The clients c1 and c2 use the OT pairs with matching otid’s within a (semi-honest) (n/2, n) OT-combiner

[HKN+05] to obtain a secure OT protocol.

Theorem 3. Protocol ΠOT
adap unconditionally securely computes the function fOT ((m0,m1), b) = (⊥

,mb) in the (2, n)-client/server model in the presence of a passive and adaptive (1, t)-adversary with
t < (1 −

√
0.5 − ε)n, for any given constant 0 < ε < 1 −

√
0.5 and assuming erasures. Moreover,

ΠOT
adap communicates O(logδ(n)) messages, with δ > 1, except with negligible probability.

Proof. Every server s ∈ S is included in the set of servers that become active in the first round,

i.e., S̄1, with probability p = logδ n
n independent of the other servers. Thus by application of the

Chernoff bound we get that for every 0 < γ < 1:

Pr[|S̄1| > (1 + γ) logδ n] < e−
γ logδ n

3 (1)

which is negligible. Moreover, each si ∈ S̄1 chooses one additional relay-party sij which means that
for any constant 0 < γ′ < 1:

|S̄| = |S̄1 ∪ S̄2| ≤ (2 + γ′) logδ n

with overwhelming probability. (As in the proof of Theorem 2, S̄ denotes the set of active servers
at the end of the protocol.) Since each such party communicates at most two messages, the total
message complexity is O(logδ n) plus the messages exchanged in the OT combiner which are
polynomial in the number of OT pairs. Thus, with overwhelming probability, the total number of
messages is O(logδ

′
(n)) for some constant δ′ > δ.

To prove security, it suffices to ensure that for the uncorrupted client, the adversary does not learn
at least half of the received OT setups. Assume wlog that c2 is corrupted. (The case of a corrupted
c1 is handled symmetrically, because, wlog, we can assume that an adversary corrupting some party
in S̄1 also corrupts all parties in S̄2 which this party sends messages to after its corruption.) We
show that the probability that the adversary learns more than half of the mi’s is negligible.

11

First, we can assume, wlog, that the adversary does not corrupt any servers after Step 5, i.e.,
after the states of the servers has been erased. Indeed, for any such adversary A there exists an
adversary A′ who outputs a view with the same distribution as A but does not corrupt any of
the parties that A corrupts after Step 5; in particular A′ uses A as a blackbox and follows A’s
instructions, and until Step 5 corrupts every server that A requests to corrupt, but after that step,
any request from A to corrupt a new server s is replied by A′ simulating s without corrupting him.
(This simulation is trivially perfect since at Step 5 s will have erased its local state so A′ needs just
to simulate the unused randomness.)

Second, we observe that, since the adversary does not corrupt c1, the only way to learn some
mi is by corrupting the party in S̄1 that sent it to c1. Hence to prove that the adversary learns less
than 1/2 of the mi’s it suffices to prove that the adversary corrupts less than 1/2 of S̄1.

Next, we observe that the adversary does not gain any advantage in corrupting parties in S̄1

by corrupting client c2, since (1) parties in S̄1 do not communicate with c2, and (2) by the time
an honest party sij ∈ S̄2 communicate with c2 he has already erased the identity of si. (Thus
corrupting sij after he communicates with c2 yields no advantage in finding si.) Stated differently,
if there is an adversary who corrupts more than 1/2 servers in S̄1, then there exists an adversary
that does the same without even corrupting c2. Thus to complete the proof it suffices to show that
any adversary who does not corrupt c2, corrupts less than 1/2 of the servers in |S̄1|. This is stated
in Lemma 2 which is proved using the following strategy: First we isolate a subset of S̄ ′1 of S̄1

which we call over-connected parties, for which we cannot give helpful guarantees on the number
of corruptions. Nonetheless, we prove in Lemma 1 that this “bad” set is “sufficiently small” with
respect to S̄1. By this we mean that we can bound the fraction of corrupted parties in S̄1 sufficiently
far from 1/2 so that even if give this bad set S̄ ′1 to the adversary to corrupt for free, his chances of
corrupting a majority in S̄1 are still negligible. The formal arguments follow.

Let E = {(s, s′) | s ∈ S̄1 ∨ s′ ∈ S̄2} and let G denote the graph with vertex-set S and edge-set
E. We say that server s ∈ S̄1 is an over-connected server if the set {si, sij} has neighbors in G.
Intuitively, the set of over-connected servers is chosen so that if we remove these servers from G
we get a perfect matching. As we will show below, even if we give up all over-connected servers in
S̄1 (i.e., allow the adversary to corrupt all of them for free) we still have a majority of uncorrupted
servers in S̄1. To this direction, we first prove in the following lemma that the fraction of S̄1 servers
that are over-connected is an arbitrary small constant.

Lemma 1. Let S̄ ′1 ⊆ S̄1 denote the set of over-connected servers as defined above. For for any
constant 1 > ε′ > 0 and for big enough n: |S̄ ′1| < ε′|S̄1| except with negligible probability.

Proof. To prove the claim we make use of the Generalized Chernoff bound [PS97] (see Theorem 8
in Appendix B.) For each si ∈ S̄1 let Xi ∈ {0, 1} denote the indicator random variable that is 1 if
si ∈ S̄ ′1 and 0 otherwise. As above for each si ∈ S̄1 we denote by sij the party that si chooses as a
relayer in the first step of the protocol.

Pr[Xi = 1] = Pr[(sij ∈ S̄1) ∪ (∃sk ∈ S̄1 s.t. skj ∈ {si, sij})]
≤ Pr[sij ∈ S̄1] + Pr[∃sk ∈ S̄1 s.t. skj = si] + Pr[∃sk ∈ S̄1 s.t. skj = sij]

≤ 3
|S̄1|
n

(2)

where both inequalities follow by a direct union bound since sij is chosen uniformly at random,
and for each of the servers si and sij there are at most |S̄1| servers that might choose them as a

12

relayer. But from Equation 1, |S̄1| < (1+γ) logδ n except with negligible probability. Thus for large
enough n: Pr[Xi = 1] < ε′.

Next, we observe that for any subset Q of indices of parties in S̄1 and for any i ∈ Q it holds that
Pr[Xi = 1 |

∧
j∈Q\{i}Xj = 1] ≤ Pr[Xi = 1]. This is the case because the number of edges (sk, skj)

is equal to the size of S̄1 and any connected component in G with ` nodes mush include at least
` such edges. Hence for any such Q: Pr[∧i∈QXi = 1] ≤

∏
i∈Q Pr[Xi = 1] ≤ ε1

|Q|. Therefore by a
direct application of the generalised Chernoff bound (Theorem 8) for δ = ε1 < ε′ and γ = ε′ we
obtain

Pr[

n∑
i=1

Xi ≥ ε′n] ≤ e−n2(ε′−ε1)2

which is negligible. ut

Let A be an adaptive (1, t)-adversary and let C be the total set of servers corrupted by A (at
the end of Step 5). We want to prove that |C ∩ S̄1| < 1

2 |S̄1| except with negligible probability. To
this direction, we consider the adversary A′ who is given access to the identities of all servers in
S̄ ′1, corrupts all these parties and, additionally, corrupts the first t− |S̄ ′1| parties that adversary A
corrupts. Let C ′ denote the set of parties that A′ corrupts. It is easy to verify that if |C∩S̄1| ≥ 1

2 |S̄1|
then |C ′ ∩ S̄1| ≥ 1

2 |S̄1|. Indeed, A′ corrupts all but the last |S̄ ′1| of the parties that A corrupts; if
all these last parties end up in S̄1 then we will have |C ′ ∩ S̄1| = |C ∩ S̄1|, otherwise, at least one of
them will not be in C ∩ S̄1 in which case we will have |C ′ ∩ S̄1| > |C ∩ S̄1|. Hence, to prove that
|C ∩ S̄1| < 1

2 |S̄1| it suffices to prove that |C ′ ∩ S̄1| < 1
2 |S̄1|

Lemma 2. The set C ′ of servers corrupted by A′ as above has |C ′ ∩ S̄1| < 1
2 |S̄1| , except with

negligible probability.

