
Template Attack vs. Bayes Classifier?

Stjepan Picek1, Annelie Heuser2, and Sylvain Guilley3,4

1 KU Leuven, ESAT/COSIC and iMinds, Kasteelpark Arenberg 10, bus 2452, B-3001
Leuven-Heverlee, Belgium

2 CNRS, IRISA, Rennes, France
3 LTCI, Télécom ParisTech, Université Paris-Saclay, 75 013 Paris, France

4 Secure-IC S.A.S., Threat Analysis Business Line, 35 510 Cesson-Sévigné, France

Abstract. Side-channel attacks represent one of the most powerful cate-
gory of attacks on cryptographic devices with profiled attacks in a promi-
nent place as the most powerful among them. Indeed, for instance, tem-
plate attack is a well-known real-world attack that is also the most pow-
erful attack from the information theoretic perspective. On the other
hand, machine learning techniques have proven their quality in a nu-
merous applications where one is definitely side-channel analysis. As one
could expect, most of the research concerning supervised machine learn-
ing and side-channel analysis concentrated on more powerful machine
learning techniques. Although valid from the practical perspective, such
attacks often remain lacking from the more theoretical side. In this paper,
we investigate several Bayes classifiers, which present simple supervised
techniques that have significant similarities with the template attack.
More specifically, our analysis aims to investigate what is the influence
of the feature (in)dependence in datasets with different amount of noise
and to offer further insight into the efficiency of machine learning for
side-channel analysis.

Keywords: Template attack, Supervised machine learning, Bayes classifier,
Feature dependence

1 Introduction

Any device that contains a secret such as a cryptographic key can be targeted by
an adversary. One very powerful class of attacks are side-channel attacks which
aim at breaking cryptographic secrets by exploiting physical information while
the device is processing sensitive data. For example, an adversary could monitor
the running time [1], the cache behavior, the power consumption [2], and/or the
electromagnetic radiation [3] of the device.

The most powerful type of side-channel attacks, so-called profiled side-channel
attacks, are even effective when only very few measurements are available, thanks

? This work has been supported in part by Croatian Science Foundation under the
project IP-2014-09-4882. In addition, this work was supported in part by the Re-
search Council KU Leuven (C16/15/058) and IOF project EDA-DSE (HB/13/020)

2

to an additional profiling phase. Within this phase the adversary estimates ad-
vanced leakage models for targeted intermediate computations, which are then
exploited to extract secret information from the device in the actual attack phase.
Template attacks (TAs), most of the time based on Gaussian assumption [4], are
the most commonly used profiled attacks in practice; they are also known to be
the most powerful from an information theoretic point of view. However, their
efficiency can only be guaranteed when the template estimates are provided with
an reasonable amount of traces in the profiling phase.

Recently, another type of solutions that rely on machine learning (ML) has
been investigated [5–7, 7–12]. These related contributions highlight that ML-
based side-channel attacks are effective in various experiments. However, ML
techniques also come with their own drawbacks. First, today there exists a plen-
itude of different algorithms one can choose and that choice is not always an easy
one. For side-channel evaluation recent works have mainly investigated Support
Vector Machines (SVMs) as well as Random Forest. Indeed, here only previous
experience can help since there are no general guidelines how to select a subset
of algorithms to conduct an analysis.

Because of the “No Free Lunch” theorem, a researcher cannot be sure whether
he selected the best algorithm for the task [13]. Moreover, usually more powerful
ML methods come with a number of parameters one needs to tune. Furthermore,
the higher complexity in the attack phase makes the investigated ML techniques
unattractive for some security evaluation scenarios. Finally, even when good
results are obtained, the complexity of ML methods makes it difficult to offer
some theoretical consideration about the algorithms’ performance.

In this paper, we employ several simpler ML techniques that have either
no parameters or only a few parameters where all of those techniques share
commonalities with the template attack.

Our Contributions There are several contributions we make in this paper. The
most important one is the systematic study of the successfulness of the Bayes
approach. Here, we investigate the efficiency of the method starting with an as-
sumption that all attributes (features) are independent, following with one level
of dependency and finishing with the scenario where all features are dependent.

