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Abstract. At EUROCRYPT 2016, Gay et al. presented the first pairing-free public-key encryption
(PKE) scheme with an almost tight security reduction to a standard assumption. Their scheme is
competitive in efficiency with state-of-the art PKE schemes and has very compact ciphertexts (of three
group elements), but suffers from a large public key (of about 200 group elements).
In this work, we present an improved pairing-free PKE scheme with an almost tight security reduction
to the Decisional Diffie-Hellman assumption, small ciphertexts (of three group elements), and small
public keys (of six group elements). Compared to the work of Gay et al., our scheme thus has a
considerably smaller public key and comparable other characteristics, although our encryption and
decryption algorithms are somewhat less efficient.
Technically, our scheme borrows ideas both from the work of Gay et al. and from a recent work of
Hofheinz (EUROCRYPT, 2017). The core technical novelty of our work is an efficient and compact
designated-verifier proof system for an OR-like language. We show that adding such an OR-proof to
the ciphertext of the state-of-the-art PKE scheme from Kurosawa and Desmedt enables a tight security
reduction.
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1 Introduction

Tight security reductions. We are usually interested in cryptographic schemes that come with
a security reduction to a computational assumption. A security reduction shows that every attack
on the scheme can be translated into an attack on a computational assumption. Thus, the only way
to break the scheme is to solve an underlying mathematical problem. We are most interested in
reductions to well-investigated, “standard” assumptions, and in reductions that are “tight”. A tight
security reduction ensures that the reduction translates attacks on the scheme into attacks on the
assumption that are of similar complexity and success probability. In other words, the difficulty
of breaking the scheme is quantitatively not lower than the difficulty of breaking the investigated
assumption.

Tight security reductions are also beneficial from a practical point of view. Indeed, assume that
we choose the keylength of a scheme so as to guarantee that the only way to break that scheme is to
break a computational assumption on currently secure parameters.3 Then, a tight reduction enables
smaller keylength recommendations (than with a non-tight reduction in which, say, the attack on
the assumption is much more complex than the attack on the scheme).

∗Supported by ERC Project aSCEND (639554).
†Supported by DFG grants HO 4534/4-1 and HO 4534/2-2.
‡Supported by DFG grant HO 4534/2-2.
3This is unfortunately different from current practice, which does not take into account security reductions at all:

practical keylength recommendations are such that known attacks on the scheme itself are infeasible [18].



Reference |pk | |c| − |m| sec. loss assumption pairing
CS98 [6] 3 3 O(Q) 1-LIN = DDH no
KD04, HK07 [17, 14] k + 1 k + 1 O(Q) k-LIN (k ≥ 1) no
HJ12 [13] O(1) O(λ) O(1) 2-LIN yes
LPJY15 [19, 20] O(λ) 47 O(λ) 2-LIN yes
AHY15 [2] O(λ) 12 O(λ) 2-LIN yes
GCDCT15 [10, 15] O(λ) 6k O(λ) k-LIN (k ≥ 1) yes
GHKW16 [9] 2λk 3k O(λ) k-LIN (k ≥ 1) no
H16 [11] 2k(k + 5) k + 4 O(λ) k-LIN (k ≥ 2) yes
H16 [11] 20 28 O(λ) DCR —
Ours 6 3 O(λ) 1-LIN = DDH no

2k(k + 4) 4k O(λ) k-LIN (k ≥ 2) no

Fig. 1: Comparison amongst CCA-secure encryption schemes, whereQ is the number of ciphertexts, |pk | denotes
the size (in groups elements) of the public key, and |c| − |m| denotes the ciphertext overhead, ignoring smaller
contributions from symmetric-key encryption.

Tightly secure PKE schemes. The focus of this paper are public-key encryption (PKE) schemes
with a tight security reduction. The investigation of this topic was initiated already in 2000 by
Bellare, Boldyreva, and Micali [3]. However, the first tightly secure encryption scheme based on
a standard assumption was presented only in 2012 [13], and was far from practical. Many more
efficient schemes were proposed [1, 5, 4, 19, 15, 20, 2, 10, 12, 11] subsequently, but Gay et al. [9]
(henceforth GHKW) were the first to present a pairing-free tightly secure PKE scheme from a
standard assumption. Their PKE scheme has short ciphertexts (of three group elements), and its
efficiency compares favorably with the popular Cramer-Shoup encryption scheme. Still, the GHKW
construction suffers from a large public key (of about 200 group elements). Fig. 1 summarizes
relevant features of selected existing PKE schemes.

Our contribution. In this work, we construct a pairing-free PKE scheme with an almost4 tight
security reduction to a standard assumption (the Decisional Diffie-Hellman assumption), and with
short ciphertexts and keys. Our scheme improves upon GHKW in that it removes its main disad-
vantage (of large public keys), although our encryption and decryption algorithms are somewhat
less efficient than those of GHKW.

Our construction can be seen as a variant of the state-of-the-art Kurosawa-Desmedt PKE
scheme [17] with an additional consistency proof. This consistency proof ensures that ciphertexts
are of a special form, and is in fact very efficient (in that it only occupies one additional group
element in the ciphertext). This proof is the main technical novelty of our scheme, and is the key
ingredient to enable an almost tight security reduction.

4Like [5], we call our reduction almost tight, since its loss (of λ) is independent of the number of challenges and
users, but not constant.
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Technical overview. The starting point of our scheme is the Kurosawa-Desmedt PKE scheme
from [17]. In this scheme, public parameters, public keys, and ciphertexts are of the following form:5

pars = [A ] ∈ G2×1 for random A ∈ Z2×1
|G|

pk = [k>0 A, k
>
1 A ] ∈ G×G for random k0,k1 ∈ Z2

|G|

C =
(
[ c = Ar ], EK(M)

)
for random r ∈ Z|G|,
K = [(k0 + τk1)

>Ar],
and τ = H([c]).

(1)

Here, E is the encryption algorithm of a symmetric authenticated encryption scheme, and H is a
collision-resistant hash function.

In their (game-based) proof of IND-CCA security (with one scheme instance and one challenge
ciphertext), Kurosawa and Desmedt proceed as follows: first, they use the secret key k0,k1 to
generate the value K in the challenge ciphertext from a given [c] = [Ar] (through K = [(k0 +
τk1)

>c]). This enables the reduction to forget the witness r, and thus to modify the distribution
of c. Next, Kurosawa and Desmedt use the Decisional Diffie-Hellman (DDH) assumption to modify
the setup of c to a random vector not in the span of A. Finally, they argue that this change
effectively randomizes the value K from the challenge ciphertext (which then enables a reduction
to the security of E).

To see that K is indeed randomized, note that once c /∈ span(A), the value K = [(k0 + τk1)
>c]

depends on entropy in k0,k1 that is not leaked through pk . Furthermore, Kurosawa and Desmedt
show that even a decryption oracle leaks no information about that entropy. (Intuitively, this holds
since any decryption query with c ∈ span(A) only reveals information about k0,k1 that is already
contained in pk . On the other hand, any decryption query with c /∈ span(A) results in a computed
key K that is independently random, and thus will lead the symmetric authenticated encryption
scheme to reject the whole ciphertext.)

An argument of Bellare, Boldyreva, and Micali [3] (which is applied in [3] to the related Cramer-
Shoup encryption scheme) shows that the security proof for the Kurosawa-Desmedt scheme carries
over to a setting with many users. Due to the re-randomizability properties of the DDH assumption,
the quality of the corresponding security reduction does not degrade in the multi-user scenario. The
security proof of Kurosawa and Desmedt does however not immediately scale to a larger number of
ciphertexts. Indeed, observe that the final argument to randomize K relies on the entropy in k0,k1.
Since this entropy is limited, only a limited number of ciphertexts (per user) can be randomized at
a time.6

First trick: randomize k0. In our scheme, we adapt two existing techniques for achieving tight
security. The first trick, which we borrow from GHKW [9] (who in turn build upon [5, 15]), consists
in modifying the secret key k0,k1 first, before randomizing the values K from challenge ciphertexts.
Like the original Kurosawa-Desmedt proof, our argument starts out by first using k0,k1 to generate
challenge ciphertexts, and then simultaneously randomizing all values c from challenges (using the

5In this paper, we use an implicit notation for group elements. That is, we write [x] := gx ∈ Gn for a fixed group
generator g ∈ G and a vector x ∈ Zn|G|, see [8]. We also use the shorthand notation [x,y] := ([x], [y]).

6We note that a generic hybrid argument shows the security of the Kurosawa-Desmedt scheme in a multi-ciphertext
setting. However, the corresponding security reduction loses a factor of Q in success probability, where Q is the number
of challenge ciphertexts.
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re-randomizability of DDH). But then we use another reduction to DDH, with the DDH challenges
embedded into k0 and in all challenge c, to simultaneously randomize all challenge K at once.

During this last reduction, we will (implicitly) set up k0 = k′0 + αA⊥ for a known k′0, a known
A⊥ ∈ Z2×1

|G| with (A⊥)>A = 0, and an unknown α ∈ Z|G| from the DDH challenge [α, β, γ]. We can
thus decrypt all ciphertexts with c ∈ span(A) (since k>0 Ar = k′>0 Ar), and randomize all challenge
ciphertexts (since their c satisfies c /∈ span(A) and thus allows to embed β and γ into c and K,
respectively). However, we will not be able to answer decryption queries with c /∈ span(A). Hence,
before applying this trick, we will need to make sure that any such decryption query will be rejected
anyway.
Second trick: the consistency proof. We do not know how to argue (with a tight reduction) that
such decryption queries are rejected in the original Kurosawa-Desmedt scheme from (1). Instead,
we introduce an additional consistency proof in the ciphertext, so ciphertexts in our scheme now
look as follows:

C =
(
[ c = Ar ], π, EK(M)

)
for random r ∈ Z|G|,
K = [(k0 + τk1)

>Ar],
and τ = H([c]).

(2)

Here, π is a proof (yet to be described) that shows the following statement:

c ∈ span(A) ∨ c ∈ span(A0) ∨ c ∈ span(A1), (3)

where A0,A1 ∈ Z2×1
|G| are different (random but fixed) matrices. Our challenge ciphertexts will

satisfy (3) at all times, even after their randomization.
We will then show that all “inconsistent” decryption queries (with c /∈ span(A)) are rejected

with a combination of arguments from GHKW [9] and Hofheinz [11]. We will proceed in a number
of hybrids. In the i-th hybrid, all challenge ciphertexts are prepared with a value of k0 + Fi(τ|i)
instead of k0, where Fi(τ|i) is a random function applied to the first i bits of τ . Likewise, in all
decryption queries with inconsistent c (i.e., with c /∈ span(A)), we use k0 +Fi(τ|i). Going from the
i-th to the (i + 1)-th hybrid proceeds in a way that is very similar to the one from GHKW: First,
we set up the c value in each challenge ciphertext to be in span(Aτi+1), where τi+1 is the (i+1)-th
bit of the respective τ .

Next, we add a dependency of the used k0 on the (i+1)-th bit of τ . (That is, depending on τi+1,
we will use two different values of k0 both for preparing challenge ciphertexts, and for answering
decryption queries.) This is accomplished by adding random values k∆ with k>∆Aτi+1 = 0 to k0.
Indeed, for challenge ciphertexts, adding such k∆ values results in the same computed keys K, and
thus cannot be detected. We note however that at this point, we run into a complication: since
decryption queries need not have c ∈ span(Aτi+1), we cannot simply add random values k∆ with
k>∆Aτi+1 = 0 to k0. (This could be detected in case c /∈ span(Aτi+1).) Instead, here we rely on a
trick from [11], and use that even adversarial c values must lie in span(A) or span(Ab) for b ∈ {0, 1}.
(This is also the reason why we will eventually have to modify and use k1. We give more details on
this step inside.)

Once k0 is fully randomized, the resulting K computed upon decryption queries with c /∈
span(A) will also be random, and thus any such decryption query will be rejected. Hence, using the
first trick above, security of our scheme follows.

We finally mention that our complete scheme generalizes to weaker assumptions, including the
k-Linear family of assumptions (see Fig. 1).
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Relation to existing techniques. We borrow techniques from both GHKW [9] and Hofheinz [11],
but we need to modify and adapt them for our strategy in several important respects. While the
argument from [9] also relies on a consistency proof that a given ciphertext lies in one of three linear
subspaces (span(A) or span(Ab)), their consistency proof is very different from ours. Namely, their
consistency proof is realized entirely through a combination of different linear hash proof systems,
and requires orthogonal subspaces span(Ab). This requires a large number (i.e., 2λ) of hash proof
systems, and results in large public keys to accommodate their public information. Furthermore,
the ciphertexts in GHKW require a larger [c] ∈ G3k (compared to the Kurosawa-Desmedt scheme),
but no explicit proof π in C. This results in ciphertexts of the same size as ours.

On the other hand, [11] presents a scheme with an explicit consistency proof π for a statement
similar to ours (and also deals with the arising technical complications sketched above similarly).
But his construction and proof are aimed at a more generic setting which also accommodates the
DCR assumption (both for the PKE and consistency proof constructions). As a consequence, his
construction does not modify the equivalent of our secret key k0,k1 at all, but instead modifies
ciphertexts directly. This makes larger public keys and ciphertexts with more “randomization slots”
necessary (see Fig. 1), and in fact also leads to a more complicated proof. Furthermore, in the
discrete-log setting, the necessary “OR”-style proofs from [11] require pairings, and thus his PKE
scheme does as well. In contrast, our scheme requires only a weaker notion of “OR”-proofs, and we
show how to instantiate this notion without pairings.

Crucial ingredient: efficient pairing-free OR-proofs. In the above argument, a crucial com-
ponent is of course a proof π for (3). We present a designated-verifier proof π that only occupies one
group element (in the DDH case) in C. While the proof nicely serves its purpose in our scheme, we
also remark that our construction is not as general as one would perhaps like: in particular, honest
proofs (generated with public information and a witness) can only be generated for c ∈ span(A)
(but not for c ∈ span(A0) or c ∈ span(A1)).

Our proof system is perhaps best described as a randomized hash proof system. We will outline
a slightly simpler version of the system which only proves c ∈ span(A) ∨ c ∈ span(A0). In that
scheme, the public key contains a value [k>y A], just like in a linear hash proof system (with secret
key ky) for showing c ∈ span(A) (see, e.g., [7]). Now given either the secret key ky or a witness r to
the fact that c = Ar, we can compute [k>y c]. The idea of our system is to encrypt this value [k>y c]
using a special encryption scheme that is parameterized over c (and whose public key is also part
of the proof system’s public key). The crucial feature of that encryption scheme is that it becomes
lossy if and only if c ∈ span(A0).

We briefly sketch the soundness of our proof system: we claim that even in a setting in which an
adversary has access to many simulated proofs for valid statements (with c ∈ span(A)∪ span(A0)),
it cannot forge proofs for invalid statements. Indeed, proofs with c ∈ span(A) only depend on (and
thus only reveal) the public key [k>y A]. Moreover, by the special lossiness of our encryption scheme,
proofs with c ∈ span(A0) do not reveal anything about ky. Hence, an adversary will not gain any
information about ky beyond k>y A. However, any valid proof for c /∈ span(A) ∪ span(A0) would
reveal the full value of ky, and thus cannot be forged by an adversary that sees only proofs for valid
statements.

We remark that our proof system has additional nice properties, including a form of on-the-fly
extensibility to more general statements (and in particular to more than two “OR branches”. We
formalize this type of proof systems as “qualified proof systems” inside.
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Roadmap. After recalling some preliminaries in Section 2, we introduce the notion of designated-
verifier proof systems in Section 3, along with an instantiation in Section 4. Finally, in Section 5,
we present our encryption scheme (in form of a key encapsulation mechanism).