Proof. Consider the gaph G′ which results by deleting from G the vertices/servers in S̄ ′1. By con-
struction, G′ is a perfect pairing between parties in S̄1\S̄ ′1 and parties in S̄2\S̄ ′1. For each si ∈ S̄1\S̄ ′1
let Xi denote the Boolean random variable with Xi = 1 if {si, sij} ∩ (C ′ \ S̄ ′1) 6= ∅ and Xi = 0
otherwise. When Xi = 1 we say that the adversary has corrupted the edge ei = (si, sij). Clearly,
the number of corrupted edges is an upper bound of the corresponding number of corrupted servers
in S̄1 \ S̄ ′1. Thus we will show that the number of corrupted edges is bounded away from 1/2.

By construction of G′ the Xi’s are independent, identically distributed random variables. Every
edge in G′ is equally likely, thus the adversary gets no information on the rest of the graph by
corrupting some edge. Therefore we can assume wlog that A′ chooses the servers in C ′ \ S̄ ′1 at the
beginning of the protocol execution. In this case we get the following for C ′1 = C ′ \ S̄ ′1:

Pr[Xi = 1] = Pr[si ∈ C ′1] + Pr[sij ∈ C ′1]− Pr[{si, sij} ⊆ C ′1]

= 2
|C| − |S̄ ′1|
n− |S̄ ′1|

−
(
|C| − |S̄ ′1|
n− |S̄ ′1|

)2

≤ 2(1−
√

0.5− ε)n
n− |S̄ ′1|

−

(
(1−

√
0.5− ε)n− |S̄ ′1|
n− |S̄ ′1|

)2

To make the notation more compact, let λ = 1−
√

0.5− ε. Because, from Lemma 1, |S̄ ′1| ≤ ε′n
(and thus n− |S̄ ′1| > (1− ε′)n) except with negligible probability, we have that for large enough n
and some negligible function µ :

13

Pr[Xi = 1] ≤ 2λn

(1− ε′)n
−
(
λn− |S̄ ′1|
n− |S̄ ′1|

)2

+ µ (3)

Moreover,

(
λn− |S̄ ′1|
n− |S̄ ′1|

)2

≥
(
λn− |S̄ ′1|

n

)2

=

(
λ− |S̄

′
1|
n

)2

≥ λ2 − 2λ|S̄ ′1|
n

(4)

But because, from Equation 1, |S̄1| = O(logδ n) with overwhelming probability, we have that for
every constant 0 < ε1 < 1 and every negligible function µ′, and for all sufficiently large n the

following holds:
2λ|S̄′1|
n + µ′ < ε1. thus combining Equations 3 and 4 we get that for all such ε1 and

for sufficiently large n:

Pr[Xi = 1] ≤ 2

(1− ε′)
λ− λ2 + ε1

=
2

(1− ε′)
(1−

√
0.5− ε)− 1.5− ε2 + 2ε+ 2(1− ε)

√
0.5 + ε1

≤ 2

(1− ε′)
− 2ε

(1− ε′)
− 1.5− ε2 + 2ε+ ε1

≤ 2

(1− ε′)
− 1.5− ε2 + ε1

For ε′ ≤ 1− 2
2+ε2/4

and ε1 = ε2/4 the last equation gives

Pr[Xi = 1] ≤ 1

2
− ε2

2

Furthermore, because the Xi’s are independent the assumptions in Theorem 8 are satisfied for
δ = 1

2 −
ε2

2 , hence,

Pr[
∑

si∈S̄1\S̄′1

Xi ≥ (1/2− ε2/3)|S̄1 \ S̄ ′1|] ≤ e−n(ε2/6)

which is negligible. Note that, by Lemma 1, for large-enough n, with overwhelming probability
|S̄ ′1| < 2ε2

3+2ε2
|S̄1|. Thus with overwhelming probability the total number of corrupted servers in S̄1

is less than 1
2 |S̄1|. ut

The above lemma ensures that the adversary cannot corrupt a majority of the OT-pairs. Further-
more, with overwhelming probability, all the otid’s chosen by the parties in S̄ are distinct. Thus
the security of the protocol follows from the security of the OT combiner.

This concludes the proof of Theorem 3. ut

Next, we turn to the proof of the lower bound. We prove that there exists an adaptive (1, t)-
adversary that cannot be tolerated when t = (1−

√
0.5+ε)n for any (arbitrarily small) constant 0 <

ε < 1−
√

0.5. To this direction, we start with the observation that every adaptive adversary attacking

14

a protocol induces a probability distribution on the set of corrupted parties, which might depend
on the coins of the adversary, and the inputs and coins of all parties. Such a probability distribution
induces a probabilistic adversary structures that assigns to each subset of parties the probability
that this subset gets corrupted. Hence, it suffices to prove that this probabilistic adversary structure
is what we call intolerable which, roughly, means that there are functions that cannot be computed
when the corrupted sets are chosen from this structure. Before sketching our proof strategy, it is
useful to give some intuition about the main challenge one encounters when attempting to prove
such a statement. This is best demonstrated by the following counterexample.

A counterexample. It is tempting to conjecture that for every probabilistic adversary A who
corrupts each party i with probability pi > 1/2, there is no (general-purpose) information-theoretic
MPC protocol which achieves security against A. While this is true if the corruption probabilities
are independent, we show that this is far from being true in general.

Let fk denote the boolean function fk : {0, 1}3k → {0, 1} computed by a depth-k complete tree of
3-input majority gates. It follows from [HM00,CDI+13] that there is a perfectly secure information-
theoretic MPC protocol that tolerates every set of corrupted parties T whose characteristic vector
χT satisfies f(χT) = 0. We show the following.

Proposition 1. There exists a sequence of distributions Xk, where Xk is distributed over {0, 1}3k ,
such that for every positive integer k we have (1) fk(Xk) is identically 0, and (2) each entry of Xk

takes the value 1 with probability 1− (2/3)k.

Proof. Define the sequence Xk inductively as follows. X1 is a uniformly random over {100, 010, 001}.
The bit-string Xk is obtained as follows. Associate the entries of Xk with the leaves of a complete
ternary tree of depth k. Randomly pick Xk by assigning 1 to all leaves of one of the three sub-trees
of the root (the identity of which is chosen at random), and assigning values to each of the two
other sub-trees according to Xk−1. Both properties can be easily proved by induction on k. ut

Letting Ak denote the probabilistic adversary corresponding to Xk, we get a strong version of
the desired counterexample, thus contradicting the aforementioned conjecture for k ≥ 2.

The above counterexample demonstrates that even seemingly straightforward arguments when
considering probabilistic adversary structures can be false, because of correlation in the corruption
events. Next, we present the high-level structure of our lower bound proof.

We consider an adversary A who works as follows: At the beginning of the protocol, A corrupts
each of the n servers independently with probability 1−

√
0.5 and corrupts one of the two clients,

say, c1, at random; denote the set of initially corrupted servers by C0 and initialize C := C0.
Subsequently, in every round, if any server sends or/receives a message to/from one of the servers
in C, then the adversary corrupts him as well and adds him to C. Observe that A does not corrupt
servers when they send or receive messages to the clients. (Such an adversary would in fact be
stronger but we will show that even the above weaker adversary cannot be tolerated.) We also note
that the above adversary might exceed his corruption budget t = (1 −

√
0.5 − ε)n. However, an

application of the Chernoff bound shows that the probability that this happens in negligible in n
so we can simply have the adversary abort in the unlikely case of such an overflow.

We next observe that because A corrupts servers independently at the beginning of the protocol,
we can consider an equivalent random experiment where first the communication pattern, i.e., the
sequence of edges, is decided and then the adversary A chooses his initial sets and follows the

15

above corruption paths (where edges are processed in the given order). For each such sequence of
edges, A defines a probability distribution on the (active) edge set that is fully corrupted, namely
both its end-points are corrupted at the latest when they send any message in the protocol (and
before they get a chance to erase it). Shifting the analysis from probabilistic party-corruption
structures to probabilistic edge-corruption structures yields a simpler way to analyze the view of
the experiment. Moreover, we provide a definition of what it means for an edge-corruption structure
to be intolerable, which allows us to move from edge to party corruptions.

