
Partially Splitting Rings for
Faster Lattice-Based Zero-Knowledge Proofs

Vadim Lyubashevsky and Gregor Seiler

IBM Research – Zurich

Abstract. When constructing zero-knowledge proofs based on the hardness of the Ring-LWE or the
Ring-SIS problems over the ring Rn

p = Zp[X]/(Xn + 1), it is often necessary that the challenges come
from a set C that satisfies three properties: the set should be exponentially large (around 2256), the
elements in it should have small norms, and all the non-zero elements in the difference set C −C should
be invertible. The first two properties are straightforward to satisfy, while the third one requires us
to make efficiency compromises. We can either work over rings where the polynomial Xn + 1 only
splits into two irreducible factors modulo p which makes speed of the multiplication operation in Rn

p

sub-optimal, or we can limit our challenge set to polynomials of smaller degree which requires them to
have (much) larger norms.

In this work we show that one can use the optimal challenge sets C and still have the polynomial
Xn + 1 split into more than two factors. For the most common parameters that are used in such zero-
knowledge proofs, we show that Xn +1 can split into 8 or 16 irreducible factors. Experimentally, having
the rings split in this fashion, increases the speed of polynomial multiplication by around 30%. This
is a modest improvement, but it comes completely for free simply by working over the ring Rn

p with a
different modulus p. In addition to the speed improvement, the splitting of the ring into more factors
is useful in scenarios where one embeds information into the Chinese Remainder representation of the
ring elements.

1 Introduction

Cryptography based on the presumed hardness of the Ring / Module-SIS and Ring / Module-LWE
problems [PR06,LM06,LPR10,LS15] is seen as a very likely replacement of traditional cryptography
after the eventual coming of quantum computing. There already exist very efficient basic public
key primitives, such as encryption schemes and digital signatures, based on the hardness of these
problems. For added efficiency, most practical lattice-based constructions work over polynomial
rings Zp[X]/(f(X)) where f(X) = Xn + 1 and p is chosen in such a way that the polynomial
Xn + 1 splits into n linear factors modulo p. With such a choice of parameters, multiplication
in the ring can be performed very efficiently via the Number Theoretic Transform, which is an
analogue of the Fast Fourier Transform that works over a finite field. Some examples of practical
implementations that utilize NTT implementations of digital signatures and public key encryption
based on the Ring-LWE problem can be found in [GLP12,PG13,ADPS16].

The one part of traditional cryptography that does not easily translate into the lattice world
is zero-knowledge proofs. Abstractly, in a zero-knowledge proof the prover wants to prove the
knowledge of s that satisfies the relation f(s) = t, where f and t are public. In the lattice setting,
the function

f(s) := As (1)

where A is a random matrix over some ring (which is commonly Zp or Zp[X]/(Xn + 1)) and s is a
vector over that same ring, where the coefficients of all (or almost all) the elements comprising s
are bounded by some small value � p.

There are currently three known approaches for constructing lattice-based zero-knowledge proofs
when one has a secret s satisfying f(s) = t. The first approach is to use the adaptation of the Stern
protocol [Ste93] to lattice constructions [KTX08,LNSW13]. The main disadvantage of this approach
is that each round of the proof has soundness error 2/3 and the size of the matrix A used in the proof
may grow with the polynomial p. The end result is that these proofs are often Megabytes in length
and are unsuitable for most practical applications. Another type of zero-knowledge proof is one in
which we would like to simultaneously prove the knowledge of many s1, . . . , sk such that f(si) = ti.
Recent works showed that such proofs can in fact be quite practical [BDLN16,CDXY17,DL17]
when one needs to simultaneously prove a few thousand such equations. A caveat is that rather
than proving the knowledge of an si, the Prover can only show that he knows some s̄i whose
coefficients are slightly larger.

The third type of zero-knowledge proof is an “approximate” one, where the prover can only
show that he knows an s̄ such that f(s̄) ≈ t. These are the types of proofs that are affected by our
result and we discuss them in greater detail below.

1.1 Approximate Zero-Knowledge Proofs

The function f in (1) satisfies the property that f(s1)+f(s2) = f(s1 +s2) and for any c in the ring
and any vector s over the ring we have f(sc) = c · f(s). The zero-knowledge proof for attempting
to prove the knowledge of s proceeds as follows:

The Prover first chooses a “masking parameter” y and sends w := f(y) to the Verifier. The
Verifier picks a random challenge c from a subset of the ring and sends it to the prover (in a non-
interactive proof, the Prover himself would generate c := H(t, w), where H is a cryptographic hash
function). The Prover then computes z := sc+ y and sends it to the Verifier.1

The Verifier checks that f(z) = ct + w and, crucially, it also checks to make sure that the
coefficients of z are small. If these checks pass, then the Verifier accepts the proof. To show that
the protocol is a proof of knowledge, one can rewind the Prover to just after his first move and
send a different challenge c′, and get a response z′ such that f(z′) = c′t + w. Combined with the
first response, we extract the equation

f(s̄) = c̄t (2)

where s̄ = z − z′ and c̄ = c− c′.
Notice that while the prover started with the knowledge of an s with small coefficients such

that f(s) = t, he only ends up proving the knowledge of an s̄ with larger coefficients such that
f(s̄) = c̄t. If c̄ also has small coefficients, then this type of proof is good enough for some purposes.

