
Breaking The FF3 Format-Preserving
Encryption Standard Over Small Domains

F. Betül Durak1 and Serge Vaudenay2

1 Rutgers University
Department of Computer Science

fbdurak@cs.rutgers.edu
2 Ecole Polytechnique Fédérale de Lausanne (EPFL)

LASEC - Security and Cryptography Laboratory
Lausanne, Switzerland

serge.vaudenay@epfl.ch

Abstract. The National Institute of Standards and Technology (NIST)
recently published a Format-Preserving Encryption standard accepting
two Feistel structure based schemes called FF1 and FF3. Particularly,
FF3 is a tweakable block cipher based on an 8-round Feistel network.
In CCS 2016, Bellare et. al. gave an attack to break FF3 (and FF1)
with time and data complexity O(N5 log(N)), which is much larger than
the code book (but using many tweaks), where N2 is domain size to the
Feistel network. In this work, we give a new practical total break at-
tack to the FF3 scheme (also known as BPS scheme). Our FF3 attack

requires O(N
11
6) chosen plaintexts with time complexity O(N5). Our at-

tack was successfully tested with N 6 29. It is a slide attack (using
two tweaks) that exploits the bad domain separation of the FF3 design.
Due to this weakness, we reduced the FF3 attack to an attack on 4-
round Feistel network. Biryukov et. al. already gave a 4-round Feistel
structure attack in SAC 2015. However, it works with chosen plaintexts
and ciphertexts whereas we need a known-plaintext attack. Therefore,
we developed a new generic known-plaintext attack to 4-round Feistel
network that reconstructs the entire tables for all round functions. It
works with N

3
2
(
N
2

) 1
6 known plaintexts and time complexity O(N3). Our

4-round attack is simple to extend to five and more rounds with complex-
ityN(r−5)N+o(N). It shows that FF1 withN = 7 and FF3 with 7 6 N 6 10
do not offer a 128-bit security. Finally, we provide an easy and intuitive
fix to prevent the FF3 scheme from our O(N5) attack.

1 Introduction

Format-Preserving Encryption (FPE) provides a method to encrypt data in a
specific format into a ciphertext of the same format. A format in FPE schemes
refers to a finite set of characters such as the decimal (or binary) numerals or
alpha-numerals along with the length of the sequence of the characters that form
the plaintexts. FPE has been staging in applied cryptography community due
to the desirable functionality. It secures data while keeping the database scheme

intact. For instance, given a legacy database system, upgrading the database
security requires a way for encrypting credit card numbers (CCN) or social
security numbers (SSN) in a transparent way to its applications.

Brightwell and Smith [9] introduced a first known format-preserving encryp-
tion which was termed as data-type preserving encryption in 1997. They wanted
to encrypt an existing database to let all the applications access encrypted data
just as they access non-encrypted data. Their solution for this was reduced to
preserve the particular datatype of entries in the databases. The term format-
preserving encryption is due to Terence Spies from Voltage Security [21]. Though
FPE dates back to late 90’s, the demand to make FPE based databases has cre-
ated an active area of research during last few years. There have been many
techniques proposed to build FPE schemes such as prefix cipher, cycle walking,
Feistel network, Feistel modes [2, 4, 5, 7, 16, 20, 21]. The complete list of FPE
schemes for small domain size along with their description and their security
level can be found in a synopsis by Rogaway [18, p. 6,7]. In his list, Rogaway
considers the schemes that are built with pseudorandom functions (that itself
might be constructed from block ciphers).

Probably, it is natural to build FPE schemes based on a Feistel network
(FN) since it can be used with already existing conventional block ciphers, such
as AES. Indeed, the National Institute of Standards and Technology (NIST)
published an FPE standard [1] (finalized in March 2016) that includes two-
approved Feistel-based FPE schemes: FF1 [5] and FF3 [8]. Both are expected to
offer a 128-bit security. In this work, we are particularly interested in the attacks
for breaking the FN-based standard FF3 [1] and attacks against Feistel network.
The former attack utilizes the latter that is designed as a generic round-function-
recovery attack.

The FF3 construction is an 8-round FN that uses a tweak XORed with a
round counter as an input to the block cipher. The XOR operation guarantees
that round functions are pairwise different. This is usually called “domain sepa-
ration”. The security of FF3 asserts that it achieves several cryptographic goals
including chosen-plaintext security or even PRP-security against an adaptive
chosen-ciphertext attack under the assumption that the underlying round func-
tion is a good pseudorandom function (PRF). Our work shows that its security
goal has not met even when the round functions are replaced by secure PRFs
and gives a round-function-recovery attack on FF3.

Our Contributions. Our work covers three significant contributions. (a). We
give a total practical break to 8-round Feistel network based FF3 FPE stan-
dard over a small domain. Our attack exploits the “bad domain separation” in
FF3. Namely, the specific design choice of FF3 allows us permuting the round
functions by changing the tweak and it leads us to develop a slide attack (using
only two tweaks). The attack works with chosen plaintexts and tweaks when

the message domain is small. It requires O(N
7
4+

1
4L) chosen plaintexts and two

tweaks, with time complexity O(N5), where N2 is input domain size to the Feis-
tel network and L is a parameter in our attack which is typically set to L = 3 in
experimental results. Luckily, the fix to prevent FF3 against our attack is quick

2

and easy to maintain without changing the main structure of the scheme. (b).
While we form our slide attack to break FF3, we develop a new generic known-
plaintext attack on 4-round Feistel networks and we insert it in our slide attack.
Our techniques to develop a 4-round attack is novel and different than previously
known attacks on Feistel networks. In our attack, we compute the full recovery of

round functions with N
3
2

(
N
2

) 1
2L known plaintext and time complexity O(N2+ 3

L)
for four rounds. (c). We utilize our 4-round FN attack to extend the round func-
tion recovery on more rounds. Due to the generic and known plaintext nature of
our 4-round FN attack, we easily adapt it to a chosen-plaintext attack to apply
it on 5 and more rounds Feistel structures. Our attack shows that neither FF1
with N = 7 nor FF3 with 7 6 N 6 10 (even with our fix) offer a 128-bit security.

Overview Of Previous Works. A security for message recovery in FPE con-
structions along with many other notions for FPE was first defined by Bellare
et. al. [4]. A recent work by Bellare et. al. [3] gives a practical message recovery
attack on NIST standard Feistel-based FPE schemes (both FF1 and FF3) on
small domain sizes. In their work, however, the security definition they consider
is under the new message recovery security that they define in the same work.
Briefly, consider two messages X and X ′ which share the same right (or left)
half of the messages. In their attack, the adversary is given X ′ together with
the encryption of X and X ′ under q tweaks. The adversary wins if it can fully
recover X, in particular, its unknown half. The attack by Bellare et. al. uses a
data complexity that exceeds the message space size. Clearly stating, their work
shows that Feistel-based FPE with the standardized number of rounds does not
achieve good enough security on small domain sizes.

The attack by Bellare et. al. works using O(N5 logN) data and time com-
plexity with many tweaks on eight rounds. This is quite interesting when the
amount of data is limited for each tweak. It is a decryption attack. Our attack
herein is more traditional. It uses only two tweaks, but O(N

11
6) chosen plaintexts

with O(N5) time complexity. We recover the entire codebook (for both tweaks).

To apply the slide attack to recover the entire round functions of Feistel
networks, we develop a generic known-plaintext attack on 4-rounds.

Since its invention, Feistel networks have created active research areas for
cryptographers (both in theory and in practice) due to its applications and
influence on the development of major constructions such as DES. The security
for Feistel networks has been investigated for very long time and there already
exist interesting results for cryptanalysis. The security of Feistel schemes aims
either to distinguish a Feistel scheme from a random permutation or to recover
the round functions. In their famous work [15], Luby and Rackoff proved the
indistinguishability of 3-round Feistel network against chosen-plaintext attacks
and 4-rounds against chosen-plaintext and ciphertext attacks for the number of
queries q�

√
N, whereN2 is the size of the input domain. The directions derived

from this result tried to improve the security bounds until q� N (that is called

3

the “birthday bound”) which was a natural bound from information theory.3

A work by Patarin [17], using the mirror theory, showed improved proofs and
stronger security bounds for four, five, and six rounds Feistel networks. Namely,
for q � N, four rounds are secure against known-plaintext attacks, five rounds
are secure against chosen-plaintext attacks, and six rounds are secure against
chosen-plaintext and ciphertext attacks.

From an information theory viewpoint, we could recover all functions in time
NO(N) by exhaustive search. As far as we know, there is no efficient generic
attack which is polynomial in N on the Feistel scheme with q ∼ N. Our attack
uses q ∼ N

3
2 and is polynomial in N with known plaintexts up to four rounds.

A recent work by Dinur et. al. [11] gives a new attack on Feistel structures
for more than four rounds to recover the round keys with a few known plain-
text/ciphertext pairs when the ith round uses x 7→ Fi(x⊕ki), where Fi is public
whereas ki is being kept secret. Here, we focus on the case where each round
function is secret in a balanced 2-branch Feistel scheme. Furthermore, we do
not restrict to the XOR addition. Our results also apply to Feistel schemes with
modular addition. The new cryptanalysis results against Feistel networks with
modular addition for four and five rounds are presented in a recent work by
Biryukov et. al. [6]. For four rounds, they achieve the full recovery of round

functions with data complexity O(N
3
2) with a guess and determine technique.

However, their attack uses chosen plaintexts and ciphertexts. We summarize
their results and ours on Table 1.

rounds mode time data ref

3 known-plaintext N N Section 4.1

4 chosen-plaintext and ciphertext N
3
2 N

3
2 [6]

4 known-plaintext (tested for L = 3) N2+ 3
L N

3
2+ 1

2L Section 4.2

5 chosen-plaintext and ciphertext NN
3
4 N2 [6]

5 chosen-plaintext NO(N
1
2) N

3
2+ 1

2L Section 4.3

r > 6 chosen-plaintext N(r−5)N N
3
2+ 1

2L Section 4.3

Table 1. Round-function-recovery attacks against balanced Feistel schemes with two
branches of log2N bits and any addition rule (we omitted polynomial terms in logN)

Structure of the Paper. In Section 2 and Section 3, we give the details of FF3
construction and Tweakable Encryption, respectively. In Section 4, we develop
our new generic attack for Feistel structure on specifically 4-rounds and extend
it on 5 and more rounds. In Section 5, we give our complete slide attack to a
NIST standard FF3 scheme.