Moreover, we test the performance of such classifiers in several different sce-
narios with respect to the number of classes and the level of noise. Finally, we use
the best performing algorithms in a setting where each of the classes is equally
distributed.

Road Map This paper is organized as follows. Section 2 provides preliminaries
about profiled side-channel analysis and the studied algorithms. Our experimen-
tal setup is given in Subsection 3.1 and Subsection 3.2. The results of the tuning
phase are given in Subsection 3.3 and in Subsection 3.4 for testing. We provide
a discussion in Section 4 and conclude afterwards.

3

2 Background & Algorithms

In this section we cover basic information about profiled side-channel attacks,
more specifically template attack (TA) and Bayes machine learning family of
techniques.

2.1 Profiled side-channel analysis

Let k∗ denote the secret cryptographic key, k any possible key hypothesis from
the keyspace K, and T be the input or ciphertext of the cryptographic algorithm.
The mapping f : (T ,K) → Fn2 maps the input or ciphertext t ∈ T and a key
hypothesis k ∈ K to an internally processed variable in some space Fn2 that is
assumed to relate to the measured leakage X, where n is the number of bits.
Generally it is assumed that f is known to the attacker. The measured leakage
X can then be written as

X = ϕ(f(T, k∗)) +N, (1)

where N denotes an independent additive noise and where ϕ is a device-specific
deterministic function. In the sequel, we are particularly interested in multi-
variate leakage X = X1, . . . , XD, where D is the data dimensionality (i.e., the
number of time samples per measurement trace) or features (attributes) in ma-
chine learning terminology.

In order to guess the secret key an attacker chooses a model class Y ∈ Y
depending on a key guess k and on some known random text T . Considering
a powerful attacker, a set of N profiling traces X1, . . . ,XN is used in order to
estimate the leakage model beforehand, which can then be used in the attacking
phase with X1, . . . ,XQ traces (the general scenario is displayed in Fig. 1).

2.2 Gaussian Naive Bayes

The Naive Bayes classifier is based on the Bayesian rule and works under the
simplifying assumption that the measurements are mutually independent among
the D features given the target class. More precisely, given the vector of N
observed attribute values x the posterior probability for each class value y is
computed as:

p(Y = y|X = x) =
p(Y = y)p(X = x|Y = y)

p(X = x)
, (2)

where X = x represents the event that X1 = x1 ∧X2 = x2 ∧ . . . ∧XN = xN .
Because this event is a conjunction of conditionally D independent events, indi-
vidual probabilities can be multiplied. Moreover, these probabilities are simple
to estimate from the training data:

p(X = X|Y = y) =

D∏
i=1

p(Xi = xi|Y = y). (3)

4

Fig. 1: General scenario of profiled side-channel analysis

As p(X = x) in Eq. (2) does not depend on y and this is not key dependent it
can be droppped, therefore, the Naive Bayes classifies as:

p(Y = y|X = x) = p(Y = y)

D∏
i=1

p(Xi = xi|Y = y). (4)

Note that the class variable Y and the measurement X are not of the same
type: Y is discrete while X is continuous. So, the discrete probability p(Y = y)
is equal to its sample frequency where p(Xi = xi|Y = y) displays a density
function.

Moreover, the Gaussian Naive Bayes classifiers assumes that the predictor
attributes are following a normal distribution and thus p(Xi = xi|Y = y) in
Eq. (4) can be calculated as:

p(Xi = xi|Y = y) =
1√

2πσy
e
− (xi−µy)2

2σ2y . (5)

Note that the (Gaussian) Naive Bayes method only compiles a one dimen-
sional table of class probability estimates and a two dimensional table of con-
ditional attribute/value probability estimates during the training phase. The
space complexity for both training and testing phase is O

(
|Y|Dv

)
, where |Y| is

the number of classes, D is the number of features, and v is the average number
of values for a feature. The time complexity for the training phase equals O

(
ND

)
and for the testing phase is equal to O

(
|Y|D

)
. Further information about Naive

Bayes algorithm can be found in [14].