1.2 Applications of Approximate Zero-Knowledge Proofs

As a simple example of the utility of approximate zero-knowledge proofs, we consider commitment
schemes where a commitment to a message m involves choosing some randomness r, and outputting

f(s) = t, where s is defined as

[
r
m

]
where r and m have small coefficients.2 Using the zero-knowledge

1 In lattice-based schemes, it is important to keep the coefficients of z small, and so y must be chosen to have small
coefficients as well. This can lead to the distribution of z being dependent on sc, which leaks some information
about s. This problem is solved in [Lyu09,Lyu12] via various rejection-sampling procedures. How this is done is
not important to this paper, and so we ignore this step.

2 It was shown in [BKLP15,BDOP16] that one actually does not need the message m to have small coefficients, but
for simplicity we assume here that it still has them.

2

proof from Section 1.1, one can prove the knowledge of an s̄ and c̄ such that f(s̄) = c̄t. If c̄ is
invertible in the ring, then we can argue that this implies that if t is later opened to any valid
commitment s′ where f(s′) = t, then it must be s′ = s̄/c̄.

The sketch of the argument is as follows: If we extract s̄, c̄ and the commitment is opened with
s′ such that f(s′) = t, then multiplying both sides by c̄ results in f(c̄s′) = c̄t. Combining this with
what was extracted from the zero-knowledge proof, we obtain that f(c̄s′) = f(s̄). If s′ 6= s̄/c̄, then
c̄s′ 6= s̄ and we found a collision (with small coefficients) for the function f . Such a collision implies
a solution to the (Ring-)SIS problem, or, depending on the parameters, may simply not exist (and
the scheme can thus be based on (Ring-)LWE).

There are more intricate examples involving commitment schemes (see e.g. [BKLP15,BDOP16])
as well as other applications of such zero knowledge proofs, (e.g. to verifiable encryption [LN17])
which require that the c̄ be invertible.

1.3 The Challenge Set and its Effect on the Proof

The challenge c is drawn uniformly from some domain C which is a subset of Rn
p . In order to have

small soundness error, we would like C to be large. When building non-interactive schemes that
should remain secure against quantum computers, one should have |C| be around 2256. On the other
hand, we also would like c to have a small norm. The reason for the latter is that the honest prover
computes z := sc + y and so the s̄ that is extracted from the Prover in (2) is equal to z − z′, and
must also therefore depend on ‖sc‖. Thus, the larger the norms of c, c′ are, the larger the extracted
solution s̄ will be, and the easier the corresponding (Ring-)SIS problem will be.

As a running example, suppose that we’re working over the polynomial ringR256
p = Zp[X]/(X256+

1). If invertibility were not an issue, then a simple and nearly optimal way to choose C of size 2256

would be to define

C = {c ∈ R256
p : ‖c‖∞ = 1, ‖c‖1 = 60}. (3)

In other words, the challenges consist of ring elements consisting of exactly 60 non-zero elements
which are ±1.3 The l2 norm of such elements is

√
60.

If we take invertibility into consideration, then we need the difference set C − C (excluding 0)
to consist only of invertible polynomials. There are some folklore ways of creating such a set. If the
polynomial X256 + 1 splits into k irreducible polynomials modulo p, then all of these polynomials
must have degree 256/k. It is then easy to see, via the Chinese Remainder Theorem that every
non-zero polynomial of degree less than 256/k is invertible in the ring Zp[X]/(X256 + 1). We can
therefore define the set

C′ = {c ∈ R256
p : deg(c) < 256/k, ‖c‖∞ ≤ γ},

where γ ≈ 2k−1 in order for the size of the set to be greater than 2256. The `2 norm of elements in
this set is

√
256/k ·γ. If we, for example, take k = 8, then this norm becomes

√
32 ·27 ≈ 724, which

is around 90 times larger than the norms of the challenges in the set defined in (3). It is therefore
certainly not advantageous to increase the norm of the challenge by this much only to decrease the
running time of the computation. In particular, the security of the scheme will decrease and one
will need to increase the ring dimension to compensate, which will in turn negate any savings in

3 The size of this set is
(
256
60

)
· 260 > 2256.

3

running time. A much more desirable solution would be to have the polynomial Xn + 1 split, but
still be able to use the optimal challenge set from (3).