3 In an r-round FN, q samples give 2q log2N bits of information but functions are
defined by a table of rN log2N bits. Thus, q = r

2
N queries is enough to reconstruct

the round functions, in theory.

4

2 The FF3 Scheme

A Tweakable Format-Preserving Encryption (TFPE) scheme is a block cipher
that preserves the format of the domain in the output. A TFPE function E :
K× T × X 7→ X is defined from a key space K, a tweak space T, and a domain
X to the same domain X. We are particularly interested in a TFPE scheme by
Brier, Peyrin, and Stern (depicted in Fig. 1 (b)) [8] whose design is based on
Feistel network depicted in Fig. 1 (a). It is named as FF3 in the NIST standards.

F0

F1

F2

F3

L0 R0

R4L4

(a) Feistel Network

F

TR ⊕ 0

F

TL ⊕ 1

F

TR ⊕ 2

F

TL ⊕ 3

L0 R0

R4L4

(b) FF3 Encryption

Fig. 1. 4-round Feistel Network and FF3 Encryption

We use the following notations for the rest of the paper. The domain X

consists of strings of characters; s represents the cardinality of the set S of char-
acters and b represents the length of the messages in the domain X. For example,
the credit card numbers (CCNs) consists of 16 digits of decimal numerals with
S = {0, 1, . . . , 9}, s = 10 and b = 16 where we have 1016 ∼= 254 possible distinct
numeral strings. We set the minimum length of the message block minlen = 2
and the maximum length of the message block to maxlen = blogs(2

f−32)c,
where f is the input/output size of the round function used in Feistel scheme in
FF3. 4 We represent the number of rounds in the scheme with w .

Unlike standard Feistel schemes which use the exclusive or (XOR) (denoted
by ⊕), FF3 uses the modular addition that is denoted by �.

We define the following notations for three functions:

STRb
s : a function that maps an integer x where 0 6 x < sb to a string of length

b in base s with most significant character first, e.g. STR412(554) = 03A2.
NUMs : a function that maps a string X to an integer x such that STRbs (x) = X.
For instance, NUM2(00011010) = 26.
REV(X) : a function that reverses the order of the characters of string X.

4 We consider here the FF3 block cipher. However, there is a mode of operation for
FF3 allowing variable-length messages in the original paper [8].

5

The length of string X is denoted by |X|. The concatenation of strings is
denoted by ||. The first (left-most) character of string X is X[0]. The ith one is
X[i−1]. We denote X[a · · ·b] the substring of X formed with X[a]X[a+1] · · ·X[b].

The FF3 uses a tweakable block cipher as a round function, FK(T ,X) = Y
with X, Y ∈ {0, 1, . . . , 2f − 1} and T ∈ {0, 1}32, where K is a key and T is one half
of the FF3 tweak with an offset.

Algorithm 1: FF3 Encryption

Input : string X in base s of length b such that
b ∈ [minlen · · ·maxlen], a tweak bit string T such that
|T | = 64.

Output: string Y such that |Y| = b
1 Let ` = db2 e; r = b− `.
2 Let L0 = NUMs(REV[X[1 · · · `]]) and R0 = NUMs(REV[X[`+ 1 · · ·b]])
3 Let TL = T [0 · · · 31] and TR = T [32 · · · 63]
4 foreach i = 0 · · ·w− 1 do
5 if i is even then
6 Li+1 = Li � FK(TR ⊕ STR322 (i),Ri) (mod s`)
7 Ri+1 = Ri
8 end
9 else

10 Ri+1 = Ri � FK(TL ⊕ STR322 (i),Li) (mod sr)
11 Li+1 = Li
12 end

13 end

14 return REV[STR`s(Lw)||REV[STR
r
s(Rw)]

In lines 1-2, the encryption algorithm splits the input X into two substrings
L0 and R0. In lines 5-8 (respectively in lines 10-12), the algorithm first takes
the tweak TR (respectively TL) XORed with the encoded round index i and Ri
(respectively Li) to input tweakable PRF FK. Second, it applies modular addition
of the output of FK to Li (respectively Ri).

For simplicity and by abuse of notations, we say that FF3 encrypts the plain-
text (L0,R0) into the ciphertext (Lw ,Rw) with tweak (TL, TR), so that we only
concentrate on lines 4-14. We illustrate the 4-round FF3 scheme in Fig. 1 (b).

In concrete proposal, w = 8, f = 128 and

FK(T ,X) = NUM2(AESK(T || STRf−32
2 (X)))

where AES maps an f -bit bitstring to an f -bit bitstring [1].

3 Tweakable Encryption

A tweakable block cipher (TBC) is a tuple (K,EK(·, ·),DK(·, ·)) formed of three
algorithms for key generation, encryption, and decryption with a key K; all
efficiently computable algorithms. We follow the notion of security from [13] as
chosen-plaintext-secure (CPA) tweakable block cipher.

6

Definition 1. A TBC is a (q, t, ε)-CPA-secure cipher if for any probabilistic
time adversary A limited to t steps and q oracle queries, the advantage of dis-
tinguishing TBC from Π is bounded by ε:

AdvTBC(A) =
∣∣∣Pr
[
AEK(·,·) = 1

]
− Pr

[
AΠ(·,·) = 1

]∣∣∣ 6 ε
where K ∈ K is selected at random and Π(T , ·) is defined as a random permutation
for every T .

In the standard model, the tweakable block ciphers [4, 14] are used to con-
struct tweakable format-preserving encryption schemes since tweakable encryp-
tions provide better security bounds for tweakable FPE in terms of the number
of chosen plaintext/ciphertext to attack the system [4].

It is underlined in [8] that using the same round function F twice during
an encryption process can introduce some security vulnerability to the system.
So, the domain of the tweaks in different rounds must be separated. For this,
the scheme in [8] XORs tweaks with a round counters. However, this way to
separate domains is not fully effective. Indeed, the tweaks are known to the
adversary and are under adversary’s control in chosen-tweak attacks. Consider
two 4-round Feistel networks with tweaks TR and TL = TR ⊕ STR322 (1). For the
first round, we have the tweak TR⊕STR322 (0) = TR and the second round we have
TL ⊕ STR322 (1) = TR. Then, for the third round TR ⊕ STR322 (2) and fourth round
TL ⊕ STR322 (3) = TR ⊕ STR322 (2) . We observe the following behavior: round 2i
and 2i + 1 uses the same function Fi = FK(TR ⊕ STR322 (2i), ·).

For a variant of FF3 with ⊕ instead of �, we present a trivial attack: Consider
an FF3 encryption with a key K ∈ K, a tweak T = TL||TR ∈ T and domain X.
Each round i defines a random function Fi = FK(TR ⊕ STR322 (i), ·) for i even
(Fi = FK(TL ⊕ STR322 (i), ·) for i odd). We use the encryption with an input
message X = (L0,R0) and output ciphertext Y = (Lw ,Rw) with output Xi from
each round in Fig. 2 (a). We assume that b is even so that ` = r . Now, we
take the ciphertext Y from Fig. 2 (a) and reverse it into (L ′0,R ′0) = (Rw ,Lw) to
encrypt it with a new tweak T ′ = TR⊕STR322 (w − 1)||TL⊕STR322 (w − 1) ∈ T. We
show this encryption in Fig. 2 (b). We assume that w is a power of two (Fig. 2
uses w = 8). With given encryption, we obtain the round functions F ′i = Fw−1−i

as shown on Fig. 2 (a). More precisely, the attack works as follows:

◦ Encrypt (L0,R0) with the tweak T to get (Lw ,Rw).

◦ Encrypt (Rw ,Lw) with the tweak T ′ to get (L ′,R ′).

◦ If L ′ = R0 and R ′ = L0, output 1. Otherwise, output 0.

The adversary always outputs 1 with EK. It outputs 1 with Π(·, ·) with proba-
bility 1

sb
. Therefore, the advantage is 1 − 1

sb
.

7

F0

F1

F2

F3

F4

F5

F6

F7

L0 R0

R7L7

X2

X4

X6

X1

X3

X5

(a)

F7

F6

F5

F4

F3

F2

F1

F0

R7 L7

L0R0

X5

X3

X1

X6

X4

X2

(b)

Fig. 2. Trivial Attack on 8-round FF3 Encryption with ⊕ instead of modular addition
�.

4 Known-Plaintext Round-Function-Recovery Attack on
Feistel Scheme

In this section, we define the Feistel network over a group of order N. Typically,
this group is ZN. Later in Section 5, we assume b is even and N = s

b
2 .

First of all, we observe that the round functions are not uniquely defined
by the codebook. Namely, if (F0, . . . , Fr−1) is a solution to map given sample
plaintexts to the corresponding ciphertexts, then we can construct many other
solutions. Indeed, for any set of values α0, . . . ,αr−1 such that α1+α3+α5+· · · =
α0 + α2 + α4 + · · · = 0, we can define

F ′j(u) = Fj(u− αj−1 − αj−3 − αj−5 − · · ·) + αj

for all j and u to obtain another solution. Therefore, we can fix one point ar-
bitrarily in F0, . . . , Fr−3 when looking for a solution. All the other solutions are
obtained by the above transformation of the round functions.

The rest of the section is organized as follows: in Section 4.1, we give a
heuristic attack for 3-round FN and analyze its time complexity. We report
the ratio of success recovery in Fig. 3 with the parameters the attack takes. In
Section 4.2, we give an attack for 4-round FN that leverage our 3-round attack.
The correctness and further analysis is presented with formally stated lemmas.
In Section 4.3, we expand our attack for five rounds and more and derived the
time complexities.

8

4.1 Round-Function-Recovery on 3-Round Feistel Scheme

Consider a 3-round Feistel Scheme with three round functions F0, F1, F2 and
modular addition. Given x and y in X, we define:

c = x+ F0(y),

t = y+ F1(c),

z = c+ F2(t).

(1)

Due to the symmetry of the set of solutions (F0, F1, F2) (as already observed),
we can fix F0 on one point arbitrarily. The idea of our attack is to concentrate
on data for which we know how to evaluate F0 so that we can deduce the output
for the round function F2. Then, we concentrate on data for which we know how
to evaluate F2 and we deduce more points in F0. We continue by alternating
the deduction between F0 and F2 until we recover them all. When we continue
iterating as described, we can fully recover the tables for all three round functions
(F0, F1, F2). Our attack is presented in Algorithm 2 in more detail.

Algorithm 2: (F0, F1, F2) Recovery Attack

1 Collect a set S of tuples (xyzt) of size θN.
2 Take a subset S1 ⊆ S of size θ such that y is constant in S1.
3 Fix F0(y) = 0 arbitrarily and deduce θ tuples (cyzt) in S1 by
c = x+ F0(y). We collect θ equations of the form F2(t) = z− c.