5

2.3 Template Attack

Similar to the Gaussian Naive Bayes classifier the template attack relies on the
Bayes theorem and mostly in the state-of-the art relies on a normal distribution.
However, it is not “Naive” and considers the features as dependent (i.e. Eq. (3)
does not apply). Accordingly, template attack assumed that each P (X = x|Y =
y) follows a (multivariate) Gaussian distribution and is thus parameterized by
its mean and covariance matrix:

p(X = x|Y = y) =
1√

(2π)D|Σy|
e−

1
2 (x−µy)

TΣ−1
y (x−µy). (6)

The authors of [15] propose to use only one pooled covariance matrix Σ to
cope with statistical difficulties and thus a lower efficiency. Besides the standard
approach, we will additionally utilize this version of the template attack in our
experiments later on. The time complexity for TA is O

(
ND2

)
in the training

phase and O
(
|Y|D2

)
in the testing phase and space complexity O

(
|Y|D2v

)
.

2.4 Averaged n-Dependence Estimators - AnDE

As discussed in the previous sections, TA assumes dependence among all fea-
tures which may result in statistical difficulties (and higher computation costs).
Contrary, Naive Bayes considers the features independently. However, if this as-
sumption of independence is violated, Naive Bayes may result in high precision
loss.

To deal with these two extreme, there are many possible approaches where the
best results in the field of machine learning were obtained with algorithms that
relax the independence assumption, as with LBR [16] and SP-TAN [17] classifiers
(to name a few prominent ones). However, their improved performance comes
with a price of considerably higher computation cost. The effort that aimed at
relaxing the independence assumption, while keeping the computation cost low,
led to the Averaged One-Dependence Estimators (AODE) strategy [18].

In AODE, there is a Super-Parent One-Dependence Estimate that relaxes
the assumption of independence by making all other attributes independent
given the class and one privileged attribute called the super-parent xα. This
represents a weaker conditional independence assumption than the one present
in Naive Bayes since it must be true if Naive Bayes is true, but it also may be
true when Naive Bayes is not true [18]:

p(Y = y|X = x) = (7)

p(Y = y, xα)

D∏
i=1

p(Xi = xi|Yi = yi, xα).

Since this is a weaker assumption, the bias of this model should be lower,
while the variance should be higher since it is derived from higher-order proba-
bility estimates. It is possible to further generalize to higher-order probabilities
and use Averaged n-Dependence Estimators (AnDE) [19]:

6

p(Y = y|X = x) = (8)∑
s∈Sn

p(Y = y, xs)

D∏
i=1

p(Xi = xi|Yi = yi, xs)/

(
D

n

)
,

where Sn indicates all subsets of size n of the set {1, . . . , D}.

AnDE algorithm works by learning an ensemble of n-dependence classifiers
where the prediction is obtained by aggregating the predictions of all classifiers.
Note that the n-dependence estimator means that the probability of an attribute
is conditioned by the class variable and at most n other attributes. In AnDE
algorithm, an n-dependence classifier is constructed for every combination of n
attributes where those n attributes are set as parents to all other attributes. We
note that Naive Bayes is the same as the A0DE while AODE is the same as
A1DE.

In this paper we use A1DE algorithm from the AnDE family of algorithms.
Note that AnDE when n > 2 is rarely used since both space and time complexity
is very high [19]. Space complexity for both training and testing phases forAnDE
equals O

(
|Y|
(
D
n+1

)
vn+1

)
where n is the number of parent nodes (except class).

Time complexity for the training phase is O
(
N
(
D
n+1

))
and for testing phase for

classifying a single example is O
(
|Y|D

(
D
n

))
[19].

3 Experimental Evaluation

Before presenting the results of the experiments, we briefly discuss how to con-
duct proper (ML) analysis that is reproducible and statistically relevant. One
needs to present the number of instances, the number of features, and the number
of classes (if known). Additionally, if the data comes from different distributions,
one needs to discuss those.