1.4 Our Contribution

We show that the polynomial Xn + 1 can split into several (in practice up to 8 or 16) irreducible
factors and we can still use the optimal challenge sets, like ones of the form from (3). We also show
some methods for creating challenge sets that are slightly sub-optimal, but allow for the polynomial
to split further. This generalizes a result in [LN17] that showed that one can use the optimal set
when Xn + 1 splits into two factors.

The simplest way to use our results is via the Theorem below, whose proof is given in Section
3.2. The theorem states that if a non-zero polynomial has small coefficients (where “small” is related
to the prime p and the number of prime factors of Xn + 1 modulo p), then it’s invertible in the
ring Zp[X]/(Xn + 1).

Theorem 1.1. Let n ≥ k > 1 be powers of 2 and p = 2k + 1(mod4k) be a prime. Then the

polynomial Xn+1 factors as Xn+1 =
k∏

j=1
(Xn/k−rj) mod p, and any y in the ring Zp[X]/(Xn+1)

that satisfies 0 < ‖y‖∞ < 1√
k
· p1/k has an inverse in the ring.

As an application of the above result, suppose that we choose k = 8 and a prime p congruent to
17(mod 32) such that p > 220. Furthermore, suppose that we perform our zero-knowledge proofs
over the ring Zp[X]/(Xn + 1) (where n is a power of 2 greater than 8), and prove the knowledge of
s̄, c̄ such that f(s̄) = c̄t where ‖c̄‖∞ ≤ 2 (i.e. the challenges c are taken such that ‖c‖∞ = 1). Then
the above theorem states that Xn + 1 factors into 8 polynomials and c̄ will be invertible in the ring
since 1√

8
· p1/8 > 2.

Having p > 220 is quite normal for the regime of zero-knowledge proofs, and therefore having
the polynomial Xn + 1 split into 8 factors should be possible in virtually every application. If we
would like it to split further into 16 or 32 factors, then we would need p > 248 or, respectively,
p > 2112. In Section 3.3 we describe how our techniques used to derive Theorem 1.1 can also be
used in a somewhat “ad-hoc” fashion to create different challenge sets C that are nearly-optimal
(in terms of the maximal norm), but allow Xn + 1 to split with somewhat smaller moduli than
implied by Theorem 1.1.

In Section 4, we describe how one would combine the partially-splitting FFT algorithm with the
highly optimized polynomial multiplication using the FLINT library [HJP13] to efficiently compute
multiplication in a partially-splitting ring. For primes of size approximately 229, the speed-up of
working over rings where Xn + 1 splits into 8 versus 2 factors is approximately 30%. It should be
noted that even if the ring splits fully, the speed-up obtained by FFT over FLINT (when FLINT is
used in a way that takes advantage of the fact that the polynomial moding operation is done by a
very sparse polynomial) is only 50%. It is plausible that by using complex optimizations for modern
processors (which FLINT does, but our FFT algorithm does not) one could achieve a further 50%
speed-up for a full FFT (e.g. as in [ADPS16]) which would also result in further improvements for
FFT when Xn + 1 is partially-splitting.

In addition to the speed improvement, there are applications whose usability can be improved
by the fact that we work over rings Rn

p where Xn+1 splits into more factors. For example, [BKLP15]
constructed a commitment scheme and zero-knowledge proofs of knowledge that allows to prove

4

the fact that c = ab when Commit(a), Commit(b), Commit(c) are public (the same holds for
addition). An application of this result is the verifiability of circuits. For this application, one only
needs commitments of 0’s and 1’s, thus if we work over a ring where Xn +1 splits into k irreducible
factors, one can embed k bits into each Chinese Remainder coefficient of a and b, and therefore
proving that c = ab implies that all k multiplications of the bits were performed correctly. Thus
the larger k is, the more multiplications one can prove in parallel. Unfortunately k cannot be set
too large without ruining the necessary property that the difference of any two distinct challenges
is invertible or increasing the `2-norm of the challenges as described in Section 1.3. Our result
therefore allows to prove products of 8 (or 16) commitments in parallel without having to increase
the parameters of the scheme to accommodate the larger challenges.

Acknowledgements

We thank Rafaël del Pino for pointing out an improvement to Lemma 3.3. This work is supported by
the SNSF ERC Transfer Grant CRETP2-166734 – FELICITY and the H2020 Project Safecrypto.

2 Preliminaries

2.1 Notation

We will denote by Rn the polynomial ring Z[X]/(Xn + 1) and by Rn
p , the ring Zp[X]/(Xn + 1),

with the usual polynomial addition and multiplication operations. We will denote by normal letters
elements in Z and by bold letters elements in Rn. For an odd p, an element w ∈ Rn

p can always be

written as
n−1∑
i=0

wiX
i where |wi| ≤ (p− 1)/2. Using this representation, for w ∈ Rn

p (and in Rn), we

will define the lengths of elements as

‖w‖∞ = max
i
|wi| and ‖w‖ =

√∑
i

|wi|2.