2 Preliminaries

2.1 Notations

We start by introducing some notation used throughout this paper. First we denote by λ ∈ N the
security parameter. By negl : N → R≥0 we denote a negligible function. For an arbitrary set B, by
x←R B we denote the process of sampling an element x from B uniformly at random. For any bit
string τ ∈ {0, 1}∗, we denote by τi the i-th bit of τ and by τ|i ∈ {0, 1}i the bit string comprising
the first i bits of τ .

Let p be a prime, and k, ` ∈ N such that ` > k. Then for any matrix A ∈ Z`×kp , we write
A ∈ Zk×kp for the upper square matrix of A, and A ∈ Z(`−k)×k

p for the lower `− k rows of A. With

span(A) := {Ar | r ∈ Zkp} ⊂ Z`p,

we denote the span of A.
For vectors v ∈ Z2k

p , by v ∈ Zkp we denote the vector consisting of the upper k entries of v and
accordingly by v ∈ Zkp we denote the vector consisting of the lower k entries of v.

As usual by A> ∈ Zk×`p we denote the transpose of A and if ` = k and A is invertible by
A−1 ∈ Z`×`p we denote the inverse of A.

For ` ≥ k by A⊥ we denote a matrix in Z`×(`−k)p with A>A⊥ = 0 and rank ` − k. We denote
the set of all matrices with these properties as

orth(A) := {A⊥ ∈ Z`×(`−k)p | A>A⊥ = 0 and A⊥ has rank `− k}.

2.2 Hash Functions

A hash function generator is a probabilistic polynomial time algorithm H that, on input 1λ, outputs
an efficiently computable function H : {0, 1}∗ → {0, 1}λ, unless domain and co-domain are explicitly
specified.

Definition 1 (Collision Resistance). We say that a hash function generator H outputs collision-
resistant functions H, if for all PPT adversaries A and H←R H(1λ) it holds

AdvCR
H,A(λ) := Pr

[
x 6= x′ ∧ H(x) = H(x′) | (x, x′)← A(1λ,H)

]
≤ negl(λ).

We say a hash function is collision resistant if it is sampled from a collision resistant hash function
generator.

Definition 2 (Universality). We say a hash function generator H is universal, if for every x, x′ ∈
{0, 1}∗ with x 6= x′ it holds

Pr
[
h(x) = h(x′) | h←R H(1λ)

]
=

1

2λ
.

We say a hash function is universal if it is sampled from a universal hash function generator.
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Lemma 1 (Leftover Hash Lemma [16]). Let X ,Y be sets, ` ∈ N and h : X → Y be a universal
hash function. Then for all X ←R X , U ←R Y and ε > 0 with log |X | ≥ log |Y|+ 2 log ε we have

∆ ((h, h(X)), (h, U)) ≤ 1

ε
,

where ∆ denotes the statistical distance.

2.3 Prime-Order Groups

Let GGen be a PPT algorithm that on input 1λ returns a description G = (G, p, P ) of an additive
cyclic group G of order p for a 2λ-bit prime p, whose generator is P .

We use the representation of group elements introduced in [8]. Namely, for a ∈ Zp, define
[a] = aP ∈ G as the implicit representation of a in G. More generally, for a matrix A = (aij) ∈ Z`×kp

we define [A] as the implicit representation of A in G:

[A] :=

a11P ... a1kP

a`1P ... a`kP

 ∈ G`×k

Note that from [a] ∈ G it is hard to compute the value a if the discrete logarithm assumption holds
in G. Obviously, given [a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently compute [ax] ∈ G and
[a+ b] ∈ G.

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) assumption from [8].

Definition 3 (Matrix Distribution). Let k, ` ∈ N, with ` > k and p be a 2λ-bit prime. We call
D`,k a matrix distribution if it outputs matrices in Z`×kp of full rank k in polynomial time.

In the following we only consider matrix distributions D`,k, where for all A←R D`,k the first k
rows of A form an invertible matrix.

The D`,k-Matrix Diffie-Hellman problem is, for a randomly chosen A ←R D`,k, to distinguish
the between tuples of the form ([A], [Aw]) and ([A], [u]), where w←R Zkp and u←R Z`p.

Definition 4 (D`,k-Matrix Diffie-Hellman D`,k-MDDH). Let D`,k be a matrix distribution. We
say that the D`,k-Matrix Diffie-Hellman (D`,k-MDDH) assumption holds relative to a prime order
group G if for all PPT adversaries A,

Advmddh
G,D`,k,A(λ) : = |Pr[A(G, [A], [Aw]) = 1]− Pr[A(G, [A], [u]) = 1]|

≤ negl(λ),

where the probabilities are taken over G := (G, p, P ) ←R GGen(1λ), A ←R D`,k,w ←R Zkp,u ←R

Z`p.

For Q ∈ N, W ←R Zk×Qp and U ←R Z`×Qp , we consider the Q-fold D`,k-MDDH assumption,
which states that distinguishing tuples of the form ([A], [AW]) from ([A], [U]) is hard. That is, a
challenge for the Q-fold D`,k-MDDH assumption consists of Q independent challenges of the D`,k-
MDDH Assumption (with the same A but different randomness w). In [8] it is shown that the two
problems are equivalent, where the reduction loses at most a factor `− k.
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Lemma 2 (Random self-reducibility of D`,k-MDDH, [8]). Let `, k, Q ∈ N with ` > k and
Q > `−k. For any PPT adversary A, there exists an adversary B such that T (B) ≈ T (A)+Q·poly(λ)
with poly(λ) independent of T (A), and

AdvQ-mddh
G,D`,k,A(λ) ≤ (`− k) ·Advmddh

G,D`,k,B(λ) +
1

p− 1
.

Here
AdvQ-mddh

G,D`,k,A(λ) := |Pr[A(G, [A], [AW]) = 1]− Pr[A(G, [A], [U]) = 1]| ,

where the probability is over G := (G, p, P ) ←R GGen(1λ), A ←R U`,k,W ←R Zk×Qp and U ←R

Z`×Qp .

The uniform distribution is a particular matrix distribution that deserves special attention, as
an adversary breaking the U`,k-MDDH assumption can also distinguish between real MDDH tuples
and random tuples for all other possible matrix distributions.

Definition 5 (Uniform distribution). Let `, k ∈ N, with ` ≥ k, and a prime p. We denote by
U`,k the uniform distribution over all full-rank `× k matrices over Zp. Let Uk := Uk+1,k.

Lemma 3 (D`,k-MDDH ⇒ U`,k-MDDH, [8]). Let D`,k be a matrix distribution. For any ad-
versary A on the U`,k-distribution, there exists an adversary B on the D`,k-assumption such that
T (B) ≈ T (A) and Advmddh

G,U`,k,A(λ) = Advmddh
G,D`,k,B(λ).

We state a tighter random-self reducibility property for case of the uniform distribution.

Lemma 4 (Random self-reducibility of U`,k-MDDH, [8]). Let `, k, Q ∈ N with ` > k. For
any PPT adversary A, there exists an adversary B such that T (B) ≈ T (A)+Q ·poly(λ) with poly(λ)
independent of T (A), and

AdvQ-mddh
G,U`,k,A(λ) ≤ Advmddh

G,U`,k,B(λ) +
1

p− 1
.

We also recall this property of the uniform distribution, stated in [9].

Lemma 5 (Uk-MDDH ⇔ U`,k-MDDH). Let `, k ∈ N, with ` > k. For any adversary A, there
exists an adversary B (and vice versa) such that T (B) ≈ T (A) and Advmddh

G,U`,k,A(λ) = Advmddh
G,Uk,B(λ)

.

In this paper, for efficiency considerations, and to simplify the presentation of the proof systems
in Section 3, we are particularly interested in the case k = 1, which corresponds to the DDH
assumption, that we recall here.

Definition 6 (DDH). We say that the DDH assumption holds relative to a prime order group G
if for all PPT adversaries A,

Advddh
G,A(λ) : = |Pr[A(G, [a], [r], [ar]) = 1]− Pr[A(G, [a], [r], [b]| ≤ negl(λ),

where the probabilities are taken over G := (G, p, P )←R GGen(1λ), a, b, r ←R Zp.
Note that the DDH assumption is equivalent to D2,1-MDDH, where D2,1 is the distribution that

outputs matrices
(
1
a

)
, for a←R Zp chosen uniformly at random.
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2.4 Public-Key Encryption

Definition 7 (Public-Key Encryption). A public-key encryption scheme is a tuple of three PPT
algorithms (Gen,Enc,Dec) such that:

Gen(1λ): returns a pair (pk , sk) of a public and a secret key.
Enc(pk ,M): given a public key pk and a message M ∈M(λ), returns a ciphertext C.
Dec(pk , sk , C): deterministically decrypts the ciphertext C to obtain a message M or a special
rejection symbol ⊥.

We say PKE := (Gen,Enc,Dec) is perfectly correct, if for all λ ∈ N,

Pr[Dec(pk , sk ,Enc(pk ,M)) =M ] = 1,

where the probability is over (pk , sk)←R Gen(1λ) , C ←R Enc(pk ,M).

Definition 8 (Multi-ciphertext CCA security). For any public-key encryption scheme PKE =
(Gen,Enc,Dec) and any stateful adversary A, we define the following security experiment:

ExpccaPKE,A(λ):
(pk, sk)←R Gen(1λ)
b←R {0, 1}
Cenc := ∅
b′ ←R AOenc(·,·),Odec(·)(pk)
if b = b′ return 1
else return 0

Oenc(M0,M1):
if |M0| = |M1|
C ←R Enc(pk ,Mb)
Cenc := Cenc ∪ {C}
return C

Odec(C):
if C /∈ Cenc
M := Dec(pk , sk , C)
return M

else return ⊥

We say PKE is IND-CCA secure, if for all PPT adversaries A, the advantage

Advcca
PKE,A(λ) :=

∣∣∣∣Pr[ExpccaPKE,A(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

2.5 Key Encapsulation Mechanism

Instead of presenting an IND-CCA secure encryption scheme directly, we construct a key encapsula-
tion mechanism (KEM) and prove that it satisfies the security notion of indistinguishability against
constrained chosen-ciphertext attacks (IND-CCCA) [14]. By the results of [14], together with an
arbitrary authenticated symmetric encryption scheme, this yields an IND-CCA secure hybrid en-
cryption.7 Roughly speaking, the CCCA security experiment, in contrast to the CCA experiment,
makes an additional requirement on decryption queries. Namely, in addition to the ciphertext, the
adversary has to provide a predicate implying some partial knowledge about the key to be decrypted.
The idea of hybrid encryption and the notion of a KEM was first formalized in [6].

Definition 9 (Key Encapsulation Mechanism). A key encapsulation mechanism is a tuple of
PPT algorithms (KGen,KEnc,KDec) such that:

KGen(1λ): generates a pair (pk , sk) of keys.
7The corresponding reduction is tight also in the multi-user and multi-ciphertext setting. Suitable (one-time)

secure symmetric encryption schemes exist even unconditionally [14].

9



KEnc(pk): on input pk , returns a ciphertext C and a symmetric key K ∈ K(λ), where K(λ) is
the key-space.

KDec(pk , sk , C): deterministically decrypts the ciphertext C to obtain a key K ∈ K(λ) or a special
rejection symbol bot.

We say (Gen,Enc,Dec) is perfectly correct, if for all λ ∈ N,

Pr[KDec(pk , sk , C) = K] = 1,

where (pk , sk) ←R Gen(1λ), (K,C) ←R KEnc(pk) and the probability is taken over the random
coins of Gen and KEnc.

As mentioned above, for constrained chosen ciphertext security, the adversary has to have some
knowledge about the key up front in order to make a decryption query. As in [14] we will use a
measure for the uncertainty left and require it to be negligible for every query, thereby only allowing
decryption queries where the adversary has a high prior knowledge of the corresponding key. We
now provide a formal definition.

Definition 10 (Multi-ciphertext IND-CCCA security). For any key encapsulation mecha-
nism KEM = (KGen,KEnc,KDec) and any stateful adversary A , we define the following ex-
periment:

ExpcccaKEM,A(λ):
(pk, sk)←R KGen(1λ)
b←R {0, 1}
Cenc := ∅
b′ ←R AOenc,Odec(·,·)(pk)
if b = b′ return 1
else return 0

Oenc:
K0 ←R K(λ)
(C,K1)←R KEnc(pk)
Cenc := Cenc ∪ {C}
return (C,Kb)

Odec(predi, Ci):
Ki := KDec(pk , sk , Ci)
if Ci /∈ Cenc and
if predi(Ki) = 1

return Ki

else return ⊥

Here predi : K(λ) 7→ {0, 1} denotes the predicate sent in the i-th decryption query, which is
required to be provided as the description of a polynomial time algorithm (which can be enforced for
instance by requiring it to be given in form of a circuit). Let further Qdec be the number of total
decryption queries made by A during the experiment, which are independent of the environment
(hereby we refer to the environment the adversary runs in) without loss of generality. The uncertainty
of knowledge about the keys corresponding to decryption queries is defined as

uncertA(λ) :=
1

Qdec

Qdec∑
i=1

PrK←RK(λ)[predi(K) = 1].

We say that the key encapsulation mechanism KEM is IND-CCCA secure, if for all PPT
adversaries with negligible uncertA(λ), for the advantage we have

Advccca
KEM,A(λ) :=

∣∣∣∣Pr[ExpcccaKEM,A(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

Note that the term uncertA(λ) in the final reduction (proving IND-CCA security of the hybrid
encryption scheme consisting of an unconditionally one-time secure authenticated encryption scheme
and an IND-CCCA secure KEM) is statistically small (due to the fact that the symmetric building
block is unconditionally secure). Thus we are able obtain a tight security reduction even if the term
uncertA(λ) is multiplied by the number of encryption and decryption queries in the security loss
(as it will be the case for our construction).
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3 Qualified Proof Systems

The following notion of a proof system is a combination of a non-interactive designated verifier proof
system and a hash proof system. Our combined proofs consist of a proof Π and a key K, where
the key K can be recovered by the verifier with a secret key and the proof Π. The key K can be
part of the key in the key encapsulation mechanism presented later and thus will not enlarge the
ciphertext size.

Definition 11 (Proof system). Let L = {Lpars} be a family of languages indexed by the public
parameters pars, with Lpars ⊆ Xpars and an efficiently computable witness relation R. A proof
system for L is a tuple of PPT algorithms (PGen,PPrv,PVer,PSim) such that:

PGen(1λ): generates a public key ppk and a secret key psk .
PPrv(ppk , x, w): given a word x ∈ L and a witness w with R(x,w) = 1, deterministically outputs
a proof Π and a key K.

PVer(ppk , psk , x,Π): on input ppk , psk , x ∈ X and Π, deterministically outputs a verdict b ∈
{0, 1} and in case b = 1 additionally a key K, else ⊥.

PSim(ppk , psk , x): given the keys ppk , psk and a word x ∈ X , deterministically outputs a proof
Π and a key K.

The following definition of a qualified proof system is a variant of “benign proof systems” as
defined in [11] tailored to our purposes. Compared to benign proof systems, our proof systems
feature an additional “key derivation” stage, and satisfy a weaker soundness requirement (that is of
course still sufficient for our purpose). We need to weaken the soundness condition (compared to
benign proof systems) in order to prove soundness of our instantiation.

We will consider soundness relative to a language Lsnd ⊇ L. An adversary trying to break
soundness has access to an oracle simulating proofs and keys for statements randomly chosen from
Lsnd \ L and a verification oracle, which only replies other than ⊥ if the adversary provides a valid
proof and has a high a-priori knowledge of the corresponding key. The adversary wins if it can
provide a valid verification query outside Lsnd. The adversary loses immediately if it provides a
valid verification query in Lsnd \ L. This slightly weird condition is necessitated by our concrete
instantiation which we do not know how to prove sound otherwise. We will give more details in the
corresponding proof in Section 4.2. The weaker notion of soundness still suffices to prove our KEM
secure, because we employ soundness at a point where valid decryption queries in Lsnd \ L end the
security experiment anyway.