Furthermore, if not all data from datasets are used, it is necessary to write
how the samples are chosen and how many are used in the experiments. Fi-
nally, one needs to define the level of noise appearing in the data in a clearly
reproducible way, e.g., with the signal-to-noise ratio (SNR).

3.1 Data Setup

To ensure the reproducibility of presented results, we use two publicly available
data sets for our study where they differ in the amount of noise. In our study we
work with datasets with 5 000, 10 000, 20 000, 30 000, 50 000, and 100 000 mea-
surements which are randomly selected from the whole data sets. The number
of features equals 50 and the model consists either of 256 uniformly distributed
classes (S-box output, see Eq. (9) and Eq. (11)) or 9 binomial distributed classes
(the Hamming weight of the S-box output).

7

DPAcontest v2 [20]. DPAcontest v2 provides measurements of an AES hard-
ware implementation. Previous works showed that the most suitable leakage
model (when attacking the last round of an unprotected hardware implementa-
tion) is the register writing in the last round, i.e.,

Y (k∗) = Sbox[Tb1 ⊕ k∗]︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

, (9)

where k∗ denotes the secret key, Tb1 and Tb2 are two ciphertext bytes, and the
relation between b1 and b2 is given through the inverse ShiftRows operation of
AES. In particular, we choose b1 = 12 resulting in b2 = 8 as it is one of the
easiest bytes to attack5. In Eq. (9) Y (k∗) consists in 256 values, as an additional
model we applied the HW on this value resulting in 9 classes. For our study,
we selected 50 points of interests with the highest correlation between Y (k∗)
and data set. Figure 2 shows the absolute correlation between Y (k∗) and the
measurements for our selected points. One can see that the measurements are
relatively noisy and the resulting SNR (signal-to-noise ratio) is between 0.0069
and 0.0096. We calculate the SNR as:

var(signal)

var(noise)
=

var(Y (k∗))

var(X − Y (k∗))
. (10)

Figure 3 show the correlation between the first point of interest and all points.
Interestingly, one can observe a dependency for roughly the first 50 points that
decreases for the second half.

DPAcontest v4 [21]. The 4th version provides measurements of a masked
AES software implementation. However, as the mask is known, one can easily
turn it into an unprotected scenario. Though, as it is a software implementation,
the most leaking operation is not the register writing, but the processing of the
S-box operation and we attack the first round. Accordingly, the leakage model
changes to

Y (k∗) = Sbox[Pb1 ⊕ k∗]⊕ M︸︷︷︸
known mask

, (11)

where Pb1 is a plaintext byte and we choose b1 = 1. Figure 4 shows the absolute
correlation between Y (k∗) and the measurements for our selected points. Com-
pared to the measurements from version 2, there is much higher correlation and
naturally also SNR, which is between 0.1188 and 5.8577.

The correlation between the first point of interest and all points can be seen
in Figure 5. In this data set again the first points are correlated, where the
correlation is slightly decreasing over the features.

5 see e.g., in the hall of fame on [20]

8

(a) Using 9 classes (HW)

(b) Using 256 classes

Fig. 2: Correlation between our model and the measurements (v2)

Fig. 3: Correlation between the first point of interest and all points (v2)

3.2 Practical Algorithm Setting

When discussing the experiments, first it is necessary to discuss how the data is
divided into training and testing sets. Then, for the training phase one needs to
define the test options (e.g. whether to use percentage split, the whole dataset,
cross-validation, etc.) After that, for each algorithm one needs to define a set of
parameter values to conduct the tuning phase. There are different options how
to conduct tuning, but we consider as a reasonable approach to start with the

9

(a) Using 9 classes (HW)

(b) Using 256 classes

Fig. 4: Correlation between our model and the measurements (v4)

Fig. 5: Correlation between the first point of interest and all points (v4)

10

default parameters and continue changing them until there is no more improve-
ment.