4 Take the subset S2 ⊆ S of all (xyzt) ∈ S such that ∃(x ′y ′z ′t ′) ∈ S1 with
t = t ′. The expected size of S2 is θ2.

5 Using the θ points of F2, we deduce θ2 tuples (xyct) by c = z− F2(t).
From these tuples, we obtain θ2 equations of the form F0(y) = c− x.

6 Take the subset S3 ⊆ S of all (xyzt) ∈ S such that ∃(x ′y ′z ′t ′) ∈ S2 with
y = y ′. The expected size of S3 is θ3.

7 Using the θ2 points of F0, we deduce from θ3 tuples (cyzt)...
8 We iterate through S1 ⊆ S3 ⊆ S5 ⊆ · · · ⊆ S and S2 ⊆ S4 ⊆ · · · ⊆ S to

complete the tables of F0 and F2.

We model our set S as a bipartite graph with two parties of N vertices (one
for the y’s and the other for the t’s) and edges for each (y, t) pair represented by
tuples from S. What our algorithm does is just to look for a connected component
of a random starting point y with complexity O(θN). Following the theory of
random graphs [19], we have θN random edges so that the graph is likely to
be fully connected when θ ≈ ln(N). For a constant θ > 1, it is likely to have a
giant connected component. This component corresponds to a constant fraction
of the tables of F0 and F2. Therefore, after logθN iterations, we can reconstruct
F0 and F2 which allow us to reconstruct F1. For any y, we can see that it does

not appear in S with probability
(
1 − 1

N

)θN ≈ 1− e−θ. Thus, we can only hope
to recover a fraction 1 − e−θ of the table of F0. The same holds for F1 and
F2. Therefore, with data and time complexity N, we recover a good
fraction of all tables. With data and time complexity N lnN, we recover
the full tables with good probability.

9

We implemented our attack. On Fig. 3, we plot the average fraction of recov-
ered F0 values depending on θ for several values of N. For this, we computed an
average over 10,000 independent runs. For θ = 1, the fraction is about 40%. We
also plot the fraction of the trials which fully recovered all functions. These two
values can be taken as an approximation of the expected fraction of recovered
table for F0 and the probability to fully recover all functions, respectively. As we
can see, the first value does not depend so much on N (we have a giant connected
component for θ around 1), but the second one jumps for θ proportional to lnN
(the graph becomes fully connected). For θ = lnN, the probability is roughly 1

3 .

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
θ

N = 23

N = 25

N = 27

Fig. 3. Fraction of recovered F0 depending on θ in the 3-round attack (in thin) and
fraction of experiments which fully recovered all functions (in bold) over 10,000 trials.

4.2 Round-Function-Recovery on 4-Round Feistel Scheme

In this section, we give an attack to fully recover the round functions of a 4-round
Feistel scheme.

Consider a 4-round Feistel scheme with round functions F0, F1, F2, F3. Given
x and y in X, we define the following equations (see Fig. 4 (a)):

c = x+ F0(y),

d = y+ F1(c),

z = c+ F2(d),

t = d+ F3(z).

Assume that we collected M random pairwise different plaintext messages (xy).
We collect the pairs:

V = {(xy, x ′y ′) | z ′ = z, t ′ − y ′ = t− y, xy 6= x ′y ′}

10

and,

Vgood = {(xy, x ′y ′) | z ′ = z, c ′ = c, xy 6= x ′y ′}

where c,d, z, t (respectively c ′,d ′, z ′, t ′) are defined from (xy) (respectively form
(x ′y ′)) as above. We define Label(xy, x ′y ′) = x− x ′.

F0

F1

F2

F3

x y

tz

d

c

(a)

F0

F1

F2

F3

x ′ y ′ = y+ ∆

t ′ = t+ ∆z ′ = z

d ′

c ′ = c

(b)

Fig. 4. 4-round Feistel Scheme Attack

We form a directed graph G = (V,E) with the vertex set V as defined above.
We take (x1y1x

′
1y
′
1, x2y2x

′
2y
′
2) ∈ E if y ′1 = y2 (i.e. a pair of tuples x1y1x

′
1y
′
1 is

connected to a pair x2y2x
′
2y
′
2 if the y2 in the second message in former tuple

is same as in the first message in latter tuple). Furthermore, we let Egood =
(Vgood × Vgood) ∩ E and define the sub-graph Ggood = (Vgood,Egood).

Then, we have the following Lemma with four properties:

Lemma 1. Given a graph G with a vertex set V defined as above:

1. Vgood ⊆ V.
2. If (xy, x ′y ′) ∈ V, then y 6= y ′.
3. If (xy, x ′y ′) ∈ Vgood, then F0(y

′) − F0(y) = Label(xy, x ′y ′).

4. For all cycles v1v2 · · · vLv1 of Ggood,
∑L
i=1 Label(vi) = 0.5

Proof. The proofs are straightforward:

1. Clearly, z ′ = z and c ′ = c imply that t ′ − y ′ = t− y, hence Vgood ⊆ V.
2. If t ′ − y ′ = t − y and y ′ = y, then t ′ = t. If we further have z ′ = z, then

we deduce c ′ = c. If c ′ = c, then x ′ = x, thus xy = x ′y ′. Hence, we cannot
have (xy, x ′y ′) ∈ V.

3. If c ′ = c then F0(y
′) − F0(y) = x− x

′ = Label(xy, x ′y ′).

5 Note that the cycle length notation L should not be confused with the subscript L
indicating the left part of a plaintext or a ciphertext.

11

4. Let vi = (xiyi, x
′
iy
′
i). If vi ∈ Vgood then F0(y

′
i) − F0(yi) = Label(vi). If we

have a cycle then y ′i = yi+1 with yL+1 = y1. Hence,
∑
i Label(vi) = 0.

ut

The principle of our attack is as follows: if we get vertices in Vgood, the
property 3 from Lemma 1 gives equations to characterize F0. One problem is
that we can identify vertices in V, but we cannot tell apart good and non-good
(bad) ones. One way to recognize good vertices is to use property 4 in Lemma 1:
to find cycles with zero sum of labels. For this, we will prove in Lemma 4 that
this is a characteristic property of good cycles, meaning that all the vertices in
these cycles are good vertices. First, we estimate the number of vertices and
edges with the following two Lemma.

Lemma 2. For x,y, x ′,y ′ random and F0, F1, F2, F3 random,

Pr[(xy, x ′y ′) ∈ Vgood | (xy, x ′y ′) ∈ V] = 1
2− 1

N

≈ 1
2 .

Proof. We compute the following probabilities:

Pr[xy, x ′y ′ ∈ Vgood] = Pr[z ′ = z, c ′ = c, x ′y ′ 6= xy]
= Pr[z ′ = z, c ′ = c,y ′ 6= y]
= Pr[y ′ 6= y]Pr[c ′ = c | y ′ 6= y]Pr[z ′ = z | c ′ = c,y ′ 6= y]

=

(
1 −

1

N

)
1

N2
. (2)

Pr[xy, x ′y ′ ∈ V \ Vgood] = Pr[z ′ = z, t ′ − y ′ = t− y, c ′ 6= c, xy 6= x ′y ′]
= Pr[z ′ = z,d ′ − y ′ = d− y, c ′ 6= c,y ′ 6= y]
= Pr[y ′ 6= y]Pr[c ′ 6= c | y ′ 6= y]

Pr[d ′ − y ′ = d− y | y ′ 6= y, c ′ 6= c]
Pr[z ′ = z | d ′ − y ′ = d− y,y ′ 6= y, c ′ 6= c]

=

(
1 −

1

N

)(
1 −

1

N

)(
1

N

)(
1

N

)
.

Hence,

Pr[xy, x ′y ′ ∈ Vgood | xyx ′y ′ ∈ V] = Pr[xy, x ′y ′ ∈ Vgood]
Pr[xy, x ′y ′ ∈ V]

=
1

1 +
Pr[xy,x′y′∈V\Vgood]
Pr[xy,x′y′∈Vgood]

=
1

2 − 1
N

≈ 1

2
.

ut

12

Lemma 3. The expected number of elements in Vgood is
M(M−1)(1− 1

N)
N2 ≈ M2

N2 .

Proof. We have M(M − 1) possible pair of tuples xy, x ′y ′ with xy 6= x ′y ′

to construct Vgood. From Eq. (2), the probability of each vertex in Vgood is

1
N2

(
1 − 1

N

)
. Thus, we expect to have

M(M−1)(1− 1
N)

N2 ≈ M2

N2 elements in Vgood.
ut

We have the property that for each cycle v1v2 · · · vLv1 ∈ G, if v1, . . . , vL are
all in Vgood, then the sum of Label(vi) is zero due to Lemma 1, property 4. If
one vertex is not good, the sum may be random. This suggests a way to find
good vertices in V that is to look for long cycles in G with a zero sum of labels.

Lemma 4. (L = 2 case) If v1 = (x1y1, x ′1y
′
1) we say that v1 and v2 are per-

muting if v2 = (x ′1y
′
1, x1y1). If v1v2v1 is a cycle in G with zero sum of labels,

and v1, v2 are not permuting, then v1 and v2 are likely to be good. More pre-
cisely, for v1 = (x1y1x

′
1y
′
1) and v2 = (x2y2x

′
2y
′
2) random, we have Pr[v1, v2 ∈

Vgood | v1v2v1 is a cycle, v1, v2 not permuting,
∑2
i=1 Label(vi) = 0] > 1

1+ 10
N−5

.

The proof for Lemma 4 is in Appendix A.1. We believe that Lemma 4 remains
true for valid cycles of small length except in trivial cases. In Appendix A.2,
we extend to L > 2 for cycles satisfying some special non-repeating condition
[¬repeat] on the c and d values to rule out many trivial cases. However, this
condition [¬repeat] cannot be checked by the adversary. Instead, we could just
avoid repetitions of any message throughout the cycle (as repeating messages
induce repeating c’s or d’s). We use the following conjecture (which is supported
by experiment for L = 3).

Conjecture 1 If v1v2 · · · vLv1 is a cycle of length L in G with zero sum of
labels and the vertices use no messages in common, then v1 · · · vLare all good
with probability close to 1.

For M known plaintexts, the expected number of valid cycles in Ggood of a

given length L is M
2L

N3L .
The aim of our attack is to collect as many F0 outputs as possible to recon-

struct a table of this function. Thus, we are interested in vertices whose labels
are defined as Label(vi) = F0(y) − F0(y

′),∀i ∈ {0, 1, . . . , |V |} and we generate
another graph to represent the collection of many independent equations for F0.