Definition 12 (Qualified Proof System). Let PS = (PGen,PPrv, PVer,PSim) be a proof
system for a family of languages L = {Lpars}. Let Lsnd = {Lsndpars} be a family of languages, such
that Lpars ⊆ Lsndpars . We say that PS is Lsnd-qualified, if the following properties hold:

Completeness: For all possible public parameters pars, for all words x ∈ L, and all witnesses w
such that R(x,w) = 1, we have

Pr[PVer(ppk , psk , x,Π) = (1,K)] = 1,

where the probability is taken over (ppk , psk)←R PGen (1λ) and (Π,K) := PPrv(ppk , x, w).
Uniqueness of the proofs: For all possible public parameters pars, all key pairs (ppk , psk) in

the output space of PGen (1λ), and all words x ∈ L, there exists at most one Π such that
PVer(ppk , psk , x,Π) outputs the verdict 1.
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Perfect zero-knowledge: For all public parameters pars, all key pairs (ppk , psk) in the range of
PGen(1λ), all words x ∈ L, and all witnesses w with R(x,w) = 1, we have

PPrv(ppk , x, w) = PSim(ppk , psk , x).

Constrained Lsnd-soundness: For any stateful PPT adversary A, we consider the following sound-
ness game (where PSim and PVer are implicitly assumed to have access to ppk):

ExpcsndPS,A(λ):
(ppk , psk)←R PGen(1λ)
AOsim,Over(·,·,·)(1λ, ppk)
if Over returned lose

return 0
if Over returned win

return 1
return 0

Osim:
x←R Lsnd\L
(Π,K)← PSim(psk , x)
return (x,Π,K)

Over(x,Π, pred):
(v,K) := PVer(psk , x,Π)
if v = 1 and pred(K) = 1

if x ∈ L
return K

else if x ∈ Lsnd
return lose and

abort
else return win and

abort
else return ⊥

Let Qver be the total number of oracle queries to Over and predi be the predicate submitted by
A on the i-th query. The adversary A loses and the experiment aborts if the verification oracle
answers lose on some query of A. The adversary A wins, if the oracle Over returns win on some
query (x,Π, pred) of A with x /∈ Lsnd and the following conditions hold:
– The predicate corresponding to the i-th query is of the form predi : K ∪ {⊥} → {0, 1} with
predi(⊥) = 0 for all i ∈ {1, . . . , Qver}.

– For all environments E having at most running time of the described constrained soundness
experiment, we require that

uncertsndA (λ) :=
1

Qver

Qver∑
i=1

PrK∈K[predi(K) = 1 when A runs in E ]

is negligible in λ.
Note that in particular the adversary cannot win anymore after the verification oracle replied
lose on one of its queries, as in this case the experiment directly aborts and outputs 0. Let
Advcsnd

Lsnd,PS,A(λ) := Pr[ExpcsndPS,A(λ) = 1], where the probability is taken over the random coins
of A and ExpcsndPS,A. Then we say constrained Lsnd-soundness holds for PS, if for every PPT
adversary A, Advcsnd

Lsnd,PS,A(λ) = negl(λ).

To prove security of the key encapsulation mechanism later, we need to switch between two
proof systems. Intuitively this provides an additional degree of freedom, allowing to randomize the
keys of the challenge ciphertexts gradually. To justify this transition, we introduce the following
notion of indistinguishable proof systems.

Definition 13 (Lsnd-indistinguishability of two proof systems). Let L ⊆ Lsnd be (families of)
languages. Let PS0 := (PGen0,PPrv0,PVer0, PSim0) and PS1 := (PGen1,PPrv1,PVer1,PSim1)
proof systems for L. For every adversary A, we define the following experiment (where PSimb and
PVerb are implicitly assumed to have access to ppk):
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ExpPS−indLsnd,PS0,PS1,A
(λ):

b←R {0, 1}
(ppk , psk)← PGenb(1

λ)

b′ ← AObsim,Obver(·,·)(ppk)
if b = b′ return 1
else return 0

Obsim:
x←R Lsnd\L
(Π,K)← PSimb(psk , x)
return (x,Π,K)

Obver(x,Π, pred):
(v,K) := PVerb(psk , x,Π)
if v = 1 and pred(K) = 1
and x ∈ Lsnd

return K
else return ⊥

As soon as A has submitted one query which is replied with lose by the verification oracle, the
experiment aborts and outputs 0.

We define the advantage function

AdvPS-ind
Lsnd,PS0,PS1,A(λ) :=

∣∣∣∣Pr [ExpPS−indLsnd,PS0,PS1,A
(λ) = 1

]
− 1

2

∣∣∣∣ .
We say PS0 and PS1 are Lsnd-indistinguishable, if for all (unbounded) algorithms A the advantage
AdvPS-ind

L,PS0,PS1,A(λ) is negligible in λ.

Note that we adopt a different (and simpler) definition for the verification oracle in the indis-
tinguishability game than in the soundness game, in particular it leaks more information about the
keys. We can afford this additional leakage for indistinguishability, but not for soundness.

In order to prove security of the key encapsulation mechanism presented in Section 5, we will
require one proof system and the existence of a second proof system it can be extended to. We
capture this property in the following definition.

Definition 14 (L̃snd-extensibility of a proof system). Let L ⊆ Lsnd ⊆ L̃snd be three (families
of) languages. An Lsnd-qualified proof system PS for language L is said to be L̃snd-extensible if
there exists a proof system P̃S for L that complies with L̃snd-constrained soundness and such that
PS and P̃S are Lsnd-indistinguishable.

4 The OR-Proof

In the following sections we explain how the public parameters parsPS are sampled, how our system
of OR-languages is defined and how to construct a qualified proof system complying with constrained
soundness respective to these languages.

4.1 Public Parameters and the OR-Languages

First we need to choose a k ∈ N depending on the assumption we use to prove security of our
constructions. We invoke GGen(1λ) to obtain a group description G = (G, p, P ) with |G| ≥ 22λ.
Next we sample matricesA←R D2k,k andA0 ←R U2k,k, where we assume without loss of generality
that A0 is full rank. Let H0 and H1 be universal hash function generators returning functions of
the form h0 : Gk+1 → Zkp and h1 : G2 → Zp respectively. Let h0 ←R H0 and h1 ←R H1.

Altogether we define the public parameters for our proof system to comprise

parsPS := (k,G, [A], [A0], h0, h1).
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We assume from now that all algorithms have access to parsPS without explicitly stating it as input.
Additionally let A1 ∈ Z2k×k

p be a matrix distributed according to U2k,k with the restriction
A0 = A1. Then we define the languages

L : = span([A]),

Lsnd : = span([A]) ∪ span([A0]),

L̃snd : = span([A]) ∪ span([A0]) ∪ span([A1]).

A crucial building block for the key encapsulation mechanism will be a proof system PS that is
Lsnd-qualified and L̃snd-extensible. We give a construction based on D2k,k-MDDH in the following
section.

4.2 The OR-Proof for k = 1

Our goal is to construct an Lsnd-qualified proof system for L based on D2k,k-MDDH for any matrix
distribution D2k,k (see Definition 3). To this aim we give a proof system PrePS := (PrePGen,
P rePPrv, P rePVer, P rePSim) for L in Fig. 2.

In case k = 1 this is sufficient, namely setting PGen := PrePGen, PPrv := PrePPrv,
PVer := PrePVer and PSim := PrePSim, we can prove that PS := (PGen, PPrv, PVer,
PSim) is Lsnd-qualified under the DDH assumption. For the case k > 1 we give the construction
of PS in Fig. 5, Section 4.4

As a compromise between generality and readability, we decided to give the proof in full detail
for k = 1 (i.e. the DDH case), while sticking to the general matrix notation. As for k = 1 a vector
in Zkp = Z1

p is merely a single element, we do not use bold letters to denote for instance x and r in
Zp (other than in Fig. 2).

PrePGen(1λ):

Kx ←R Z(k+1)×2k
p

Ky ←R Z2×2k
p

return
ppk := ([KxA], [KyA])
psk := (Kx,Ky)

PrePVer(ppk , psk , [c], [π?]):
x := h0(Kx[c]) ∈ Zkp
y := h1(Ky[c]) ∈ Zp
[π] := [A0] · x+ [c] · y ∈ Zkp
[κ] := [A0] · x+ [c] · y ∈ Zkp
if [π] = [π?] return (1, [κ])
else return (0,⊥)

PrePPrv(ppk , [c], r):
x := h0([KxA]r) ∈ Zkp
y := h1([KyA]r) ∈ Zp
return

[π] := [A0] · x+ [c] · y
[κ] := [A0] · x+ [c] · y

PrePSim(ppk , psk , [c]):
x := h0(Kx[c]) ∈ Zkp
y := h1(Ky[c]) ∈ Zp
return

[π] := [A0] · x+ [c] · y
[κ] := [A0] · x+ [c] · y

Fig. 2: Proof System PrePS for L. For k = 1 the proof system PS := PrePS is Lsnd-qualified based on DDH.
For k > 1 we give an Lsnd-qualified proof system based on D2k,k-MDDH in Fig. 5 in Section 4.4.
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Theorem 1. If the DDH assumption holds in G, and h0, h1 are universal hash functions, then for
k = 1 the proof system PS := PrePS described in Fig. 2 is Lsnd-qualified. Further, the proof system
PS is L̃snd-extensible.

Proof. Completeness and perfect zero-knowledge follow straightforwardly from the fact that for all
r ∈ Zp, [KxA]r = Kx[Ar] and [KyA]r = Ky[Ar].

Uniqueness of the keys follows from the fact that the verification algorithm computes exactly
one proof [π] (plus the corresponding key [κ]), and aborts if [π] 6= [π?].

We prove in Lemma 6 that PS satisfies constrained Lsnd-soundness.
For L̃snd-extensibility we refer to Section 4.3. We describe a proof system P̃S for L in Fig. 4, we

prove in Lemma 7 that PS and P̃S are Lsnd-indistinguishable, and in Lemma 8 that P̃S complies
with constrained L̃snd-soundness. ut

Lemma 6 (Constrained Lsnd-soundness of PS). If the DDH assumption holds in G, and h0,
h1 are universal hash functions, then the proof system PS described in Fig. 2 (for k = 1) complies
with constrained Lsnd-soundness. More precisely, for every adversary A, there exists an adversary
B such that T (B) ≈ T (A) + (Qsim +Qver) · poly(λ) and

AdvcsndPS,A(λ) ≤ Advddh
G,B(λ) +Qver · uncertsndA (λ) + (Qsim +Qver) · 2−Ω(λ),

where Qver, Qsim are the number of calls to Over and Osim respectively, uncertsndA (λ) describes the
uncertainty of the predicates provided by A (see Definition 12) and poly is a polynomial function
independent of T (A).

Note that, as explained in Section 2.5, in the proof of IND-CCA security of the final hybrid
encryption scheme (where we will employ constrained Lsnd-soundness of PS to prove IND-CCCA
security of our KEM), the term uncertsndA (λ) will be statistically small, so we can afford to get a
security loss of Qver · uncertsndA (λ) without compromising tightness.

Proof. We prove Lsnd-soundness of PS via a series of games, described in Fig. 3. We start by giving
a short overview of the proof.

The idea is to first randomize x used in simulated proofs of statements [c] ∈ Lsnd \ L, using
the DDH assumption and the Leftover Hash Lemma (Lemma 1). This makes [π, κ] an encryption
of y that becomes lossy if and only if [c] ∈ span([A0]). For the final proof step, let ([c], [π], [κ]) be
an honestly generated combined proof (with randomized x) with [c] ∈ Lsnd, that is there exists an
r ∈ Zp such that either [c] = [Ar] or [c] = [A0r]. In the former case, we have y = h1(K

>
y [c]) =

h1([KyA]r), thus no information about Ky is leaked apart from what is already contained in the
public key. In the latter case, we have [π, κ] = [A0] · x + [c] · y = [A0](x + r · y), thus y, and in
particular Ky, are completely hidden by the randomized x. This implies that even knowing many
sound tuples ([c], [π], [κ]) for [c] ∈ Lsnd, an adversary cannot do better than guessing y to produce
a valid key for a statement outside Lsnd, and therefore, only has negligible winning chances.

We start with the constrained Lsnd-soundness game, which we refer to as game G. In the
following we want to bound the probability

ε := Advcsnd
PS,A(λ).

We denote the probability that the adversary A wins the game Gi by

εi := AdvGi,A(λ).
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sim. x for
[c] ∈ Lsnd\L

ver. [κ] for [c] /∈ L game
knows remark

G0 x := h0 (Kx[c]) [A0] · x+ [c] · y Lsnd-soundn.
game w/o lose

G1 x := h0 (Kx[c]) A0A
−1
0

(
[π?]− [c] · y

)
+ [c] · y A,A0

win. chances
increase

G2
u←R Z2

p,
x := h0([u])

A0A
−1
0

(
[π?]− [c] · y

)
+ [c] · y A,A0 DDH

G3 x←R Zp A0A
−1
0

(
[π?]− [c] · y

)
+ [c] · y A,A0

Lemma 1
(LOHL)

Fig. 3: Overview of the proof of Lsnd-constrained soundness of PS. The first column shows how x is computed
for queries to Osim. The second column shows how the key [κ] is computed by the verifier in queries to Over

when [c] /∈ L.

G  G0: From game G0 on, on a valid verification query ([c], Π, pred) the verification oracle will
not return lose and abort anymore, but instead simply return ⊥. This can only increase the winning
chances of an adversary A. Thus we obtain

ε ≤ ε0.

G0  G1: We show that ε1 ≥ ε0. The difference between G0 and G1 is that from game G1 on the
oracle Over, on input ([c], Π, pred), first checks if [c] ∈ span([A]). If this is the case, Over behaves
as in game G0. Otherwise, it does not check if [π?] = [π] anymore, and it computes

[κ] = A0A
−1
0

(
[π?]− [c] · y

)
+ [c] · y,

where y is computed as in G0. Note that this computation requires to know A0, but not Kx, since
x is not computed explicitly. This will be crucial for the transition to game G2.

We again have to show that this can only increase the winning chances of the adversary, in
particular we have to show that this change does not affect the adversaries view on non-winning
queries.

First, from game G0 on the verification oracle Over always returns ⊥ on queries from Lsnd\L,
and thus gamesG0 andG1 only differ when Over is queried on statements with [c] /∈ Lsnd. Therefore
it remains to show that for any query ([c], [π?], pred) to Over with [c] /∈ Lsnd, we have that if the
query is winning in G0, then it is also winning in G1. Suppose ([c], [π?], pred) satisfies the winning
condition in G0. Then, it must hold true that [π?] = [A0] ·x+[c] ·y and pred

(
[A0] · x+ [c] · y

)
= 1.

In G1, the key is computed as

A0A
−1
0

(
[π?]− [c] · y

)
+ [c] · y = [A0] · x+ [c] · y,

and thus the query is also winning in G1.
Note that for this step it is crucial that we only require a weakened soundness condition of our

proof systems (compared to benign proof systems [11]). Namely, if instead the verification oracle
in the soundness experiment Over returned the key [κ] for valid statements x ∈ Lsnd\L, we could
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not argue that the proof transition does necessarily at most increase the winning chances of an
adversary. This holds true as in game G1 on a statement x ∈ Lsnd\L with non-valid proof (but with
valid predicate respective to the proof) the key would be returned, whereas in game G0 “⊥” would
be returned.