We divide data into training and testing set in a ratio of 2:1. Then, we take
the bigger set as the training set (the set with the 2/3 of the data) and the smaller
set for testing (1/3 of the data). On the training set, we conduct 10-fold cross-
validation with all parameters considered. In the 10-fold cross-validation, the
original training sample is first randomly partitioned into 10 equal sized subsets.
Then, a single subsample is selected to validate the data, while the remaining 9
subsets are used for training. The cross-validation process is repeated 10 times,
where each of 10 subsamples is used once for validation. The obtained results
are then averaged to produce an estimate.

For the tuning phase, we consider sufficient to report the accuracy (ACC)
value. Here, accuracy represents the ratio between the sum of true positive and
true negative measurements divided by the total number of measurements. How-
ever, for the testing results, one should report the accuracy, the area under the
ROC curve (AUC), and the F-measure. Here, the area under the ROC curve is
used to measure the accuracy and ROC curve is the ratio between true positive
rate and false positive rate. AUC close to 1 represents a good test, while value
close to 0.5 represents a random guessing. F-measure is the harmonic mean of the
precision and recall, where precision is the ratio between true positive (TP - the
number of examples predicted positive that are actually positive) and predicted
positive, while recall is the ratio between true positives and actual positives [22].
Both the F-Measure and the AUC can help in situations where accuracy can be
misleading, i.e., where we are also interested in the number of false positive and
false negative values.

With regards to the choice of algorithms, it is necessary to specify which
framework and algorithms are investigated. Moreover, all settings that uniquely
define the algorithm need to be enumerated. Here, we use Weka as the frame-
work for conducting the ML analysis [23] and we use Naive Bayes and A1DE
algorithms. Template attack and pooled template attack are implemented in
MATLAB. Since the Naive Bayes and TA does not have parameters to tune, we
only need to conduct tuning for the A1DE algorithm. We conduct a parameter
sweep where we investigate the frequency limit and the weight parameters. The
frequency limit freq parameter denotes that all features with a frequency in the
train set below this value are not used as parents. The weight parameter m sets
the base probabilities with m-estimation [24].

Table 1: Parameter tuning for A1DE and 9 classes
HH

HHfreq.
m 0.1 0.2 0.5 0.8 1 2 3 4 5

DPAcontest v4
1 83.22 83.33 83.35 83.34 83.36 83.39 83.3 83.3 83.29

DPAcontest v2
1 27.86 27.86 27.86 27.86 27.86 27.86 27.86 27.86 27.86

11

Table 2: Parameter tuning for A1DE and 256 classes
HHHHfreq.

m 0.1 0.2 0.5 0.8 1 2 3 4 5

DPAcontest v4
1 22.68 22.67 22.76 22.77 22.67 22.22 22.02 21.85 21.78

DPAcontest v2
1 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54

3.3 Parameter Tuning Phase

Note that due to a large number of datasets, we conduct parameter tuning
only for the middle-sized dataset (20 000 measurements) and we use the best
parameter combinations on all datasets. In all tables we highlight the best results
with text in bold style. All the results in this section are presented as the accuracy
of the classifier. In Tables 1 and 2, we give the best parameter combinations for
9 and 256 classes scenario with A1DE algorithm, respectively. In all the cases
where multiple parameter combination return the same accuracy value, we use
the default one (m = 1) as the best one. We note that we also experimented
with the frequency limit parameter freq where we set it in range [1, 5], but it
did not have any influence on the results so we omitted it from the tables. On
the basis of the tuning phase, one can observe that the parameters have very
small influence on the result: in all the experiments we use frequency freq equal
to 1 while the weight parameter m changes slightly.

Table 3: Testing results for 9 classes (ACC/F-Measure/AUC)
DPAcontest v4

Size Naive Bayes A1DE TA TA (pooled)