We have a valid cycle v1v2 · · · vLv1 of length L in G when vi ∈ V,

L∑
i=1

Label(vi) = 0

and vertices use no messages in common. Now, let us define an undirected graph
G ′ = (V ′,E ′), where V ′ = {0, 1, . . . ,N− 1} and E ′ is defined as follows: for each
vertex vi = (xy, x ′y ′) in a valid cycle v1v2 · · · vLv1 of length L, add {yi,y

′
i} as an

13

edge in E ′ with label set to Label(vi). The purpose of such a graph G ′ is to put
y values which are dependent on each other in a single connected component
and put apart with independent y values in separate connected components.

When we model G ′ as a random graph, we can adjust M so that we can have
a large connected component in G ′. Given the vertex set size |V ′| = N and the

edge size |E ′| = m, m = N(N−1)
2 p, where p is the probability that G ′ has an

edge between two vertices. From Erdős-Rényi model [12] on random graphs, we

want Np > 1. We know that Np ∼ 2m
N

. So, we want m > N
2 . We have M2L

L·N3L

expected good cycles (counted without repetition of their L circular rotations)

of length L, thus m ∼ M2L

N3L . Therefore, we need to set M = λN
3
2

(
N
2

) 1
2L for a

constant λ > 1 to have a large connected component in G ′. Our attack works
with M = N

3
2+ε for ε > 0 small, with complexity O(2LN(1+2ε)L) and a constant

probability of success. If our attack recovers at least
√
N points in F0 correctly

(which is the case when we have a large connected component in G ′), we obtain

M ×
√
N
N
� N samples to apply the attack on 3-rounds so that it recovers a

good fraction of F1, F2, F3. It is enough to bootstrap a yoyo attack (Steps 9–18
of Algorithm 3). And, our attack succeeds.

Now, we give the full algorithm of our attack to 4-round Feistel scheme.

Algorithm 3: (F0, F1, F2, F3) Recovery Attack (Strategy S2)

1 Pick M known plaintexts and retrieve their ciphertext.
2 Create G = (V,E).
3 Find valid cycles of length 2, 3, . . . ,L and collect the vertices in these

cycles.
4 Create G ′ from {y,y ′} from the collected vertices.
5 Find the largest connected component in G ′.
6 Assign one F0(y) value arbitrarily and deduce F0 on the connected

component.
7 For all known plaintexts using y in the connected component, evaluate

and deduce a tuple for the 3-round Feistel scheme based on (F1, F2, F3).
8 Apply the attack on 3-round Feistel scheme from Section 4.1 to recover a

constant fraction of (F1, F2, F3).
9 while nothing more revealed do

10 foreach of the M plaintext/ciphertext pairs do
11 if F0 and F1 are known for this plaintext then
12 deduce one point for F2 and F3
13 end
14 if F2 and F3 are known for this ciphertext then
15 deduce one point for F0 and F1
16 end

17 end

18 end

14

Experimentally, we noticed that λ = 0.8 is too small to obtain a large enough
connected component for L = 3. Conversely, for λ = 2, G ′ is more connected but
the giant component contains many bad edges that we want to avoid.

Let Ej be the event that the sizes of the j largest connected components

sum to greater than
√
N with no bad edges in G ′. Let E6j be the event that

either of E1,E2, . . . ,Ej occurs. We simulated the attack for various N values and
λ = 1, 2, 3 and report the numbers for E61,E62,E63 on Table 2. When we read

the table, by taking λ = 1 and j = 3, our attack recovers
√
N points of F0 with

probability at least 23 %. In our attack, if we look at j connected components,
we need to multiply the complexity by Nj−1 (We can fix F0 on one point for free,
then all values in its connected components are inferred, but for each additional
connected component, we must guess one value of F0). It is likely that we can
mitigate this Nj−1 factor by early abort during the attack on 3-rounds.

In our experiments, we observe better success probability of our attack with
λ = 1. With λ larger, the attack hardly ever succeeds. It may look paradoxical to
say that if λ is too large, then the attack fails, but this is due to higher chances
to collect bad edges. However, when G ′ is heavily connected, we could propose
algorithms to eliminate inconsistencies in labels and get rid of bad edges. It
means that we would have a successful attack for any λ > 2. We let it as future
work.

Therefore, we have a double phase transition. The first phase transition oc-
curs when we have enough data to be able to make the graph and find cycles. Our
attack quickly succeeds after this phase transition. The second phase transition
occurs when we start having bad edges in the collected cycles. Then, our attack
must be enriched to be able to work any longer. We did not do it on purpose as
we noticed there is a sufficient window in between these two phase transitions
to break the scheme with good probability of success and without caring about
possible bad edges.

In Table 3, we show the experimental results of success probability of the
entire attack for various strategies. Let Sj be an event with strategy j. In S1,
we accumulate the three largest connected components and abort unless the
accumulated size is at least

√
N and they have no bad edges. I.e., S1 is exactly

E63. In S2, we just look at the largest connected component and fail unless
it has no bad edges in G ′ (we remove the condition on size of the connected
component that is greater than

√
N). In S3 (and S4 resp.), we look at the two

largest (three largest resp.) connected components that have no bad edges. What
we report in Table 3 includes the success probability Prsucc of Si and we recover
the entire tables for each round function. These various strategies considered for
experimental purpose even though we have the theory results that suggests to
condition on the size of the connected component.

The data complexity of our attack in Algorithm 3 is M = O(N
3
2+

1
2L).

We compute the time complexity for the algorithm based on the step 2, 3, 4,
and 5, since the other steps are much shorter. In step 2, creating our graph G is
defined as forming the vertices in G. This can be done in M log(M) time with
collision detection for M known plaintext/ciphertext pairs. In step 3, we look

15

N M(λ) #trials Pr[E61] Pr[E62] Pr[E63]

2 2(0.71) 5022 0.00 % 0.00 % 0.00 %
4 5(0.56) 7098 1.51 % 1.51 % 1.51 %
8 15(0.53) 7010 0.36 % 4.07 % 4.07 %

16 46(0.51) 6665 0.05 % 1.23 % 1.23 %
32 144(0.50) 6103 0.02 % 0.03 % 0.16 %
64 457(0.50) 7986 0.00 % 0.00 % 0.01 %

128 1449(0.50) 7460 0.00 % 0.00 % 0.00 %
256 4598(0.50) 6879 0.00 % 0.00 % 0.00 %
512 14597(0.50) 4816 0.00 % 0.00 % 0.00 %

2 3(1.06) 4316 0.00 % 0.00 % 0.00 %
4 8(0.89) 4153 15.19 % 15.19 % 15.19 %
8 23(0.81) 6703 5.83 % 18.54 % 18.54 %

16 73(0.81) 6886 4.57 % 13.87 % 13.87 %
32 230(0.80) 6952 2.52 % 7.12 % 10.98 %
64 730(0.80) 6568 1.40 % 5.65 % 9.18 %

128 2318(0.80) 6189 0.29 % 1.13 % 2.83 %
256 7357(0.80) 7338 0.03 % 0.31 % 0.89 %
512 23355(0.80) 469 0.00 % 0.00 % 0.00 %

2 3(1.06) 4352 0.00 % 0.00 % 0.00 %
4 9(1.00) 3864 23.08 % 23.08 % 23.08 %
8 29(1.02) 5791 15.59 % 35.02 % 35.02 %

16 91(1.01) 6585 16.20 % 29.90 % 29.90 %
32 288(1.00) 6814 14.66 % 27.09 % 31.67 %
64 913(1.00) 6981 18.16 % 34.69 % 40.87 %

128 2897(1.00) 6609 16.31 % 33.53 % 40.73 %
256 9196(1.00) 6154 16.27 % 36.90 % 46.51 %
512 29193(1.00) 409 11.25 % 32.52 % 43.77 %

8 58(2.03) 988 22.77 % 23.99 % 23.99 %
16 182(2.01) 2504 6.71 % 6.79 % 6.79 %
32 575(2.00) 3425 0.53 % 0.55 % 0.55 %
64 1825(2.00) 5727 0.02 % 0.02 % 0.02 %

128 5793(2.00) 1634 0.00 % 0.00 % 0.00 %
256 18391(2.00) 107 0.00 % 0.00 % 0.00 %
512 58386(2.00) 6 0.00 % 0.00 % 0.00 %

32 863(3.00) 1389 0.00 % 0.00 % 0.00 %
64 2737(3.00) 2250 0.00 % 0.00 % 0.00 %

128 8689(3.00) 139 0.00 % 0.00 % 0.00 %
256 27586(3.00) 7 0.00 % 0.00 % 0.00 %

Table 2. Experimental Pr[E6j] over several trials for various N, λ, and j; the number
of trials correspond to the successful runs of the whole attack on FF3 in the first step
out of 10 000 using L = 3.

16

N M(λ) #trials Pr[succ,S1]–(Pr[S1]) Pr[succ,S2]–(Pr[S2]) Pr[succ,S3]–(Pr[S3]) Pr[succ,S4]–(Pr[S4])

2 2(0.71) 5022 0.00 %–(0.00 %) 0.00 %–(100.00 %) 0.00 %–(49.70 %) 0.00 %–(49.70 %)
4 5(0.56) 7098 0.00 %–(1.51 %) 0.00 %–(99.42 %) 0.00 %–(36.97 %) 0.00 %–(36.97 %)
8 15(0.53) 7010 0.00 %–(4.07 %) 0.00 %–(98.49 %) 0.00 %–(36.01 %) 0.00 %–(36.01 %)

16 46(0.51) 6665 0.00 %–(1.23 %) 0.00 %–(97.99 %) 0.00 %–(38.86 %) 0.00 %–(38.84 %)
32 144(0.50) 6103 0.05 %–(0.16 %) 0.77 %–(98.33 %) 2.24 %–(45.55 %) 2.24 %–(45.53 %)
64 457(0.50) 7986 0.01 %–(0.01 %) 2.02 %–(98.32 %) 6.36 %–(53.72 %) 6.41 %–(53.72 %)

128 1449(0.50) 7460 0.00 %–(0.00 %) 2.01 %–(98.75 %) 7.02 %–(67.63 %) 7.67 %–(67.57 %)
256 4598(0.50) 6879 0.00 %–(0.00 %) 0.74 %–(98.92 %) 5.16 %–(80.23 %) 6.67 %–(80.20 %)
512 14597(0.50) 4816 0.00 %–(0.00 %) 0.29 %–(99.40 %) 2.99 %–(92.52 %) 4.94 %–(92.44 %)