Next, we define a domination relation which, intuitively, says that a probabilistic structure
PrAE1

dominates another probabilistic structure PrAE2
on the same set of edges, if there exist a

monotone probabilistic mapping F among sets of edges—i.e., a mapping from sets to their subsets—
that transforms PrAE1

into PrAE2
. Conceptually, for an adversary that corrupts according to PrAE1

(hereafter referred to as a PrAE1
-adversary), the use of F can be thought as “forgetting” some of

the corrupted edges.10 Hence, intuitively, an adversary who corrupts edge-sets according to PrAE2
(or, equivalently, according to “PrAE1

with forget”) is easier to simulate than a PrAE1
-adversary, as

if there is a simulator for the latter, we can apply the forget predicate F on the (simulated) set of
corrupted edges to get a simulator for PrAE2

. Thus, if PrAE2
is intolerable, then so is PrAE1

.

Having such a domination relation in place, we next look for a simple probabilistic structure that
is intolerable and can be dominated by the structure induced by our adversary A. To this end, we
prove intolerability of a special structure, where each edge set is sampled according to the following
experiment: Let E be a collection of edge sets such that no E ∈ E can be derived as a union of
the remaining sets; we choose to add each set in E to the corrupted-edge set independently with
probability 1/2. The key feature of the resulting probabilistic corruption structure that enables us
to prove intolerability and avoid miss-steps as in the above counterexample, is the independence
assumption in the above sampling game.

The final step, i.e., proving that the probabilistic edge corruption structure induced by our
adversaryA dominates the above special structure, goes through a delicate combinatorial argument.
We define a special graph traversing algorithm for the given edge sequence that yields a collection of
potentially fully corruptible subsets of edges in this sequence, and prove that the maximal elements
in this collection can be used to derive such a dominating probabilistic corruption structure.

The complete proof of our impossibility (stated in Theorem 4 below) can be found in Ap-
pendix C.

Theorem 4. Assume an adaptive passive adversary and that erasures are allowed. There exists
no information theoretically secure protocol for computing the boolean OR function in the (2, n)-
client/server model with message complexity m = o(n) tolerating a (1, t)−adversary, where t =
(1−

√
0.5 + ε)n for a constant ε > 0.

4.2 Security without Erasures

We next turn to the case of adaptive corruptions (still for semi-honest adversaries) in a setting where
parties do not erase any part of their view (and thus an adaptive adversary that corrupts any parties
gets to see the parties’ entire protocol view from the beginning of the protocol execution). This is
another instance which demonstrates that requiring sublinear communication induces unexpected
costs on the protocols’ adversarial tolerance.

10 Here, “forgetting” means removing the view of their end-points from the adversary’s view.

16

In particular, when we do not restrict the communication complexity, then any (1, t)-adversary
can be tolerated for information-theoretic MPC in the (2, n)-client/server model, as long as t <
n/2 [BGW88]. Furthermore, exact protocols are typically tougher to come up with in the case of no
erasures. Instead, as we now show, when restricting to sublinear communication, there are functions
that cannot be securely computed when any (arbitrary small) linear number of servers is corrupted
(Theorem 5). If, on the other hand, we restrict the number of corruptions to be sublinear, there is
a straightforward protocol that computes any given function (Theorem 6).

The intuition behind the impossibility can be demonstrated by looking at protocol Πstat from
Section 3: An adaptive adversary can corrupt client c1, wait for him to choose the servers in S̄,
and then corrupt all of them rendering any protocol among them non-private. In fact, as we show
below, this is not a problem of the protocol but an inherent limitation in the setting of adaptive
security without erasures.

Specifically, the following theorem shows that if the adversary is adaptive and has the ability
to corrupt as many servers as the protocols’ message complexity, along with any one of the clients,
then there are functions that cannot be privately computed. The idea is that such an adversary
can wait until the end of the protocol, corrupt any of the two clients, say, ci, and, by following the
messages’ paths, also corrupt all servers whose view is relevant for the computation. As we show,
existence of a protocol tolerating such an adversary contradicts classical impossibility results in the
MPC literature [BGW88,HM97].

Theorem 5. In the non-erasure model, there exists no information theoretically secure protocol
for computing the OR function in the (2, n)-client/server model with message complexity m = o(n)
tolerating an adaptive (1,m+ 1)-adversary.

Proof. Assume towards contradiction that such a protocol Π exists. First we make the following
observation: Let G denote the effective communication graph of the protocol defined as follows:
G = (V,E) is an undirected graph where the set V of nodes is the set of all parties, i.e., V = S ∪
{c1, c2}, and the set E of edge includes of pairs of parties that exchanged a message in the protocol
execution; i.e., E := {(pi, pj) ∈ V 2 s.t. pi exchanged a message with pj in the execution of Π}. 11

By definition, the set S̄ of active parties is the set of nodes in G with degree d > 0. Let S̄ ′ denote
the set of active parties that do not have a path to any of the two clients. (In other words, nodes
in S̄ ′ do not belong in a connected component including c1 or c2).

We observe that if a protocol is private against an adversary A, then it remains private even if
A gets access to the entire view of parties in S̄ ′ and of the inactive servers S \ S̄. Indeed, the states
of these parties are independent of the states of active parties and depend only on their internal
randomness, hence they are perfectly simulatable.

Let A1 denote the adversary that attacks at the end of the protocol and chooses the parties
A1 to corrupt by the following greedy strategy: Initially A1 := {c1}, i.e., A1 always corrupts the
first client. For j = 1 . . . ,m, A1 adds to A1 all servers that are not already in A1 and exchanged a
message with some party in A1 during the protocol execution. (Observe that A1 does not corrupt
the second client c2). Note that the corruption budget of the adversary is at least as big as the
total message complexity, hence he is able to corrupt even every active server (if they all happen to
be in the same connected component as c1). Symmetrically, we define the adversary A2 that starts
with A2 = {c2} and corrupts servers using the same greedy strategy. Clearly, A1 ∪ A2 = S̄ \ S̄ ′.
Furthermore, as argued above, if Π can tolerate Ai, then it can also tolerate A′i which in addition

11 Note that G is fully defined at the end of the protocol execution.

17

to Ai learns the state of all servers in S̄ ′∪(S \S̄); denote by A′i the set of parties that A′i learns their
view. Clearly, A′1 ∪ A′2 = S, thus existence of such a Π contradicts the impossibility of computing
the OR against non-Q2 adversary structures [HM97]. ut

Corollary 1. In the non-erasure model, there exists no information theoretically secure protocol for
computing the Boolean OR function of the (two) clients’ inputs with message complexity m = o(n)
tolerating an adaptive (1, t)-adversary, where t = εn for some constant ε > 0.

For completeness, we show that if the adversary is restricted to a sublinear number t of corrupted
servers, then there is a straightforward way to tolerate this adversary by a sublinear communication
protocol. Indeed, in this case we simply need to use Πstat, with the modification that c1 chooses
n′ = 2t+ 1 servers to form a committee. Because t = o(n), this committee is trivially of sublinear
size, and because n′ > 2t a majority of the servers in the committee will be honest. Hence, the same
argument as in Theorem 1 applies also here. This proves the following theorem; the proof uses the
same structure as the proof of Theorem 1 and is therefore omitted.

Theorem 6. Assuming t = o(n), there exists an unconditionally secure (privately) protocol that
computes any given 2-party function f in the (2, n)-client/server model in the presence of a passive
adaptive (1, t)-adversary and communicates o(n) messages. The statement holds even when no
erasures are allowed.12

5 Sublinear Communication with Active (Static) Corruptions

Next, we initiate the study of malicious adversaries on the MPC setting with sublinear commu-
nication, restricting our attention to static security. Since the bound from Section 3 is necessary
for semi-honest security, it is also necessary for malicious security (since a possible strategy of a
malicious adversary is to play semi-honestly). In this section we show that if t < (1/2 − ε)n, then
there exists a maliciously secure protocol for computing every two-party function with abort against
a (1, t)-adversary. To this end, we present a protocol which allows clients c1 and c2 to compute the
1-out-of-2 OT functionality fOT ((m0,m1), b) = (⊥,mb) in the (2, n)-client/server model with sub-
linear communication complexity. As before, the completeness of OT ensures that this allows c1

and c2 to compute any function.