5 000 65.52/65.5/91.3 78.12/78.1/96.3 19.49 62.07

10 000 67.01/67.1/91.5 81.26/81.3/97.2 52.14 76.54

20 000 68.25/66.7/91.3 83.39/83.4/97.7 75.43 77.78

30 000 67.66/67.7/91.7 84.25/84.3/97.9 77.45 78.09

50 000 67.19/67.2/91.5 84.93/84.9/98 78.71 77.85

100 000 67.29/67.3/91.7 85.55/85.6/98.1 79.91 77.83

DPAcontest v2
5 000 10.06/10.5/50.1 25.76/10.6/50 1.29 10.07

10 000 10.94/9.9/50.1 26.06/10.8/50 1.73 8.74

20 000 7.88/9.2/50.5 27.1/11.6/50 15.48 7.64

30 000 8.81/10.4/50.3 25.6/15.5/51.7 17.66 6.66

50 000 10.21/11.6/50.4 24.3/15.8/51.2 15.99 5.88

100 000 12.44/14.1/50.6 23.79/16.3/50.5 13.20 5.98

12

Table 4: Testing results for 256 classes (ACC/F-Measure/AUC)
DPAcontest v4

Size Naive Bayes A1DE TA TA (pooled)

5 000 15.29/14.7/91.6 10.29/8/93.7 0.23 14.89

10 000 18.26/17.1/93.4 15.65/13.7/95.5 0.32 19.68

20 000 20.21/18.3/94.5 22.56/21.2/96.9 0.52 23.65

30 000 20.88/19/94.7 28.19/27.4/97.7 9.44 25.53

50 000 21.22/19.1/95 32.06/31.5/98.2 15.63 27.47

100 000 22.25/20.1/95.3 37.63/37.1/98.7 21.66 29.14

DPAcontest v2
5 000 0.59/0.1/51 0.06/0/50 0.53 0.11

10 000 0.56/0.2/51.3 0.38/0/50 0.52 0.32

20 000 0.6/0.1/51.2 0.34/0/50 0.55 0.32

30 000 0.63/0.1/50.8 0.29/0/50 0.30 0.40

50 000 0.51/0.1/51.1 0.41/0/50 0.36 0.50

100 000 0.54/0.1/50.9 0.39/0/50 0.46 0.45

3.4 Verification Phase

In this section we perform the testing on an independent set of traces to verify the
performances for classifying into 9 and 256 classes. We present results in Table 3
for 9 classes and in Table 4 for 256 classes in a form ACC/F-Measure/AUC for
the Naive Bayes and A1DE classifiers while for the template attack (Eq. (??))
and template attack with pooled covariance matrix (Eq. (??)) we give only the
accuracy value. Accuracy is used as the primary criterion of the algorithms’
successfulness to predict the correct class y using X1, . . . ,XQ measurements,
whereas the F-Measure and AUC gives more details about the classification and
can additionally be used in case the accuracy of several algorithms is similar or
even the same. We note that the size parameter represents the whole dataset
size and in the testing phase only one third of that size is actually used (while
the other two thirds are used in the training phase).

4 Discussion

From our results we can confirm that the pooled TA has a higher accuracy than
TA when the profiling set is rather small (see e.g. when using 5 000 and 10 000
measurements for 9 classes and nearly for all profiling sets using 256 values).
However, when the profiling set seems sufficient enough to achieve reasonable
estimate of each Σy TA is more accurate than its pooled version.

Naturally, as the data shows dependence between features (cf. Figures 3
and 5), the accuracy of the approach to assume independence among all features
as done by Naive Bayes is lower than that of the pooled version of TA and TA
when using a higher amount of measurements. But we can observe it may be
an alternative even for the pooled version when the profiling set is rather small

13

(see e.g. when using 5 000 measurement DPAcontest v4 and for 5 000, 10 000,
and 20 000 for DPAcontest v2).

On the other hand, the A1DE algorithm achieves in most of the scenarios a
higher accuracy than TA and the pooled version of TA for both 9 and 256 classes
using the data of the DPAcontest v4. Therefore, A1DE can be considered as a
valid alternative for TA (standard and pooled). For example, looking at the
results using 9 classes for the DPAcontest v4 one can observe that A1DE is
more efficient regardless on the number of profiling traces used (even when a
rather large amount of 100 000 measurements in a rather high SNR scenario is
used). However, when considering 256 classes and DPAcontest v4, we actually
observer that there are several scenarios where the pooled version of TA achieves
better results than A1DE. We want to stress that this ML technique does not
come with a high computation burden when compared to SVM, Random Forest,
and decision trees which have been often found superior to TA in this context
in previous works. Even more, our experiments showed that the computation of
TA using 256 classes was much more expensive in terms of time and resources
than A1DE. To conclude, when dealing with measurements that do not have too
much noise (as in DPAcontest v4) and where the number of classes is small (e.g.
the Hamming weight model) the results suggest that A1DE should represent a
viable option for profiled SCA.