G1  G2: In this transition, we use the DDH assumption to change the way x is computed in
simulated proofs. More precisely, we build an adversary B such that T (B) ≈ T (A)+(Qver+Qsim) ·
poly(λ) and

|ε2 − ε1| ≤ Advddh
G,B(λ) + 2−Ω(λ).

Let ([B], [h1, . . . ,hQsim
]) be a Qsim-fold DDH challenge. We build the adversary B as follows.

First B picks A,A0,A1 as described in Section 4.1. Further B chooses K′x ←R Z2×2
p and Ky ←R

Z2×2
p and implicitely sets Kx = K′x +U(A⊥)> for some A⊥ ∈ orth(A), where U ∈ Z2×1

p depends
on the Qsim-fold DDH challenge (and cannot be computed by B). This will allow B to embed
the Qsim-fold DDH challenge into simulation queries. Note that even though B does not know Kx

explicitly, the special form of Kx still allows B to compute the public parameters [KxA] = [K′xA]
and [KyA].

For queries to Over containing [c] ∈ L, in order to compute x, B computes Kx[c] = K′x[c] using
K′x (note that B can check if [c] ∈ L since it knows A). Answering queries to Over for c /∈ L does
not require knowledge of x. Both cases can thus be handled without concrete knowledge of Kx.

The adversary B prepares for queries to the simulation oracle Osim as follows. First it chooses
w ← Zp and defines [V] := w·[B]. Note that with overwhelming probability over the choices ofA and
A0, the matrix (A⊥)>A0 is full rank and thus (K′x +U(A⊥)>)A0 is distributed statistically close
to uniform over Zp. Therefore replacing [(K′x+U(A⊥)>)A0] by [V] is statistically indistinguishable
for the adversary A.

On the i-th query to Osim, for all i ∈ [Qsim], the adversary B defines [ci] := A0[hi] and computes
x := h0(w · [hi]). Further B can compute y := h1(Ky[ci]) as before. In case of a real DDH challenge,
we have hi = Bri for ri ←R Zp and thus we have [ci] = [A0ri] and x = h0(w · [Bri]) = h0([Vri]).
By our previous considerations [Vri] is statistically close to Kx[ci] and thus adversary B simulates
game G1. In case the adversary was given a random challenge, the hi are distributed uniformly at
random and the adversary simulates game G2. Now we can employ the random self-reducibility of
DDH (Lemma 2) to obtain an adversary as claimed.

Note that in order to prove this transition we require that in the definition of constrained
soundness the simulation oracle returns random challenges (otherwise we would not be able to
embedd the DDH challenge into simulation queries). This is another reason why we cannot directly
employ the notion of benign proof systems [11].

G2  G3: As h0 is universal, we can employ the Leftover Hash Lemma (Lemma 1) to switch
(h0, h0([v])) to (h0,u) in all simulation queries, where u←R Zp. A hybrid argument yields

|ε2 − ε3| ≤ Qsim/p.

Game G3: We show that ε3 ≤ Qver · uncertsndA (λ), where Qver is the number of queries to Over

and uncertsndA (λ) describes the uncertainty of the predicates provided by the adversary as described
in Definition 12.
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We use a hybrid argument over the Qver queries to Over. To that end, we introduce games
G3.i for i = 0, . . . , Qver, defined as G3 except that for its first i queries Over answers ⊥ on any
query ([c], [π], pred) with [c] /∈ Lsnd. We have ε3 = ε3.0, ε3.Qver = 0 and we show that for all
i = 0, . . . , Qver − 1 it holds

|ε3.i − ε3.(i+1)| ≤ Pr
K∈K

[predi+1(K) = 1] + 2−Ω(λ),

where predi+1 is the predicate contained in the i+ 1-th query to Over.
Games G3.i and G3.(i+1) behave identically on the first i queries to Over. An adversary can only

distinguish between the two, if it manages to provide a valid (i+ 1)-st query ([c], [π], pred) to Over

with [c] /∈ Lsnd. In the following we bound the probability of this happening.
From queries to Osim and the first i queries to Over the adversary can only learn valid tuples

([c], [π], [κ]) with [c] ∈ Lsnd. As explained in the beginning, such combined proofs reveal nothing
about Ky beyond what is already revealed in the public key, as either [c] = [Ar] for an r ∈ Zp
and y = h1([Kyc]) = h1([KyA]r) or [c] = [A0r] and [π, κ] = [A0](x + r · y). In the former case y
itself reveals no more about Ky than the public key, while in the latter case y is hidden by the fully
randomized x.

For any [c] /∈ Lsnd, y = h1[Kyc] computed by Over is distributed statistically close to uniform
from the adversary’s point of view because of the following. First we can replaceKy byKy+U(A⊥)>

for U ←R Z2×1
p and A⊥ ∈ orth(A) as both are distributed identically. By our considerations, this

extra term is neither revealed through the public key, nor through the previous queries to Osim and
Over.

Now Lemma 1 (Leftover Hash Lemma) implies that the distribution of y is statistically close to
uniform as desired. Since [c] /∈ span([A0]) we have [c]− [A0]A

−1
0 [c] 6= 0, thus the key

[κ] := A0A
−1
0 [π?] +

(
[c]−A0A

−1
0 [c]

)
︸ ︷︷ ︸

6=0

·y

computed by Over is statistically close to uniform over Zp. Altogether we obtain:

ε3 ≤ Qver · uncertsndA (λ) +Qver · 2−Ω(λ).

ut

4.3 Extensibility to a Three-Way OR-Proof

In the following we prove that the proof system in Fig. 2 (respectively in Fig. 5 for k > 1) satisfies
Lsnd-extensibility (see Definition 14). Let A1 be defined as in section Section 4.1. In this section we
implicitly assume all algorithms to have access to pars

P̃S
:= (pars ′PS, [A1]).

We describe a proof system P̃ rePS for L in Fig. 4. In case k = 1, P̃S := P̃ rePS fulfills the
requirements of Lsnd-extensibility. We prove that it is Lsnd-indistinguishable to PS in Lemma 7,
and prove that it complies with constrained L̃snd-soundess in Lemma 8. For case k > 1 we provide
the proof system P̃S in Fig. 15, in Appendix A.

Lemma 7 (Lsnd-indistinguishability). For k = 1 the proof systems PS and P̃S described in
Fig. 2 and Fig. 4, resp., are Lsnd-indistinguishable. That is, for every (unbounded) adversary A we
have AdvPS-ind

Lsnd,PS,P̃S,A(λ) = 2−Ω(λ).
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˜PrePGen(1λ):

Kx ←R Z(k+1)×2k
p

Ky, K̃y ←R Z2×2k
p

A⊥ ∈ orth(A)
return

ppk := ([KxA], [KyA])

psk := (Kx,Ky, K̃y , A
⊥ )

˜PrePVer(ppk , psk , [c], [π?]):
x := h0(Kx[c]) ∈ Zkp
if [c]>A⊥ = [0]

y := h1(Ky[c]) ∈ Zp
else

y := h1( K̃y [c]) ∈ Zp
[π] := [A0] · x+ [c] · y
[κ] := [A0] · x+ [c] · y
if [π] = [π?] return (1, [κ])
else return (0,⊥)

˜PrePPrv(ppk , [c], r):
x := h0([KxA]r) ∈ Zkp
y := h1([KyA]r) ∈ Zp
return

[π] := [A0] · x+ [c] · y
[κ] := [A0] · x+ [c] · y

˜PrePSim(ppk , psk , [c]):
x := h0(Kx[c]) ∈ Zkp
if [c]>A⊥ = [0]

y := h1(Ky[c]) ∈ Zp
else

y := h1( K̃y [c]) ∈ Zp
return

[π] := [A0] · x+ [c] · y
[κ] := [A0] · x+ [c] · y

Fig. 4: Proof System P̃ rePS for L. For k = 1 the proof system P̃S := P̃ rePS is L̃snd-qualified based on DDH.
For k > 1 we give a proof system whose constrained L̃snd-soundness is based on D2k,k-MDDH in Fig. 15.

Proof. PS only differs from P̃S for statements [c] /∈ L, and since we are interested in Lsnd-
indistinguishability, it suffices to consider [c] ∈ span([A0]). To argue that the two proof systems are
statistically indistinguishable for statements [c] ∈ span([A0]), we use the following.

First, Ky and Ky + U(A⊥)> are identically distributed for Ky ←R Z2×2
p , U ←R Z2×1

p , and
A⊥ ∈ orth(A). Note that the extra term U(A⊥)> does not show up in either the pk or in the oracle
of the Lsnd-indistinguishability game for statements [c] ∈ span([A]) since for all c ∈ span(A) we
have (Ky +U(A⊥)>)c = Kyc.

Further for all c ∈ span(A0), A⊥0 ∈ orth(A0), we have

U(A⊥)
>
c =

(
U(A⊥)

>
+U0(A

⊥
0 )
>)

c,

where U,U0 ←R Z2×1
p .

With probability 1 − 2−Ω(λ) over the choices of A,A0 the vectors A⊥ and A⊥0 together form
a basis of Z2

p, in which case the matrix U(A⊥)
>
+U0(A

⊥
0 )
> is distributed uniformly random over

Z2×2
p .
In conclusion, with overwhelming probability over the choice of the public parameters we obtain

that for all c ∈ span(A0), (KyA,Kyc) is identically distributed to (KyA, K̃yc), where K̃y ←R Z2×2
p

is chosen uniformly at random, independently of Ky. This proves the lemma. ut
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PGen(1λ):
(ppk1, psk1)← PrePGen(1λ)
(ppk2, psk2)← PrePGen(1λ)
return

ppk := (ppk1, ppk2)
psk := (psk1, psk2)

PVer(ppk , psk , [c], [π?]):
[π1, κ1] := PrePSim(ppk1, psk1, [c])
[π2, κ2] := PrePSim(ppk2, psk2, [c])
if [π1, π2] = [π?]

return (1, [h2([κ1, κ2])])
else return (0,⊥)

PPrv(ppk , [c], r):
[π1, κ1] := PrePPrv(ppk1, [c], r)
[π2, κ2] := PrePPrv(ppk2, [c], r)
return

[π] := [π1, π2]
[κ] := [h2([κ1, κ2])]

PSim(ppk , psk , [c]):
[π1, κ1] := PrePSim(ppk1, psk1, [c])
[π2, κ2] := PrePSim(ppk2, psk2, [c])
return

[π] := [π1, π2]
[κ] := [h2([κ1, κ2])]

Fig. 5: Lsnd-qualified Proof System PS for L in case k > 1, where PrePS is defined as in Fig. 2.

As the techniques used for the proof of constrained L̃snd-soundness of P̃S are very similar to
the ones presented in the proof of Lemma 6 we refer to Appendix A for the details.

Lemma 8 (Constrained L̃snd-soundness of P̃S for k = 1). If the DDH assumption holds in
G and h0, h1 are universal hash functions, then the proof system described in Fig. 4 complies with
constrained L̃snd-soundness. Namely, for any adversary A against L̃snd-soundness, there exists an
adversary B such that T (B) ≈ T (A) + (Qdec +Qver) · poly(λ) and

Advcsnd
L̃snd,P̃S,A(λ) ≤ Advmddh

G,B,D2k,k
(λ) +Qver · uncertA(λ)

+ (Qsim +Qver) · 2−Ω(λ),

where Qver, Qdec are the number of calls to Over and Odec respectively, uncertsndA (λ) describes the
uncertainty of the predicates provided by A and poly is a polynomial function, independent of T (A).

4.4 The OR-Proof for k > 1

The obstacle for k > 1 is that a value y ∈ Zp cannot fully randomize a key [κ] of dimension k. To
overcome this we employ another universal hash function on [κ]. In order to obtain enough entropy,
we basically have to double the basic hash proof system. Let PrePS := (PrePGen, P rePPrv,
P rePVer, P rePSim) be the basic proof system as given in Fig. 2. Recall the public parameters
parsPS = (k,G, [A], [A0], h0, h1) (as defined in Section 4.1). Let further H2 a universal hash function
generator returning functions of the form h2 : G2k → Zp and let h2 ←R H2. In this section we
implicitly assume all algorithms to have access to pars ′PS = (parsPS, h2).

The proof system PS for k > 1 can be found in Fig. 5. In Theorem 2 we state the qualified
soundness and extensibility of PS. For a proof we refer to Appendix A.

Theorem 2. If the D2k,k-MDDH assumption holds in G and h0, h1, and h2 are universal hash
functions, then the proof system PS described in Fig. 5 is Lsnd-qualified. Further, the proof system
PS is L̃snd-extensible.
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5 Key Encapsulation Mechanism

In this section we present our CCCA-secure KEM that builds upon a qualified proof system for the
OR-language as presented in Section 4.
Ingredients. Let parsPS be the public parameters for the underlying qualified proof system com-
prising G = (G, p, P ) and A,A0 ∈ Z2k×k

p (as defined in Section 4.1). Recall that L = span([A]),
Lsnd = span([A]) ∪ span([A0]) and L̃snd = span([A]) ∪ span([A0]) ∪ span([A1]) (for A1 ∈ Z2k×k

p as
in Section 4.1). Let further H be a collosion resistant hash function generator returning functions
of the form H : Gk → {0, 1}λ and let H ←R H. We will sometimes interpret values τ ∈ {0, 1}λ in
the image of H as elements in Zp via the map τ 7→

∑λ
i=1 τi · 2i−1.

In the following we assume that all algorithms implicitly have access to the public parameters
parsKEM := (parsPS,H).

Proof systems. We employ an Lsnd-qualified and L̃snd-extensible proof system
PS := (PGen,PPrv,PVer,PSim) for the language L as provided in Fig. 2 (respectively for
k > 1 as provided in Fig. 5). We additionally require that the key space is a subset of G, which is
satisfied by our construction in Section 4.
Construction. The construction of the KEM is given in Fig. 6.

KGen(1λ):
(ppk , psk)←R PGen(1λ)
k0,k1 ←R Z2k

p

return
pk := (ppk , [k>0 A], [k>1 A])
sk := (psk ,k0,k1)

KEnc(pk):
r←R Zkp
[c] := [A]r
(Π, [κ]) := PPrv(ppk , [c], r)
τ := H([c])
return

C := ([c], Π)
K := ([k>0 A] + τ [k>1 A])r+ [κ]

KDec(pk , sk , C) :
parse C := ([c], Π)
(b, [κ]) := PVer(psk , [c], Π)
if b = 0 return ⊥
τ := H([c])
return K := (k0 + τk1)

>[c] + [κ]

Fig. 6: Construction of the KEM

Efficiency. When using our qualified proof system from Section 4 (respectively for k > 1 from
Section 4.4) to instantiate PS, the public parameters comprise 4k2 group elements (plus the de-
scriptions of the group itself and four hash functions). Further public keys and ciphertexts of our
KEM contain 8k + 2k2, resp. 4k group elements for k > 1.

We stress that our scheme does not require pairings and can be implemented with k = 1, resulting
in a tight security reduction to the DDH assumption in G. As in this case the upper entries of the
matrix A is 1, we get by with 3 group elements in the public parameters. Further, we can save one
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hash function due to the simpler underlying proof system. For the same reason, in case k = 1 public
keys and ciphertexts contain 6, resp. 3 group elements. Compared to the GHKW scheme [9], our
scheme thus has ciphertexts of the same size, but significantly smaller public keys.

Without any optimizations, encryption and decryption take 8k2 + 12k, resp. 6k2 + 14k expo-
nentiations for k > 1. For DDH we have 11 for both cases (again due to the simpler proof system
and the distribution). Since most of these are multi-exponentiations, however, there is room for op-
timizations. In comparison, encryption and decyption in the GHKW scheme take 3k2 + k, resp. 3k
exponentiations (plus about λk group operations for encryption, and again with room for optimiza-
tions). The main reason for our somewhat less efficient operations is the used qualified proof system.
We explicitly leave open the construction of a more efficient proof system.