We remark that the impossibility result from Section 3 implies that no fully secure protocol
(i.e., without abort) can tolerate a (1, t)-adversary as above. As we argue below, the ability of
the adversary to force an abort seems inherent in protocols that achieve sublinear communication
against an active adversary with a linear number of corruptions. Thus, it is an interesting open
question whether the semi-honest impossibility can be extended to the case of security with abort.

Before presenting our protocol for this setting, we discuss a subtle issue with sub-linear com-
munication complexity when a constant fraction of the parties might be corrupted by a malicious
adversary. Concretely, such a malicious adversary is able to corrupt a linear number of parties
and can therefore send a linear number of bits to honest parties. Hence, strictly speaking, a linear
number of messages is sent through the point-to-point channels. However, in our protocol we will
have all honest parties block their communication interfaces if they receive too many messages (and

12 Observe that a protocol that is secure when no erasures are allowed is trivially also secure when erasures are
allowed.

18

in any case, before they exceed their sublinear budget). This is similar to how sublinear commu-
nication locality is achieved in [BGT13, CCG+15] in the presence of a linear number of corrupted
parties. In particular, this will ensure that the total number of messages that honest parties send
or receive in the protocol is sublinear.

Towards designing a protocol for the malicious setting, one might be tempted to think that the
semi-honest approach of one of the clients choosing a committee might work here as well. This is
not the case, as this client might be corrupted (and malicious) and only pick servers that are also
corrupted. Instead, here we use the following idea inspired by the adaptive protocol with erasures

(but without intermediaries): Every server independently decides with probability p = logδ n
n (based

on his own local randomness) to volunteer in helping the clients by acting as an OT dealer. The
choice of p is such that with overwhelming probability not too many honest servers volunteer (at
most sublinear in n). The clients then use the OT-combiner on the received pre-computed OT pairs
to implement a secure OT. Note that this solution does not require any intermediaries as we have
static corruptions.

But now we have two problems to solve. First, the adversary might pretend to be volunteering
with more than a sublinear number of parties (since he is allowed a linear number of corruptions).
If the clients listen to all of them then we will end up with a higher than sublinear communication
complexity. Second, even if the adversary only volunteers with a sublinear number of corrupted
servers, it might still be that the majority of the volunteers is corrupted, and no OT combiner
exists that will yield a secure OT protocol when the majority of the combined OTs is corrupted
(cf. [HKN+05,MPW07]).

Both these problems are solved as follows: We will have each of the clients abort during the OT
pre-computation phase if he receives OT pairs from more than a (sub-linear) number q of parties.
Most importantly, by an appropriate choice of q we can ensure that if the adversary attempts to
contact the clients with more corrupted parties than the honest volunteers, then with overwhelming
probability he will provoke an abort. We note in passing that such an abort seems inevitable when
trying to block such a message overflow by the adversary as the adversary is rushing and can
make sure that his messages are always delivered before the honest parties’ messages. The resulting
protocol, Πact, is given below along with its security statement.

Protocol ΠOT
act (C = {c1, c2},S = {s1, . . . , sn})

1. Every server si ∈ S locally decides to become active with probability p = logδ n
n

for a given (public) constant
δ > 1. Let S̄ denote the set of parties that become active.

2. Every si ∈ S̄ prepares λ = poly(k) OT pairs (mi1, ri1), . . . , (miλ, riλ) and sends the vectors (mi1, . . . ,miλ)
and (ri1, . . . , riλ) to clients c1 and c2, respectively.

3. Each ci, i ∈ {1, 2}, sends ⊥ to c2−i and aborts the protocol execution if ci was contacted by more than
(1 + ε2) logδ n parties in the previous step.

4. If ci, i ∈ {1, 2}, received a ⊥ from c2−i in the previous step then he aborts.
5. The parties use the OT pairs with a malicious (n/2, n) OT-combiner [HKN+05] to obtain a secure OT

protocol.

19

Theorem 7. Protocol ΠOT
act unconditionally securely computes the function fOT ((m0,m1), b) =

(⊥,mb) with abort in the (2, n)-client/server model in the presence of an active and static (1, t)-
adversary with t ≤ (1/2−ε)n, for any given 0 < ε < 1/2. Moreover, ΠOT

act communicates O(logδ(n))
messages, for a given constant δ > 1, except with negligible probability.

Proof. Without loss of generality we can assume that adversary A corrupts T = b(1
2 − ε)nc parties.

Indeed, if the protocol can tolerate such an adversary than it can also tolerate any adversary
corrupting t ≤ T parties.
For a given execution of ΠOT

act let S̄ denote the set of servers that would become corrupted if the
adversary would be passive (i.e., allow all corrupted parties to play according to the protocol).

Then, each server s ∈ S is included in the set S̄ with probability p = logδ n
n independent of the

other servers. Thus by application of the Chernoff bound we get that for any constant 1 < γ < 0:

Pr[|S̄| ≤ (1− γ) logδ n] < e−
γ2 logδ n

3

For γ = ε2 he above equation implies that with overwhelming probability:

|S̄| > (1− ε2) logδ n. (5)

Now let C ⊆ S denote the set of servers who are corrupted by the (static) adversary A. (Recall
that A corrupts T = b(1

2 − ε)nc parties.) For each si ∈ S̄, let Xi denote the indicator random
variable which is 1 if si ∈ C and 0 otherwise. Because the parties become OT dealers independently
of the corruptions and the adversary corrupts T parties, X1, . . . , X|S̄| are i.i.d. random variables

with Pr[Xi = 1] = T/n. Thus, X =
∑|S̄|

i=1Xi = |S̄ ∩C| with mean µ = |S̄|T
n . By another application

of the Chernoff bound we get that for any 0 < ε1 < 1:

Pr[|S̄ ∩ C| ≥ (1 + ε1)µ] < e−
ε21T

3 , (6)

Hence, with overwhelming probability for ε1 = 2ε:

|S̄ ∩ C| < (1 + ε1)
T

n
|S̄| ≤ (1 + ε1)(

1

2
− ε)|S̄| = (

1

2
− ε2)|S̄|

Therefore, again with overwhelming probability the number h of honest parties that contact
each of the parties as OT dealers is:

h = |S̄ \ C| ≥
(

1

2
+ ε2

)
|S̄|

(5)
>

(
1

2
+ ε2

)
(1− ε2) logδ n (7)

However, unless the honest client aborts, he accepts at most ρ = (1 + ε2) logδ n offers for dealers;
thus the fraction of honest OT dealers among these ρ dealers is

h

ρ
>

(1
2 + ε2)(1− ε2)

1 + ε2
=

1

2
· (1 + 2ε2)(1− ε2)

1 + ε2
=

1

2
· 1− ε4 + ε2 − ε4

1 + ε2
=

1

2

Thus at least a 1/2 fraction of the OT vectors that an honest client receives is private and correct,
in which case the security of protocol ΠOT

act follows from the security of the underlying OT-combiner
used in the last protocol step. ut

20

References

BCP15. Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure computation: Multi-party computation
for (parallel) RAM programs. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of LNCS, pages 742–762. Springer, Heidelberg, August 2015.

Bea95. Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor, Advances in Cryptology —
CRYPTO’ 95: 15th Annual International Cryptology Conference Santa Barbara, California, USA, August
27–31, 1995 Proceedings, pages 97–109, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

BFO12. Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty compu-
tation with a dishonest minority. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 663–680. Springer, Heidelberg, August 2012.

BGT13. Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication locality in secure multi-party com-
putation - how to run sublinear algorithms in a distributed setting. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 356–376. Springer, Heidelberg, March 2013.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In 20th ACM STOC, pages 1–10. ACM Press,
May 1988.

BH06. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Efficient multi-party computation with dispute control. In
Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 305–328. Springer, Heidelberg,
March 2006.

BH08. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with linear communication com-
plexity. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 213–230. Springer, Heidelberg,
March 2008.

Bra87. Gabriel Bracha. An o(log n) expected rounds randomized byzantine generals protocol. J. ACM, 34(4):910–
920, October 1987.

Can00. Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

CCD88a. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure protocols (abstract)
(informal contribution). In Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, page 462. Springer,
Heidelberg, August 1988.