Notice that in Rn and Rn
p , we have that for any element w, ‖w‖ = ‖wX‖ and ‖w‖∞ = ‖wX‖∞.

2.2 Factorization of Xn + 1 Modulo p

It is known that when n is a power of 2, then the polynomial Xn + 1 is irreducible over the integers
and we will only be considering rings Rn and Rn

p with such n. The lemma below gives the condition
on p when Xn + 1 splits into n linear terms modulo p.

Lemma 2.1. If n is a power of two and p = 1(mod 2n), then Xn + 1 =
n∏

i=1
(X − ri) mod p where

ri are the n elements in Z∗p of multiplicative order 2n.

In this work, we will also need to know the necessary conditions that the prime p must satisfy so
that the polynomial Xn + 1 doesn’t fully split, but just splits into k irreducible factors of the form
Xn/k−rj . These conditions are stated in Theorem 2.5, which requires some lemmas and definitions
pertaining to the irreducibility of such polynomials.

5

Definition 2.2. Let y be a polynomial in Z[X] with a non-zero constant term. The order of y
modulo a prime p, denoted ordp(y), is defined as the smallest positive integer e such that y divides
Xe − 1 modulo p.

Lemma 2.3. [LN86, Theorem 3.3, page 75] For any prime p, ordp(X − r) is equal to the multi-
plicative order of r in Z∗p.

Lemma 2.4. [LN86, Theorem 3.35, page 88] Let p be a prime congruent to 1(mod 4) and X − r
be a polynomial such that ordp(X − r) = e. Let t be an integer whose prime factors divide e, but
not (p− 1)/e. Then Xt − r is irreducible modulo p.

Theorem 2.5. If n ≥ k > 1 are powers of two and p is a prime congruent to 2k + 1(mod 4k),

then there exist distinct ri ∈ Z∗p such that Xn + 1 =
k∏

i=1
(Xn/k − ri) mod p where the polynomials

Xn/k − ri are irreducible modulo p.

Proof. Because p = 1(mod2k), Lemma 2.1 implies that there exist distinct ri ∈ Z∗p that have
multiplicative order 2k such that

Xk + 1 =
k∏

i=1

(X − ri) mod p. (4)

Since ri have multiplicative order 2k in Z∗p, Lemma 2.3 says that ordp(X − ri) = 2k. Let t be any
positive power of 2. The prime factors of t (i.e. 2) divide 2k, yet do not divide (p− 1)/2k since the
latter is odd. Lemma 2.4 therefore implies that Xt − ri is irreducible modulo p.

Plugging in Xn/k for X in (4), we obtain Xn + 1 =
k∏

i=1
(Xn/k − ri) mod p. And because n/k is

a power of two, we already proved that Xn/k − ri is irreducible modulo p. ut

2.3 Lattices

An integer lattice of dimension n is an additive sub-group of Zn. For the purposes of this paper,
all lattices will be full-rank. The determinant of a full-rank integer lattice Λ of dimension n is
the size of the quotient group |Zn/Λ|. If v1, . . . ,vn are linearly independent vectors in Λ, then∏

i ‖vi‖ ≥ det(Λ). If z is a non-zero vector in Zn, then it’s easy to see that the lattice

Λ = {y ∈ Zn : 〈y, z〉 mod p = 0}

is full-rank and has determinant p. We write λ1(Λ) to denote the Euclidean length of the shortest
non-zero vector in Λ. Minkowski’s Theorem states that for any n-dimensional lattice Λ, λ1(Λ) ≤√
n · det1/n.

If I is an ideal in the polynomial ring Rn, then it is also an additive sub-group of Zn, and
therefore an n-dimensional lattice. It is therefore sometimes referred to as an ideal lattice. For an
ideal lattice Λ of the ring Rn, in addition to the upper bound on the length of λ1(Λ) given by
Minkowski’s theorem, there also exists a lower bound. The below lemma is well-known, and we
sketch its proof for completeness.

6

Lemma 2.6. If Λ is an ideal lattice in the ring Rn, then

det1/n(Λ) ≤ λ1(Λ) ≤
√
n · det1/n(Λ).