2 3(1.06) 4316 0.00 %–(0.00 %) 0.00 %–(100.00 %) 0.00 %–(76.90 %) 0.00 %–(76.90 %)
4 8(0.89) 4153 0.07 %–(15.19 %) 0.07 %–(93.74 %) 1.13 %–(59.64 %) 1.13 %–(59.64 %)
8 23(0.81) 6703 3.88 %–(18.54 %) 2.27 %–(90.23 %) 4.83 %–(57.72 %) 4.85 %–(57.69 %)

16 73(0.81) 6886 10.30 %–(13.87 %) 21.71 %–(87.71 %) 29.65 %–(67.25 %) 29.67 %–(67.14 %)
32 230(0.80) 6952 10.34 %–(10.98 %) 43.18 %–(88.62 %) 57.44 %–(79.67 %) 57.44 %–(78.88 %)
64 730(0.80) 6568 8.82 %–(9.18 %) 59.10 %–(91.21 %) 75.29 %–(88.78 %) 75.21 %–(87.62 %)

128 2318(0.80) 6189 2.70 %–(2.83 %) 65.89 %–(93.89 %) 84.15 %–(93.75 %) 84.15 %–(92.39 %)
256 7357(0.80) 7338 0.87 %–(0.89 %) 67.16 %–(96.52 %) 87.79 %–(96.52 %) 88.33 %–(95.50 %)
512 23355(0.80) 469 0.00 %–(0.00 %) 66.95 %–(98.29 %) 91.04 %–(98.29 %) 91.90 %–(97.65 %)

2 3(1.06) 4352 0.00 %–(0.00 %) 0.00 %–(100.00 %) 0.00 %–(75.30 %) 0.00 %–(75.30 %)
4 9(1.00) 3864 3.03 %–(23.08 %) 3.60 %–(88.69 %) 7.27 %–(64.65 %) 7.27 %–(64.65 %)
8 29(1.02) 5791 27.65 %–(35.02 %) 29.11 %–(78.62 %) 34.31 %–(65.88 %) 34.31 %–(65.76 %)

16 91(1.01) 6585 28.44 %–(29.90 %) 49.83 %–(73.27 %) 54.08 %–(68.37 %) 54.08 %–(67.84 %)
32 288(1.00) 6814 30.69 %–(31.67 %) 62.91 %–(71.79 %) 65.17 %–(70.75 %) 65.10 %–(68.80 %)
64 913(1.00) 6981 39.52 %–(40.87 %) 73.80 %–(77.14 %) 73.24 %–(77.14 %) 72.87 %–(74.03 %)

128 2897(1.00) 6609 39.17 %–(40.73 %) 83.10 %–(83.83 %) 79.77 %–(83.83 %) 79.03 %–(79.89 %)
256 9196(1.00) 6154 45.16 %–(46.51 %) 88.53 %–(88.77 %) 85.80 %–(88.77 %) 85.00 %–(85.81 %)
512 29193(1.00) 409 42.79 %–(43.77 %) 92.67 %–(92.67 %) 90.46 %–(92.67 %) 89.73 %–(90.46 %)

8 58(2.03) 988 23.99 %–(23.99 %) 25.40 %–(25.40 %) 25.40 %–(25.40 %) 25.40 %–(25.40 %)
16 182(2.01) 2504 6.79 %–(6.79 %) 6.79 %–(6.79 %) 6.79 %–(6.79 %) 6.79 %–(6.79 %)
32 575(2.00) 3425 0.55 %–(0.55 %) 0.55 %–(0.55 %) 0.55 %–(0.55 %) 0.55 %–(0.55 %)
64 1825(2.00) 5727 0.02 %–(0.02 %) 0.02 %–(0.02 %) 0.02 %–(0.02 %) 0.02 %–(0.02 %)

128 5793(2.00) 1634 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)
256 18391(2.00) 107 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)
512 58386(2.00) 6 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)

32 863(3.00) 1389 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)
64 2737(3.00) 2250 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)

128 8689(3.00) 139 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)
256 27586(3.00) 7 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %) 0.00 %–(0.00 %)

Table 3. Experimental Pr[Sj] and success probability over many trials for various N
and j using L = 3.

17

for the cycles of length L. The cycles of length L in our graph can be found with
multiplication on adjacency matrix (which is sparse). Matrix multiplication can

be done in O(|V |2d) where d = |E|
|V |

is the average degree of a vertex. Therefore,

the complexity is O(|V ||E|). With the Floyd-Warshall algorithm, we need (L− 1)
multiplications by the adjacency matrix in the max-plus algebra that leads us

to a complexity O(L|V ||E|). With |E| ∼
|V |2

N
, where |V | = 2M

2

N2 = 23−
1
LN1+ 1

L and

L constant, we have O(|V |3

N
) which is equal to O(N2+ 3

L). Another method to
find cycles is to enumerate all L-tuples of vertices in O(|V |L) which is O(NL+1).
Therefore, we compute the minimum between the two methods which is O(N3)
for any L and it is the complexity of step 3. (It can even be lower for L > 3.)

Step 4 takes N time and finally step 5 takes M
2L

N3L = N
2 . Since the complexity is

weighted by step 3, we have time complexity of our algorithm as O(N3)

for L = 3 and a smaller O(N2+ 3
L) for L > 3. Instead of L− 1 multiplications

to a sparse matrix in the max-plus algebra, we could also use O(log L) general
purpose matrix multiplications over the integer with the Coppersmith-Winograd
algorithm [10]. We would reach a complexity of O(|V |2.38 log L) which is not
better.

4.3 Round-Function-Recovery on 5-Round Feistel Scheme and
More

Given the 4-round full recovery attack from Section 4.2, we can extend it to at-
tack 5-round Feistel network. The attack for 5-round Feistel network is straight-
forward; it uses chosen plaintexts and guess strategies. First of all, consider our
4-round attack and the known plaintexts from this attack. We choose plaintexts
for the 5-round so that the right half of the messages have as little different val-
ues as possible then guess the corresponding images through F0. It means that
for the right halves of the messages, we generate all the possible partial tables
of the first round function for these right values. Then, we guess which table is
consistent after running the attack on the next 4-round. The data complexity
of our 4-round attack is λN

3
2+ε, hence our time complexity for 5-round

recovery with chosen plaintexts is O(NλN
1
2+ε+3

). The data complexity is
unchanged.

We can attack r−rounds similarly with complexity O(N(r−5)N+
√
N+3)

by guessing the round functions on the last (r− 5) rounds. The data complexity
is unchanged. We can apply this to FF1 (r = 10) and FF3 (r = 8). We obtain a
complexity lower than 2128 for FF1 with N = 7 and for FF3 with 7 6 N 6 10.
(For lower N, exhaustive search on either the codebook or the round functions
reaches the same conclusion.) Hence, these instances of FF1 and FF3 do
not offer a 128-bit security.

5 Slide Attack on FF3

We develop an attack on 4-round Feistel network in Section 4 and we deploy
it as a building block for our chosen-plaintext and chosen-tweak attack to FF3

18

scheme. Our FF3 attack aims to reconstruct the entire codebook for a challenge
tweak for a number of queries which is lower than the size of the brute force
codebook attack. The main idea of the designed FF3 attack takes advantage of
the flexibility to change the tweak to permute the round functions.

Consider two functions G and H, where G is a 4-round Feistel scheme us-
ing tweakable block cipher F with tweaks (TR ⊕ STR322 (0), TL ⊕ STR322 (1), TR ⊕
STR322 (2), TL⊕STR322 (3)) and H is a 4-round Feistel scheme using tweakable block
cipher F with tweaks (TR⊕STR322 (4), TL⊕STR322 (5), TR⊕STR322 (6), TL⊕STR322 (7)).
In Fig. 5, we show two runs of FF3 encryption with tweak T = TL||TR in (a) and
tweak T ′ = TL ⊕ STR322 (4)||TR ⊕ STR322 (4) in (b) on two distinct plaintext. We
observe that FF3.E(K, T , ·) = H ◦ G and FF3.E(K, T ′, ·) = G ◦ H. For simplicity,
we do not explicitly write STR322 (·) any longer. Given this permuting ability by
setting the tweaks XORed with round functions, we desire to form a “cyclic”
behavior of plaintext/ciphertext pairs under two FF3 encryption with sliding G
and H.

F

TR ⊕ 0

F

TL ⊕ 1

F

TR ⊕ 2

F

TL ⊕ 3

F

TR ⊕ 4

F

TL ⊕ 5

F

TR ⊕ 6

F

TL ⊕ 7

x y

tz

G

H

(a) FF3 Encryption

F

TR ⊕ 4

F

TL ⊕ 5

F

TR ⊕ 6

F

TL ⊕ 7

F

TR ⊕ 0

F

TL ⊕ 1

F

TR ⊕ 2

F

TL ⊕ 3

x y

tz

H

G

(b) Slided Encryption

Fig. 5. FF3 encryption with sliding round functions

We pick at random two sets of messages X = {xy10, . . . , xyi0, . . . , xyA0 } and
X = {xy10, . . . , xyi0, . . . , xyA0 } of size A. For each message xyi0 in X, set xyij+1 =

Enc(K, T , xyij) with a fixed tweak T ∈ T and a fixed key K ∈ K. We repeat the
chain encryption of outputs B times for each message in X. Let XC be the set of
chain encryption of elements of X. It contains segments of length B of cycles of
H◦G. Similarly, for each message xyi0 in X, set xyij+1 = Enc(K, T ′, xyij) with the

fixed tweak T ′ ∈ T under the same key K. Let XC be the set of chain encryption

19

of elements of X. Apparently, we have |XC| = AB and |XC| = AB. Given these 2
sets XC and XC, we attempt to find a collision between XC and XC such that
G(xyij) = xy

i′

0 or G(xyi0) = xy
i′

j′ for 1 6 i, i ′ 6 A and 1 6 j, j ′ 6 B. (See Fig. 6.)
Upon having a table with inputs to G and H, we can apply the known-plaintext
recovery attack on 4-round Feistel networks. The concrete algorithm to collect
plaintext/ciphertext pairs is given in Algorithm 4.

xyi
′

1

xyij+1xyi
′

0

xyij

xyi
′
j′

. . .

G

H

G

H

H

Fig. 6. Circular behavior of plaintext/ciphertext pairs.

We, now, formally prove useful results for the analysis and success probability
of the attack in Algorithm 4.