CCD88b. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure protocols (extended
abstract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.

CCG+15. Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser, Rafail Ostrovsky, and
Vassilis Zikas. The hidden graph model: Communication locality and optimal resiliency with adaptive
faults. In Tim Roughgarden, editor, ITCS 2015, pages 153–162. ACM, January 2015.

CDI05. Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom secret-sharing and
applications to secure computation. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 342–
362. Springer, Heidelberg, February 2005.

CDI+13. Gil Cohen, Ivan Bjerre Damg̊ard, Yuval Ishai, Jonas Kölker, Peter Bro Miltersen, Ran Raz, and Ron D.
Rothblum. Efficient multiparty protocols via log-depth threshold formulae - (extended abstract). In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture
Notes in Computer Science, pages 185–202. Springer, 2013.

CDN01. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computation from threshold ho-
momorphic encryption. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
280–299. Springer, Heidelberg, May 2001.

CF01. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg, August 2001.

CFGN96. Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation.
In 28th ACM STOC, pages 639–648. ACM Press, May 1996.

DI05. Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-box pseudorandom
generator. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 378–394. Springer,
Heidelberg, August 2005.

DI06. Ivan Damg̊ard and Yuval Ishai. Scalable secure multiparty computation. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 501–520. Springer, Heidelberg, August 2006.

21

DIK10. Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation and the
computational overhead of cryptography. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 445–465. Springer, Heidelberg, May 2010.

DKMS12. Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Brief announcement: breaking the o(nm)
bit barrier, secure multiparty computation with a static adversary. In Darek Kowalski and Alessandro Pan-
conesi, editors, ACM Symposium on Principles of Distributed Computing, PODC ’12, Funchal, Madeira,
Portugal, July 16-18, 2012, pages 227–228. ACM, 2012.

DKMS14. Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Quorums quicken queries: Efficient asyn-
chronous secure multiparty computation. In Mainak Chatterjee, Jian-Nong Cao, Kishore Kothapalli, and
Sergio Rajsbaum, editors, Distributed Computing and Networking - 15th International Conference, ICDCN
2014, Coimbatore, India, January 4-7, 2014. Proceedings, volume 8314 of Lecture Notes in Computer Sci-
ence, pages 242–256. Springer, 2014.

DN00. Ivan Damg̊ard and Jesper Buus Nielsen. Improved non-committing encryption schemes based on a general
complexity assumption. In Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 432–450.
Springer, Heidelberg, August 2000.

DN03. Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient multiparty computation from
threshold homomorphic encryption. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
247–264. Springer, Heidelberg, August 2003.

DN07. Ivan Damg̊ard and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation.
In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of LNCS, pages 572–590. Springer, Heidelberg,
August 2007.

FH94. Matthew K. Franklin and Stuart Haber. Joint encryption and message-efficient secure computation. In
Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 266–277. Springer, Heidelberg,
August 1994.

FY92. Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (extended ab-
stract). In 24th ACM STOC, pages 699–710. ACM Press, May 1992.

GIP+14. Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Circuits resilient to
additive attacks with applications to secure computation. In David B. Shmoys, editor, 46th ACM STOC,
pages 495–504. ACM Press, May / June 2014.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

Gol01. Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques. Cambridge University
Press, 2001.

Gol04. Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge University Press,
Cambridge, UK, 2004.

HIKN08. Danny Harnik, Yuval Ishai, Eyal Kushilevitz, and Jesper Buus Nielsen. Ot-combiners via secure compu-
tation. In Ran Canetti, editor, Theory of Cryptography: Fifth Theory of Cryptography Conference, TCC
2008, New York, USA, March 19-21, 2008. Proceedings, pages 393–411, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

HKN+05. Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust combiners for oblivious
transfer and other primitives. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
96–113. Springer, Heidelberg, May 2005.

HM97. Martin Hirt and Ueli M. Maurer. Complete characterization of adversaries tolerable in secure multi-party
computation (extended abstract). In James E. Burns and Hagit Attiya, editors, 16th ACM PODC, pages
25–34. ACM, August 1997.

HM00. Martin Hirt and Ueli M. Maurer. Player simulation and general adversary structures in perfect multiparty
computation. Journal of Cryptology, 13(1):31–60, 2000.

HM01. Martin Hirt and Ueli M. Maurer. Robustness for free in unconditional multi-party computation. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 101–118. Springer, Heidelberg, August 2001.

HMP00. Martin Hirt, Ueli M. Maurer, and Bartosz Przydatek. Efficient secure multi-party computation. In
Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 143–161. Springer, Heidelberg,
December 2000.

HN05. Martin Hirt and Jesper Buus Nielsen. Upper bounds on the communication complexity of optimally
resilient cryptographic multiparty computation. In Bimal K. Roy, editor, ASIACRYPT 2005, volume
3788 of LNCS, pages 79–99. Springer, Heidelberg, December 2005.

22

Hoe63. Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):pp. 13–30, 1963.

HZ10. Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 466–485. Springer, Heidelberg, May 2010.

IOZ14. Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with identifiable abort.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages
369–386. Springer, Heidelberg, August 2014.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - efficiently.
In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572–591. Springer, Heidelberg,
August 2008.

JJ00. Markus Jakobsson and Ari Juels. Mix and match: Secure function evaluation via ciphertexts. In Tat-
suaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 162–177. Springer, Heidelberg,
December 2000.

Kil88a. Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31. ACM Press,
May 1988.

Kil88b. Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 20–31, New York, NY, USA, 1988. ACM.

LP09. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation.
Journal of Cryptology, 22(2):161–188, April 2009.

MPW07. Remo Meier, Bartosz Przydatek, and Jürg Wullschleger. Robuster combiners for oblivious transfer. In
Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages 404–418. Springer, Heidelberg, February
2007.

PS97. Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via an extension of
the chernoff-hoeffding bounds. SIAM J. Comput., 26(2):350–368, 1997.

Rab81. Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR-81, Aiken
Computation Lab, Harvard University, 1981.

RB89. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612–613, November 1979.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS, pages
160–164. IEEE Computer Society Press, November 1982.

23

A Semi-Honest Static Adversaries

Theorem 1. Protocol Πstat unconditionally securely computes any given 2-party function f in the
(2, n)-client/server model in the presence of a passive and static (1, t)-adversary with t < (1/2−ε)n,
for any given constant 0 < ε < 1/2. Moreover, Πstat communicates O(logδ

′
(n)) messages, for a

constant δ′ > 1.

Proof. The bound on the communication complexity follows immediately from the fact that there
are logδ n active servers that send/receive messages in the computation; denote them by S̄. The
only messages exchanged between the clients and the servers are the inputs and outputs and the
indexes of the parties in S̄; on top of that, the servers exchange their messages in protocol BGW
which are polynomially many in |S̄| = logδ n. Thus, overall, the total number of exchanged messages
is polynomial in |S̄| = logδ n.

To complete the proof, we need to show that with overwhelming probability, less than half of
the active servers are corrupted. Indeed, when this is the case, the secret sharings in Step 2 reveal
no information to the adversary, as does the execution of the [BGW88] protocol in the Step 3.
Thus, the computation is private.

The fact that less than half of the active servers are corrupted follows as a corollary, by a direct
application of Hoeffding’s inequality along the lines of [CCG+15, Lemma 10].

Corollary 2. Assume that set S̄ is chosen as in Πstat and the adversary corrupts t < (1/2 − ε)n.
Then with overwhelming probability, the adversary corrupts less than |S̄|/2 parties in S̄.

Proof. The corollary follows immediately by Lemma [CCG+15, Lemma 10] (cf. Appendix A) by
setting V = S, C = S̄, and U be the set of corrupted parties. ut

ut

Lemma 3. (Hoeffding’s Inequality [Hoe63]) Let S = {x1, . . . , xN} be a finite set of real numbers
with a = min

i
xi and b = max

i
xi. Let X1, . . . , Xn be a random sample drawn from S without

replacement. Let X =

n∑
i=1

Xi

n and µ =

N∑
i=1

xi

N = E[Xj]. Then for all δ > 0, Pr[X − µ ≥ δ] ≤ e−
2nδ2

(b−a)2 .