Proof. The upper bound is due to Minkowski’s theorem. To prove the lower bound, consider w to be
a polynomial in Λ such that ‖w‖ = λ1(Λ). Now consider the elements wXi for 0 ≤ i ≤ n−1. All of
these n elements have ‖wXi‖ = λ1(Λ), and they are furthermore linearly-independent over Z. The
latter is due to the fact that if there exist a0, . . . , an−1 ∈ Z such that 0 =

∑
aiwX

i = w ·(
∑

i aiX
i),

it implies that the product of two non-zero polynomials in Rn is 0, which is impossible because
Xn + 1 being irreducible over the integers implies that Rn is an integral domain. Since all the wXi

are linearly independent, we have λ1(Λ)n =
∏

i |wXi| ≥ det(Λ). ut

3 Invertible Elements in Rings

The main goal of this section is to prove Theorem 1.1. To this end, we first prove Lemma 3.1 that
can be seen as a special case of the Theorem when the polynomial Xn +1 splits completely modulo
p. In Section 3.2 we consider rings Rn

p where Xn + 1 only partially splits modulo p and describe
how to interpret polynomials y ∈ Rn

p as a combination of polynomials y′i over a smaller, but fully-
splitting ring. We then prove in Lemma 3.2 that if any of the y′i is invertible in the fully-splitting
ring, then the polynomial y is invertible in Rn

p . The proof of Theorem 1.1 will follow from these
two Lemmas.

3.1 Fully-Splitting Rings

Lemma 3.1. Let p and k be integers such that Xk + 1 =
k∏

i=1
(X − ri) mod p for some distinct

ri ∈ Z∗p and let y be any element in the ring Rk
p. If 0 < ‖y‖ < p1/k, then y is invertible in Rk

p.

Proof. Suppose that y is not invertible in Rk
p . By the Chinese Remainder Theorem, this implies

that (for at least) one i, y mod (X− ri) = y(ri) is 0 modulo p. For an i for which y(ri) mod p = 0,
(if there is more than one such i, pick one of them arbitrarily) define the set

Λ = {z ∈ Rk : z(ri) mod p = 0}.

Notice that Λ is an additive group and for any polynomial z ∈ Λ, the polynomial z · Xj ∈ Rk is
also in Λ for any integer j. This implies that Λ is an ideal of Rk, and so an ideal lattice in the ring
Rk. By Lemma 2.6, we know that λ1(Λ) ≥ det1/k(Λ).

If we consider the polynomials z =
k−1∑
i=0

ziX
i ∈ Rk as vectors

z = (z0, z1, . . . , zk−1) ∈ Zk,

and define the vector r = (1, ri, r
2
i , . . . , r

k−1
i), then the lattice Λ can be rewritten as

Λ = {z ∈ Zk : 〈z, r〉 mod p = 0},

which implies that det(Λ) = p, and so λ1(Λ) ≥ p1/k.
Since we said that y(ri) mod p = 0 and 0 < ‖y‖, we know that y is a non-zero vector in Λ.

But we also have that ‖y‖ < p1/k ≤ λ1(Λ), which is impossible.
ut

7

At this point, one might be tempted to prove Theorem 1.1 by a simple generalization of Lemma
3.1. The proof sketch would proceed as follows: suppose that n and p are integers such that Xn+1 =
k∏

j=1
(Xn/k − rj) mod p where (Xn/k − rj) are irreducible. Then one can define a lattice

Λ = {z ∈ Rn : z mod (Xn/k − rj) mod p = 0},

and similarly conclude that Λ is an ideal lattice in Rn with det(Λ) = pn/k and λ1(Λ) ≥ det1/n(Λ) =
p1/k. This would in turn imply that any polynomial y ∈ Rn

p such that 0 < ‖y‖ < p1/k is invertible.
This gives a weaker bound in the `∞ norm than what is claimed in Theorem 1.1 – we can only
conclude that all vectors y such that ‖y‖∞ < 1√

n
· p1/k are invertible. Since n is normally at least

256 and k is a smaller number (like 8), this is a significant difference. In particular, for k = 8, rather
than having a lower bound p > 220 for the sample application in Section 1.4, we would only obtain
p > 240.

Generalizing Lemma 3.1 to rings Rn
p where Xn + 1 only “partially splits” is therefore not the

right approach for achieving the tightest bounds. In Section 3.2, we instead prove a lemma showing
that only some parts of y, which happen to correspond to elements of the smaller ring Rk

p , need to

be invertible in Rk
p in order for the entire element y to be invertible in Rn

p .

3.2 Partially-Splitting Rings

In this section, we will be working with rings Rn
p where p is chosen such that the polynomial Xn +1

factors into k irreducible polynomials of the form Xn/k − ri. Theorem 2.5 states the necessary
condition on p in order to obtain such a factorization. Throughout this section, we will use the

following notation: suppose that y =
n−1∑
j=0

yjX
j is an element of the ring Rn

p , where the value p is

chosen as above. Then for all integers 0 ≤ i < n/k − 1, we define the polynomials y′i as

y′i =

k−1∑
j=0

yjn/k+iX
j . (5)

For example, if n = 8 and k = 4, then for y =
7∑

i=0
yiX

i, we have y′0 = y0 + y2X + y4X
2 + y6X

3

and y′1 = y1 + y3X + y5X
2 + y7X

3.
The intuition behind the definition in (5) is that one can write y in terms of the y′i as

y =

n/k−1∑
i=0

y′i(X
n/k) ·Xi.