Let Π be a random permutation on {0, . . . ,N2 − 1}. Let ck be the number of
cycles of length k in Π. The total number of elements in a cycle of length k (for

all k) is equal to N2, meaning that
∑N2

k=1(kck) = N
2. It is well-known that the

expected number of cycles of length k over a random Π is EΠ(ck) = 1
k

. 6

In what follows we show two useful results.

Lemma 5. For a message xyi picked at random, let length(xyi) be the length
of the cycle that contains xyi. For two messages xyi and xyi

′
picked at ran-

dom, let E0 be an event that xyi and xyi
′

are in the same cycle. The expected
value of length(xyi) is Exyi,Π[length(xyi)] = N2+1

2 and the expected value of

length(xyi) given E0 is E[length(xyi)|E0] = 2N2+1
3 .

Proof. We use the same notation for ck as above.

Exyi,Π[length(xy)] = Exyi,Π

N2∑
k=1

kck
k

N2

 =

N2∑
k=1

E[ck]
k2

N2
=

N2∑
k=1

k

N2
=
N2 + 1

2

6 The probability that a given point is in a cycle of length exactly k is
(N2−1)···(N2−k+1)

N2(N2−1)cldots(N2−k+1)
= 1

N2 . Hence, the expected number of points in a cycle of

length k is 1 = EΠ(kck).

20

Algorithm 4: FF3 Attack

Input : a tweak bit string T such that |T | = 64, a key K
1 TL||TR ← T

2 T ′ ← TL ⊕ 4||TR ⊕ 4
3 foreach i = 1 · · ·A do
4 pick xyi0 and xyi0
5 foreach j = 1 · · ·B do
6 xyij = FF3.E(K, T , xyij−1)

7 xyij = FF3.E(K, T ′, xyij−1)

8 end

9 end
10 foreach i, i ′ = 1 · · ·A do
11 foreach j = 0 · · ·B−M− 1 do

12 // assume that G(xyij) = xy
i′
0

13 run attack on G with samples G(xyij+k) = xy
i′
k for k = 0 · · ·B− j

14 if succeeded, run attack on H with samples H(G(xyik)) = xy
i
k+1 for

k = 0 · · ·B− 1

15 end
16 foreach j = 0 · · ·B−M− 1 do

17 // assume that G(xyi0) = xy
i′
j′

18 run attack on G with samples G(xyik) = xy
i′
j+k for k = 0 · · ·B− j

19 if succeeded, run attack on H with samples H(G(xyik)) = xy
i
k+1 for

k = 0 · · ·B− 1

20 end

21 end

We first, observe that for any messages xyi and xyi
′
, being in the same cycle

of every possible length occurs with probability 1
2 . Then,

Pr[E0] = EΠ

N2∑
k=1

ck

(
k

N2

)2
 =

N2∑
k=1

k

N4
=

1

2
+

1

2N2
≈ 1

2

E[length(xyi)|E0] = EΠ

N2∑
k=1

kck

(
k2

N4

)
1

Pr(E0)

 =

∑N2

k=1
k2

N4

Pr(E0)

=
2N2

N2 + 1
× (N2 + 1)(2N2 + 1)

6N2
=

2N2 + 1

3

ut

This means that if we pick xyi and xyi
′

at random and let xyj = G−1(xyi
′
)

then xyi and xyi
′

are in the same cycle with probability close to 1
2 and we will

observe Fig. 6. One problem is that the cycle is typically long, i.e. 2N2

3 as shown

21

in Lemma 5, but we want that two segments of length B starting from xyi and
xyi

′
intersect on at least M points. Therefore, we need the probability of two

segments overlapping in a cycle of length k on at least M points.

Lemma 6. Let two segments xyi−Π(xyi)−Π2(xyi)− · · ·−ΠB(xyi) and xyi
′
−

Π(xyi
′
)−Π2(xyi

′
)−· · ·−ΠB(xyi′) overlap in a given cycle of length k on at least

M points be the event Ek1 . Let E1 be the union of all Ek1 for every possible length

of k. The probability that E1 occurs is equivalent to 2(B−M)
N2 for M = o(N2).

Proof. We use the same notation for ck as above.

Pr[E1] = EΠ

 N2∑
k=M

ck Pr[Ek1]

 = EΠ

 N2∑
k=M

ck
k

N2

min{k, 2(B−M) + 1}

N2

∼

2(B−M)

N2
for M = o(N2)

ut

The probability of success of our FF3 attack depends on Pr[E1] and on the
success probability of our 4-round recovery attack on Feistel network. More
clearly,

psuccess =
(

1 − (1 − Pr[E1])
A2
)
pFeistelsuccess

which is equivalent to

(
1 − e

−2(B−M)A2

N2

)
pFeistelsuccess. Thus, we need A2(B−M) ≈

N2 to obtain a constant psuccess. We can neglect the cost of the attack on H as
we have plenty of samples and we only run it once G is recovered.

Our attack has 2AB data complexity. The time complexity is A2B times the
complexity of 4-round recovery attack on Feistel network. To minimize the data
complexity 2AB with A2(B −M) = N2 and B > M, we set B = 2M, then
A = N√

M
. Therefore, we have data complexity of FF3 attack as 4N

√
M

and time complexity as 2N2 times the complexity of 4-round recovery
attack on Feistel network and psuccess ≈ 1 − e−p

Feistel
success .

We fully implemented the attack but to test its success probability we could
skip some parts of the running time we knew the attack would fail. Namely,
in Algorithm 4 we can identify directly which segments overlap (using the key)
and proceed directly to the 4-round Feistel attack on the right pair of segments.
We show on Table 4 the experimental probability of success of the whole attack
following the strategies Sj, j = 1, . . . , 4. The probability was computed for 10,000
executions. 7 We also took the executions collecting less than M samples, as long

7 Executions of the attack on the 4-round Feistel scheme which we used to fill our
previous tables are precisely those getting the M samples in this experiment. For
some rows with M too large, no experiments collected M pairwise different messages
so they are not reported in the previous table. Nevertheless, our attack may still work
even though we collect less than M samples. This is why they appear on Table 4.

22

as they succeed to recover all tables. Curiously, theN 6 4 and λ = 1 cases seem to
take M too low to be able to find cycles. As we can see, the success probability is
pretty good (18%–77% for 8 6 N 6 512) for λ = 1 and the strategy S2 collecting
the largest connected components in G ′.

We conclude that the full attack succeeds with good probability.

6 Repairing FF3

As a quick fix, we can propose to change the length of the tweak in FF3 so that
the adversary has no longer control on what is XORed to the round index. The
same should hold if some other part of the tweak is XORed to a counter in a
CBC mode, as proposed by the authors of the construction [8]. We obtain a
scheme with a shorter tweak, to which we concatenate the round index instead
of XORing it.

The original Luby-Rackoff results [15] was extended following this idea by
Black and Rogaway [7], but the obtained security result is quite weak as we
can only prove that for a number of queries q �

√
N, the cipher resists to

chosen-plaintext attacks, even with only three rounds. By similarly extending
the results by Patarin [17], we can obtain that for q � N, the cipher resists
to chosen-plaintext and ciphertext attacks, even with only six rounds. However,
this says nothing in the case q ∼ N

3
2 which is the case of our 4-round attack.8

7 Conclusion

We took the NIST standard FF3 and investigated its security on small domain
sizes. We started exploiting that we can permute the round functions due to
a bad domain separation in the tweak scheme which uses an XOR with the
round index. This permutation leads us to develop a slide attack on FF3 based
on our own design for 4-round Feistel schemes attack that works with known
plaintexts/ciphertexts. Our FF3 attack works with chosen plaintexts and two
tweaks. It improves the recent results from Bellare et. al. [3] on data and time
complexity to break FF3. Our 4-round Feistel network attack is a full round-
function-recovery attack that works with known plaintexts instead of chosen
plaintexts and ciphertexts unlike the recent results from Biryukov et. al. [6].

Acknowledgments. The work was done while the first author was visiting EPFL.
It was supported by NSF grant CNS-1453132. This material is based upon work
supported by the Defense Advanced Research Projects Agency (DARPA) and
Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract
No. N66001-15-C-4070.

We thank Adi Shamir for the useful comments and Stefano Tessaro for the
discussions.

8 In reaction to this attack, NIST released the following announcement:
https://beta.csrc.nist.gov/News/2017/Recent-Cryptanalysis-of-FF3.

23

N M λ A B #run Pr[succ,S1] Pr[succ,S2] Pr[succ,S3] Pr[succ,S4]

2 2 0.71 1 4 10000 0.00 % 0.00 % 0.00 % 0.00 %
4 5 0.56 2 10 10000 0.00 % 0.00 % 0.00 % 0.00 %
8 15 0.53 2 30 10000 0.00 % 0.00 % 0.00 % 0.00 %

16 46 0.51 2 92 10000 0.00 % 0.00 % 0.00 % 0.00 %
32 144 0.50 2 288 10000 0.03 % 0.47 % 1.38 % 1.38 %
64 457 0.50 3 914 10000 0.01 % 1.61 % 5.08 % 5.12 %

128 1449 0.50 3 2898 10000 0.00 % 1.51 % 5.25 % 5.73 %
256 4598 0.50 3 9196 10000 0.00 % 0.52 % 3.55 % 4.59 %
512 14597 0.50 3 29194 7977 0.00 % 0.18 % 1.82 % 3.00 %

2 3 1.06 1 6 10000 0.00 % 0.00 % 0.00 % 0.00 %
4 8 0.89 1 16 10000 0.03 % 0.03 % 0.48 % 0.48 %
8 23 0.81 2 46 10000 2.64 % 1.54 % 3.29 % 3.30 %

16 73 0.81 2 146 10000 7.32 % 15.34 % 21.04 % 21.05 %
32 230 0.80 2 460 10000 7.38 % 30.84 % 41.19 % 41.19 %
64 730 0.80 2 1460 10000 5.90 % 39.58 % 50.78 % 50.73 %

128 2318 0.80 2 4636 10000 1.69 % 41.36 % 53.14 % 53.16 %
256 7357 0.80 3 14714 9114 0.70 % 54.56 % 71.78 % 72.24 %
512 23355 0.80 3 46710 618 0.00 % 50.97 % 69.74 % 70.71 %

2 3 1.06 1 6 10000 0.00 % 0.00 % 0.00 % 0.00 %
4 9 1.00 1 18 10000 1.18 % 1.40 % 2.84 % 2.84 %
8 29 1.02 2 58 10000 17.24 % 17.99 % 21.46 % 21.46 %