Lemma 4 ([CCG+15, Lemma 10]). Let V = [n] and C ⊆ V , |C| = m, be a subset chosen
uniformly at random. Let 0 < q < 1 be a constant and U ⊆ V , |U | = qn, be a subset chosen
independently of C. Then, for all 0 < δ < 1 − q, |C \ U | > (1 − q − δ)m except with probability

e−2mδ2
. In particular, for m = log1+ε′ n, |C \ U | >

(
1−q

2

)
m except with negligible probability.

Furthermore, for q = 1
2 − ε, |C \ U | >

1
2m except with negligible probability.

Proof. Let S = {x1, . . . , xn} where xi = 1 if i ∈ U , 0 otherwise. Then a = min
i
xi = 0, b = max

i
xi =

1 and µ =

n∑
i=1

xi

n = q. For each i = 1, . . . ,m, let Xi be the indicator of whether each element of C is

in U . Then Xi is a random sample drawn from S without replacement, and |C∩U | =
m∑
i=1

Xi = mX.

By Hoeffding’s Inequality,

Pr[|C ∩ U | ≥ (q + ε)m] = Pr[X − µ ≥ δ] ≤ e−2mδ2
.

24

Therefore, except with probability e−2mδ2
, |C \ U | = m− |C ∩ U | > (1− q − δ)m.

Now let m = log1+ε′ n and δ = 1−q
2 . We have that |C \ U | >

(
1−q

2

)
m except with probability

e−2(1−q
2)

2
log1+ε′ n =

1

nc logε
′
n
,

where c = 1
2(1− q)2 log e.

Finally, let q = 1
2 − ε and δ = ε. We have that |C \U | >

(
1−

(
1
2 − ε

)
− ε
)
m = 1

2m except with
probability 1

nc′ logε
′
n

, where c′ = 2ε2 log e.

B Semi-Honest Adaptive Adversaries with Erasures (Cont’d)

Theorem 8 (Generalized Chernoff Bound [PS97]). Let X1, . . . , Xn be Boolean random vari-
ables such that, for some 0 ≤ δ ≤ 1, we have that, for every subset S ⊆ [n], Pr[∨i∈SXi = 1] ≤ δ|S|.
Then for any 0 ≤ δ ≤ γ ≤ 1, Pr[

∑n
i=1Xi ≥ γn] ≤ e−nD(γ||δ), where D(·||·) is the relative entropy

function satisfying D(γ||δ) ≥ 2(γ − δ)2.

C Semi-Honest Adaptive Adversaries with Erasures — Impossibility

Theorem 4. Assume that the adversary is adaptive and the parties might erase messages as above.
There exists no information theoretically secure protocol for computing the boolean OR function
in the (2, n)-client/server model with message complexity m = o(n) tolerating a (1, t)−adversary,
where t = (1−

√
0.5 + ε)n for a constant ε > 0.

Proof. Assume towards contradiction that for some constant ε = O(1) a protocol sublinear com-
munication complexity protocol Π exists which tolerates any t = (1−

√
0.5 + ε)n. Without loss of

generality we will assume that in Π only a single party speaks in each round. Indeed, any Π can
be transformed to a protocol Π ′ with the above structure by assigning to each party in Π, in a
round robin fashion, a round in which only this party might speak; clearly, if Π is secure then Π ′s
is also secure.

Consider the following adversary A: At the beginning of the protocol, the adversary A
corrupts each of the n servers independently with probability 1−

√
0.5 and corrupts one of the two

clients, say c randomly; denote the set of initially corrupted servers by C0 and initialize C := C0.
Subsequently, in every round, if any server sends or/receives a message to/from one of the servers
in C, then the adversary corrupts him as well and adds him in C. Observe that A does not corrupt
servers when they send or receive messages to the clients. (Such an adversary would in fact be
stronger but we will show that even the above weaker adversary cannot be tolerated.)

By a Chernoff bound it is easy to see that for any constant ε : Pr[|C0| > (1 −
√

0.5 + ε)n] is
negligible, and, because |C| = |C0| + o(n), Pr[|C| > (1 −

√
0.5 + ε)n] = µ(n) for some negligible

function µ(n). (We refer to the end of the proof for an argument of how impossibility against such
an adversary can be used to prove impossibility against a (1−

√
0.5 + ε)n-bounded adversary.)

The above adversary jointly with the protocol execution define a random experiment that assigns
to each subset T ⊆ P of parties a probability that (exactly) this set T is the set of fully corrupted
active parties, i.e., every party in T (and only those) sends a message in the protocol and is already
corrupted at the point when he sends his first protocol message. The corresponding experiment can
be described as follows:

25

1. The adversary chooses the parties in C0 according to the above distribution.
2. The protocol starts executing; let ê1, ê2, . . . , denote the set of edges used for communication

among the servers in the protocol execution, i.e., where if in round ρ in which si send a message
to sj , then êρ = (si, sj). Let E = (e1, e2, . . . , e`) be the subsequence of this edge sequence where
every edge is only included the first time it is used (in either direction, i.e., if êρ = (si, sj), then
every êρ′ ∈ {(si, sj), (sj , si)} with ρ′ > ρ is removed). For each ei = (si, sj) ∈ E, if any of it
endpoints pi or pj is corrupted then the adversary corrupts also the other endpoint.

3. The random variable C is the set of corrupted parties at that the end of the above experiment.
For the set of eventually active parties S̄ (i.e., parties the send or receive a message at some
point in the protocol), we can also define the random variable C|S̄ corresponding to the set of
eventually active parties S̄ that are fully corrupted at the end of the protocol.13

Clearly the entire view of all parties in C (resp. C|S̄) is included in the adversary’s view.

Because the adversary is semi-honest, hence the set of corrupted parties has no effect in the
protocol’s execution, and the initial set C0 is chosen by A independently of the protocol execution,
the above probability distribution on C|S̄ can be obtained by an equivalent experiment in which
first the edges are defined (computing according to the protocol’s inputs and randomness, and then
the adversary makes his corruption of C0 independently, and following the protocol. Therefore, in
the remaining of the proof we will make the assumption that the sequence E of first used edges is
fixed and show that the above adversary cannot be tolerated.

Towards this direction, let E = (e1, e2, . . . , e`) be the sequence/vector of (disjoint) communica-
tion edges that are used in the protocol. In slight abuse of notation we might use a vector as a set
(but of course not vice versa). For example, for a set E we will write E ⊆ E to denote the fact that
E consists of edges from E. By definition this sequence spans the entire eventually active server
set S̄.

Edge traversing algorithm. For each edge ei ∈ E we will compute a set Ei which is the
biggest reachable set when only using edges in the sequence the appear in E. Concretely, consider
for each edge ei, the set Ei of edge that is traversed starting with ei via the following algorithm
where E = (e1, . . . , e`):

– For each i = 1, . . . , ` do
• Set Ei = ei
• For each j = i+ 1 . . . , ` do
∗ If there exists a path from ei (i.e., from any of the vertices of ei) to ej (i.e., from any of

the vertices of ej) that uses only edges in Ei, then update Ei = Ei ∪ {ej}

Denote by Eo the vector Eo = (E1, . . . , E`).

Definition 1 (edge corruption). Given a sequence of edges E = (e1, . . . , e`) as above that are
used in the protocol in this order, we say that an adversary corrupts an edge ei = (p1, p2) ∈ E if at
the at least one of the parties p1 or p2 has been corrupted before the edge ei is used.

Probabilistic Adversary Structures. For a give edge sequence E, our above defined adversary
A induces a probabilistic adversary structure PrA, i.e., a probability distribution on subsets of the

13 Note that as we allow erasures, post execution corruption of servers is irrelevant.

26

active party set P̄ = S̄ ∪ {c1, c2}, which assigns to each T ⊆ P̄ probability PrA(T) of T being
corrupted by A at the end of the protocol. It also induces a probabilistic edge-corruption adversary
(structure) PrAE , on subsets of {e1, . . . , e`}, where for each E ⊂ {e1, . . . , e`}, PrAE (E) is the
probability that (exactly) the edges in E get corrupted by A (according to Definition 1).