Note that, A1DE results for the DPAcontest v2 that are marked with gray
color deserve some extra explanations. Although the accuracy rate gives the
impression that the results are good, we see that the AUC equals 50%, which
means that the classifiers are making random choices. Indeed, by closer look on
the confusion matrix (matrix where each column represents the instances in a
predicted class while each row represents the instances in an actual class) we see
that the algorithms classified all instances into a single class and the accuracy
is simply the number of instances actually belonging to that class. This is a
problem commonly known as overfitting. Naturally, classifying into only one
class will not lead to a successful side-channel distinguisher as this reveals no
information about the secret key.

Additionally, we want to discuss about the distribution of class values y in
the profiling set. Naturally, when taking the Hamming weight of an 8-bit inter-
mediate state we gain 9 binomial distributed classes. Therefore, the number of
instances for observing class y = 0 or y = 8 is rather limited and the estimation
for Σy is not provided with an equal number of instances for each y. In par-
ticular, this results in different estimation errors in Σy for all classes y. This is
one explanation why the pooled variant is more efficient than the standard one
when the number of measurements is not very large (i.e., in our experiments for
DPAcontest v4 with 9 classes ≤ 30 000).

We therefore additionally test the accuracy when each class estimate of
P̂ (X|Y = y) is provided with the same number of instances of X. As the max-
imum number of instances for class y = 8 is around 350, we used 350 for each
class resulting in 3 150 measurements in total. The results are given in Table 5.

14

Table 5: Testing results for 9 classes each with an equal number of measurements
(350 for each class)

Dataset DPAcontest v4 DPAcontest v2

Naive Bayes 73.76 14.75

A1DE 80.67 11.76

TA 63.61 12.53

TA (pooled) 77.82 13.00

Interestingly, we can observe that using 3 150 measurements with a equal
number in each class results in a better accuracy than using 5 000 and 10 000 mea-
surements with a binomial distribution. When comparing TA with the pooled
version, the later one is still more accurate thus for our experiments 350 is not
accurate enough for a well estimation of Σy. Again, A1DE is superior to both
TA versions and considering full independence with Naive Bayes is better than
TA. Even more, when considering A1DE for DPAcontest v2 with equal num-
ber of classes we do not run into the problem of one class prediction as in the
previous section.

5 Conclusions

In this paper, we investigate the performance of template attack as a scenario
where all features are dependent versus machine learning algorithm from the
Bayes family. We start with the Naive Bayes where the assumption is that all
features are independent and then we relax that assumption and go to the A1DE
algorithm that has a single dependency. Our results show that these alternatives
are especially interesting when the amount of profiling traces is restricted and
thus a proper estimation of the covariance matrix cannot be done.

Our results show that these ML algorithms may even have an advantage
compared to the pooled version of the template attack in which only one co-
variance matrix has to be estimated. Concluding we propose new tools which,
as the template attack, are based on the Bayes rule that might be relevant se-
curity evaluation methods when the profiling base is not extremely large and
other ML techniques like Support Vector Machines and Random Forest might
be too costly to tune and perform. Therefore, our results suggest one can often
relax the constraint on the dependencies of features and consider features either
independent or with minimal dependence and still achieve very good results.

References

1. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Proceedings of CRYPTO’96. Volume 1109 of LNCS.,
Springer-Verlag (1996) 104–113

15

2. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Proceedings of
CRYPTO’99. Volume 1666 of LNCS., Springer-Verlag (1999) 388–397

3. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Proceedings of the Third International Workshop on Cryptographic Hardware
and Embedded Systems. CHES ’01, London, UK, UK, Springer-Verlag (2001) 251–
261

4. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: CHES. Volume 2523 of
LNCS., Springer (August 2002) 13–28 San Francisco Bay (Redwood City), USA.