16 91 1.01 2 182 10000 20.15 % 35.35 % 38.85 % 38.85 %
32 288 1.00 2 576 10000 22.01 % 45.89 % 48.29 % 48.24 %
64 913 1.00 2 1826 10000 28.20 % 54.14 % 54.41 % 54.15 %

128 2897 1.00 2 5794 10000 26.24 % 56.85 % 55.14 % 54.65 %
256 9196 1.00 2 18392 9961 28.10 % 55.90 % 54.65 % 54.15 %
512 29193 1.00 3 58386 500 35.00 % 77.40 % 76.20 % 75.40 %

2 6 2.12 1 12 10000 12.20 % 12.20 % 12.20 % 12.20 %
4 18 2.00 1 36 10000 14.15 % 15.62 % 16.48 % 16.48 %
8 58 2.03 1 116 10000 12.96 % 13.92 % 14.40 % 14.40 %

16 182 2.01 1 364 10000 6.10 % 7.37 % 7.65 % 7.65 %
32 575 2.00 1 1150 10000 2.20 % 3.62 % 3.80 % 3.80 %
64 1825 2.00 2 3650 10000 2.80 % 5.59 % 6.34 % 6.32 %

128 5793 2.00 2 11586 2512 2.43 % 4.34 % 4.70 % 4.66 %
256 18391 2.00 2 36782 162 1.23 % 3.70 % 3.70 % 3.70 %
512 58386 2.00 2 116772 10 10.00 % 10.00 % 10.00 % 10.00 %

2 9 3.18 1 18 10000 12.38 % 12.38 % 12.38 % 12.38 %
4 27 3.01 1 54 10000 13.92 % 15.62 % 16.46 % 16.46 %
8 86 3.02 1 172 10000 12.79 % 13.95 % 14.31 % 14.31 %

16 272 3.01 1 544 10000 5.13 % 6.56 % 6.91 % 6.91 %
32 863 3.00 1 1726 10000 2.04 % 3.25 % 3.47 % 3.46 %
64 2737 3.00 1 5474 8051 1.25 % 2.22 % 2.50 % 2.51 %

128 8689 3.00 1 17378 380 0.26 % 0.79 % 1.05 % 1.05 %
256 27586 3.00 2 55172 9 0.00 % 0.00 % 0.00 % 0.00 %
512 87579 3.00 2 175158 2 0.00 % 0.00 % 0.00 % 0.00 %

Table 4. Experimental probability of success in the FF3 attack for various parameters
using strategy Sj

24

References

1. Recommendation for Block Cipher Modes of Operation: Methods for Format Pre-
serving Encryption. National Institute of Standards and Technology, 2016.

2. Ross Anderson and Eli Biham. Two practical and provably secure block ciphers:
Bear and lion. In Dieter Gollmann, editor, Fast Software Encryption: Third In-
ternational Workshop Cambridge, UK, February 21–23 1996 Proceedings, volume
1029, pages 113–120, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

3. Mihir Bellare, Viet Tung Hoang, and Stefano Tessaro. Message-recovery attacks
on Feistel-based Format Preserving Encryption. In 23th CCS Proceedings, 2016.

4. Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers. Format-
preserving encryption. In Michael J. Jacobson, Vincent Rijmen, and Reihaneh
Safavi-Naini, editors, Selected Areas in Cryptography: 16th Annual International
Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Revised Se-
lected Papers, volume 5867, pages 295–312. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

5. Mihir Bellare, Phillip Rogaway, and Terence Spies. The FFX mode
of operation for format-preserving encryption. Draft 1.1. Submission to
NIST, Feb. 2010. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/

proposedmodes/ffx/ffx-spec.pdf.
6. Alex Biryukov, Gaëtan Leurent, and Léo Perrin. Cryptanalysis of feistel networks

with secret round functions. In Orr Dunkelman and Liam Keliher, editors, Selected
Areas in Cryptography - SAC 2015: 22nd International Conference, Sackville, NB,
Canada, August 12-14, 2015, Revised Selected Papers, volume 9566, pages 102–121.
Springer International Publishing, 2016.

7. John Black and Phillip Rogaway. Ciphers with arbitrary finite domains. In Bart
Preneel, editor, Topics in Cryptology — CT-RSA 2002: The Cryptographers’ Track
at the RSA Conference 2002 San Jose, CA, USA, February 18–22, 2002 Proceed-
ings, volume 2271, pages 114–130, Berlin, Heidelberg, 2002. Springer Berlin Hei-
delberg.

8. Eric Brier, Thomas Peyrin, and Jacques Stern. BPS: a Format-Preserving En-
cryption Proposal. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/

proposedmodes/bps/bps-spec.pdf.
9. Michael Brightwell and Harry E. Smith. Using Datatype-Preserving Encryption To

Enchance Data Warehouse Security. Available at: http://csrc.nist.gov/nissc/
1997/proceedings/141.pdf, 1997.

10. Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251 – 280, 1990.

11. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. New attacks on feistel
structures with improved memory complexities. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology – CRYPTO 2015: 35th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I,
volume 9215, pages 433–454, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

12. Paul Erdős and Alfred Renyi. On Random Graphs I, pages 290–297. Publicationes
Mathematicae, 1959.

13. David Goldenberg, Susan Hohenberger, Moses Liskov, Elizabeth Crump Schwartz,
and Hakan Seyalioglu. On tweaking luby-rackoff blockciphers. In Kaoru Kuro-
sawa, editor, Advances in Cryptology – ASIACRYPT 2007: 13th International
Conference on the Theory and Application of Cryptology and Information Security,
Kuching, Malaysia, December 2-6, 2007. Proceedings, volume 4833, pages 342–356,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

25

14. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers.
Journal of Cryptology, 24(3):588–613, 2011.

15. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput., 17(2):373–386, April 1988.

16. Stefan Lucks. Faster luby-rackoff ciphers. In Dieter Gollmann, editor, Fast Software
Encryption: Third International Workshop Cambridge, UK, February 21–23 1996
Proceedings, volume 1039, pages 189–203, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

17. Jacques Patarin. Security of balanced and unbalanced feistel schemes with linear
non equalities. http://eprint.iacr.org/2010/293, 2010.

18. Phillip Rogaway. A Synopsis of Format Preserving Encryption. http://web.cs.

ucdavis.edu/~rogaway/papers/synopsis.pdf.
19. A. I. Saltykov. The number of components in a random bipartite graph. Discrete

Mathematics Applications, 5:515–523, 1995.
20. Bruce Schneier and John Kelsey. Unbalanced feistel networks and block cipher

design. In Proceedings of the Third International Workshop on Fast Software En-
cryption, volume 1039, pages 121–144, London, UK, 1996. Springer-Verlag.

21. Terence Spies. Format preserving encryption. Unpublished white
paper, available at: https://www.voltage.com/wp-content/uploads/

Voltage-Security-WhitePaper-Format-Preserving-Encryption.pdf, 2008.

A Deferred Proofs

A.1 Proof of Lemma 4

Proof. Before we start computations, we let the followings:
[good]: the event that v1 and v2 are both in Vgood.
[bad]: the event that v1 and v2 are both in V but not both in Vgood.
[cyc]: the event that y ′1 = y2 and y ′2 = y1.
[perm]: the event that x1y1 = x ′2y

′
2 and x ′1y

′
1 = x2y2.

[Σ = 0]: the event that Label(v1) + Label(v2) = 0.
[#{d} = 4]: the event that d1,d ′1,d2,d ′2 are pairwise different.
[#{d} = j]: the event that there are exactly j pairwise different values among
d1,d ′1,d2,d ′2.
Let pgood = Pr[good, cyc,¬perm,Σ = 0].
Let pbad = Pr[bad, cyc,¬perm,Σ = 0].
We are interested in Pr[good | cyc,¬perm,Σ = 0] = 1

1+
pbad
pgood

.

We want to upper bound pbad
pgood

. And, we start with the probability pgood.

Note that if [good], we have [Σ = 0] and it is equivalent to [c1 = c ′1, c2 =
c ′2,d1 6= d ′1,d2 6= d ′2, z1 = z ′1, z2 = z ′2]. When [c1 = c ′1, c2 = c ′2, cyc] holds,
[perm] is equivalent to [c ′1 = c2]. When [c1 = c ′1, c2 = c ′2,y ′1 = y2] holds,
(d1−y1)−(d ′2−y

′
2) = F1(c1)−F1(c

′
2) = F1(c

′
1)−F1(c2) = (d ′1−y

′
1)−(d2−y2) =

d ′1 − d2. So, y1 = y ′2 is equivalent to d1 − d
′
2 = d ′1 − d2.

We let A be the event [c1 = c ′1 6= c2 = c ′2, #{d} = 4,d1+d2 = d ′1+d
′
2] which

consists of only the c and d. Picking the xy is equivalent to picking the cd. So, A

only depends on the c,d. We have Pr[A] > 1
N3

(
1 − 1

N

)2 (
1 − 3

N

)
> 1
N3

(
1 − 5

N

)
26

(We first pick c1 and d1, then c2 6= c1, d ′1 6= d1, and d2 /∈ {d1,d ′1, 2d ′1 − d1}).
When A holds, [y ′1 = y2] only depends on F1 and occurs with probability 1

N
.

When A holds, [z1 = z ′1, z2 = z ′2] only depends on F2 and occurs with probability
1
N2 . Therefore,

pgood = Pr[good, cyc,¬perm,Σ = 0]

= Pr[c1=c′
1 6=c2=c′

2,d1 6=d′
1,d2 6=d′

2,d1+d2=d
′
1+d

′
2,y

′
1=y2,z1=z

′
1,z2=z

′
2]

> Pr[c1=c′
1 6=c2=c′

2,#{d}=4,d1+d2=d
′
1+d

′
2,y

′
1=y2,z1=z

′
1,z2=z

′
2]

= Pr
c,d

[A]Pr
F1
[y ′1 = y2|A]Pr

F2
[z1 = z ′1, z2 = z ′2|A]

>
1

N6

(
1 −

5

N

)

Now, we compute the probability pbad.

We know that [bad] is equivalent to [c1 6= c ′1 or c2 6= c ′2, F1(c1) = F1(c
′
1),

F1(c2) = F1(c
′
2),d1 6= d ′1,d2 6= d ′2, z1 = z ′1, z2 = z ′2]. When [cyc] occurs, [¬perm]

is equivalent to [c ′1 6= c2 or c1 6= c ′2]. When [F1(c1) = F1(c
′
1), F1(c2) = F1(c

′
2)]

holds, [cyc] is equivalent to [d1 + d2 = d ′1 + d ′2,y ′1 = y2]. When [cyc] holds,
[Σ = 0] is equivalent to [c1 + c2 = c ′1 + c ′2]. So, when [cyc,Σ = 0] occurs,
[c1 6= c ′1 or c2 6= c ′2] is equivalent to [c1 6= c ′1, c2 6= c ′2].