Then to calculate y mod (Xn/k − rj) where (Xn/k − rj) is one of the irreducible factors of Xn + 1
modulo p, we have

y mod (Xn/k − rj) =

n/k−1∑
i=0

y′i(rj) ·Xi (6)

simply because we plug in rj for every Xn/k.

8

Lemma 3.2. Let n ≥ k > 1 be powers of two such that the polynomial Xn + 1 factors as

Xn + 1 =

k∏
j=1

(Xn/k − rj) mod p (7)

where (Xn/k − rj) are irreducible modulo p. Let y be a polynomial in Rn
p and define the associated

y′i as in (5). If some y′i is invertible in Rk
p, then y is invertible in Rn

p .

Proof. By the Chinese Remainder Theorem, the polynomial y is invertible in Rn
p if and only if

y mod (Xn/k − rj) 6= 0 for all r1, . . . , rk. From (6), to show that y is invertible, it is therefore
sufficient to show that

∃i s.t ∀j, y′i(rj) mod p 6= 0.

Let i be such that y′i is invertible in the ring Rk
p . From (7), it is clear that

Xk + 1 =

k∏
j=1

(X − rj) mod p,

and so the ring Rk
p is fully-splitting. Since y′i is invertible in Rk

p , the Chinese Remainder Theorem
implies that for all 1 ≤ j ≤ k, y′i(rj) mod p 6= 0, and therefore y is invertible in Rn

p .
ut

Theorem 1.1 now follows from the combination of Theorem 2.5, and Lemmas 3.1 and 3.2.

Proof (Theorem 1.1). For the conditions on n, k, and p, it follows from Theorem 2.5 that the

polynomial Xn + 1 can be factored into irreducible factors as modulo p as
k∏

j=1
(Xn/k − rj). For any

y ∈ Rn
p , let the y′i be defined as in (5). If 0 < ‖y‖∞ < 1√

k
· p1/k, then because each y′i consists of

k coefficients, we have that for all i, ‖y′i‖ < p1/k. Since y 6= 0, it must be that for some i, y′i 6= 0.
Lemma 3.1 then implies that for that particular i, y′i is invertible in Rk

p . In turn, Lemma 3.2 implies
that y is invertible in Rn

p . ut

3.3 Example of “Ad-hoc” Applications of Lemma 3.2

Using Lemma 3.2 as we did in the proof of Theorem 1.1 above gives a very clean statement as to a
sufficient condition under which polynomials are invertible in a partially-splitting ring. One thing
to note is that putting a bound on the `∞ norm does not take into account the other properties that
our challenge space may have. For example, our challenge space in (3) is also sparse, in addition to
having the `∞ norm bounded by 1. Yet we do not know how to use this sparseness to show that
one can let Xn + 1 split further while still maintaining the invertibility of the set C − C.

In some cases, however, there are ways to construct challenge sets that are more in line with
Lemma 3.2 and will allow further splitting. There does not to be a clean way to systematize these
ideas, and so one would have to work out the details on a case-by-case basis. Below, we give such
an example for the case in which we are working over R256

p and would like to have the polynomial
X256+1 split into 16 irreducible factors. If we would like to have Xn+1 split into 16 factors modulo
p and the set C − C to have elements whose infinity norm is bounded by 2, then applying Theorem
1.1 directly implies that we need to have 2 < 1√

16
· p1/16, which implies p > 248.

9

We will now show how one can lower the requirement on p in order to achieve a split into 16
factors by altering the challenge set C in (3).

For a polynomial y ∈ Rn
p , define the y′i as in (5). Define D as

D = {y ∈ R256
p : ‖yi‖∞ = 1 and ∀ 1 ≤ i ≤ 16 , ‖y′i‖ = 2} (8)

In other words, D is the set of polynomials y, such that every y′i has exactly 4 non-zero elements that

are ±1. The size of D is
((

16
4

)
· 24
)16 ≈ 2237, which should be enough for practical quantum security.

The `2 norm of every element in D is exactly
√

64 = 8. For a fair comparison, we should redefine
the set C so that it also has size 2237. The only change that one must make to the definition in (3) is
to lower the `1 norm to 53 from 60. Thus all elements in C have `2 norm

√
53. The elements in set

D therefore have norm that is larger by a factor of about 1.1. It then depends on the application as
to whether having Xn + 1 split into 16 rather than 8 factors is worth this modest increase. We will
now prove that for primes p > 230.5 of a certain form, X256 + 1 will split into 16 irreducible factors
modulo p and all the non-zero elements in D − D will be invertible. Therefore if our application
calls for a modulus that is larger than 230.5 but smaller than 248, we can use the challenge set D
and the below lemma.