Definition 2 (intolerable adversary structure). We say that a probabilistic adversary struc-
ture PrA is intolerable if there exists no secure OT protocol in the (2, n)-client/server model toler-
ating a PrA-adversary, i.e., an adversary that corrupts a set T of parties with probability PrA(T).

Definition 3 (intolerable edge adversary structure). Let PrAE be an edge corruption prob-
abilistic structure on the set of edges between servers. Let also PrA be the induced probabilistic
adversary structure on the set of servers that assigns to each S′ ⊆ S probability according to the
following experiment:

1. E ← PrAE
2. P = {si | for sj ∈ P \ {c1, c2}{(si, sj) ∪ (sj , si)} ∩ E 6= ∅}

Denote by PrĀ the following extension of PrA to the full party set P = {c1, c2}∪S: Corrupt a server
subset T with probability PrA(T), and additionally corrupt one of the two clients with probability
1/2. We say that PrAE is intolerable if and only if PrĀ is intolerable.

Definition 4 (exact (unique) cover). Let Q be a set, T = {T1, . . . , T`} be such that each Ti ⊆ Q
and let T ⊆ Q.

– We say that T is covered by T if ∃I ⊆ [`] : T ⊆ ∪i∈ITi.
– We say that T is exactly covered by T , and denote it as T C T , if ∃I ⊆ [`] : T = ∪i∈ITi. In

this case, a set ECT (T) such that ECT (T) = {Ti ∈ T | i ∈ I} is called an exact cover of T by
T . We also denote by T 6CT the fact that T is not covered by T .

– We say that T is uniquely exactly covered by T if ∃!I ⊆ [`] : T = ∪i∈ITi.

Lemma 5. Let E ⊆ E. If E 6CEo then PrAE (E) = 0.

Proof. For the above vector Eo and the adversary A let E ⊆ E be such that PrA(E) > 0. For
any ei, if ei ∈ E and E gets corrupted, it means that its endpoints had been corrupted (at the
latest) by the round in which ei was first used and therefore all nodes in Ei will also be corrupted
by our adversary. Hence, for any E with PrA(E) > 0 we have E ⊆ ∪ei∈EEi. Furthermore, because
ei might only be included in E during the round when it is first used all edges that are in Ei will
end up being corrupted too, hence Ei ⊆ E for all ei ∈ E which means that ∪ei∈TEi ⊆ T . Hence, if
PrA(E) > 0 then E = ∪ei∈EEi. ut

Definition 5 (maximal set). A set Ei is called a maximal set in the sequence Eo iff ∀j 6= i :
Ei 6⊆ Ej. We denote by Emax the set of maximal sets.

Definition 6 ((exact) disjoint edge cover). For a vector E = (E1, . . . , E`) of sets of edges on
a vertex set Q ⊆ P, we say that E is a disjoint edge cover of Q if the following properties hold:

1. E′ = ∪E∈EE induces a vertex cover on Q, i.e., Q ⊆ {vi | ∃vj ∈ P : {(vi, vj)∪ (vj , vi)}∩E′ 6= ∅}
2. ∀Ei ∈ E : Ei 6⊆ ∪Ej∈E\{Ei}Ej .

If property 1 holds with equality, i.e., Q = {vi | ∃vj ∈ P : {(vi, vj) ∪ (vj , vi)} ∩ E′ 6= ∅}, (and
Property 2 holds too) then we say that E is an exact disjoint edge cover of Q.

27

Lemma 6. Let E = (E1, . . . , E`) be a non-empty exact disjoint edge cover of the server set S
and PrAE

1/2
be the probability distribution over subsets of servers corresponding to the following

experiment:

1. Set E = ∅
2. For each i ∈ [`] (in any order): Choose a bit bi with probability 1/2 and if b = 1 set E := E ∪Ei

Output T . Then PrAE
1/2

is intolerable.

Proof. Assume that there exists a Π protocol which tolerates the PrAE
1/2

-adversary (recall, we are

in the semi honest model). We show how to use protocol Π to construct a protocol Π̂ for two
parties p̂1 and p̂2 with inputs bits b1 and b2, respectively, to compute b = b1 ∨ b2 in the presence
of an adversary who corrupts either of the two parties with probability 1/2. Existence of such a
protocol contradicts the impossibility of information-theoretic 2PC from [BGW88].
The protocol Π̂ works as follows: The parties p̂1 and p̂2 emulate an execution of protocol Π for
computing the AND of the bits of the clients where for i ∈ {1, 2} p̂i plays for client ci and the
virtual servers Ŝ are emulated as follows: Each party p̂i emulates the set of servers Ŝi, where Ŝ1

and Ŝ2 are sampled as follows:

– Initialize Ê1 := Ê2 := ∅.
– For each i ∈ [`] (in any order) the parties choose p̂1 and p̂2 a random bit bi (recall that they are

semi-honest so this is trivial) and if b = 1 set Ê1 := Ê1 ∪ Ei, otherwise Ê2 := Ê2 ∪ Ei.
– For j ∈ {1, 2} : Set Ŝj = {sk ∈ S | for sq ∈ S : {(si, sj) ∪ (sj , si)} ∩ Êj 6= ∅}; i.e., the Ŝj is the

set of active servers that is covered by Êj .

We remark that because E = (E1, . . . , E`) is a non-empty exact edge cover of the (virtual)
server set Ŝ, Ŝ1 ∪ Ŝ2 = S. Furthermore, we note that some servers will be in Ŝ1 ∩ Ŝ2; such virtual
servers are jointly emulated by having having both p̂1 and p̂2 choose his coins and exchanging any
messages this server is supposed to exchange in the protocol.

Let A1 be a semi-honest adversary that corrupts one of the two clients in the above protocol
randomly and outputs its view. This A1 corrupts the (virtual) parties with the same probability
as a PrAE

1/2
-adversary corrupts the real parties. Indeed, A1 corrupts each of the two parties with

probability 1/2 and additionally, each set covered by the edges in each Ej with probability 1/2
independent of whether or not the other sets are corrupted, which identical to how the PrAE

1/2
-

adversary corrupts parties in the protocol. Thus, the simulator which is assumed to exists by the
assumption that Π is secure can be used to simulate A1. But existence of such as simulator directly
contradicts the classical impossibility results for two-party computation of the AND gate where
either of the parties can be corrupted [BGW88]. ut

Definition 7 (dominating edge corruption structure). Let PrAE1
and PrAE2

be two proba-
bilistic adversary structures on an edge set E. We say that PrAE1

dominates PrAE2
and denote it

as PrAE1
≥ PrAE2

, if there exists a probabilistic mapping Fedge : 2E → 2E such that the following

properties hold: (1) for every E ⊆ E : Pr[Fedge(E) ⊆ E] = 1; (2) Consider the random variable E2

defined via the following experiment:

1. E1 ← PrAE1
2. E2 ← Fedge(E1)

28

Then for each E ⊆ E: PrE2(E) = PrAE2
(E).

Definition 8 (dominating party corruption structure). Let PrA1 and PrA2 be two proba-
bilistic adversary structures on the party set P. We say that PrA1 dominates PrA2 and denote it as
PrA1 ≥ PrA2, if there exists a probabilistic mapping F : 2P → 2P such that the following properties
hold: (1) for every T ⊆ P : Pr[F (T) ⊆ T] = 1; (2) Consider the random variable T2 defined via the
following experiment:

1. T1 ← PrA1

2. T2 ← F (T1)

Then for each T ⊆ P: PrT2(T) = PrA2(T).

Lemma 7. Let PrAE1
and PrAE2

be probabilistic edge-corruption structures ever sets of edges of the
server-set S, and PrA1 and PrA2 be the induced probabilistic server-corruption structures, respec-
tively. If PrAE1

≥ PrAE2
then PrA1 ≥ PrA2.

Proof. Let Fedge(·) be the forgetting mapping that is guaranteed to exists by the assumption PrAE1
≥

PrAE2
. Set F (T) = {si | for sj ∈ P \ {c1, c2}{(si, sj) ∪ (sj , si)} ∩ Fedge(E) 6= ∅}. By inspection of

the experiments it is easy to verify that the output distribution of the experiment in Definition 8
is identical with the output distribution in Definition 3 where the edge-sampling step (Step 1) is
replaced by sampling according to the experiment in Definition 7. ut

Lemma 8. Let PrAE1
and PrAE2

be probabilistic edge-corruption structures over the set of edges
among servers S. If PrAE2

≥ PrAE1
and PrA1

E is intolerable, then PrA2
E is also intolerable.