To turn the KEM into a IND-CCA secure hybrid encryption scheme, we require a quantitatively
stronger security of the symmetric building block than [9]. Namely, the uncertainty uncertA(λ) in
our scheme has a stronger dependency on the number of queries (Qenc ·Qdec instead of Qenc+Qdec).
This necessitates to increase the key size of the authenticated encryption scheme compared to [9].
Note though that one-time secure authenticated encryption schemes even exist unconditionally
and therefore in the reduction proving security of the hybrid encryption scheme, the uncertainty
uncertA(λ) will be statistically small.

Theorem 3 (Security of the KEM). If PS is Lsnd-qualified and L̃snd-extensible to P̃S, if H
is a collision resistant hash function and if the D2k,k-MDDH assumption holds in G, then the key
encapsulation mechanism KEM described in Fig. 6 is perfectly correct and IND-CCCA secure.
More precisely, for every IND-CCCA adversary A that makes at most Qenc encryption and Qdec

decryption queries, there exist adversaries Bmddh, Bcsnd, Bind, Bc̃snd and Bcr with running time
T (Bmddh) ≈ T (Bcsnd) ≈ T (Bind) ≈ T (Bcsnd) ≈ T (Bcr) ≈ T (A)+ (Qenc+Qdec) ·poly(λ) respectively
T (Bc̃snd) ≈ T (A) + (Qenc +Qenc ·Qdec) · poly(λ) where poly is a polynomial independent of T (A),
and such that

AdvcccaKEM,A(λ) ≤
1

2
·Advcsnd

Lsnd,PS,Bcsnd(λ) +
1

2
·Advind

Lsnd,PS,P̃S,Bind(λ)

+ (2λ+ 2 + k) ·Advmddh
G,D2k,k,Bmddh(λ)

+
λ

2
·Advcsnd

L̃snd,P̃S,Bc̃snd
(λ)

+
λ+ 2

2
·Qenc ·Qdec · uncertA(λ)

+ Advcr
H,Bcr(λ) +Qenc · 2−Ω(λ).

Proof. We use a series of games to prove the claim. We denote the probability that the adversary
A wins the i-th Game Gi by εi. An overview of all games is given in Fig. 7.

The goal is to randomize the keys of all challenge ciphertexts and thereby reducing the advantage
of the adversary to 0. The methods employed here for a tight security reduction require us to ensure
that Odec aborts on ciphertexts which are not in the span of [A], as we will no longer be able to
answer those. The justification of this step relies crucially on the additional consistency proof Π
and is outsourced in Lemma 9.

Game G0: This game is the IND-CCCA security game (Definition 10).
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# ch. c ch. [κ] Odec checks remark

G0 A PPrv IND-CCCA

G1 A PPrv τ fresh coll. resist. of H

G2 A PSim τ fresh ZK of PS

G3 A0 PSim τ fresh D2k,k-MDDH

G4 A0 PSim τ fresh, [c] ∈ span([A]) Lemma 9

G5 A0 rand τ fresh, [c] ∈ span([A]) D2k,k-MDDH

Fig. 7: Security of the KEM. Here column “ch. c” refers to the vector computed by Oenc as part of the
challenge ciphertexts, where A indicates that [c]←R span([A]), for instance. Column “ch. [κ]” refers to the key
computed by Oenc as part of the key K. In the column “Odec checks” we describe what Odec checks on input
C = (pred, ([c], Π)) additionally to C /∈ Cenc and pred(K) = 1. By a fresh tag τ := H([c]) we denote a tag not
previously used in any encryption query. In case the check fails, the decryption oracle outputs ⊥.

G0  G1: From game G1 on, we restrict the adversary to decryption queries with a fresh tag,
that is, a tag which has not shown up in any previous encryption query. There are two conceivable
bad events, where the adversary reuses a tag.

The first event is due to a collision of the hash function. That is, A provides a decryption
query ([c], Π), such that there exists a challenge ciphertext [c′] from a previous encryption query
with [c] 6= [c′], but H([c]) = H([c′]). In that case we can straightforwardly employ A to obtain an
adversary B attacking the collision resistance of H in time T (B) ≈ T (A) + (Qenc +Qdec) · poly(λ)
for a polynomial poly independent of T (A). Thereby we obtain an upper bound on the described
event of Advcr

H,B(λ).
In the second event, A provides a valid decryption query ([c], Π), such that [c] = [c′] for a

previous challenge ciphertext [c′] 6= [c]. By the properties of PS, the proof corresponding to a
ciphertext [c] is unique, which in particular implies [c] /∈ span([A]). We bound the probability that
A submits a valid decryption query ([c], Π) such that [c] /∈ span([A]) by Qdec · uncertA(λ), using a
series of hybrids: For i = 0, . . . , Qdec let G0.i be defined like G0, except Odec checks the freshness
of τ for the first i queries and operates as in game G0 from the (i+1)-st query on. Note that game
G0.0 equals G0 and game G0.Qdec

equals G1. We show that for all i ∈ {0, . . . , Qdec − 1}:

|ε0.i − ε0.(i+1)| ≤ Pr
K←RK

[predi+1(K) = 1].

Game G0.i and game G0.(i+1) only differ when the (i+1)-st query to Odec is valid with [c] = [c′] for
a previous challenge ciphertext [c′] 6= [c]. As all challenge ciphertexts are in span([A]), they do not
reveal anything about k0 beyond the public key [k>0 A]. Thus, for [c] /∈ span([A]), the value k>0 [c]
looks uniformly random from the adversary’s point of view, proving the claimed distance between
game G0.i and game G0.(i+1). Altogether we obtain

|ε0 − ε1| ≤ Advcr
H,B(λ) +Qdec · uncertA(λ).
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G1  G2: From G2 on, the way challenge ciphertexts are computed is changed. Namely, the
simulation algorithmen PSim(psk , [c]) is used instead of PPrv(ppk , [c], r) to compute (Π, [κ]).
Since for all challenge ciphertexts we have [c] ∈ L, the proofs and keys are equal by the perfect
zero-knowledge property of PS, and thus we have

ε1 = ε2.

G2  G3: Game G3 is like G2 except the vectors [c] in the challenge ciphertexts are chosen
randomly in the span of [A0].

We first employ the Qenc-fold D2k,k-MDDH assumption to tightly switch the vectors in the
challenge ciphertexts from span([A]) to uniformly random vectors over G2k. Next we use the Qenc-
fold U2k,k-MDDH assumption to switch these vectors from random to [A0r].

To be specific, we build adversaries B, B′ such that for a polynomial poly independent of T (A)
we have T (B) ≈ T (B′) ≈ T (A) + (Qenc +Qdec) · poly(λ) and

|ε2 − ε3| ≤ AdvQenc-mddh
G,D2k,k,B (λ) + AdvQenc-mddh

G,U2k,k,B′ (λ).

Let ([A], [v1| . . . |vQenc ]) with [A] ∈ G2k×k and [V] := [v1| . . . |vQenc ] ∈ G2k×Qenc be the Qenc-
fold D2k,k-MDDH challenge received by B. Then B samples (ppk , psk) ←R PGen(1λ), k0,k1 ←R

Z2k
p , b←R {0, 1} and sends the public key pk := (ppk , [k>0 A], [k>1 A]) to A.
On the i-th query to Oenc, B sets the challenge ciphertext to [c] := [vi], next computes τ :=

H([c]), (Π, [κ]) := PSim(psk , [vi]) and finally K1 := (k>0 + τk>1 )[c] (and K0 ←R K(λ) as usual). As
B has generated the secret key itself, for decryption queries it can simply follow KDec(pk , sk , C).

In case [V] = [AR], B perfectly simulates game G2. In case [V] is uniformly random over
G2k×Qenc , B simulates an intermediary game H, where the challenge ciphertexts are chosen uni-
formly at random. Analogously we construct an adversary B′ on the Qenc-fold U2k,k-MDDH as-
sumption, who simulates game H if [V] is uniformly at random over G2k×Qenc , and game G3, if
[V] = [A0R]. Altogether this proves the claim stated above.

Finally, from Lemma 4 (random self-reducibility of U2k,k-MDDH), Lemma 3 (D2k,k-MDDH ⇒
U2k,k-MDDH), and Lemma 2 (random self-reducibility of D2k,k-MDDH), we obtain an adversary B′′
such that T (B′′) ≈ T (A) + (Qenc +Qdec) · poly(λ) where poly is independent of T (A) and

|ε2 − ε3| ≤ (1 + k) ·Advmddh
G,D2k,k,B′′(λ) +

2

p− 1
.

G3  G4: We now restrict the adversary to decryption queries with [c] ∈ span([A]). For the
justification we refer to Lemma 9 .

G4  G5: In game G5, we change the keys [κ] computed by Oenc to random over G. This is
justified as follows.

Firstly, we can replace k0 by k0+A⊥u with u←R Zkp and A⊥ ∈ orth(A), as those are identically
distributed. Note that this change does neither affect the public key, nor the decryption queries,
since for all c ∈ span(A), c>(k0 + A⊥u ) = c>k0. Thus, the term A⊥u only shows up when Oenc

computes the value [(A⊥u)>A0r] for r←R Zkp as part of the key K1 (the key that is not chosen at
random by the security experiment).

Secondly, the distributions (A⊥u)>A0 and v> ←R Z1×k
p are 1− 2−Ω(λ)-close.
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Altogether, we obtain that Oenc, on its j-th query for each j ∈ [Qenc], can compute key K1 for
rj ←R Zkp, and v←R Zkp as

K1 :=
[
(k0 + τk1)

>A0rj

]
+ [v>rj ] + [κ].

We then switch from ([rj ], [v
>rj ]) to ([rj ], [zj ]), where zj is a uniformly random value over G,

using the Qenc-fold Uk-MDDH assumption as follows. On input ([B], [h1| . . . |hQenc ]) with B←R Uk
(that is B ∈ Z(k+1)×k

p ) and h1, . . . ,hQenc ∈ Zk+1
p , B samples (ppk , psk) ←R PGen(1λ), k0,k1 ←R

Z2k
p , b←R {0, 1} and sends the public key pk := (ppk , [k>0 A], [k>1 A]) to A. In the following for all

j ∈ Qenc let [hj ] ∈ Gk comprise the upper k entries and [hj ] ∈ G the (k + 1)-st entry of [hj ] and
similar for [B] let [B] ∈ Gk×k be the upper square matrix of [B] and [B] ∈ G1×k comprise the last
row.

On the j-th encryption query, B sets [c] := A0[hj ] (and thus [rj ] := [hj ]) and computes the key
as

K1 :=
[
(k0 + τk1)

> c
]
+ [hj ] + [κ].

The adversary B can answer decryption queries as usual using k0, as decryption queries outside L
are rejected.

Now if ([B], [h1| . . . |hQenc ]) was a real Uk-MDDH challenge, we have hj = Bsj for a sj ←R Zkp
and thus we have rj = Bsj and [hj ] = [B]sj = [B]B

−1
rj . Note that the distribution of [B]B

−1

is statistically close to the distribution of v> and therefore B simulates game G4. In case hj was
chosen uniformly at random from Zk+1

p , the adversary B simulates game G5 instead. In the end
adversary B can thus forward the output of A to its own experiment.

Finally, Lemma 3, Lemma 4 and Lemma 5 yield the existence of an adversary B′ such that
T (B′) ≈ T (A) + (Qenc +Qdec) · poly(λ) where poly is a polynomial independent of T (A), and

|ε4 − ε5| ≤ Advmddh
G,D2k,k,B′(λ) + 2−Ω(λ).

Game G5: In this game, the keys K1 computed by Oenc are uniformly random, since the value [κ]
which shows up in K1 := [(k0 + τk1)

>c] + [κ] is uniformly random for each call to Oenc. The same
holds true for the keys K0 which are chosen at random from K(λ) throughout all games. Therefore,
the output of Oenc is now independent of the bit b chosen in ExpcccaKEM,A(λ). This yields

ε5 = 0.

ut

Lemma 9. The security games G3 and G4 defined for the proof of Theorem 3 (security of the KEM,
see Figure 7) are computationally indistinguishable. More precisely, for every IND-CCCA adversary
A that makes at most Qenc encryption and Qdec decryption queries, there exist adversaries Bcsnd,
Bind, Bmddh and Bc̃snd with running time T (Bcsnd) ≈ T (Bind) ≈ T (Bmddh) ≈ T (A)+(Qenc+Qdec) ·
poly(λ) respectively T (Bc̃snd) ≈ T (A) + (Qenc + Qenc · Qdec) · poly(λ), where poly is a polynomial
independent of T (A), and such that

|ε3 − ε4| ≤
1

2
·Advcsnd

Lsnd,PS,Bcsnd(λ) +
1

2
·Advind

Lsnd,PS,P̃S,Bind(λ)
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+ 2λ ·Advmddh
G,D2k,k,Bmddh(λ) +

λ

2
·Advcsnd

L̃snd,P̃S,Bc̃snd
(λ)

+
λ+ 2

2
·Qenc ·Qdec · uncertA(λ) +Qenc · 2−Ω(λ).

Proof. From game G4 on, decryption queries outside the span of [A] will always be answered with
⊥ independently of the corresponding proof Π.

Games G3 and G4 behave the same, as long as an adversary A does not manage to submit a
decryption query (pred, ([c], Π)) with [c] /∈ span([A]), on which Odec does not abort in G3.

In the following we will introduce probabilities conditioned on the bit b, which determines
whether the encryption oracle returns uniformly random keys or real keys. Namely for i ∈ {3, 4}
and β ∈ {0, 1} let εi|β denote the probability that A wins game Gi under the condition that b = β
was drawn by the challenger. We prove that G3 and G4 are computationally indistinguishable, by
a case analysis, depending on the bit b.

For b = 0: the encryption oracle Oenc of the experiment Expind−cccaKEM,A (λ) returns keys chosen
uniformly at random from K(λ), thus, all the adversary can information theoretically learn about
k0 is [k>0 A] from the public key. We can use the remaining entropy from k0 to argue that the
adversary A can only submits queries (pred, ([c], Π)) to Odec, for which the correpodsing key does
not satisfies pred.

Namely, we replace k0 by k0 + A⊥u for A⊥ ∈ orth(A), and u ←R Zkp as both are dis-
tributed identically. This change does not affect the public key, but for all [c] /∈ span([A]) we
have: [c]>A⊥ 6= 0, and [c]>A⊥u is uniformly random over G. Therefore, the probability that the
decryption oracle accepts a query (pred, ([c], Π)) with [c] /∈ span([A]), in G3 for b = 0, is bounded
by PrK∈K[pred(K) = 1]. Via a hybrid argument across all decryption queries, we obtain

|ε3|0 − ε4|0| ≤ Qdec · uncertA(λ).

For b = 1: In the following we will call a query critical, if it is of the form (pred, ([c], Π)) with
[c] /∈ span([A]) and the decryption oracle does not abort in the respective game. Our goal is to
bound the event of A submitting such a query. More precisely, we give the corresponding game H0

in Fig. 8, where A gets the public key pk as input and access to the oracles Oenc and Odec. A
wins if the decryption oracle returns critical query at some point. Note that except for the altered
winning condition, the oracles behave as in game G3 for b = 1. We denote the probability that the
adversary A wins game Hx by εH.x. Note that we have

|ε3|1 − ε4|1| ≤ εH.0

and thus altogether we obtain

|ε3 − ε4| ≤
1

2
· (εH.0 +Qdec · uncertA(λ)) .

In the following we will bound εH.0 via a sequence of games. We give an overview of the games
in Fig. 9.