From the symmetry, [c ′1 6= c2 or c1 6= c ′2] case is at most twice the [c ′1 6= c2]
case. Let B be the event [c1 6= c ′1 6= c2 6= c ′2, c1 + c2 = c ′1 + c ′2,d1 + d2 =
d ′1 + d

′
2,d1 6= d ′1,d2 6= d ′2] which consists of only the c and d. When B holds,

[F1(c1) = F1(c
′
1), F1(c2) = F1(c

′
2),y

′
1 = y2] only depends on F1. Therefore,

pbad = Pr[bad, cyc,¬perm,Σ = 0]

= Pr[c1 6=c′
1,c2 6=c′

2,c
′
1 6=c2 or c1 6=c′

2,c1+c2=c
′
1+c

′
2,F1(c1)=F1(c

′
1),F1(c2)=F1(c

′
2),

d1+d2=d
′
1+d

′
2,d1 6=d′

1,d2 6=d′
2,y

′
1=y2,z1=z

′
1,z2=z

′
2]

6 2 Pr[c1 6=c′
1 6=c2 6=c′

2,c1+c2=c
′
1+c

′
2,F1(c1)=F1(c

′
1),F1(c2)=F1(c

′
2),d1+d2=d

′
1+d

′
2,

d1 6=d′
1,d2 6=d′

2,y
′
1=y2,z1=z

′
1,z2=z

′
2]

= 2 Pr
c,d,F2

[B,z1=z′1,z2=z′2]Pr
F1
[F1(c1)=F1(c′

1),F1(c2)=F1(c
′
2),y

′
1=y2|B,z1=z

′
1,z2=z

′
2]

= 2 Pr
c,d,F2

[B, z1 = z ′1, z2 = z ′2]×
1

N3

We split B following the [#{d} = j] cases for j = 2, 3, 4. Each case is denoted
Bj. When we have [d1 6= d ′,d2 6= d ′2, #{d} = 2,d1 + d2 = d ′1 + d ′2], we have
either [d1 = d ′2,d ′1 = d2] or [d1 = d2,d ′1 = d ′2,d ′1 = d1 + N

2]. When we have
[d1 6= d ′1,d2 6= d ′2, #{d} = 3], we have [d1 = d2 or d ′1 = d ′2] (If we have [d1 =
d ′2 or d ′1 = d2], then d1 + d2 = d ′1 + d

′
2 and #{d} = 2 conflicts). When we have

27

[d1 6= d ′1,d2 6= d ′2, #{d} = 4], we have no equality of d’s. For B4,

Pr
c,d,F2

[B4, z1 = z ′1, z2 = z ′2]

= Pr
c,d

[B4]Pr
F2
[z1 = z ′1, z2 = z ′2|B4]

= Pr
c,d

[c1 6=c′
1 6=c2 6=c′

2,c1+c2=c
′
1+c

′
2,d1+d2=d

′
1+d

′
2,#{d}=4]Pr

F2
[z1 = z ′1, z2 = z ′2|B4]

6 Pr
c,d

[c1 + c2 = c ′1 + c
′
2,d1 + d2 = d ′1 + d

′
2]Pr
F2
[z1 = z ′1, z2 = z ′2|B4]

=
1

N4

For each of the two cases of B3, either z1 = z ′1 or z2 = z ′2 occurs with probability
1
N

. So,

Pr
c,d,F2

[B3, z1 = z ′1, z2 = z ′2]

6 2 Pr
c,d

[c1 + c2 = c ′1 + c
′
2,d1 + d2 = d ′1 + d

′
2,d1 = d2]Pr

F2
[z1 = z ′1]|d1 6= d ′1]

=
2

N4

For B2,

Pr
c,d,F2

[B2, z1 = z ′1, z2 = z ′2]

6 Pr
c,d

[B2]

= Pr
c,d

[c1 6=c′
1 6=c2 6=c′

2,c1+c2=c
′
1+c

′
2,d1+d2=d

′
1+d

′
1,d1 6=d′

1,d2 6=d′
2,#{d}=2]

= Pr
c,d

[c1+c2=c′
1+c

′
2,d1+d2=d

′
1+d

′
2,d1=d

′
2,d

′
1=d

′
2] +

Pr
c,d

[c1+c2=c′
1+c

′
2,d1=d2,d

′
1+d

′
2,d

′
1=d1+

N
2]

=
2

N4

Therefore, Prc,d,F2 [B, z1 = z ′1, z2 = z ′2] 6
5
N4 and pbad 6 10

N7 .

Finally, pbad

pgood
6 10
N−5 . We deduce

Pr[good | cyc,¬perm,Σ = 0] >
1

1 + 10
N−5

ut

A.2 Extended Lemma 4

Lemma 7. If v1v2 · · · vi · · · vLv1 is a cycle of length L in G with zero sum of
labels and the vertices use no di or ci in common, then all vi are likely to be
good. More precisely, for vi = (xiyix

′
iy
′
i) random, we have

Pr [∀i,vi∈Vgood |v1···vi···vLv1 is a cycle,(#{c}=#{c′}=L,∀i 6=j ci 6=c′
j),(#{d}=L,∀i,j di 6=d′

j),∑L
i=1 Label(vi)=0]] > 1

1+ 2L−1
N

.

28

Proof. We compute p = Pr[good | good ∨ bad, cyc,¬repeatc,¬repeatd,Σ =
0], where we use the same notation as in Lemma 4 with new [¬repeatc] and
[¬repeatd] notations. We define them as follows:

We note that when all vi are vertices (good or bad), since F1(c
′
i) = F1(ci),

y ′i+1 = yi is equivalent to d ′i − di+1 = F1(ci) − F1(ci+1). We further note that
when this holds, then

∑
di =

∑
d ′. To be able to compute the probability of

[cyc], we introduce a condition on the non-repetition of the c and c ′, except for
the possible equalities ci = c

′
i in good vertices. Namely, we define

[¬repeatc] :
(
#{c} = #{c ′} = L , ∀i 6= j ci 6= c ′j

)
When [¬repeatc,

∑
d =

∑
d ′] holds and all vi are vertices, [cyc] occurs with

probability 1
NL−1 . Therefore, Pr[cyc | good∨ bad,¬repeatc,Σd = Σd ′] = 1

NL−1

The event [∀i zi = z
′
i] is equivalent to ci + F2(di) = c

′
i + F2(d

′
i). To be able

to compute its probability, we introduce a condition on the non-repetition of the
d and d ′. Namely, we define

[¬repeatd] :
(
#{d} = L , ∀i, j di 6= d ′j

)
Hence, when [¬repeatd] occurs, [∀i zi = z

′
i] occurs with probability 1

NL
: Pr[z ′ =

z | ¬repeatd] =
1
NL

. Finally, when [cyc] holds, [Σ = 0] is equivalent to Σ(c−c ′) =
0, and [good∨ bad] is equivalent to [F1(c) = F1(c

′), z ′ = z].

We define

pgood = Pr[c=c′,¬repeatc,cyc,¬repeatd,z
′=z]

pbad = Pr [¬(c=c′),F1(c)=F1(c
′),

∑
(c−c′)=0,¬repeatc,cyc,¬repeatd,z

′=z]

with obvious shorthands [c = c ′], [z ′ = z], [F1(c) = F1(c
′)], [

∑
(c− c ′) = 0].

We upper bound pbad

pgood
to compute p.

We have

pgood = Pr[c = c ′,¬repeatc, cyc,¬repeatd, z ′ = z]

= Pr
[
c = c ′,¬repeatc

∑
d =

∑
d ′, cyc,¬repeatd, z ′ = z

]
=

1

N2L−1
Pr[c = c ′,¬repeatc]Pr

[∑
d =

∑
d ′,¬repeatd

]
=

1

N3L−1

N(N− 1) · · · (N− L+ 1)

NL
Pr
[∑

d =
∑

d ′,¬repeatd

]

pbad = Pr [¬(c=c′),F1(c)=F1(c
′),

∑
(c−c′)=0,¬repeatc,cyc,¬repeatd,z

′=z]

= Pr [¬(c=c′),F1(c)=F1(c
′),

∑
(c−c′)=0,¬repeatc

∑
d=

∑
d′,cyc,¬repeatd,z

′=z]

=
1

N2L−1
Pr[¬(c=c′),F1(c)=F1(c

′),
∑

(c−c′)=0,¬repeatc]Pr [
∑
d=

∑
d′,¬repeatd]

29

So,

pbad

pgood
=

N2L

N(N− 1) · · · (N− L+ 1)
Pr [¬(c=c′),F1(c)=F1(c

′),
∑

(c−c′)=0,¬repeatc]

=
N2L

N(N− 1) · · · (N− L+ 1)

∑
I 6=∅

Pr

¬repeatc

∀i 6∈I ci=c
′
i

∀i∈I ci 6=c′
i,F1(ci)=F1(c

′
i)∑

i∈I(ci−c
′
i)=0

6
N2L

N(N− 1) · · · (N− L+ 1)

∑
I 6=∅

Pr

¬repeatc except c′

maxI

∀i 6∈I ci=c
′
i

∀i∈I\{max I} ci 6=c′
i,F1(ci)=F1(c

′
i)∑

i∈I(ci−c
′
i)=0

F1(cmaxI)=F1(c
′
maxI)

=

N2L

N(N− 1) · · · (N− L+ 1)

∑
I 6=∅

N(N− 1) · · · (N− L− #I)

N2L+#I

=
∑
I 6=∅

(N− L)(N− L− 1) · · · (N− L− #I)

N#I

6
∑
I 6=∅

1

N
=

2L − 1

N

where [¬repeatc except c ′max I] means
#{c} = L

#{c ′1, . . . , c ′max I−1, c ′max I+1, . . . , c ′L} = L− 1

∀i∀j 6= max I i 6= j =⇒ ci 6= c ′j
By relaxing the constraints on c ′max I, we can compute the probability of Σ(c −
c ′) = 0 conditioned to other events about c and c ′. This probability is 1

N
.

Therefore,
pbad

pgood
6

2L − 1

N

and we have

1

1 + pbad
pgood

>
1

1 + 2L−1
N

ut

30