Lemma 3.3. Suppose that p > 216 log2
√
14 ≈ 230.5 is a prime congruent to 33(mod 64). Then the

polynomial X256 + 1 splits into 16 irreducible polynomials of the form X16 + rj modulo p, and any
non-zero polynomial y ∈ D −D (as defined in (8)) is invertible in the ring Zp[X]/(X256 + 1).

Proof. The fact that X256 + 1 splits into 16 irreducible factors follows directly from Theorem 2.5.
Notice that for any y ∈ D − D, the maximum `2 norm of y′i is bounded by 4. Furthermore, the
degree of each y′i is 256/16 = 16. Thus an immediate consequence of Lemmas 3.2 and 3.1 is that if
p > 232, then any non-zero element in D−D is invertible. To slightly improve the lower bound, we
can observe that the y′i of norm 4 are polynomials in R16

p with exactly four 2’s in them. But such
elements can be written as a product of 2 and a polynomial with 4 ±1’s in it. So if both of those
are invertible, so is the product. The maximum norm of these polynomials is 2 and so they are not
the elements that set the lower bound. The next largest element in D−D is one that has three 2’s
and two ±1’s. The norm of such elements is

√
14. Thus for all p > 216·log2(

√
14) ≈ 230.5, the y′i will

be invertible in R16
p , and thus every non-zero element in D −D will be invertible in R256

p . ut

4 Polynomial Multiplication Implementation

We now describe in more detail the computational advantage of having the modulus Xn + 1 split
into as many factors as possible and our experimental results. Our aim is to speed up a general
multiplication algorithm provided by the FLINT library [HJP13] by making use of the factorization
of the modulus. Suppose that Zp contains a fourth root of unity r so that we can write

Xn + 1 = (Xn/2 + r)(Xn/2 − r).

In algebraic language, the FFT (or NTT) is based on the Chinese remainder theorem, which says
that Rn

p = Zp[X]/(Xn +1) is isomorphic to the product of Zp[X]/(Xn/2 +r) and Zp[X]/(Xn/2−r).
So, to multiply two polynomials in Rn

p one can first reduce them modulo the two factors of the
modulus, then multiply the resulting polynomials in the smaller rings, and finally recombine the
product by inverting the Chinese remainder map in order to obtain the product of the original

10

Primes
Number of FFT levels 220 − 214 + 1 223 − 213 + 1 225 − 212 + 1 227 − 211 + 1 229 − 29 + 1

0 29647 32338 34456 36149 44097
1 27021 29553 30610 31927 39035
2 24088 25631 26799 28018 28210
3 24871 26519 27345 28491 27975
4 29730 30702 31967 31622 32710
5 33397 33906 34049 40464 40391
6 24439 24261 24116 24046 24070
7 28016 27973 27778 27811 27943
8 21344 21335 21397 21496 21415

Table 1. CPU cycles used by our FFT-accelerated multiplication algorithm for Zp[X]/(X256 + 1).

polynomials. This is called the FFT-trick (see [Ber01] for a very good survey). Note that reducing
a polynomial of degree n− 1 modulo two sparse polynomials Xn/2 ± r is very easy and takes only
n
2 − 1 multiplications, n

2 − 1 additions and n
2 − 1 subtractions. If Zp contains higher roots so that

Xn + 1 splits further, then one can apply the FFT-trick recursively to the smaller rings. What is
usually referred to as the number theoretic transform (NTT) is the case where Zp contains a 2n-th
root of unity so that Xn + 1 splits completely into linear factors. This reduces multiplication in
Rn

p to just multiplication in Zp. As we are interested in the case where the modulus does not split

completely, we need to be able to multiply in rings of the form Zp[X]/(Xn/k − ri) with k < n. For
this we use the FLINT library [HJP13]. It is the standard back-end for arithmetic of polynomials
over finite fields in the Sage computer algebra system. For this purpose, FLINT employs various
highly optimized forms of Kronecker substitution.

We have implemented this FFT-acceleration of FLINT using C in both the straight-forward
recursive fashion and in an iterative way. In the iterative implementation we first apply the bit
reversing permutation to the input polynomials in order to obtain better locality. When Xn+1 splits
completely, one usually makes use of the so-called twisting trick and computes the isomorphism

X 7→ rY : Zp[X]/(Xn + 1)→ Zp[Y]/(Y n − 1).

Then the FFT-trick modulo Y n− 1 is easy to compute as Y n− 1 = (Y n/2− 1)(Y n/2 + 1). One can
then apply the twisting to Y n/2+1 and continue as before. The resulting transform is slightly easier
to implement but unfortunately not possible in our case as our ground field lacks the necessary
2n-th root of unity. In our tests it turned out that the more complex iterative implementation is
not better then the recursive one.