We will always assume that the freshness of τ is checked by the decryption oracle (and the query
is answered with ⊥ if it fails). In all games, an adversary wins if it manages to submit a critical
query.
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ExpHx
KEM,A(λ):

(pk, sk)←R KGen(1λ)

v←R Z2k
p

Cenc := ∅
AOenc,Odec(·,·)(pk)
if Odec returned critical query

return 1
else return 0

Oenc:
r←R Zkp
[c] := [A0]r
τ := H([c])
(Π, [κ]) := PSim(ppk , psk , [c])
C := ([c], Π)

K :=
(
k0 + τk1 +v

)>
[c] + [κ]

Cenc := Cenc ∪ {C}
return (C,K)

Odec(pred, ([c], Π)):
(v, [κ]) := PVer(psk , [c], Π)
τ := H([c])
if ([c], Π) /∈ Cenc and v = 1 and τ is fresh

if [c] ∈ span([A])
K := (k0 + τk1)

> [c] + [κ]
if pred(K) = 1
return K

else if [c] ∈ span([A0])

K :=
(
k0 + τk1 +v

)>
[c] + [κ]

if pred(K) = 1
return critical query and abort

return ⊥

Fig. 8: Games H0, H1 and H2

H0  H1: We will first reject decryption queries outside Lsnd. We justify this employing the
constrained soundness of PS. Let A be an adversary distinguishing between games H0 and H1,
that is an adversary submitting a succesful decryption query outside Lsnd in H0. Then we construct
an adversary B breaking constrained Lsnd-soundness of PS as follows.

On receiving the public key ppk of PS, the adversary B samples k0,k1 ←R Z2k
p , and sends

pk := (ppk , [k>0 A], [k>1 A]) to A.
On an encryption query of A, the adversary B can employ its simulation oracle Osim to obtain

([c], Π, [κ]) with [c] ∈ span([A0]). The adversary B now computes τ := H([c]) and sets C := ([c], Π)
and K := (k0 + τk1)

>[c] + [κ]. Finally B returns (C,K) to A.
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To answer A’s queries to Odec of the form (pred, ([c], Π)), we distinguish the following cases,
where we use that B has access to A and A0. In all cases B computes τ := H([c]) and defines the
predicate pred′ : K 7→ pred((k0 + τk1)

>[c] +K). Next B queries Over on ([c], Π, pred′).
In case [c] ∈ span([A]), the oracle returns either ⊥ or a key [κ] to B. In the former case B

forwards ⊥ to A, in the latter the key K := (k0 + τk1)
>[c] + [κ].

If [c] ∈ span([A0]), the oracle Over returns either ⊥ or the adversary B has lost the constrained
soundness game. In the former case, B forwards ⊥ to A. In the latter case the adversary A managed
to submit a critical query in both games H0 and H1 and thus did not succeed in distinguishing
between the two.

Finally, if [c] /∈ span([A])∪ span([A0]), the oracle Over returns either ⊥ (in which case B sends
⊥ to A), or the adversary B has win the constrained soundness game. Only in the last case does A
distinguish between H0 and H1.

Altogether we obtain an adversary B breaking the constrained Lsnd-soundness of PS in time
T (B) ≈ T (A)+ (Qenc +Qdec) · poly(λ), where poly is a polynomial independent of T (A), such that

|εH.0 − εH.1| ≤ Advcsnd
Lsnd,PS,B(λ).

H1  H2: We alter the oracles in game H2 as described in Fig. 8, where the same v←R Z2k
p is used

across all oracle calls. The appearance of the extra random term v in encryption and decryption
queries with [c] ∈ span([A0]) is justified as follows.

In an intermediary game we first replace k0 by k0 +A⊥u, where A⊥ ∈ orth(A) and u←R Zkp.
This transition does not change the view of the adversaries as the keys k0 and k0 +A⊥u are both
distributed uniformly random over Z2k

p . Note that this change neither affects the public key, nor the
keys computed by Odec when queried on inputs containing [c] ∈ span([A]), since (k0+A⊥u)>[c] =
k>0 [c].

Next for A⊥0 ∈ orth(A0) and u0 ←R Zkp we replace k0+A⊥u by k0+A⊥u+A⊥0 u0 in all encryp-
tion queries and decryption queries with [c] ∈ span([A0]), which does not change the adversary’s
view, since we have (A⊥u)>[c] = (A⊥u+A⊥0 u0)

>[c].
With probability 1 − 2−Ω(λ) over the choices of A,A0 the column vectors of A⊥ and A⊥0

together form a basis of Z2k
p , and thus A⊥u+A⊥0 u0 is distributed uniformly random over Z2k

p with
overwhelming probability and can be replaced by v← Z2k

p .
This yields

|εH.1 − εH.2| ≤ 2−Ω(λ).

H2  H3: By the L̃snd-extensibility of PS, there exists a proof system P̃S, such that PS and P̃S
are Lsnd-indistinguishable. From game H3 on, we replace PS by P̃S.

From an adversary A distinguishing between those to games, we can construct an adversary B
breaking the Lsnd-indistinguishability as follows, where B has either access to the oracles O0

sim and
O0

ver of PS, or to the oracles O1
sim and O1

ver of P̃S and has to distinguish between the two cases.
Note that we do not change the distribution of [c] in simulation queries in this step, that is in

both games [c] is chosen uniformly at random from span([A0]).
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#
proof
system ch. kenc

∆ (τ)
kdec
∆ (τ, [c]) used by Odec on [c]
for which [c]>A⊥ 6= [0]

Odec checks
game
knows remark

H0 PS 0 0 A

H1 PS 0 0 [c] ∈ Lsnd A, A0,A1 Lsnd-soundness

H2 PS v v [c] ∈ Lsnd A,A0,A1 statistical

H3 P̃S v v [c] ∈ Lsnd A,A0,A1 L̃snd-extensibility

H4 P̃S v v A win. chances increase

H5 P̃S F(τ)
{
F(τ (j))

}
A see Figure 10

Fig. 9: Security of the KEM. Column “proof system” describes the underlying proof system used, where P̃S is a L̃snd-qualified proof sys-
tem, such that PS and P̃S are Lsnd-indistinguishable. Column “ch. kenc

∆ (τ)” refers to the vector kenc
∆ (τ) used by Oenc when computing the

key K := [(k0 + τk1 + kenc
∆ (τ))>c] + [κ] for challenge ciphertexts. v denotes a value in Z2k

p chosen uniformly random, F : {0, 1}λ → Z2k
p de-

notes a random function and τ := H([c]). In the next column, we describe kdec
∆ (τ, [c]) used by Odec when computing the set of valid keys

SK :=

{(
k0 + τk1 + kdec

∆ (τ (j), [c])
)>

[c] + [κ] τ (j) ∈ Qdec

}
on queries containing [c] such that c>A⊥ 6= 0. Here τ (j) ∈ Qdec for j ∈ {1, . . . , Qenc}

denotes the tag from the j-th encryption query. By the set notation we want to imply that the decryption oracle accepts a predicate if it evaluates to
1 on any key in SK . The column “Odec checks” refers to additional checks performed on decryption queries ahead of decryption. We always assume
Odec checks the freshness of τ and therefore not list it explicitely in the table. In case any of the checks fails, Odec returns ⊥. The column “game
knows” refers to what the game must know with respect to A, A0 and A1.
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# ch. [c] ch. kenc
∆ (τ)

kdec
∆ (τ, [c]) used by Odec on [c]
for which [c]>A⊥ 6= [0]

Odec checks
game
knows remark

H4.i.0 [A0] Fi(τ|i)
{
Fi(τ

(j)
|i )
}

A H4.0.0 = H4

H4.i.1 [Aτi+1 ] Fi(τ|i)
{
Fi(τ

(j)
|i )
}

A D2k,k-MDDH

H4.i.2 [Aτi+1 ] Fi(τ|i)
{
Fi(τ

(j)
|i )
}

[c] ∈ L̃snd A, A0,A1 L̃snd-soundness

H4.i.3 [Aτi+1 ]

τi+1 = 0 :

A⊥0 F̃
(0)
i (τ|i) +A⊥1 F

(1)
i (τ|i)

τi+1 = 1 :

A⊥0 F
(0)
i (τ|i) + A⊥1 F̃

(1)
i (τ|i)

if [c] ∈ span([A0]) :{
A⊥0 F̃

(0)
i (τ

(j)
|i ) +A⊥1 F

(1)
i (τ

(j)
|i )

}
if [c] ∈ span([A1]) :{
A⊥0 F

(0)
i (τ

(j)
|i ) + A⊥1 F̃

(1)
i (τ

(j)
|i )

} [c] ∈ L̃snd A,A0,A1 change of basis

H4.i.4 [Aτi+1 ] Fi+1(τ|i+1)

{
Fi+1(τ

(j)
|i d[c])

}
[c] ∈ L̃snd A,A0,A1 conceptual

H4.i.5 [Aτi+1 ] Fi+1(τ|i+1)
{
Fi+1(τ

(j)
|i d[c])

}
A,A0,A1 win. chances increase

H4.i.6 [Aτi+1 ] Fi+1(τ|i+1)
{
Fi+1(τ

(j)
|i b ), b ∈ {0, 1}

}
A win. chances increase

H4.i.7 [Aτi+1 ] Fi+1(τ|i+1)

{
Fi+1( τ

(j)
|i+1 )

}
A

F hard to guess on
non-queried values

Fig. 10: Hybrid Games for Randomization. Columns are almost according to Figure 9. Additionally column “ch. [c]” refers to the vector computed
by Oenc as part of the challenge ciphertexts, where A indicates that c←R span(A), for instance. For i = 0, . . . , λ by Fi : {0, 1}i → Z2k

p and further
by F

(0)
i ,F

(1)
i , F̃

(0)
i , F̃

(1)
i : {0, 1}i → Zkp we denote random functions, such that for all ρ ∈ {0, 1}i and for a choice A⊥0 ∈ orth([A0]) and A⊥1 ∈ orth([A1])

we have Fi(ρ) = A⊥0 F
(0)
i (ρ)+A⊥1 F

(1)
i (ρ). Apart from this relation we require the functions to be independent. We set d[c] = 0 if [c] ∈ span([A0]) and

d[c] = 1 if [c] ∈ span([A1]). We always assume Odec checks the freshness of τ and therefore do not list it explicitly in the table. In case any of the
checks fails, Odec returns ⊥.
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On receiving the public key ppk of PS, the adversary B samples k0,k1 ←R Z2k
p , and sends

pk := (ppk , [k>0 A], [k>1 A]) to A. Now B can employ its simulation oracle Oβsim to answer decryption
queries.

To answer A’s queries to Odec of the form (pred, ([c], Π)), we distinguish the following cases,
where we use that B has access to A and A0. All queries outside of Lsnd to the decryption oracle
are answered with ⊥ by B. In case [c] ∈ Lsnd the adversary B computes τ := H([c]) and defines the
predicate pred′ : K 7→ pred((k0+ τk1)

>[c] +K). Next B queries Oβver on ([c], Π, pred′), to get either
a key [κ], or ⊥. In the former case, B checks if [c] ∈ span([A]), if this is the case, it returns the key
K := (k0 + τk1)

>[c] + [κ] to A, if this is not the case it returns critical query, and ends the game.
In the latter case, B sends ⊥ to A.

The adversary B now simulates game H2 in case β = 0 and game H3 in case β = 1, thus B can
forward the output of A to its experiment.

Altogether we obtain thus an adversary B breaking the Lsnd-indistinguishability of PS and P̃S
in time T (B) ≈ T (A) + (Qenc + Qdec) · poly(λ), where poly is a polynomial independent of T (A),
such that

|εH.2 − εH.3| ≤ AdvPS-ind
Lsnd,PS,P̃S,B(λ),

H3  H4: From gameH4 on, we again allow decryption queries outside Lsnd. This can only increase
the winning chances of the adversary, as it does not change the view on non-critical queries. We
thus have

εH.3 ≤ εH.4.

H4  H5 To justify the transition from game H4 to game H5 we employ a hybrid argument
comprising a number of games. We give an overview of these games in Fig. 10 and prove the
reduction in the following.

H4.i.0: For i = 0, . . . , λ, in H4.i.0 the adversary has access to the oracles Oenc and Odec defined as
described in Fig. 11, where by Fi : {0, 1}i → Z2k

p we denote a random function applied to the first
i bits τ|i of τ .

Note that in previous games (H0 to H4), for a statement [c] /∈ span([A]), Odec(pred, ([c], Π))
computes one key K when the proof Π is valid, and return this key if pred(K) = 1.

In gameH4.i.0, instead, the decryption oracle will accept a query (pred, ([c], Π)) outside span([A])
as critical, if additionally to a valid proof Π, the corresponding predicate pred evaluates to 1 on any
of the keys in the set

SK :=
{[(

k0 + τ?k1 + Fi(τ|i)
)>

c
]
+ [κ] τ ∈ Qenc

}
,

where τ? := H([c]) and Qenc denotes the set of tags previously computed by Oenc. As for i = 0
the function Fi = F0 is a constant random value in Z2k

p , independent from its input τ , we have
H4.0.0 = H4. Also note that H4.λ.0 = H5.

H4.i.0  H4.i.1: For i = 0, . . . , λ− 1, H4.i.1 is defined as H4.i.0 except Oenc computes ciphertexts
of the form [c] := [Aτi+1r], where τi+1 denotes the (i + 1)-st bit of τ , instead of [A0r] in H4.i.0.
We justify this transition by applying the U2k,k-MDDH assumption twice. First we use it once with
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Oenc:
r←R Zkp
[c] := [A0]r
τ := H([c])

(Π, [κ]) := P̃Sim(ppk , psk , [c])
C := ([c], Π)

K :=
(
k0 + τk1 + Fi(τ|i)

)>
[c] + [κ]

Cenc := Cenc ∪ {C}
return (C,K)

Odec(pred, ([c], Π)):

(v, [κ]) := P̃Ver(psk , [c], Π)
τ? := H([c])
if ([c], Π) /∈ Cenc and v = 1 and τ is fresh

if [c] ∈ span([A])
K := (k0 + τ?k1)

> [c] + [κ]
if pred(K) = 1
return K

else
SK :=

{(
k0 + τ?k1 + Fi(τ|i)

)>
[c] + [κ] τ ∈ Qenc

}
if ∃K ∈ SK such that pred(K) = 1
return critical query and abort

return ⊥

Fig. 11: Oracles in Game H4.i.0

respect to [A0] to tightly switch vectors from [A0r] to uniform random vectors over G2k. For the
next step first note that a U2k,k-MDDH challenge ([A0], [v]) can be efficiently transformed into a
U2k,k-MDDH challenge ([A1], [v

′]), such that a real MDDH challenge [v] = [A0r] is transformed into
[v′] = [A1r], and a uniform [v] is transformed into a uniform [v′]. This is obtained simply by picking
U ←R Zk×kp and defining [A1] as [A1] := [A0], [A1] := U[A0], [v′] := [v], and [v′] := U[v]. With
probability 1 − k · 2−Ω(λ) over the choices of A0 ←R U2k,k, A0 is full rank, and UA0 is uniformly
random over Zk×kp .

Given ([A0], [v]), we can compute the tag τ := H([v]) and, depending on τi+1, decide whether
we have to switch to ([A1], [v

′]). Note that this does not affect the tag, as it only depends on [v].
Now applying the Qenc-fold U2k,k-MDDH a second time allows to change to challenge ciphertexts of
the form [Aτi+1r] as desired. Further note that simulating Odec only requires knowing A⊥, which is
independent of A0 and A1, and therefore, does not compromise the U2k,k-MDDH assumption with
respect to those matrices. Using Lemma 4 (random self-reducibility of the Qenc-fold U2k,k-MDDH
assumption) and Lemma 3 (D2k,k-MDDH ⇒ U2k,k-MDDH), we obtain an adversary B such that
T (B) ≈ T (A) + (Qenc +Qdec) · poly(λ) for a polynomial poly independent of T (A), and such that

|εH.4.i.0 − εH.4.i.1| ≤ 2 ·Advmddh
G,D2k,k,B(λ) +

2

p− 1
.
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H4.i.1  H4.i.2: For i = 0, . . . , λ − 1, the change introduced in H4.i.2 is that Odec(pred, ([c], Π))

checks whether [c] ∈ L̃snd (note that this can be checked efficiently given A0 and A1). If this is the
case, Odec continues as in H4.i.1, otherwise, it returns ⊥. This change can only be detected if the
adversary A manages to submit a valid decryption query with [c] /∈ L̃snd. We bound this event by
constructing an adversary B from A attacking the constrained L̃snd-soundness of P̃S.