Proof. Let PrA1 and PrA2 be the induced server corruption structures. By Lemma 7 it suffices to
prove that if PrA2 ≥ PrA1 and the adversary A1 that corrupts one of the two clients with probability
1/2 and additionally corrupts a set T of servers with probability PrA1(T) is intolerable, then so is
the adversary A2 that corrupts one of the two clients with probability 1/2 and additionally corrupts
a set T of servers with probability PrA2(T).

Assume towards contradiction that there exist a protocol Π which is secure against such an
A2. (Recall that we are in the semihonest setting, hence wlog we can assumr that the adversaries
only defer in the set of parties they are corrupt and they output their entire protocol view.) This
means that there exists a simulator σ such that for every such PrA2-adversary A2

ViewA2,Π ≈ Viewσ,f . (8)

We prove that Π is also secure against any PrA1-adversary leading to a contradiction. Let A1 be
an adversary. Define the adversary A3 that samples the set of corrupted parties as follows: corrupts
one of the two client randomly and additionally corrupts a set T of servers as follows: A3 samples
T2 ← PrA2 , and computes T ← F (T2), where F is the mapping that is guaranteed to exist by
PrA2 ≥ PrA1 . If follows immediately from the domination definition that

ViewA3,Π ≡ ViewA1,Π (9)

Now consider the simulator σ′ that receives the set T of (finally) corrupted parties by σ and
applies to this set F , i.e., σ′ corrupts F (T). By definition of A3 and Equation 8 , because σ applied
the same transformation on its view as A3, we get

29

Viewσ′,Π ≈ ViewA3,Π (10)

But Equations 9 and 10 imply that σ′ is a good simulator from A1 which contradicts the
assumption that A1 is intolerable.

Lemma 9. ∀Ei ∈ Emax : Ei 6⊆ ∪Ej∈Eo\{Ei}Ej .

Proof. The claim follows from the fact that for every maximal set Ei ∈ Emax, the edge ei (i.e.,
the first edge added to this set in the above algorithm) is not included in any Ej ∈ Eo with
Ej 6= Ei. Indeed, if for some Ej we have ei ∈ Ej then the above traversing will yield Ej ⊇ Ei which
contradicts the maximality of Ei. ut

Lemma 10. For any edge set E ∈ ∪Ei∈EoEi, let Corr(E) denote the event that (at least) E
gets corrupted by A. For every Ei ∈ Emax and every Ej ∈ Eo \ Ei: PrAE (Corr(Ei)|Corr(Ej)) =
PrAE (Corr(Ei)) = 1/2.

Proof. Recall that we denote by C0 the set of parties that are initially corrupted by A. Because
Emax is a maximal set, Lemma 9 implies that ∀Ej ∈ Eo : Ei 6⊆ ∪Ej∈Eo\{Ei}Ej . In fact, it is easy to
verify that for the first edge ei in Ei, ei 6∈ ∪Ej∈Eo\{Ei}Ej . Hence the only way that ei gets corrupted
is if s1 or s2 is in the initial set of corrupted parties. I.e., If ei = (s1, s2) then PrAE (Corr(Ei)) ≥
PrAE (Corr({ei})) = PrAE ({s1, s2} ∩C0 6= ∅). Moreover, by the definition of A, if ei gets corrupted
then the entire Ei will get corrupted; i.e., PrAE (Corr(Ei)) ≤ PrAE (Corr({ei})) = PrAE ({s1, s2} ∩
C0 6= ∅). Therefore, the probability that Ei will get corrupted equals the probability that edge ei
has been corrupted during the initial (random) corruption step of A. But this probability is 1/2
independent of what other vertexes or edges get corrupted. ut

Lemma 11. Let E CEmax. Then E is uniquely exactly covered by Emax.

Proof. Let Ê = (Ê1, . . . , Êm) be an exact cover of E by Emax. Such a cover in guaranteed to exists
from the assumption that ECEmax. It suffices to prove uniqueness. Assume, towards contradiction,
that there exists another exact cover of E by Emax, and denote it by E′ = (E′1, . . . , E

′
q). This means

that

∪i=1,...,mÊi = ∪i=1,...,qE
′
i

But as argued in Lemma 10, the first edge of each E ∈ Emax is not included in any E′′ ∈
Emax \ E. Hence, if Ei = (ei, . . .) is a set that is not included in both the above covers, then the
edge ei (i.e., the first edges added in Ei is our graph traversal) cannot be in both sides of the above
equation which leads to a contradiction. ut

Lemma 12. Let PrAE denote the probabilistic edge-corruption structure that is induced by adver-
sary A when E is the sequence of edges. Then PrAE ≥ PrAE

1/2
.

Proof. Let E ⊆ ∪Ei∈EoEi be an edge set. We know the following

– If E 6CEo then PrAE (E) = 0 (Lemma 5)

– If E CEo but E 6CEmax, then PrAE (E) ≥ 0

30

– If E CEmax and denote by Ê = (Ei1 , . . . , Eim) the unique exact cover of E by Emax (which is
guaranteer to exist by Lemma 11). Then

PrAE (E) = PrAE
((∧

E∈Ê Corr(E)
)
∧
(∧

E∈Emax\Ê Corr(E)
))

(11)

Indeed, because Ê exact cover of E we have that

PrAE (E) ≥ PrAE
((∧

E∈Ê Corr(E)
)
∧
(∧

E∈Emax\Ê Corr(E)
))

Furthermore, as in Lemma 10, it is easy to verify that because each edge eij (i.e., the first edge
in Eij) can be covered only when Eij is entirely corrupted (i.e., when Corr(Eij occurs), we have
that

PrAE (E) ≤ PrAE
((∧

E∈Ê Corr(E)
)
∧
(∧

E∈Emax\Ê Corr(E)
))

.

We next define a probabilistic forget mapping F : 2∪E∈Eo → 2∪E∈Eo as follows: Given input any
E ⊆ ∪E∈Eo , F (E) computes its output as follows:

– If E 6CEo then F (E) = E

– If E CEo but E 6CEmax then F (E) = ∅
– If E CEmax then F (E) = E.

As in Definition 7, denote by PrE ′ the distribution of the random variable E ′ of the output E′

of the following experiment.

1. E ← PrAE
2. E′ ← F (E)

It is straightforward to verify that F satisfies the requirements of Definition 7, hence

PrAE ≥ PrE ′ (12)

Furthermore PrE is the following distribution:

– For any E 6CEmax:

PrE ′(E) = PrÂE |AE (E|E 6CEo)PrAE (E 6CEo) + PrÂE |AE (E|E CEo)PrAE (E CEo) = 0

– For any E CEmax:

PrE ′(E) = PrAE
((∧

E∈Ê Corr(E)
)
∧
(∧

E∈Emax\Ê Corr(E)
))

.

Since for different E ∈ Emax the events Corr(E) are independent and each has probability 1/2
(Lemma 10), PrE ′ is identical to PrAE

1/2
. Therefore, Equation 12 implies that

PrAE ≥ PrAE
1/2

ut

31

The following corollary can be easily derived by combining the above lemma with Lemma 8
because PrAE

1/2
is intolerable (as proved in Lemma 6).

Corollary 3. PrAE is intolerable.

The above Corollary shows that the adversary A cannot be simulated. However, by definition
A might corrupt more than (1 −

√
0.5 + ε)n of the servers already at the initial step (since each

server is added or not to C0 independently). Thus the intolerability of A does not suffice. For this
reason we consider the following adversary A′: A works exactly as A with the only difference that
if at any point it corrupts more than (1−

√
0.5 + ε)n parties it aborts. A direct application of the

Chernoff bound implies that the probability that A′ aborts is negligible in n. Therefore, because
conditioned on non-aborting the view of A′ is identical to the view of A′, any good simulator for A′
is also a good simulator for A. But the intolerability of A trivially implies intolerability of A′. ut

32

	No Title Given