5. Heuser, A., Zohner, M.: Intelligent Machine Homicide - Breaking Cryptographic
Devices Using Support Vector Machines. In Schindler, W., Huss, S.A., eds.:
COSADE. Volume 7275 of LNCS., Springer (2012) 249–264

6. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Ma-
chine learning in side-channel analysis: a first study. Journal of Cryptographic
Engineering 1 (2011) 293–302

7. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: An approach
based on machine learning. Int. J. Appl. Cryptol. 3(2) (June 2014) 97–115

8. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.: Tem-
plate Attacks vs. Machine Learning Revisited (and the Curse of Dimensionality
in Side-Channel Analysis). In Mangard, S., Poschmann, A.Y., eds.: Constructive
Side-Channel Analysis and Secure Design - 6th International Workshop, COSADE
2015, Berlin, Germany, April 13-14, 2015. Revised Selected Papers. Volume 9064
of Lecture Notes in Computer Science., Springer (2015) 20–33

9. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against
a masked AES - Reaching the limit of side-channel attacks with a learning model.
J. Cryptographic Engineering 5(2) (2015) 123–139

10. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A Machine Learn-
ing Approach Against a Masked AES. In: CARDIS. Lecture Notes in Computer
Science, Springer (November 2013) Berlin, Germany.

11. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Side-channel Analysis of Lightweight
Ciphers: Does Lightweight Equal Easy? In: RFIDSec. (2016)

12. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking Cryptographic Implementations
Using Deep Learning Techniques. In: International Conference on Security, Privacy,
and Applied Cryptography Engineering, Springer International Publishing (2016)
3–26

13. Wolpert, D.H.: The Lack of a Priori Distinctions Between Learning Algorithms.
Neural Comput. 8(7) (October 1996) 1341–1390

14. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine
Learning 29(2) (1997) 131–163

15. Choudary, O., Kuhn, M.G.: Efficient template attacks. In Francillon, A., Rohatgi,
P., eds.: Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Se-
lected Papers. Volume 8419 of LNCS., Springer (2013) 253–270

16. Zheng, Z., Webb, G.I.: Lazy Learning of Bayesian Rules. Machine Learning 41(1)
(2000) 53–84

17. Keogh, E.J., Pazzani, M.J.: Learning Augmented Bayesian Classifiers: A Compar-
ison of Distribution-based and Classification-based Approaches (1999)

18. Webb, I.G., Boughton, R.J., Wang, Z.: Not So Naive Bayes: Aggregating One-
Dependence Estimators. Machine Learning 58(1) (2005) 5–24

19. Webb, G.I., Boughton, J.R., Zheng, F., Ting, K.M., Salem, H.: Learning by extrap-
olation from marginal to full-multivariate probability distributions: decreasingly
naive Bayesian classification. Machine Learning 86(2) (2012) 233–272

16

20. TELECOM ParisTech SEN research group: DPA Contest (2nd edition) (2009–
2010) http://www.DPAcontest.org/v2/.

21. TELECOM ParisTech SEN research group: DPA Contest (4th edition) (2013–2014)
http://www.DPAcontest.org/v4/.

22. Powers, D.M.W.: Evaluation: from precision, recall and F-factor to ROC, informed-
ness, markedness and correlation (2007)

23. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl. 11(1)
(November 2009) 10–18

24. Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: Proc.
of the European Conference on Artificial Intelligenc. (1990)

http://www.DPAcontest.org/v2/
http://www.DPAcontest.org/v4/

	Template Attack vs. Bayes Classifier
	Introduction
	Background & Algorithms
	Profiled side-channel analysis
	Gaussian Naive Bayes
	Template Attack
	Averaged n-Dependence Estimators - AnDE

	Experimental Evaluation
	Data Setup
	Practical Algorithm Setting
	Parameter Tuning Phase
	Verification Phase

	Discussion
	Conclusions