On receiving the public parameters ppk of the proof system, B chooses k0,k1 ← Z2k
p and sends

the public key pk := (ppk , [k>0 A], [k>1 A]) to A.
For answering encryption queries of A, the adversary B first employs its simulation oracle to

obtain ([c], Π, [κ]). Recall thatOsim ofPS returns challenges with [c] ∈ span([A0])∪span([A1]). The
adversary then computes τ := H([c]) and if [c] /∈ span([Aτi+1 ]) it rejects and queries the simulation
oracle again. As [A0] = [A1], τi+1 is independent of the span in which [c] lies. Therefore B rejects
with probability merely 1/2 and thus requires only poly(λ) ∈ O(λ) time to obtain a query of the
desired form with probability 2−Ω(λ) (otherwise it aborts), where poly is a polynomial independent
of T (A). Finally B sets C := ([c], Π) and K := (k0 + τk1 +Fi(τ|i))

>[c] + [κ] and returns (C,K) to
A.

To answer a decryption query (pred, ([c], Π)) the adversary B has to query its verification oracle
for each distinct value Fi(τ

(j)
|i ), where τ (j) ∈ Qenc, until the simulation oracle replies something other

than ⊥. Note that Fi can take at most 2i values, so for small i the number of simulation queries
will be much less than Qenc in general. Nevertheless to keep the bound simpler, we will bound the
total running time of the adversary B to answer decryption queries by Qdec ·Qenc · poly(λ), where
poly is a polynomial independent of T (A).

Namely, on a decryption query (pred, ([c], Π)), the adversary B computes the tag τ? := H([c]) as
usual and defines for all τ (j) ∈ Qenc with distinct images Fi(τ

(j)
|i ) additional predicates predj : G→

{0, 1},K 7→ pred
(
(k0 + τ?k1 + Fi(τ

(j)
|i ))>[c] +K

)
. Then for each j ∈ [|Qenc|] adversary B queries

([c], Π, predj) to its verification oracle Over, and does the following.
In case [c] ∈ span([A]), the oracle Over returns either ⊥ or a key [κ]. In the former case B

forwards ⊥ to A, in the latter the key K := (k0 + τ?k1)
>[c] + [κ].

In case [c] ∈ span([A0]) ∪ span([A1]), Over either returns ⊥, or the adversary B loses the
constrained soundness game. In case B has not lost, it forwards ⊥ to A. Otherwise A managed
to submit a critical query in respect to both games H4.i.1 and H4.i.2 and did thus not succeed in
distinguishing between the two.

Finally, in case [c] /∈ L̃snd, Over either returns ⊥, which B forwards to A, or it returns "win"
to B. Note that only in this case A managed to submit a valid query outside Lsnd and therefore
managed to distinguish between the two games.

Altogether we obtain an adversary B breaking L̃snd-constrained soundness in time T (B) ≈
T (A) + (Qenc +Qenc ·Qdec) · poly(λ), where poly is a polynomial independent of T (A), such that

|εH.4.i.1 − εH.4.i.2| ≤ Advcsnd
L̃snd,P̃S,B(λ) +Qenc · 2−Ω(λ).

H4.i.2  H4.i.3: As described in Fig. 12, game H4.i.3, the oracle Oenc computes the key using an
additional summand kenc

∆ (τ) for τ := H([c]). Similarly, Odec uses a vector kdec
∆ (τ, [c]) for τ ∈ Qenc.
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Oenc:
r←R Zkp
[c] := [A0]r
τ := H([c])

(Π, [κ]) := P̃Sim(ppk , psk , [c])
C := ([c], Π)

K :=
(
k0 + τk1 + kenc

∆ (τ)
)>

[c] + [κ]

Cenc := Cenc ∪ {C}
return (C,K)

Odec(pred, ([c], Π)):

(v, [κ]) := P̃Ver(psk , [c], Π)
τ? := H([c])
if ([c], Π) /∈ Cenc and v = 1 and τ is fresh

if [c] ∈ span([A])
K := (k0 + τ?k1)

> [c] + [κ]
if pred(K) = 1
return K

else if [c] ∈ span([A0]) ∪ span([A1])

SK :=

{(
k0 + τ?k1 + kdec

∆ (τ, [c])
)>

[c] + [κ] τ ∈ Qenc

}
if ∃K ∈ SK such that pred(K) = 1
return critical query and abort

return ⊥

Fig. 12: Oracles in Game H4.i.3

In encryption queries kenc
∆ (τ) for τ := H([c]) is defined as

kenc
∆ (τ) :=

{
A⊥0 F̃

(0)
i (τ|i) +A⊥1 F

(1)
i (τ|i), if τi+1 = 0

A⊥0 F
(0)
i (τ|i) +A⊥1 F̃

(1)
i (τ|i), if τi+1 = 1,

whereA⊥0 ∈ orth([A0]),A⊥1 ∈ orth([A1]) and F
(0)
i ,F

(1)
i , F̃

(0)
i , F̃

(1)
i : {0, 1}i → Zkp are independent

random functions, such that Fi(τ|i) = A⊥0 F
(0)
i (τ|i) + A⊥1 F

(1)
i (τ|i). Note that with probability 1 −

2−Ω(λ) over the choices of A0,A1 the column vectors of A⊥0 and A⊥1 form a basis of Z2k
p and thus

such F
(0)
i , F(1)

i exist. Further for any bit b ∈ {0, 1}, and c ∈ span(Ab) we have

kenc
∆ (τ)>c =

(
kenc
∆ (τ) + A⊥b F̃

(b)
i

)>
c.

Thus the change of the encryption oracle is merely conceptional.
The same holds true for the decryption oracle, where we compute the set of admissible keys

depending on [c]. Namely, for each tag τ ∈ Qenc, we define kdec
∆ (τ, [c]) as
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kdec
∆ (τ, [c]) :=

{
A⊥0 F̃

(0)
i (τ|i) +A⊥1 F

(1)
i (τ|i), if [c] ∈ span([A0])

A⊥0 F
(0)
i (τ|i) +A⊥1 F̃

(1)
i (τ|i), if [c] ∈ span([A1])

Therefore, H4.i.2 and H4.i.3 are identically distributed and we obtain

εH.4.i.2 = εH.4.i.3.

H4.i.3  H4.i.4: In game H4.i.4, for i = 0, . . . , λ− 1 we define

Fi+1 : {0, 1}i+1 → Z2k
p

as

Fi+1(τ|i+1) :=

{
A⊥0 F̃

(0)
i (τ|i) +A⊥1 F

(1)
i (τ|i), if τi+1 = 0

A⊥0 F
(0)
i (τ|i) +A⊥1 F̃

(1)
i (τ|i), if τi+1 = 1.

Note that this defines a random function, when F
(0)
i ,F

(1)
i , F̃

(0)
i , F̃

(1)
i : {0, 1}i → Zkp are independent

random functions.
Similarly, in decryption queries for τ ∈ Qdec we use Fi+1 as defined above applied to τ|id[c],

where d[c] is defined as

d[c] :=

{
0, if [c] ∈ span([A0])

1, if [c] ∈ span([A1]).

As the changes again are merely conceptional, we have

εH.4.i.3 = εH.4.i.4.

H4.i.4  H4.i.5: From gameH4.i.5 on, we again allow decryption queries outside L̃snd. This can only
increase the winning chances of the adversary, because it does not change the view on non-critical
queries. We thus have

εH.4.i.4 ≤ εH.4.i.5.

H4.i.5  H4.i.6: Game H4.i.6, for i = 0, . . . , λ − 1, is identical to H4.i.5, except for Odec, which
now computes the set of valid keys as

SK :=

{(
k0 + τ?k1 + Fi+1(τ|i b )

)>
[c] τ ∈ Qenc, b ∈ {0, 1}

}
Note that this set includes the set of keys computed in H4.i.5. Therefore, this increases the

probability of the adversary to submit a critical query, while not changing its view on non-critical
queries. In conclusion,

εH.4.i.5 ≤ εH.4.i.6.
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H4.i.6  H4.i.7: Game H4.i.7, for i = 0, . . . , λ − 1, is identical to H4.i.6, except for Odec, which
now computes the set of valid keys as

SK :=

{(
k0 + τ?k1 + Fi+1(τ|i τi+1 )

)>
[c] τ ∈ Qenc,

}
.

It suffices to show that with all but negligible probability, there is no key in SK which corresponds
to a tag τ ∈ Qenc and a bit b ∈ {0, 1} such that τ|ib ∈ {0, 1}i+1 is not the prefix of any tag in Qenc,
and that satisfies pred. We proceed via a hybrid argument over all queries to Odec. To that end,
we introduce intermediate games H4.i.6.j for j = 0, . . . , Qdec, defined as H4.i.6, except that Odec

proceeds as in game H4.i.7 on its j-th last queries. We show that:

H4.i.6 = H4.i.6.0 ≈s H4.i.6.1 ≈s . . . ≈s H4.i.6.Qdec
= H4.i.7,

where by ≈s we denote statistical closeness. We show that for all j = 0, . . . , Qdec − 1,

|εH.4.i.6.j − εH.4.i.6.j+1| ≤ Qenc · Pr
K←RK

[predj+1(K) = 1].

This is because for all tags τ ∈ Qenc and b ∈ {0, 1} such that τ|ib ∈ {0, 1}i+1 is not prefix of any
τ ∈ Qenc, the value Fi+1(τ|ib) is a random value, uniform over Zkp, independent of A’s view before
its (j + 1)-st query to Odec. Summing up, we obtain

|εH.4.i.6 − εH.4.i.7| ≤ Qenc ·Qdec · uncertA(λ).

H4.i.7  H4.(i+1).0: For i = 0, . . . , λ− 1, in H4.(i+1).0 the challenge ciphertexts are switched back
to the span of [A0] independent of the tag τ , the transition is thus the reverse to H4.i.0  H4.i.1.
More precisely, we first tightly switch all challenges of the form [Aτi+1r] to uniform random vectors
over G2k and then back to vectors in the span of [A0]. From an adversary A detecting this change,
we can construct an adversary B attacking the Qenc-fold U2k,k-MDDH assumption as follows. On
input ([A0], [v1| · · · |vQenc ]) with [A0] ∈ G2k×k and [V] := [v1| · · · |vQenc ] ∈ G2k×Qenc , the adversary
B chooses U ← Zk×kp and sets [A1] such that [A1] = [A0] and [A1] = U[A0]. With probability
1− k · 2−Ω(λ) over the choices of A0 ←R U2k,k, A0 is full rank, and UA0 is uniformly random over
Zk×kp .

Further B chooses the rest of the public parameters as in Section 4.1 and generates the public
and secret keys of the KEM by invoking KGen on input 1λ. On the j-th query of A to Oenc, B
computes τ := H([vj ]). In case τi+1 = 0, the adversary continues answering the decryption query
with [c] := [vj ]. In case τi+1 = 1, the adversary instead sets [c] such that [c] = [vj ] and [c] = U[vj ].
In case [V] was uniformly random over G2k×Qenc , the adversary B simulates the intermediary game,
where all challenge ciphertexts are chosen uniformly random. If instead for each j ∈ {1, . . . , Qenc}
there exists an rj ∈ Zkp such that [vj ] = [A0]rj , the adversary simulates game H4.i.7, as in this case
for all j ∈ {1, . . . , Qenc} we have [cj ] = [Aτi+1rj ].

Now we can employ the Qenc-fold U2k,k-MDDH assumption a second time to tightly switch back
the challenge ciphertexts from random to the span of [A0].

Finally, using Lemma 4 (random self-reducibility of the U2k,k-MDDH assumption) and Lemma 3
(D2k,k-MDDH⇒ U2k,k-MDDH), we obtain an adversary B′ such that T (B′) ≈ T (A)+(Qenc+Qdec)·
poly(λ) for a polynomial poly independent of T (A), and such that

|εH.4.i.5 − εH.4.(i+1).0| ≤ 2 ·Advmddh
G,D2k,k,B′(λ) +

2

p− 1
.
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Game H5: We now show that an adversary has only negligible chances to win H5 := H4.λ.7. We
argue as follows.

First, for u←R Zkp the tuples(
k1,
(
Fλ(τ)

)
τ∈{0,1}λ

)
and

(
k1 − A⊥u ,

(
Fλ(τ) + τA⊥u

)
τ∈{0,1}λ

)
are distributed identically.

Second, the set of tags computed by Oenc and the set of tags computed by Odec are disjoint
(recall that we established this in game G1 in the proof of Theorem 3).

Note that u does not show up when Oenc computes challenge keys, since in this case

K =
(
k0 + τ

(
k1 −A⊥u

)
+ Fλ(τ) + τA⊥u

)>
[c]

= (k0 + τk1 + Fλ(τ))
> [c] ,

that is, the extra terms cancel each other out.
On the contrary, an extra term appears when Odec is queried on an input that contains [c] such

that c>A⊥ 6= 0, since Odec computes τ? := H([c]) and the set of keys as

SK :=

{(
k0 + τ?k1 + Fλ(τ) + (τ? − τ)A⊥u

)>
[c] τ ∈ Qenc

}
.

As we require tags to be fresh, we have τ? /∈ Qenc and therefore the term (τ? − τ)(A⊥u)>c is
uniformly random over Zp. Thus, the marginal distribution of each key in SK is uniform over G.
Using a hybrid argument over all queries to Odec, we hence obtain

|εH.5| ≤ Qdec ·Qenc · uncertA(λ).

ut
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A The OR-Proof

Lemma 8 (Constrained L̃snd-soundness of P̃S for k = 1). If the DDH assumption holds in
G and h0, h1 are universal hash functions, then the proof system described in Fig. 4 complies with
constrained L̃snd-soundness. Namely, for any adversary A against L̃snd-soundness, there exists an
adversary B such that T (B) ≈ T (A) + (Qdec +Qver) · poly(λ) and

Advcsnd
L̃snd,P̃S,A(λ) ≤ Advmddh

G,B,D2k,k
(λ) +Qver · uncertA(λ)

+ (Qsim +Qver) · 2−Ω(λ),

where Qver, Qdec are the number of calls to Over and Odec respectively, uncertsndA (λ) describes the
uncertainty of the predicates provided by A and poly is a polynomial function, independent of T (A).

Proof. We prove the L̃snd-soundness of P̃S via a series of games, described in Fig. 13. We start by
giving a short overview of the proof.

The idea is to first randomize the x that is used in simulated proof of statements [c] ∈ Lsnd \ L,
using the DDH assumption and the Leftover Hash Lemma (Lemma 1). For the final proof step, let
([c], [π], [κ]) be an arbitrary combined proof for [c] ∈ L̃snd, that is, such that there exists r ∈ Zp
such that either [c] = [Ar], [c] = [A0r] or [c] = [A1r]. In the first case, nothing about [K̃y] is
leaked. In case [c] is in the span of [A0], we have [π, κ] = [A0] · x+ [c] · y = [A0](x+ r · y), thus y,
and in particular K̃y, are completely hidden by the randomized x. Finally, in case [c] = [A1r] we
have y = h1([K̃yA1r]), and thus informationtheoretically only [K̃yA1] is leaked. This implies (via
randomizing K̃y by adding a term U(A⊥1 )

> for U←R Z2×1
p and A⊥1 ∈ orth(A1)) that even knowing

many sound tuples ([c], [π], [κ]) for [c] ∈ L̃snd, an adversary cannot do better than guessing y to
produce a valid key for statements outside L̃snd, and therefore, only has negligible winning chances.