If one näıvely uses the general FLINT function nmod poly mulmod for the base case multiplica-
tion, which implements multiplication of polynomials over Zp modulo arbitrary polynomials, then
the resulting algorithm will be very slow. The reason is that FLINT does not know how to do the
fast reduction modulo our sparse polynomials. Therefore we have used the nmod poly mul family
of flint functions that provide arithmetic in Zp[X] and have implemented our own reduction for the
resulting polynomials.

In Table 1 we give the measurements of our experiments. We have performed multiplications in
R256

p = Zp[X]/(X256 + 1) for 5 completely splitting primes between 220 and 230. For each prime we
have used between 0 to 7 levels of FFT before using FLINT. 0 levels of FFT means that FLINT was
used directly on the input polynomials. On the other hand, in the case of 8 levels of FFT, FLINT

11

was not used and the corresponding measurements reflect the speed of our full number theoretic
transform down to linear factors. As one more example, when performing 3 levels of FFT, we were
using FLINT to multiply polynomials of degree 32. The listed numbers are numbers of CPU cycles.
They are the medians of 10000 multiplications each. The tests where performed on a computer
equipped with an Intel Skylake i7 CPU running at 3.4 GHz. The cycle counter in this CPU ticks
at a constant rate of 2.6GHz. As one can see, being able to use a prime p so that Xn + 1 splits
into more than two factors is clearly advantageous. For instance, by allowing Xn + 1 to split into
8 factors compared to just 2, we achieve a speedup of about 30%, which we have measured with
the prime 229 − 29 + 1. This should be compared to the only 50% speedup when using the optimal
NTT all the way down to 256 linear factors.

It is maybe worth noting that the FLINT library is very highly optimized for modern CPUs,
which our basic FFT-implementation is not. Therefore, we expect that one can get larger speedups
by, for instance, using a vectorized AVX2-based implementation of the FFT, which would still be
a fair comparison with the FLINT library.

The gap between using FLINT after 7 levels of FFT rather than after 6 is explained by the fact
that FLINT switches from the Kronecker substitution technique to classical multiplication when
multiplying polynomials of degree 4 instead of 8.

References

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key exchange - A
new hope. In USENIX, pages 327–343, 2016.

[BDLN16] Carsten Baum, Ivan Damg̊ard, Kasper Green Larsen, and Michael Nielsen. How to prove knowledge of
small secrets. In CRYPTO, pages 478–498, 2016.

[BDOP16] Carsten Baum, Ivan Damg̊ard, Sabine Oechsner, and Chris Peikert. Efficient commitments and zero-
knowledge protocols from ring-sis with applications to lattice-based threshold cryptosystems. IACR Cryp-
tology ePrint Archive, 2016:997, 2016.

[Ber01] Daniel J. Bernstein. Multidigit multiplication for mathematicians, 2001.

[BKLP15] Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof Pietrzak. Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In ESORICS, pages 305–325,
2015.

[CDXY17] Ronald Cramer, Ivan Damg̊ard, Chaoping Xing, and Chen Yuan. Amortized complexity of zero-knowledge
proofs revisited: Achieving linear soundness slack. In EUROCRYPT, pages 479–500, 2017.

[DL17] Rafaël Del Pino and Vadim Lyubashevsky. Amortization with fewer equations for proving knowledge of
small secrets. IACR Cryptology ePrint Archive, 2017:280, 2017. To appear in CRYPTO 2017.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryptography: A
signature scheme for embedded systems. In CHES, pages 530–547, 2012.

[HJP13] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number Theory, 2013. Version 2.4.0,
http://flintlib.org.

[KTX08] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure identification schemes based
on the worst-case hardness of lattice problems. In ASIACRYPT, pages 372–389, 2008.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision resistant. In
ICALP (2), pages 144–155, 2006.

[LN86] Rudolph Lidl and Harald Niederreiter. Introduction to Finite Fields and their Applications. Cambridge
University Press, 1986.

[LN17] Vadim Lyubashevsky and Gregory Neven. One-shot verifiable encryption from lattices. In EUROCRYPT,
pages 293–323, 2017.

[LNSW13] San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved zero-knowledge proofs of know-
ledge for the ISIS problem, and applications. In PKC, pages 107–124, 2013.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, pages 1–23, 2010.

12

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. Des.
Codes Cryptography, 75(3):565–599, 2015.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In
ASIACRYPT, pages 598–616, 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, pages 738–755, 2012.
[PG13] Thomas Pöppelmann and Tim Güneysu. Towards practical lattice-based public-key encryption on recon-

figurable hardware. In SAC, pages 68–85, 2013.
[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assumptions on cyclic

lattices. In TCC, pages 145–166, 2006.
[Ste93] Jacques Stern. A new identification scheme based on syndrome decoding. In CRYPTO, pages 13–21, 1993.

13