We start with the L̃snd-constrained soundness game, which we refer to as game G. In the
following we want to bound the probability

ε := Advcsnd
PS,A(λ).

We denote the probability that the adversary A wins the game Gi by

εi := AdvGi,A(λ).

We omit the proof of the game transitions, as they almost verbatim follow the proof of Theorem 1,
where Lsnd is replaced by L̃snd. It is left to show that the adversary has only negligible chances in
winning game G3.

Game G3: We show that ε3 ≤ Qver · uncertsndA (λ), where Qver is the number of queries to Over

and uncertsndA (λ) describes the uncertainty of the predicates provided by the adversary as described
in Definition 12.

We use a hybrid argument over the Qver queries to Over. To that end, we introduce games G3.i

for i = 0, . . . , Qver, defined as G3 except that for its first i queries Over answers ⊥ on any input
([c], [π], pred) with [c] /∈ L̃snd. We have ε3 = ε3.0, ε3.Qver = 0 and we show for all i ∈ [Qver] it holds

|ε3.i−1 − ε3.i| ≤ Pr
K∈K

[predi(K) = 1] + 2−Ω(λ),
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#
sim. x for
[c] ∈ L̃snd\L

ver. [κ] for [c] /∈ L game
knows remark

G0 x := h0 (Kx[c]) [A0] · x+ [c] · y L̃snd-soundn.
game w/o lose

G1 x := h0 (Kx[c]) A0A
−1
0

(
[π?]− [c] · y

)
+ [c] · y A,A0

win. chances
increase

G2
u←R Z2

p,
x := h0([u])

A0A
−1
0

(
[π?]− [c] · y

)
+ [c] · y A,A0 DDH

G3 x←R Zp A0A
−1
0

(
[π?]− [c] · y

)
+ [c] · y A,A0

Lemma 1
(LOHL)

Fig. 13: Overview of the proof of L̃snd-constrained soundness of PS. The first column shows how x is computed
for queries to Osim. The second column shows how the key [κ] computed by the verifier in queries to Over when
[c] /∈ L. The third column “game knows” gives an overview of which non-public information need to be known
by the game respective to A, A0 and A1.

where predi is the predicate contained in the i-th query to Over.
Games G3.i and G3.(i+1) behave identically on the first i queries to Over. An adversary can only

distinguish between the two, if it manages to provide a valid (i+ 1)-st query ([c], [π], pred) to Over

with [c] /∈ L̃snd. In the following we bound the probability of this happening.
From queries to Osim and the first i queries to Over the adversary can only learn valid tuples

([c], [π], [κ]) with [c] ∈ L̃snd. As explained in the beginning, such combined proofs reveal nothing
about K̃y beyond [K̃yA1], as either K̃y is not employed for the computation of y, [c] = [A1r] for
an r ∈ Zp and y = h1([K̃yc]) = h1([K̃yA]r) or [c] = [A0r] and [π, κ] = [A0](x+ r · y). In the latter
case y is hidden by the fully randomized x.

For any [c] /∈ L̃snd, y = h1[K̃yc] computed by Over is distributed statistically close to uniform
from the adversary’s point of view because of the following. First we can replace K̃y by K̃y+U(A⊥1 )

>

for U ←R Z2×1
p and A⊥1 ∈ orth(A1) as both are distributed identically. This extra term is not

revealed through the public key, through simulation queries or through the first i oracle queries to
Over by the our previous considerations.

Now Lemma 1 (Leftover Hash Lemma) implies that the distribution of y is statistically close to
uniform as desired. Since [c] /∈ span([A0]) we have [c]− [A0]A

−1
0 [c] 6= 0, thus also the key

[κ] := A0A
−1
0 [π?] +

(
[c]−A0A

−1
0 [c]

)
︸ ︷︷ ︸

6=0

·y

computed by Over is statistically close to uniformly random over Zp. Altogether this yields

|ε3.i − ε3.(i+1)| ≤ Pr
K∈K

[predi(K) = 1] + 2−Ω(λ).

In conclusion, we obtain

ε3 ≤ Qver · uncertA(λ) +Qver · 2−Ω(λ).

ut
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Theorem 2. If the D2k,k-MDDH assumption holds in G and h0, h1, and h2 are universal hash
functions, then the proof system PS described in Fig. 5 is Lsnd-qualified. Further, the proof system
PS is L̃snd-extensible.

Proof (Sketch). Completeness and perfect zero-knowledge follow from the according properties of
the underlying proof system PrePS (Fig. 2), which can be proven analogous to the case k = 1.
Uniqueness of the keys follows from the fact that the verification algorithm computes exactly one
proof [π1, π2], and aborts if [π1, π2] 6= [π?]. For the L̃snd-extensibility we refer to Lemma 11 and
Lemma 12. We only sketch the proof of constrained Lsnd-soundness (see Lemma 10), as it is similar
to the proof for the case k = 1. We mostly argue about the underlying proof system PrePS, as this
directly translates to PS. We give an overview of the games in Fig. 14. The main difference with
the case k = 1 is the argument used to prove that in Game G3, the keys [κ] computed by Over is
uniformly random over G. ut

Lemma 10 (Constrained Lsnd-soundness of PS for k > 1). If the D2k,k-MDDH assumption
holds in G, and h0, h1 are universal hash functions, then the proof system PS described in Fig. 5
(for k > 1) complies with constrained Lsnd-soundness. More precisely, for every adversary A, there
exists an adversary B such that T (B) ≈ T (A) + (Qsim +Qver) · poly(λ) and

AdvcsndPS,A(λ) ≤ Advmddh
G,D2k,k,B(λ) + (Qsim +Qver) · 2−Ω(λ),

where Qver, Qsim are the number of calls to Over and Osim respectively, uncertsndA (λ) describes the
uncertainty of the predicates provided by A (see Definition 12) and poly is a polynomial function
independent of T (A).

Proof. We prove the constrained Lsnd-soundness of PS via a series of games. We give an overview
of the games in Fig. 14.

G  G0: Again we first remove the lose-functionality of the verification oracle for statements with
[c] ∈ Lsnd\L. This can only raise the winning chances of the adversary.

G0  G1: The difference between G0 and G1 is that from game G1 on the oracle Over, on
input ([c], Π, pred), first checks if [c] ∈ span([A]). If this is the case, Over behaves as in game
G0. Otherwise, it does not check if [π?] = [π]. As for the case k = 1, we show that ε1 ≥ ε0. This
transition follows from the fact that for [π?] = [A0]·x+[c]·y we haveA0A

−1
0

(
[π?]− [c] · y

)
+[c]·y =

[A0] ·x+ [c] · y, which agrees with the way keys that are computed in Game G0. Therefore - as the
view on non-winning queries is unchanged - the winning chances of the adversary can only increase.

G1  G2: We set up the transition as in case k = 1 for both underlying proof systems PrePS.
Let ([B], [h1, . . . ,hQsim

]) be a Qsim-fold U2k,k-MDDH challenge.
First B picks A,A0,A1 as described in Section 4.1 and further for j ∈ {1, 2} the adversary

choses K′x,j ←R Z(k+1)×2k
p and Ky,j ←R Z2×2k

p .
The adversary B implicitely sets Kx,j = K′x,j + Uj(A

⊥)> for some A⊥ ∈ orth(A) and Uj ∈
Z(k+1)×k
p , where the latter depends on the U2k,k-MDDH challenge (and cannot be computed by
B explicitely). This will allow the adversy to embed the U2k,k-MDDH challenge into simulation
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#
sim. xj for
[c] ∈ Lsnd\L

ver. [κj ] for [c] /∈ L game
knows remark

G0 xj := h0 (Kx,j [c]) [A0] · xj + [c] · yj
Lsnd-soundn.
game w/o lose

G1 xj := h0 (Kx,j [c]) A0A
−1
0

(
[π?j ]− [c] · yj

)
+ [c] · yj A,A0

win. chances
increase

G2
uj ←R Zk+1

p ,
xj := h0([uj ])

A0A
−1
0

(
[π?j ]− [c] · yj

)
+ [c] · yj A,A0 D2k,k-MDDH

G3 xj ←R Zkp A0A
−1
0

(
[π?j ]− [c] · yj

)
+ [c] · yj A,A0

Lemma 1
(LOHL)

Fig. 14: Overview of the proof of Lsnd-constrained soundness of PS. We give the changes of the underlying
proof system PrePS for j ∈ {1, 2}. The first column shows how x is computed for queries to Osim. The second
column shows how the key [κ] is computed by the verifier in queries to Over when [c] /∈ L. The third column
“game knows” gives an overview of which non-public information need to be known by the game respective to
A, A0 and A1.

queries. Note that even without explicit knowledge of Kx,j the adversary can still compute the
public parameters [Kx,jA] = [K′x,jA] and [Ky,jA].

For j ∈ {1, 2} the adversary B further chooses Wj ← Zk×kp . This implicitly defines [Vj ] :=

Wj [BB
−1

]. Note that B does not need to compute [Vj ]. Replacing [(K′x,j +Uj(A
⊥)>)A0] by [Vj ]

is statistically indistinguishable for the adversary A.
As in case k = 1 on the i-th query toOsim, for all i ∈ [Qdec], the adversary B defines [c] := A0[hi]

to be the challenge ciphertext and computes xj := h0(Wj [hi]). In case of a real U2k,k-MDDH
challenge, we have hi = Bsi for si ←R Zkp and thus for ri := Bsi we have [c] = [A0ri] and
xj = h0(Wj · [Bsi]) = h0(Wj · [BB

−1
ri]) = h0([Vjri]). By our previous considerations [Vjri] is

statistically close to Kx,j [c] and thus adversary B simulates game G1. In case the adversary was
given a random challenge, the vectors hi are distributed uniformly over Z2k

p and the adversary
simulates game G2.

Finally, by Lemma 5 (U2k,k-MDDH ⇒ Qenc-fold U2k,k-MDDH), and Lemma 3 (D2k,k-MDDH
⇒ U2k,k-MDDH), we obtain an adversary B such that T (B) ≈ T (A) + (Qver +Qsim) · poly(λ) and

|ε2 − ε1| ≤ Advmddh
G,D2k,k,B(λ) + 2−Ω(λ).

G2  G3: As in case k = 1 we have

|ε2 − ε3| ≤ 2 ·Qsim/p.

Game G3: Again we argue that by queries to Osim and the first i queries to Over the adversary
can only learn valid tuples ([c], [π], [κ]) with [c] ∈ Lsnd which do not reveal more about Ky,1,Ky,2

than the public key leaks informationtheoretically.
For any [c] /∈ Lsnd, y1 = h1[Ky,1c] and y2 = h1[Ky,2c] computed by Over are thus distributed

statistically close to uniform from the adversary’s point of view. Thus the keys [κ1] and [κ2] carry
each log p bits of entropy and the universality of h2 allows us to employ the Left Over Hash Lemma
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P̃Gen(1λ):
(ppk1, psk1)← PrePGen(1λ)
(ppk2, psk2)← PrePGen(1λ)
return

ppk := (ppk1, ppk2)
psk := (psk1, psk2)

P̃Ver(ppk , psk , [c], [π?]):

[π1, κ1] := ˜PrePSim(ppk1, psk1, [c])

[π2, κ2] := ˜PrePSim(ppk2, psk2, [c])
if [π1, π2] = [π?]

return (1, [h2([κ1, κ2])])
else return (0,⊥)

P̃Prv(ppk , [c], r):

[π1, κ1] := ˜PrePPrv(ppk1, [c], r)

[π2, κ2] := ˜PrePPrv(ppk2, [c], r)
return

[π] := [π1, π2]
[κ] := [h2([κ1, κ2])]

P̃Sim(ppk , psk , [c]):

[π1, κ1] := ˜PrePSim(ppk1, psk1, [c])

[π2, κ2] := ˜PrePSim(ppk2, psk2, [c])
return

[π] := [π1, π2]
[κ] := [h2([κ1, κ2])]

Fig. 15: L̃snd-qualified Proof System P̃S for L in case k > 1, where P̃ rePS is defined as in Fig. 4.

to obtain that [κ] := h2([κ1, κ2]) is statistically close to uniform over G. Now a hybrid argument as
for k = 1 yields

ε3 ≤ Qver · uncertsndA (λ) +Qver · 2−Ω(λ).

ut

We omit the proof of the following two lemmas, as the proof techniques are similar to the ones
presented in Lemma 7, Lemma 8 and Theorem 2.

Lemma 11 (Lsnd-indistinguishability). For k > 1 proof systems PS and P̃S described in Fig. 5
and Fig. 15, resp., are Lsnd-indistinguishable. That is, for every (unbounded) adversary A we have
AdvPS-ind

Lsnd,PS,P̃S,A(λ) = 2−Ω(λ).

Lemma 12 (Constrained L̃snd-soundness of P̃S for k > 1). If the D2k,k-MDDH assumption
holds in G and h0, h1 and h2 are universal hash functions, then the proof system described in Fig. 15
complies with constrained L̃snd-soundness. Namely, for any adversary A against L̃snd-soundness,
there exists an adversary B such that T (B) ≈ T (A) + (Qdec +Qver) · poly(λ) and

Advcsnd
L̃snd,P̃S,A(λ) ≤ 2 ·Advmddh

G,B,D2k,k
(λ) + 2 ·Qver · uncertA(λ)

+ (Qsim +Qver) · 2−Ω(λ),

where Qver, Qdec are the number of calls to Over and Odec respectively, uncertsndA (λ) describes the
uncertainty of the predicates provided by A and poly is a polynomial function, independent of T (A).

B Security in the Multi-User Setting

For the sake of better readability we merely considered security in the single-user setting so far. In
this section, we want to give an idea on how to carry over our results to the multi-user setting. In
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the following we give the alterations in the IND-CCCA security definition of a key encapsulation
mechanism (Definition 10) for the multi-user setting.

Expmu−ccca
KEM,A (λ):

(pkj , skj)j ←R KGen(1λ)

b←R {0, 1}
Cenc := ∅
b′ ←R AOenc,Odec( (pk j)j )

if b = b′ return 1
else return 0

Oenc( j ):
K0 ←R K(λ)
(C,K1)←R KEnc( pk j )

Cjenc := Cjenc ∪ {C}
return (C,Kb)

Odec( j , predi, Ci):

Ki := KDec( sk j , Ci)

Ci /∈ Cjenc and
if predi(Ki) = 1
return Ki

else return ⊥

We start the security analysis in the multi-user setting by adapting the security of the proof system
PS presented in Figure 5. We omit transferring the definitions of qualified proof system to the
multi-user case, as it is straightforward. The only point in the proof of security and extensibility of
PS that is not statistical and hence needs to be adapted is the transition from game G1 to G2 in
the proof of Theorem 2. Here we use the U2k,k-MDDH assumption to tightly switch ([B], [Bh]) to
([B], [u]) for a uniformly random matrix [B]. Reusing a technique presented in the proof of Theorem
3, we can rerandomize given U2k,k-MDDH tuples ([B], [z]) to ([Bj ], [zj ]) and thereby tightly perform
this step for all users simultaneously.

For the adaptation of Theorem 3 and Lemma 9 either the same technique can be employed (e.g.
in the transition G4  G5) or MDDH is only applied on public parameters, which are the same
for all users. The remaining transitions are statistical or rely on properties of the proof system PS
and thus need not be studied anew.
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